
Delay effects on the limit cycling behavior in an H-bridge resonant inverter
with zero current switching control strategy

L. Benaderoa, F. Torresb, A. El Aroudic, C. Olallac, E. Ponce b and L. Martinez-Salameroc

a Departament de Fı́sica, Universitat Politècnica de Catalunya, Barcelona, Spain
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Abstract—In this paper, bifurcations of limit cycles in a
H-bridge LC resonant inverter under a zero current switch-
ing control strategy with delay in the switching action are
analyzed. Mathematical analysis and numerical simula-
tions show that the delay can degrade the quality of the
oscillations and even inhibit them.

1. Introduction

Resonant inverters are systems in which oscillations in
an LC tank circuit are sustained by means of a switching
network, thus converting a DC voltage into an AC one. We
consider here self-sustained oscillations that are produced
by switching the active branch of the bridge whenever the
current in the LC tank becomes zero [1, 2, 3]. This zero
current switching (ZCS) control strategy has the advantage
of minimizing switching losses. A generalized model of a
resonant DC-AC H-bridge inverter, which includes the par-
allel and series implementations, was introduced and its bi-
furcation scenery was analyzed in [4], without considering
the delay. Here, the delay effect on the limit cycling behav-
ior is analyzed from the switched model, and the results are
confirmed by direct simulations.

In Section 2, a normalized model of the inverter is intro-
duced in the form of a delay differential system with only
three parameters, and in Section 3, the bifurcation pattern
is described highlighting the influence of the delay.

2. System description and mathematical modeling

The circuit diagram of the system under study is depicted
in Fig. 1. It consists of a generalized circuit including par-
asitic resistances in the energy storage elements, which can
represent both series and parallel topologies. The following
elements can be identified: the input voltage Vg; the output
series resistance Ros; the inductor with inductance L and
parasitic series resistor rls; the output parallel conductance
Gop = 1/Rop; the capacitor with capacitance C, parasitic
parallel conductance gcp = 1/rcp and parasitic series resis-
tance rcs; and the switches S1, S2, S3 and S4.

The circuit operation is based on an automatically acti-
vated switching between two configurations. The switches
are driven by the two signals δ and its complementary
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Figure 1: Generalized schematic diagram of an LC reso-
nant inverter. Note that if a resistor is missing, either its
corresponding conductance or resistance vanishes.

δ̄ = 1 − δ. Note that δ = 1 when the inductor current iL > 0
and δ = 0 if iL < 0, so that a ZCS control is implemented
in a natural way. In that diagram, δ = 1 (0) forces the on
(off) state in S1 and S4 and the off (on) state in S2 and S3.

Note that if the switching is inhibited, the capacitor volt-
age and the inductor current tend to be constant; specifi-
cally, if δ = 1 (0), there is an equilibrium point with positive
(negative) capacitor voltage and inductor current. Other-
wise, a limit cycle is possible when the switching is active.
This oscillating regime is built by a suitable aggregation of
two orbits, each one being a part of the transient regime
toward one of the equilibrium pair. However, this desired
objective is only achieved for certain values of the parame-
ters and some initial conditions, as it is shown later.

First, a piecewise-linear model for the system shown in
Fig. 1 will be obtained by ignoring the delay; for more
details, see [4]. Let vC be the capacitor voltage and iL the
inductor current. By applying KVL and KCL, one gets

uVg = L
diL

dt
+ iL(Ros + rls) + icsrcs + vC ,

iL = ics + (icsrcs + vC)Gop,

where ics, that is the current through rcs, is

ics = C
dvC

dt
+ gcpvC .

The variable u = 2δ − 1 is determined by the control,
such that u = 1 (−1), that is δ = 1 (0), if iL > 0 (< 0).
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After some algebra, the following model is obtained

d
dt

(
vC

iL

)
= A

(
vC

iL

)
+ ub, (1)

where

A =

 −Gp

C
κ
C

− κ
L −

Rs
L

 , b =

 0
Vg

L

 , (2)

and the factor κ, the equivalent series resistance Rs and the
equivalent parallel conductance Gp are

κ =
1

1 + rcsGop
, Rs = Ros + rls + κrcs, Gp = gcp + κGop.

