
RESEARCH ARTICLE

Modeling random crawling, membrane

deformation and intracellular polarity of

motile amoeboid cells

Sergio Alonso1*, Maike Stange2, Carsten Beta2

1 Department of Physics, Universitat Politecnica de Catalunya, Barcelona, Spain, 2 Institute of Physics and

Astronomy, Universität Potsdam, Potsdam, Germany

* s.alonso@upc.edu

Abstract

Amoeboid movement is one of the most widespread forms of cell motility that plays a key

role in numerous biological contexts. While many aspects of this process are well investi-

gated, the large cell-to-cell variability in the motile characteristics of an otherwise uniform

population remains an open question that was largely ignored by previous models. In this

article, we present a mathematical model of amoeboid motility that combines noisy bistable

kinetics with a dynamic phase field for the cell shape. To capture cell-to-cell variability, we

introduce a single parameter for tuning the balance between polarity formation and intracel-

lular noise. We compare numerical simulations of our model to experiments with the social

amoeba Dictyostelium discoideum. Despite the simple structure of our model, we found

close agreement with the experimental results for the center-of-mass motion as well as for

the evolution of the cell shape and the overall intracellular patterns. We thus conjecture that

the building blocks of our model capture essential features of amoeboid motility and may

serve as a starting point for more detailed descriptions of cell motion in chemical gradients

and confined environments.

Introduction

The ability of cells to move is an essential prerequisite for a wide range of biological processes

including wound healing, morphogenesis, and cancer progression [1]. Frequently, motile cells

define a head and a tail, to decide in which direction to move in a persistent fashion. Such

processes of intracellular symmetry breaking are known as cell polarization [2]. Cell polarity

emerges not only in migrating cells but is observed in many different contexts such as asym-

metric cell division and directed tissue growth [3]. It has been computationally modeled at dif-

ferent spatial scales and under different levels of approximation for a wide range of cell types,

see for example [4–6] and references therein.

A particularly well-suited system to study the role of polarity during cell locomotion is the

social amoeba Dictyostelium discoideum, which has become a well-established model organism

for the study of chemotaxis [7]. In the absence of chemoattractant gradients, Dictyostelium
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cells migrate spontaneously based on correlated deformations of their shape [8]. When

exposed to a nonuniform chemoattractant profile, they bias their motion towards increasing

chemoattractant concentrations. In this case, the variety of amoeboid cell shapes has also been

attributed to strategies of accurate gradient sensing [9]. Prominent features of the cell shape

dynamics are localized protrusions that are called pseudopods and can be considered the basic

stepping units of amoeboid motion [10]. The ordered appearance of pseudopods and their

biased formation in the presence of a chemoattractant gradient form the basis of persistent

amoeboid motion [11, 12] and have inspired the use of random stepping models for mathe-

matical descriptions of cell trajectories [13]. The resulting center-of-mass motion can be also

described in terms of stochastic differential equations derived directly from the experimentally

recorded trajectories [14–17]. These approaches were extended to biased random movement

in a chemoattractant gradient [18] and highlight non-Brownian features of Dictyostelium loco-

motion [19].

Depending on the nutrient conditions, Dictyostelium may enter a developmental cycle that

stronlgy affects cell speed and polarity. If food is abundant, cells remain in the vegetative state

that is characterized by slow apolar motion, where pseudopods are formed in random direc-

tions. If food becomes sparse, a developmental cycle is initiated that ultimately leads to the for-

mation of a multicellular fruiting structure. In the beginning, over the first hours of starvation-

induced development, cells become chemotactic to cAMP, the speed increases, and cell move-

ment becomes increasingly polar with pseudopods preferentially forming at a well-defined

leading edge [20].

