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Abstract—This paper presents a technique to estimate the coef-
ficients of a multi look-up table (LUT) digital predistortion (DPD)
architecture based on the partial least squares (PLS) regression
method. The proposed 3-D distributed memory LUTs (3D-DML)
architecture is suitable for efficient FPGA implementation and
compensates for the distortion arising in concurrent dual-band
envelope tracking (ET) power amplifiers (PAs). On the one
hand, a new variant of the Orthogonal Matching Pursuit (OMP)
algorithm is proposed to properly select only the best LUTs of the
DPD function in the forward path and thus reducing the number
of required coefficients. On the other hand, the PLS regression
method is proposed to address both the regularization problem
of the coefficient estimation and, at the same time, reducing the
number of coefficients to be estimated in the DPD feedback
identification path. Moreover, by exploiting the orthogonality
of the PLS transformed matrix, the computational complexity
of the parameters’ identification can be significantly simplified.
Experimental results will prove how it is possible to reduce the
DPD complexity (i.e. the number of coefficients) in both forward
and feedback paths while meeting the targeted linearity levels.

Index Terms—Envelope tracking, digital predistortion, look-up
tables, partial least squares, power amplifier, principal compo-
nent analysis.

I. INTRODUCTION

ENVELOPE tracking (ET) power amplifiers (PAs) have
been proposed as an alternative to overcome low power

efficiency amplification when using class-AB PAs operated
with high back-off levels in order to accommodate the peak-
to-average power ratio (PAPR) of the transmitted signal. The
ET architecture requires an envelope modulator capable of
efficiently amplifying the signal’s envelope over its whole
bandwidth [1] (considered to be, according to the rule of
thumb, 3 to 5 times the signal’s bandwidth). Since the overall
ET efficiency is calculated as the product of the drain effi-
ciency and the efficiency of the envelope modulator, several
efforts have been devoted to design wide bandwidth envelope
modulators [2], [3]. However, coping with wide bandwidth
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de Catalunya (UPC) - Barcelona Tech, Barcelona, 08034, SPAIN, e-mail:
thi.quynh.anh.pham@upc.edu
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signals, concurrent dual-band (DB), multi-band or carrier
aggregated signals with large separation between carriers is
still a challenge to guarantee efficient amplification using ET
PAs. Several alternatives to deal with the existing trade-off
between signal bandwidth and efficiency in ET PAs have been
proposed, such as considering the use of slower envelopes to
dynamically supply the PA [4]–[6].

Focusing on concurrent DB or non-contiguous carrier aggre-
gation transmissions with certain separation between carriers,
solutions based on the use of slow envelope versions of the
original signal’s envelope to dynamically supply the PA were
proposed in literature. However, unwanted distortion effects
related to the slow envelope used to dynamically supply the
PA as well as the inherent PA nonlinear behavior had to
be compensated in order to comply with the required ACPR
and NMSE levels. Therefore, the 3-D behavioral models for
linearizing concurrent dual-band envelope tracking PAs were
proposed [7]–[9].

The number of coefficients required by these 3D behavioral
models grows exponentially when considering memory effects.
This negatively impacts on the least squares (LS) estimation
because it not only increases the computational complexity
but also drives to over-fitting and uncertainty. In addition,
when targeting an FPGA implementation, the DPD function
in forward path should be designed as simple as possible (i.e.,
including the minimum and most relevant basis functions)
to save as many hardware logic resources and memory as
possible.

With this goal in mind, in the PAWR2018 paper [10],
we took the 3-D distributed memory polynomial DPD model
(proposed in [7] to compensate for the in-band and cross-band
intermodulation distortion as well as for the slow-envelope
dependent distortion that appears when supplying the PA with
a slower version of the DB envelope) and presented a new
multi-LUT architecture suitable for FPGA implementation.
The proposed 3-D distributed memory LUT (3D-DML) model
followed a multi-LUT architecture with linear/bilinear inter-
polation and extrapolation as defined by Molina et al. in
[11]. In addition, in order to properly select the minimum
number of LUTs of the 3D-DML model to meet the required
linearity specifications, a modified version of the Orthogonal
Matching Pursuit (OMP) algorithm [12], named OMP-LUT,
was presented in [10].