Let det(A) and tr(A) be the determinant and trace of ma-
trix A in (2). Hence, the natural frequency ω0 =

√
det(A)

and the quality factor Q = −ω0/tr(A) of the LC tank are

ω0 =

√
RsGp + κ2

LC
,

1
Q

=
Gp

ω0C
+

Rs

ω0L
.

Below, the model will be expressed in a canonical form
with dimensionless parameters. Let β be a first normalized
parameter defined as

β =
QGp

ω0C
= 1 −

RsQ
ω0L

=
GpL

GpL + CRs
. (3)

Note that 0 ≤ β ≤ 1. The case β = 0 (1) arises when
Gp = 0 (Rs = 0), that is the ideal series (parallel) inverter.
Assuming Q > 1/2, the eigenvalues of matrix A are

p± = −
ω0

2Q
± iω0

√
1 −

1
4Q2 = ω0(σ ± iν), (4)

in which σ = −(2Q)−1 and ν =
√

1 − (2Q)−2. Let γ be a
second normalized parameter, related to the relative energy
losses of the LC tank, defined as

γ =
σ

ν
=

−1√
4Q2 − 1

< 0. (5)

Now, by means of the following change of variables

θ = νω0t, x =

(
x1
x2

)
=

 κ
Vg
−

LGp

CVg

0 νω0L
Vg

 ( vC

iL

)
, (6)

system (1) can be reformulated as

dx
dθ

= Ax + ub, (7)

where matrix A and vector b are redefined as

A =

(
0 1 + γ2

−1 2γ

)
, b =

(
2βγ

1

)
. (8)

Then, the new matrix A has the eigenvalues

λ± = γ ± i.

Figure 2: Plots of βsn(γ), βcc(γ) and βhc(γ), in solid black,
dashed red and dash-dotted blue, respectively. The line β =

1 marks the maximum value for this parameter and vertical
lines give account of the corresponding minimum values
of parameter γ to avoid the homoclinic connection, critical
crossing and fold bifurcation for any valid value of β.

Considering an ideal switching forced by the condition
iL = 0, the switching function, in accordance to the change
of variables (6), is given by the expression h(x) = x2.

However, if a delayed switching action is considered, the
control signal u is determined by a past state of the sys-
tem. Let us consider, as an approximation to the problem,
a fixed switching time delay Td due to switches and driving
circuitry. Then, the model of our system is the differential
equation (7)-(8), together with the delayed switching func-
tion

h(x, t) = h(x(t − τ)) = x2(t − τ), (9)

where the normalized time delay τ = νω0Td is a third pa-
rameter in addition to β and γ. Then, u = 1 if h(x(t − τ)) >
0 and u = 0 if h(x(t − τ)) < 0. Note that system (7)-(9)
with a constant value u = ±1, has the following equilibria

x± = (x1, x2)u = ±

(
1 −

4βγ2

1 + γ2 ,
−2βγ
1 + γ2

)
, (10)

which may be constant solutions of the switched system,
whenever β > 0, since x2 > 0.

3. Crossing limit cycle and its bifurcations

Apart from the stable equilibria (10), the dynamics of
system (7)-(9) can also be oscillatory. Without delay, the
only possible stable oscillation is made up by two linked
trajectories. However, with delay, more complex oscilla-
tions can occur. In the following, the conditions for exis-
tence of limit cycles without delay are revisited, and then,
the case with delay is addressed.

3.1. Revisiting limit cycles existence without delay

Solutions for any of the two linear configurations in (7),
starting at x(0), can be expressed as

x(θ) = Φ±(θ, x(0)) = φ(θ)
(
x(0) − x±

)
+ x±, (11)



where φ(θ) is the evolution operator given by

φ(θ) = eγθ
(

cos θ − γ sin θ (1 + γ2) sin θ
− sin θ cos θ + γ sin θ

)
.