From experiments with fluorescently labeled Dictyostelium constructs it is well known that

under the influence of a chemoattractant gradient, a polar rearrangement of various intracellu-

lar signaling molecules and cytoskeletal components can be observed [21]. For example, the

phospholipid PIP3 accumulates at the membrane in the front part of the cell, while at the sides

and in the back predominantly PIP2 is found [22]. Consequently, also the PI3-kinase that

phosphorylates PIP2 to PIP3 and the phosphatase PTEN that dephosphorylates PIP3 are polarly

distributed along the cell membrane. Similarly, also the downstream cytoskeletal network

exhibits a polar arrangement with freshly polymerized actin and the Arp2/3 complex at the

leading edge, while the sides and back are enriched in myosin II. Also more complex patterns

are observed, such as waves and oscillatory structures that emerge at different levels of the sig-

naling system and the actin cytoskeleton [23–26]. Note that similar processes are also responsi-

ble for cell polarization and locomotion of neutrophils, which are highly motile white blood

cells [27].

A variety of mathematical models have been proposed to rationalize the mechanisms of gra-

dient sending, polarization, and locomotion of Dictyostelium. In general, these models con-

sider the dynamics of the concentrations of some of the above mentioned biochemical species

at different levels of detail [28, 29]. They are typically of reaction-diffusion type and give rise to

instabilities that result in the formation of complex intracellular patterns, see for example [30–

32]. In combination with the local excitation global inhibition mechanisms of directional sens-

ing [33, 34], several modeling variants have been proposed that describe the rich dynamics of

intracellular patches, oscillations, and waves in motile cells [35]. In order to account for cell

shape dynamics and motility, the intracellular processes are coupled to deformations of a

bounded domain. Here, a particularly popular approach is the use of an auxiliary phase field

to mimic the presence of a cell membrane. The phase field method has been recently used to

model amoeboid motion [32, 36, 37], following previous successful applications to other cell

types [38–41]. However, besides the use of a phase field, also other approaches have been

used, such as level set methods, see for example [42]. In these models, pseudopods are typically

initiated by a noisy excitable system, where the excitation threshold may depend on external
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gradient stimuli and can be modulated by an additional polarity module [42–44]. Overall,

these approaches are driven by the motivation to include as many of the known biochemical

details as possible into the design of the model. However, they largely neglect the inherent cell-

to-cell variability that is typically encountered when analyzing the motile properties of an oth-

erwise uniform cell population.

In the present work, we take a different perspective and ask for the minimal number of

essential ingredients needed in order to capture the phenomenology of amoeboid cell trajecto-

ries and shape dynamics. We propose a reduced model that is based on the interplay of a

highly stochastic, protrusive membrane activity and a slowly varying deterministic polarity

mechanism coupled to a phase field in order to describe the shape and the deformations of the

membrane. In particular, our model is designed to account for variability in the motile proper-

ties of amoeboid cells by including a parameter that tunes the balance between the mechanism

of polarity formation and intracellular noise.

Materials and methods

Experimental setup

Cell culture. Dictyostelium discoideum Ax-2 cells expressing a fluorescently labeled ver-

sion of the Lifeact protein (C-terminally tagged with mRFP) as a marker for filamentous actin

were grown in liquid culture flasks (HL5 media including glucose, Formedium, Hunstanton,

UK) containing the required selection marker (G-418 sulfate: Cayman Chemical Company,

USA, 10 μg/ml) at 20˚C. The Lifeact encoding plasmid was kindly provided by the lab of Igor

Weber, Zagreb. Prior to experiments, cells were harvested and cultivated over night in a 25 ml

shaking culture at 180 rpm under the same conditions. The cell suspension was centrifuged

and the cell pellet washed with Sørensen phosphate buffer at pH6 (KH2PO4, 14.7 mM, Merck,

Darmstadt, GER; Na2HPO4
�2H2O, 2 mM, Merck, Darmstadt, GER) to remove all nutrients.

Cells were resuspended in fresh buffer and droplets were formed in a Petri dish to initiate the

streaming processes.