Despite the fact that with the OMP-LUT algorithm it is
possible to efficiently reduce the number of required LUTs in
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the forward’s path DPD function, while still being compliant
with the linearity specifications, a proper well-conditioned
identification of the LUTs coefficients still cannot be guar-
anteed. The reason is that with the OMP-LUT algorithm in
[10] we have to include, for the sake of completeness, some
basis functions with low relevance, which may lead to a rank
deficient LS identification.

Several efforts have been made to solve the ill-conditioning
problem such as the Ridge regression, consisting in a `2-
norm regularization [13]. Alternatively, reducing the order of
the DPD model by properly selecting the most significant
basis functions or creating a new set of orthogonal basis
functions has beneficial effects in both the computational
complexity and in the conditioning of the data matrices. The
singular value decomposition (SVD) [14]–[17] or the principal
component analysis (PCA) technique [18], [19] is commonly
used for extracting the dominant eigenvalues/eigenvectors and
thus reducing the order of the DPD function.

In this paper, unlike in [10], where the emphasis was put
in reducing the complexity of the DPD function in the for-
ward path, we focus on the feedback identification/adaptation
path. The idea is conceptualized in Fig. 1. The objective is
twofold, on the one hand we want to ensure a proper, well-
conditioned parameter identification while, on the other hand,
we want to further decrease the number of coefficients to be
estimated. For that reason we propose the use of the partial
least squares (PLS) regression method [20] for extracting the
DPD coefficients of the 3D-DML DPD. Similarly to PCA, the
PLS-based method converts the original basis functions into
a new data matrix composed of orthogonal basis functions.
Moreover, some additional model pruning can be applied to
the new transformed matrix, which will reduce the number of
parameters to estimate. The accuracy and robustness of the
PLS method will be properly compared to the one based on
PCA.

Therefore, the remainder of this paper is organized as
follows. To create a self-contained paper for the reader, Section
II summarizes the 3D-DML model and the proposed best
LUTs selection method presented in the PAWR2018 paper
[10] to design the DPD function in the forward DPD path.
In Section III, the identification/adaptation subsystem based
on using the PLS regression method to further reduce the
number of the parameters required for a robust identification
is presented. Section IV describes the experimental test bench,
while Section V shows a comparison between PLS and PCA to
evaluate the reduction ratio that can be applied in the number
of coefficients without suffering significant degradation in the
DPD linearization performance. Finally, conclusions are given
in Section VI.

II. FORWARD DPD PATH

A. 3D-DML Digital Predistorter
The general block diagram of the closed-loop DPD system

architecture is depicted in Fig. 1. For DB ET PAs, this
architecture has to be replicated to predistort the transmitted
signals at each one of the bands, as described in [7].

In order to simplify the DPD for DB ET PAs and targeting
an FPGA implementation, in [10] we proposed the 3D-DML
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Fig. 1. Block diagram of a closed-loop DPD system following a direct
learning approach.

DPD model that uses LUTs with linear/bilinear interpolation
and extrapolation. The 3D-DML DPD model for the signal in
Band 1 is defined as:

x1[n] =
N1−1∑
i=0

u1[n− τu1
i ]fΦ1,i

(∣∣u1[n− τu1
i ]
∣∣)+

N2−1∑
i=1

M2−1∑
j=1

u1[n]fΦ1,i,j

(∣∣u1[n− τu1
i ]
∣∣, ∣∣u2[n− τu2

j ]
∣∣)+

N3−1∑
i=1

K3−1∑
k=1

u1[n]fΦ1,i,k

(∣∣u1[n− τu1
i ]
∣∣, E[n− τek ]

)
(1)

where N1, N2 and N3 are the numbers of delays of the input
signal u1[n] at each branch; M2 is the number of delays of
the interference signal u2[n]; K3 is the number of delays of
the supply envelope E[n]; τu1 , τu2 and τe (with τu1,u2,e ∈ Z
and τu1,u2,e