Note that without delay, the configuration changes when-
ever the orbit crosses the switching manifold

Σ = {x = (x1, 0), x1 ∈ R}. (12)

Furthermore, in the subset of the switching manifold Σs =

{x = (x1, 0),−1 ≤ x1 ≤ 1}, the escaping sliding conditions
are satisfied, i.e., the vector field points outward both sides
of Σs. Due to this property, the sliding subset Σs plays a rel-
evant role in the existence of unstable sliding cycles. These
cycles are boundaries between the region of attraction of
the oscillatory dynamics and that of different equilibria.

A complete classification of limit cycle configurations
for system (7-9), without delay and with parameter β > 0,
appears in Theorem 1 in [4]. In such theorem, limit cycle
conditions are summarized. For the sake of completeness,
such conditions are reproduced below.

(a) If 0 < β < βhc(γ) then there exist one stable crossing
limit cycle and two unstable sliding limit cycles.

(b) If β = βhc(γ) then there exist one stable crossing limit
cycle and two homoclinic connections to the origin.

(c) If βhc(γ) < β < βcc(γ) then there exist one stable cross-
ing limit cycle and one unstable sliding limit cycle.

(d) If β = βcc(γ) then there exist one stable crossing limit
cycle and one unstable critical crossing limit cycle.

(e) If βsn(γ) < β < βcc(γ) then there exist two crossing
limit cycles having opposite stability.

(f) If β = βsn(γ) then there is one crossing limit cycle
which is semi-stable.

(g) If β > βsn(γ) then there are no crossing limit cycles.

Consequently, four regions are found in the parameter
plane (β, γ) defined by the three functions βsn(γ), βcc(γ) and
βhc(γ), which are codimension-one lines corresponding to a
smooth fold, also called saddle-node, bifurcation of cycles,
to a critical crossing-sliding cycle and to a double homo-
clinic saddle connection, respectively. These functions are
depicted in Fig. 2, and some cases for limit sets are shown
in Fig. 3.

3.2. Limit cycles bifurcations under delay action

Although the switching is theoretically induced at time
instants such that the orbit crosses Σ, actually the transition
between the two configurations is delayed due to the non
ideal features of the switches. In Fig. 4(a), the stable limit
cycle has been computed for three values of the delay, re-
sulting in smaller cycles when the delay is increased, until
this closed orbit collides with Σ for the highest value of τ.

(a) β < βhc(γ) (b) β = βhc(γ) (c) βhc(γ) < β < βcc(γ)

(d) β = βcc(γ) (e) βcc(γ) < β < βsn(γ) (f) β = βsn(γ)

Figure 3: Limit sets for parameters τ = 0, γ fixed and β
given in the caption. The equilibrium points and the outer
stable limit cycle are depicted in blue color and the unstable
cycles in red color. The black cycle in (f) is the non hyper-
bolic limit cycle at the fold bifurcation. The red straight
line corresponds to the sliding set Σs.

(a) (x1, x2) plane (b) xc
1,−xs

1 (τ) (c) xs
2 (τ)

Figure 4: (a) Limit cycles for τ ∈ {0, 1, 2.252586...}. (b)
Crossing and switching values of x1 and (c) switching val-
ues of x2, versus τ. Fixed parameters β = 1, γ = −0.15.
Dots in (b-c) are from simulations in the steady state.

Let xs = (xs
1, x

s
2) be the point of the orbit at the actual

switching instant, xc = (xc
1, 0) be the point where the orbit

crosses Σ, and θs be the half-period of the cycle. Taking
into account the vector field symmetry, limit cycles with
delay can be obtained by solving the equation set

Φ+(θs, xs) = −xs, Φ+(θs − τ, xs) = xc. (13)

Note that the four algebraic equations in (13) must be
solved for the set of four unknowns {θs, xs

1, x
s
2, x

c
1}.