Image acquisition. After 5 hours, cells were transferred to a glass bottom dish (Fluorod-

ish, ibidi GmbH, Martinsried, GER) and constantly kept in Sørensen phosphate buffer at 20˚C

during imaging. Laser scanning microscopy was performed with a confocal Zeiss LSM780

microscopy system (Carl Zeiss AG, Oberkochen, GER) with a 63x or 40x magnification oil-

immersion objective. We record the images with a frequency of one frame per second. Fluores-

cence was excited at 651 nm and emission detected between 562 nm and 704 nm. ZEN-soft-

ware recommended by Zeiss was used for microscope settings and recording.

Image processing. Image sequences (8-bit gray scale) were analyzed using a modified

version of the active contour algorithm described in [45, 46]. For each frame the cellular

boundary was parameterized by a string of 400 nodes, which were tracked over time by using a

least square mapping. In this way, the change in cell shape, the local motion of each node, as

well as the intensity of the actin marker at the boundary were determined and displayed in

kymographs.

Mathematical model

We model the processes in the interior of the cell and the deformation of the cell membrane.

The membrane defines the domain of integration of the internal processes. Thus, a crawling

cell is a moving boundary problem, which is mathematically complicated to solve. A typical

approach for such moving boundary problems is the use of an auxiliary field which keeps

the non-flux boundary conditions at the border and evolves with the shape of the domain.

This approach has been previously employed also in other fields to describe, for example,
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solidification [47], fracture of solids [48], or fluid-fluid interfaces [49]. Here we employ a finite

differences method with Δx = 0.15 μm and Δt = 0.002 s. Specific values of the parameters are

shown in Table 1.

Phase field. The phase field �ð~xÞ defines the area of the cell and it is ϕ = 1 inside and

ϕ = 0 outside the cell. The transition between these two values is smooth at the membrane

which is defined by the value ϕ = 0.5. The evolution of the phase field follows the integro-dif-

ferential equation

t
@�

@t
¼ g r2� �

G0ð�Þ
�2

� �

� b

Z

�dx � Ao

� �

jr�j þ acjr�j: ð1Þ

Its evolution is controlled by three different contributions represented by the three terms

on the right hand side of Eq (1). The first one affects the whole volume while the others only

affect the border of the cell, determined by the gradient |rϕ|. The specific meaning of each

term is:

1. Surface tension: The first term can be derived from free energy arguments, where the

parameter γ corresponds to the surface tension. The surface energy is proportional to the

perimeter of the cell L and can be implemented in the phase-field formulations [38]:

Hten ¼ gL ¼
Z

1

2
jr�j

2
þ

Gð�Þ
�2

� �

ð2Þ

where � is the parameter controlling the width of the cell boundary and G(ϕ) is a double

well potential: G(ϕ) = 18ϕ2(1 − ϕ)2. It corresponds to the force, see [50]:

Ften ¼ � g r2� �
G0ð�Þ
�2

� �
r�

jr�j
2
: ð3Þ

If we consider only this term in 1D systems, the evolution of Eq (1) produces stationary

Table 1. Parameter values and meaning.

Parameter Value Meaning

τ 2.0 pN s μm−2 time scale of membrane dynamics

γ 2.0 pN surface tension

� 0.75 μm interface width

β 22.2 pN μm−3 total area constraint parameter

Ao 113 μm2 area of the cell

α 3 pN μm−1 active tension

ka 2-5 s−1 reaction rate

δo 0.5 bistability parameter

Co 28 μm2 Maximum area coverage by c
M 0.045 μm−2 constraint parameter

ρ 0.1 s−1 degradation time

D 0.5 μm2/s diffusion coefficient

σ 0.15 s−2 white noise intensity

kη 0.1 s−1 Orsntein-Uhlembeck rate

List of the parameters employed in the modeling and the corresponding values used in the numerical simulations.

https://doi.org/10.1371/journal.pone.0201977.t001
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profiles. However, in 2D the total volume of the cell decreases with time due to the surface

tension.