0 = 0) are the most significant sparse delays of the
input (u1[n]), interference signal (u2[n]) and envelope (E[n]).
Moreover, following the LUT interpolation and extrapolation
concept in [11], fΦ1,i

(u1) in (1) represents a 1-D LUT and
is a piecewise linear complex function defined as the linear
combination of N basis functions; while fΦ1,i,j

(u1, u2) or
fΦ1,i,k

(u1, E) in (1) are 2-D LUTs defined by a piecewise
bilinear complex function. Further details on the bilinear
interpolation and extrapolation can be found in [10], [11].

Analogously, the DPD function for Band 2 can be defined as
in (1) but with u2[n] and u1[n] being the input and interfering
signal, respectively.

B. Best LUTs Selection Method (OMP-LUT)

In the 3D-DML DPD model, the required number of coeffi-
cients to compensate for the in-band, cross-band intermodula-
tion distortion and the slow-envelope dependent distortion in
ET PAs is significantly high. This leads to an increase of the
system’s computational complexity. Besides, the sparse data of
LUT-based DPD model drives the system to over-fitting and
uncertainty. Fortunately, this sparsity of the DPD models can
be exploited to reduce the number of required basis functions.

In order to decrease the number of basis functions of the
3D-DML DPD model (while still being able to meet the
desired linearity levels), the OMP-LUT method was proposed
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in [10] to select the most relevant LUTs conforming the DPD
function. First, the OMP-LUT algorithm determines the weight
of each LUT in the model according to the frequency of
appearance of its components and the position in the OMP
list of the most relevant basis functions (more details on the
general OMP-BIC algorithm can be found in [12]). Then,
the OMP-LUT algorithm selects the minimum number of
LUTs with the highest weights that complies with the imposed
linearity requirements.

For the sake of completeness, the results obtained with the
OMP-LUT method in [10], are listed again in Table I and
discussed in Section V.

III. FEEDBACK IDENTIFICATION/ADAPTATION PATH

The Least Squares (LS) coefficient estimation/adaptation
of a general DPD is depicted in Fig. 1, where the DPD
coefficients can be iteratively found by following a direct
learning approach:

wi+1
DPD = wi

DPD + λ(UHU)−1UHe (2)

with wi
DPD being the vector of coefficients of the DPD model

at the ith iteration, where U is the data matrix containing
the basis functions describing the DPD model and λ is the
learning-rate parameter. Finally, the identification error is
defined as e =

y
G0
− u, where y is the PA output signal, G0

is the desired linear gain of the PA and u is the input signal.
As shown in (2), typically, the Moore-Penrose inverse (i.e.,

(UHU)−1UH ) is used to solve the LS identification. However,
when the correlation matrix (UHU) is ill-conditioned, the val-
ues of the estimated coefficients are no longer reliable. Several
regularization techniques [21] can be found in literature to
address this problem. Among them, we propose an approach
based on the PLS regression method that not only enhances
the conditioning of the estimation but also allows to reduce
the number of coefficients to be estimated.

A. Partial Least Squares (PLS)

PLS is a popular statistical technique used in many differ-
ent applications, such as regression, classification, dimension
reduction and modeling [20]. In particular, in this paper we
employ PLS as a dimension reduction technique, similarly
to the work presented in [19] where the PCA technique was
used for model order reduction. Both PLS and PCA methods
construct new components that are linear combinations of the
original basis functions but, while PCA obtains new com-
ponents that maximize their own variance, PLS finds linear
combinations of the original basis functions that maximize
the covariance between the new components and the output
vector (or reference signal). As it will be shown in Section
V, this enables PLS to outperform PCA in applications such
as PA behavioral modeling and DPD linearization, since PLS
improves the accuracy of the estimation of the output vector.