In Fig. 4(b-c), xc
1, −xs

1 and xs
2 have been represented ver-

sus the delay τ. The curves have been computed from (13),
and the dots have been obtained by long time running sim-
ulations. The fixed parameters β and γ used in the quoted
figure are such that, when increasing τ, the standard limit
cycle is annihilated by a border collision with the switching
manifold Σ, as it can be appreciated in Fig. 4(a). This crit-
ical value of τ can be computed by forcing xs

2 = 0, taking
τ as the forth unknown in (13). Notice that, in the border



collision condition, xs ∈ Σs.
There is, however, another possible bifurcation for the

stable limit cycle, when delay is increased, which can be
understood as an evolution of the smooth saddle-node bi-
furcation of cycles mentioned in the above section. In this
case, for some critical values of the parameter set {β, γ, τ}, a
nonhyperbolic limit cycle exists, such that when decreasing
τ, two crossing limit cycles, the outer stable and the inner
unstable, are given. Simulations show that this bifurcation,
including the switching delay, has the same qualitative fea-
tures than the ideal case (without delay) analyzed in [4].

In Fig. 5(a-b), the two bifurcations for crossing limit
cycles have been represented in the plane (γ, τ), with β =

1. The red (blue) line corresponds to the smooth (border-
collision) case. Note the existence of a codimension-two
bifurcation point for the intersection of those codimension-
one lines. The critical values γ1 = −0.26239683 and τ1 =

0.48856227 have been determined for this point for β = 1.
Note also that if γ > γ1 (γ < γ1), the border collision takes
place for the stable (unstable) crossing cycle.

Figure 5(c) is a diagram similar to that in Fig. 4(b), but
with a more negative value of γ, in order to have a saddle-
node bifurcation of cycles. In this diagram, blue (red) lines
stand for stable (unstable) cycles. Here, the red line ends
at a border collision of the unstable crossing cycle, similar
the one explained above for the stable one.

3.3. Some estimation of a safe value for delay

The delay action introduces an important degree of com-
plexity so that the determination of the boundary between
the regions of attraction of the desired stable limit cycle and
the equilibrium points is a difficult task. Although a formal
analysis of this subject is out of the scope of this paper, we
approach the problem by determining a critical value of the
delay such that an orbit starting at the origin, x0 = (0, 0),
reaches the sliding subset of the switching manifold, Σs.
This value is determined by the set of equations, with un-
knowns {θ̂, τ̂, x̂s

1, x̂
c
1},

Φ+(θ̂, x0) = x̂s, Φ+(θ̂ − τ̂, x0) = x̂c,

where τ̂ is the critical value of τ, θ̂ is the flight time from
the origin to a point x̂s ∈ Σs, with 0 < x̂s

1 < 1, and x̂c ∈ Σ,
is the crossing point of the orbit, with x̂c

1 > 1.
The dashed green line in Fig. 5(a) corresponds to τ̂(γ)

with β = 1. Note that τ̂
(
β−1

hc (1)
)

= 0. From this approach,
we conclude that it is advisable a parameter set of the sys-
tem below the dashed green line in Fig. 5(a) diagram, in
order to guarantee the oscillatory dynamics under starting
conditions near the origin of the phase state.

4. Conclusions

A smooth fold and a border collision bifurcations of cy-
cles have been found for a H-bridge self resonant inverter if

(a) τ(γ) (b) τ(γ) (c) −xc
1,−xs

1 (τ)

Figure 5: (a-b) Saddle-node in red color and border colli-
sion in blue color bifurcations of crossing limit cycles in
the parameter plane (γ, τ) with fixed parameter β = 1, and
(b) is a zoom. (c) Crossing and switching values of x1 ver-
sus parameter τ in its valid interval, with fixed parameters
β = 1, γ = −0.27; the values for the stable and for the
unstable cycles are in blue and red colors respectively.

the switching delay is considered. The amplitude of the os-
cillation and some curves in the parameter space for these
bifurcations have been computed.
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