2. Volume conservation: The term proportional to β accounts for the cell volume conserva-

tion. It decreases or increases the size of the cell if the volume is, respectively, larger or

smaller than the prescribed volume Ao. This integral, together with the previous term,

ensures the existence of circular domains in 2D systems with a volume close to Ao and is

equivalent to the force:

Farea ¼ b

Z

�dx � Ao

� �
r�

jr�j
: ð4Þ

3. Active tension: The term proportional to α accounts for the force generated by the cell to

produce the directed motion following the pattern of the biochemical component c formed

in the interior of the cell. The force of the cell is proportional to the parameter α:

Fact ¼ � ac
r�

jr�j
: ð5Þ

Together with the friction of the cell with the substrate (Ffric = −τv), the forces satisfy the

condition Ftot = 0 at the quasi-steady state, which results in @tϕ = −v � rϕ giving rise to Eq (1),

see [50] for a complete derivation.

Biochemical reaction-diffusion process. Inside the cell there is a reaction-diffusion pro-

cess governed by a biochemical component c. This component reacts and diffuses inside the

cell. The concentration of c evolves according to the following reaction-diffusion equation,

@c
@t
¼ kacð1 � cÞðc � dÞ � rcþ

1

�
~r � ð�D~rcÞ þ xð~x; tÞ�ð1 � �Þ; ð6Þ

The concentration c accounts for different subcellular factors, which promote the growth of

filamentous actin and thus the formation of pseudopods. It corresponds to the combined effec-

tive action of signaling components such as activated Ras, PI3K, or PIP3, which are known to

enhance the formation of F-actin [21]. For this reason a fluorescent F-actin marker is the

appropriate experimental readout to compare with the action of the component c.

1. Cell polarity: Cell polarity has been modeled in a variety of different ways [2]. In the case of

Dictyostelium, noisy excitable systems with a slow diffusing polarity component have been

favored recently and were compared with experimental data in detail [42–44]. In these

models, larger values of the polarity marker lower the excitation threshold, so that the sig-

naling system is more likely to switch to the excited state. Here, we reduce this description

to a single species c that can switch between a passive (low concentration of c) and an active

state (high concentration of c) in a bistable fashion. We therefore chose a generic bistable

kinetics for the component c, reflected in the first term on the right hand side of Eq (6).

Thus, the form of this term does not correspond to a specific biochemical reaction in the

cell but should be rather seen as an effective model of the overall kinetics of the intracellular

polarity markers. In the case of Dictyostelium, it is well known that the signaling pathway

involving Ras, PI3K and F-actin involves positive feedback loops that can lead to nonlinear

behavior [51]. Note also that in other cell types, such as mesenchymal breast cancer cells,
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bistable kinetics has been observed in actin-related signaling networks [52].

d ¼ do þM
Z

c�dx � Co

� �

: ð7Þ

This integral term produces a constant global concentration of c in the whole cell Co, occu-

pying a quarter of the cell size. The concentration of c tends to accumulate and to produce

domains due to the nonlinear reaction in Eq (6).

2. Linear degradation: The biochemical processes eventually degrade the species c and if

there is no reaction the concentration of c decreases to zero.

3. Diffusion: The biochemical species c diffuses freely inside the cell, however, the presence of

the phase field produces a no-flux boundary condition at the membrane of the cell.

4. Spatio-temporal noise: Inside the cell, stochastic fluctuations are relevant and may deter-

mine the final behavior of the cells. Here, we model this stochastic contribution by a ran-

dom component in the dynamics of the biochemical component c that we confine to the

cortical region of the cell, where most of the relevant signaling events take place. The sto-

chastic term follows an Ornstein-Uhlembeck dynamics:

@x

@t
¼ � kZxþ Z; ð8Þ

where η is a Gaussian white noise with zero mean average hηi = 0 and variance

hη(x, t)η(x0, t0)i = 2σ2δ(x − x0)δ(t − t0).

Results

A model that encodes variability in the motion of Dictyostelium discoideum
In the absence of sources of chemoattractant, Dictyostelium discoideum cells randomly inspect

the surrounding space in search of food. Upon starvation, they enter a developmental cycle

which will, over the first hours of development, alter their motility from slow random move-

ments to faster and increasingly persistent locomotion. However, despite their uniform origin,

development-induced changes in the motile properties do not emerge uniformly across a popu-

lation of cells. This may be caused by variations in the cell micro-environment during develop-

ment, such as fluctuations in the local cell density or in cell-cell signaling and contacts [53].