Let us consider a non-square tall data matrix X containing
the basis functions that describes the PA nonlinear behavior
and memory effects (to be used for either PA behavioral
modeling or DPD linearization). By using PLS, the M original

basis functions xi = (xi[0], xi[1], · · ·, xi[N − 1])T , with
i = 1, 2, · · ·,M , of the data matrix X = (x1, x2, · · ·, xM )
are converted, through a transformation matrix P, into L
(L ≤M ) new orthogonal components x̂j , with j = 1, 2, ···, L,
of the transformed data matrix X̂ = (x̂1, x̂2, · · ·, x̂L). The
relation between the N × M original data matrix (X) and
the N × L transformed one (X̂) is defined by the following
linear combination,

X̂ = XP (3)

with P being the M×L transformation matrix and N being the
number data samples. The columns of the transformed matrix
(X̂) are sorted according to their contribution to maximize the
covariance between the new components and the output vector
y. By using the iterative SIMPLS algorithm described in [22]
we can obtain the transformation matrix P. As long as the
signal statistics do not change significantly, the transformation
matrix P can be calculated off-line only once.

B. Coefficient Estimation/Adaptation

For simplicity and without loss of generality, we will now
consider the estimation of the coefficients of a PA behavioral
model wPA. Following the notation in Fig. 1, the estimated
output vector ŷ of a PA behavioral model can be defined as

ŷ = XwPA (4)

with wPA being the vector of estimated coefficients and X is the
data matrix containing the basis functions of the PA model.
The coefficients are estimated as

wPA = (XHX)−1XHy (5)

where y =
(
y[0], y[1], · · · , y[N − 1]

)T
is the N × 1 vector of

measured PA output data. The estimation of the coefficients
wDPD of the DPD function is performed iteratively in a similar
way (see Fig. 1) with U being the data matrix containing the
basis functions for DPD.

In both cases, if the correlation matrix is ill-conditioned,
the Moore-Penrose inverse will provide an inaccurate solution
and the application of some regularization techniques will
be necessary. Most of the published DPD solutions based
on Matlab designs solve this problem by using the Matlab’s
backslash operator (\), where some kind of regularization
(not specified by Mathworks) is applied. As an alternative to
Matlab’s backslash solution and targeting an FPGA imple-
mentation, PLS can be used to both solve the ill-conditioning
problem and reduce the number of basis functions.

The resulting PLS transformed matrix X̂ is composed by L
(L ≤M ) orthogonal components, which significantly simpli-
fies the parameter extraction. Thanks to the orthogonality of
the components of X̂, the matrix inversion of the correlation
matrix in (5) can be simplified as follows,(

X̂
H

X̂
)−1

=
(
σ−1

1 , σ−1
2 , · · · , σ−1

L

)
I (6)

where σj , with j = 1, 2, · · · , L, is the `2-norm squared of the
new basis function x̂j = (x̂j [0], x̂j [1], · · · , x̂j [N −1])T of the
new transformed matrix X̂ =

(
x̂1, x̂2, · · · , x̂L

)
and I is the
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identity matrix. Therefore, the computation of each one of the
new (transformed) coefficients ŵj , with j = 1, 2, · · · , L, can
be calculated independently as follows

ŵj = σ−1
j x̂Hj y (7)

Once the L × 1 vector of transformed coefficients ŵPA =
(ŵ1, ŵ2, · · · , ŵL)

T is identified, it is possible to calculate the
new original M × 1 vector of coefficients as follows

wPA = PŵPA (8)

with P being the M × L PLS transformation matrix.

IV. EXPERIMENTAL TEST BENCH

The evaluation of the LUT-based DPD for concurent dual-
band envelope tracking was carried out in the remoteUPCLab
testbed depicted in Fig. 2. In collaboration with IEEE MTT-S
and Rohde & Schwarz (R&S), our research group assembled
the remoteUPCLab testbed in the framework of the IMS2017
DPD student design competition [23]. It consisted of a PC
running MATLAB and an FTP server to allow worldwide users
to connect to the equipment. The functioning is described in
the following.