Cells can show diverse averaged speeds, see Fig 1(A) for an example, where a histogram of the

average speeds of 55 different cells with a mean speed of the population of hvi = 0.11 ± 0.03 μm/

s is shown. Also other movement properties show pronounced variations across the cell popula-

tion. For example the characteristic autocorrelation time τa, which is the time over which speed

correlations have decayed by 50%, spread over a wide range with an average value of hτai =

4.0 ± 1.0 s, see Fig 1(B). Examples of the diversity of cell trajectories are shown in Fig 1(C)–1(E).

In Fig 2, snapshots of two representative examples from the slow and the fast moving sub-

populations are shown, see also S1–S4 Videos. While the first cell performs short random

movements around its initial location, see Fig 2(A), the second cell, even though it has starved

for the same time, moves much faster and explores space by more persistent motion, see Fig

2(C). This type of locomotion is associated with a persistent accumulation of freshly polymer-

ized actin at the membrane of the leading edge.

In our numerical model that was introduced in the previous section, the transition from

slow erratic motility to fast and persistent motion is encoded in the parameter ka of Eq (6).
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This parameter controls the impact of the bistable pattern formation mechanism compared to

the random displacements produced by the spatio-temporal noise xð~x; tÞ. As the noise inten-

sity is kept constant for all the numerical simulations, a change in ka determines to what extent

the first term in Eq (6), which is responsible for polarization of the cell, dominates the motile

behavior given the constant noise level. By tuning ka, our model permits a well-controlled and

continuous transition from an apolar state, characteristic for vegetative cells, to a highly polar-

ized condition, typically encountered for starvation-developed cells. We hypothesize that cells

may have different rates at which ka grows with starvation time. Also, ka may depend on other

factors, such as cell density, cell-cell signaling, and other influences from the cell micro-envi-

ronment. Overall, we employ different values of the parameter ka to model heterogeneity in

the motile properties of starvation-developed Dictyostelium cells.

In Fig 2(B) and 2(D), we show the results of numerical integration of Eqs (1), (6) and (8)

for two different values of ka, see additional examples in S5–S8 Videos. While for ka = 2 the

motion is restricted to a small region of space and is characterized by a continuous generation

and disappearance of protrusions in random directions, see Fig 2(B), for ka = 5 the simulated

cell explores larger regions of space and a persistent accumulation of c is located in the direc-

tion of motion, see Fig 2(D). Note that although we compare the results on the dynamics of

the field c in our numerical simulations with the dynamics of actin in the living cells, the

Fig 1. Dynamics of a population of 55 cells. Histogram of the averaged speed of the cells (A), and the characteristic correlation time

(B). Individual trajectories of cells classified by their averaged speed: Low, intermediate, and high speed corresponding, respectively,

to 0.09-010 μm/s (N = 9 cells) (C), 0.12-013 μm/s (N = 8 cells) (D), and 0.15-019 μm/s (N = 8 cells) (E). Panels (C), (D), and (E) have

the same spatial scales. Scale bar in panel (C) corresponds to 10 μm.

https://doi.org/10.1371/journal.pone.0201977.g001
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component c does not directly correspond to actin. It rather represents the combined action of

upstream signaling components that were observed to promote actin polarization in Dictyoste-
lium discoideum, so that the F-actin concentration is the best-suited experimental observable

to compare with the action of c. We will now characterize these different motile states by ana-

lyzing the center of mass motion and the dynamics of the cell shape in more detail.