The remoteUPCLab server receives the incoming baseband
I/Q waveforms and an appropriate delay-compensated supply
waveform from a remote user. These are both downloaded
into the R&S SMW200A vector signal generator (VSG) that
generates (i) the I/Q signals being RF up converted to deliver
the PA input signal (i.e. through the VSG I/Q modulator) and
(ii) the EVM supply modulator input signal. The R&S FSW8
signal and spectrum analyzer (SSA) is in charge of RF down
conversion and data acquisition of the waveform at the output
of the PA, whose I/Q data will be sent back to the remote user
for DPD processing. The device under test (DUT) consists in a
Texas Instruments LM3290-91-1EVM ET board that includes
a Skyworks SKY776621 4G handset PA operated at 1950
MHz. The PA is operating with a dual-band signal composed
by two OFDM signals whose center frequency is spaced 80
MHz and that feature 10 MHz and 5 MHz bandwidth. The
baseband clock that is employed in the signal processing
operations is 122.88 MHz which corresponds also to the
I/Q A/D and D/A sampling frequencies (no oversampling is
applied). The peak output power level from the SKY77621
PA is limited to approximately 1 W. The settings in the signal
analyzer (reference level and input attenuation) are set in such
a way as not to distort the measured signal even for the highest
peak power levels allowed.

V. EXPERIMENTAL RESULTS

In [10], we proposed a modification of the OMP algorithm,
named OMP-LUT, that allows searching for the most relevant
LUTs of the 3D-DML DPD function in the forward path.
Three different selection methods applied to the original data
matrix (composed of 223 basis functions) in the forward path
were compared in order to show the model order reduction
capabilities while meeting the linearity specifications (set at
-45 dBc of ACPR):

TABLE I
COMPARISON OF DIFFERENT OMP COEFFICIENT SELECTION METHODS

FOR 3D-DML DPD

Method Pout η NMSE ACPR Num.
[dBm] [%] [dB] [dB] coeff.

(a) B1: -36.5 B1: -45.6 B1: 85
No OMP 23.1 19.0 B2: -37.7 B2: -46.0 B2: 153

(b) B1: -36.3 B1: -45.1 B1: 92
OMP-col 22.8 18.2 B2: -37.5 B2: -45.3 B2: 92

(c) B1: -36.5 B1: -45.1 B1: 62
OMP-LUT 23.0 18.7 B2: -37.1 B2: -45.3 B2: 73

a) No OMP: no proper search is carried out, the LUT
selection is done by adding consecutive memory terms
of both input signals and the slow envelope. It is likely
that with this straightforward method to build the data
matrix (no requirement or constraint is applied to select
LUTs), some basis functions will be highly correlated
among them.

b) OMP-col: selection of the best basis functions (or
columns of the data matrix) using the OMP-BIC algo-
rithm without taking into account to which LUT they be-
long to, and thus, without caring if the resulting selected
basis correspond to complete LUTs or not. The output
of the search are the best columns (i.e. the most relevant
basis functions) of the data matrix. With the OMP-col,
we are implicitly avoiding the ill-conditioning problem
by selecting the most relevant basis functions.

c) OMP-LUT: selection of the best LUTs using the modified
version of the OMP-BIC algorithm. The output of the
search are the best complete LUTs of the data matrix. For
the sake of completeness some basis functions with low
relevance have to be added to complete the LUT structure
and this may later contribute to introduce uncertainty in
the estimation of the coefficients.

The linearity and power efficiency values obtained when
reducing the coefficients of the 3D-DML DPD model in the
forward path using the three aforementioned methods were
already presented in [10]. To make this paper self-contained
we list again Table I, showing that to reach −45 dB of ACPR
and achieve equivalent NMSE, Pout and power efficiency
values, the OMP-LUT selection method uses a smaller number
of LUTs, and thus coefficients, in the forward path DPD
function, than the other two methods.

Then, starting from the reduced set of coefficients obtained
for the DPD function in the forward path in [10], in this paper
we focus on improving the conditioning of the estimation as
well as reducing the number of parameters to be estimated in
the feedback identification/adaptation path. For simplicity and
without loss of generality, the advantages of the PLS-based
estimation will be highlighted considering the extraction of
the coefficients of the 3D-DML PA behavioral model instead
of the 3D-DML DPD model.

As explained before, in order to extract the coefficients
of the DPD function (based on LUTs) in the forward path,
the Moore-Penrose inverse is commonly used to solve the LS
regression. However, if the resulting order reduced matrix is
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Fig. 2. Block diagram of the remoteUPCLab [23].

TABLE II
MOORE-PENROSE INVERSE VS. MATLAB’S BACKSLASH OPERATOR FOR

THE PA BEHAVIORAL MODELING AFTER APPLYING DIFFERENT
COEFFICIENT SELECTION METHODS

Method Sig. # of NMSE [dB] ACEPR [dB]
coef. MP–LS \ MP–LS \

(a) B1 85 NaN -39.8 NaN -43.8
No OMP B2 153 NaN -46.0 NaN -51.1

(b) B1 92 -39.4 -39.4 -43.4 -43.4
OMP-col B2 92 -45.9 -45.9 -50.7 -50.7

(c) B1 62 NaN -40.0 NaN -44.0
OMP-LUT B2 73 NaN -45.6 NaN -50.3

not well-conditioned, then the coefficient estimation may lead
to an inaccurate solution. In the particular case of the OMP-col
selection, since all the basis functions were properly selected,
the LS estimation will be perfectly conditioned. However, in
the OMP-LUT case, because the objective is to obtain an
integer number of complete LUTs we have to include some of
the basis functions (i.e., columns) that make the LS estimation
rank deficient. To illustrate this, Table II shows the results of
PA behavioral modeling in terms of NMSE and ACEPR for the
three selection methods when considering the Moore-Penrose
inverse (MP-LS) and the Matlab’s backslash (\) operations.
It can be observed that in the case of the OMP-LUT basis
selection, the MP-LS cannot provide an accurate estimation,
while the Matlab’s backslash operator can.

As an alternative to the backslash operator, we propose
the PLS algorithm to both improve the conditioning of the
correlation matrix and reduce the number of coefficients of
the estimation. In addition, we compare the accuracy versus
coefficient reduction between the PLS and PCA techniques.
The figures Fig. 3-Fig. 5 show the NMSE and ACEPR
evolution when considering different numbers of coefficients
in the identification for the following test cases: a) No-OMP,
b) OMP-col and c) OMP-LUT, respectively. In all three cases,
we can see that the PLS technique is more robust than PCA
in terms of NMSE and ACEPR degradation when reducing
the number of coefficients of the estimation (coefficients of
the transformed basis). The reason for this is that PLS, unlike

10 20 30 40 50 60 70 80
Number of coefficients

-40

-30

-20

-10

0

N
M

S
E

 [d
B

]

-60

-40

-20

0

A
C

E
P

R
 [d

B
]

a)

NMSE PLS
NMSE PCA
ACEPR PLS
ACEPR PCA

20 40 60 80 100 120 140
Number of coefficients

-60

-40

-20

0

N
M

S
E

 [d
B

]

-60

-40

-20

0

20

A
C

E
P

R
 [d

B
]

b)

NMSE PLS
NMSE PCA
ACEPR PLS
ACEPR PCA

Fig. 3. NMSE and ACEPR vs. number of coefficients considering No-OMP
selection in the forward path, a) for Band 1 signal and b) for Band 2 signal.

PCA, takes also into account the information of the output
signal for creating the transformation matrix.

In case a) No-OMP in Fig. 3, there are two types of NMSE
and ACEPR degradation, when the number of identification
components is too small and also when the full basis of
components is considered. The latter degradation is due to
the fact that the correlation matrix is ill-conditioned when
considering the full basis of new components because we
are including the ones that are expendable. Eliminating the
less relevant columns (components) produces a regularization
effect, which results in a new well-conditioned basis with less
coefficients to estimate. Similarly, in case c) OMP-LUT in
Fig. 5 we can observe the same behavior involving NMSE and
ACEPR degradation due to excess of coefficient reduction or
due to the ill-conditioned estimation for an excess of linear
dependent components. Instead, in case b) OMP-col in Fig. 4,
thanks to the proper basis selection performed by the OMP-
BIC algorithm, no ill-condition problem is observed at high
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Fig. 4. NMSE and ACEPR vs. number of coefficients considering OMP-col
selection in the forward path, a) for Band 1 signal and b) for Band 2 signal.
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Fig. 5. NMSE and ACEPR vs. number of coefficients considering OMP-LUT
selection in the forward path, a) for Band 1 signal and b) for Band 2 signal.

number of components, while only degradation is appreciated,
as expected, when significantly decreasing the number of
parameters.

The advantage of using the PLS technique for the coeffi-
cients estimation when considering the case of the OMP-LUT
basis selection is summarized in Table III. Thanks to PLS, we
can reduce the number of coefficients to be estimated almost
without losing accuracy in the identification. In particular (see
Table III), around 35% for Band 1 and 34% for Band 2 of
reduction in the number of coefficients can be considered at
the expenses of a loss of identification performance (in terms
of NMSE and ACEPR) of less than 0.5% in the worst case.
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Fig. 6. Spectra of the input, measured output, estimated output and residual
error of Band 1 signal when applying ’OMP-LUT and PLS reduction’.
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Fig. 7. Spectra of the input, measured output, estimated output and residual
error of Band 2 signal when applying ’OMP-LUT and PLS reduction’.

Fig. 6 (for Band 1) and Fig. 7 (for Band 2) show the spectra
of the estimated outputs considering a 3D-DML behavioral
model after applying OMP-LUT selection (i.e., 62 coeff. Band
1 and 73 coeff. Band 2) and reduced PLS coefficient estimation
(i.e., 40 coeff. Band 1 and 48 coeff. Band 2). Finally, applying
the aforementioned combination (i.e., OMP-LUT selection in
the forward path and PLS reduction estimation in the feedback
identification path) we can significantly reduce the complexity
of the 3D-DML DPD while still meeting the specific linearity
requirements as shown in Fig. 8. Further details on the
linearization performance of the 3D-DML DPD can be found
in [10].

VI. CONCLUSION

In this paper, the PLS regression method is proposed to
address the ill-conditioning problem of the DPD coefficient
estimation. To validate the proposed PLS method, we consid-
ered the 3D-DML DPD model presented in [10]. The 3D-DML
model is a multi-LUT design for FPGA implementation that
is capable of coping with the nonlinear distortion arising in
an ET PA under a concurrent DB transmission. The proposed
3D-DML DPD was designed by properly selecting the most
relevant LUTs (to at least meet the -45 dBc of ACPR) by using
a modified version of the OMP algorithm (i.e., OMP-LUT).
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TABLE III
PLS-BASED BEHAVIORAL MODELING IDENTIFICATION AFTER OMP-LUT COEFFICIENT REDUCTION

Signal Number of coefficients NMSE [dB] ACEPR [dB]
backslash ”\” PLS reduction ↓ % backslash ”\” PLS reduction ↓ % backslash ”\” PLS reduction ↓ %

Band 1 62 40 35.5 -40.0 -39.8 0.5 -44.0 -43.8 0.5

Band 2 73 48 34.2 -45.6 -45.4 0.4 -50.3 -50.3 0.0
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Fig. 8. Unlinearized and linearized (using the 3D-DML DPD and the OMP-
LUT configuration in Table I) spectra of a DB signal.

With PLS, a set of new components (i.e. the new basis)
is generated from the original basis functions. By properly
selecting the most relevant components from the set, it is
possible to guarantee a well-conditioned identification while
reducing the number of estimated parameters without loss of
accuracy. In addition, thanks to the orthogonality among the
components of the new basis, the matrix inversion operation
is significantly simplified and, as shown in (7), each of the
DPD coefficients can be estimated independently.
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