Variability in the center-of-mass motion

Cell trajectories. The trajectory of a cell’s center and its instantaneous velocity can be

determined by finding the center of mass of a cell in each experimental image, see for example

Fig 2(A) and 2(C). As indicated in the previous section, the shapes of the trajectories may vary

strongly from one cell to another. Several characteristic examples are shown in Fig 3(A). Slow

moving cells produce a fluctuating pattern, where the direction of motion changes frequently,

while faster cells may propagate in a more persistent fashion. Note that in general we have to

distinguish cell velocities calculated on short and long time scales. While the short timescale

velocity (“instantaneous velocity”) is dominated by noise and irregular fluctuations of the cell

shape, studies of persistent cell motion typically employ averaged velocities, where such fluctu-

ations are filtered by calculating the velocity on larger time scales, see for example [17].

Fig 2. Cell dynamics in experiments and in the numerical simulations. Sequence of four snapshots of cell motion, taken every 100

seconds, for low speed in experiments (A), for low speed in the computer simulations with parameter ka = 2 (B), for high speed in

experiments (C), and for high speed in the computer simulations with parameter ka = 5 (D). Red color is proportional to the

concentration of actin in experiments (A,C) and to the concentration c resulting from Eq (6) in computer simulations (B,D).

https://doi.org/10.1371/journal.pone.0201977.g002
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The same cell tracking algorithms that were applied to process the experimental data can be

also used for the analysis of the numerical simulations, see Fig 3(B) and 3(D) for examples of

the numerical results. While an erratic, fluctuating motion is typical for small values of the

model parameter ka, large persistent displacements are observed in numerical simulations

with larger values of ka, see Fig 3(B) for examples of computer generated trajectories with the

respective parameter values given in the caption. We find good qualitative agreement of the

experimental and numerical trajectories in the entire range of velocities. For large cell speeds

of v = 0.15 μm/s and v = 0.19 μm/s, the agreement is remarkable, while in the cases of lower

speed, the center of mass moves more erratically in the experimental cases.

Diffusion of cells. The present data was recorded to analyze the dynamics of the cell

shape and not with the intention of producing long-time statistics for the analysis of cell tra-

jectories, which has already been done earlier by others, see e.g. [54–56]. For this reason,

our frame rate is much higher and the total time of recording much shorter than in these

earlier references. Nevertheless, to perform a rough comparison, we calculated the mean

square displacement (MSD = < r(t)r(t + T) >) of the cells to estimate their diffusive

behavior. In Fig 4(a), MSD/T is shown as a function of time for four different cells. We

compare these results with Fürth’s formula for the diffusion of a persistent random walker

< rðtÞrðt þ TÞ >¼ 4DaðT � tPð1 � e� T=tPÞÞ, where τP is the persistence time, as has been

previously done for Dictyostelium discoideum [54, 56]. Equivalently, we also plotted and

analyzed the trajectores produced by the numerical simulations, see Fig 4(b). The fit of

Fürth’s formula permits to extract values for the diffusion coefficient of the cells (Da),

see Fig 4(c), and the persistent time, see Fig 4(d), for experimental and numerical results

as a function of the averaged velocities. The values of the averaged diffusion coefficient

(< Da> = 0.15 μm2/s) and the persistence time (< τp> = 26.5 s) are of the same order as

reported earlier, albeit moderately smaller, see discussion section for more details. Note

also that the persistence time is not identical to the characteristic speed correlation time

described below, which is much shorter due to the strong speed fluctuations caused by the

high frame rate of our recordings.

Fig 3. Trajectories of the center of mass of four cells with different average speeds. Four different cells from the experiment are

tracked and the resulting center of mass motion is plotted over 500 s. Four different numerical simulations of cell motion are

performed and the center of mass motion is calculated and plotted over 500 s. The four numerical simulations are done with the

parameter values ka = 2, ka = 3, ka = 4, and ka = 5 corresponding to the average speeds used in the figure legend.

https://doi.org/10.1371/journal.pone.0201977.g003
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Cell speed and fluctuations. The speed of the center of mass of the cells is undergoing

rapid changes over time. In Fig 5(A) and 5(B), the temporal evolution of the spontaneous

speed is compared for two representative examples from the experiments and the numerical

simulations. We show first the speed of a slow moving non-polar cell in Fig 5(A), which corre-

sponds to the motion displayed Fig 2(A), and second, the speed of a fast moving polarized cell

in Fig 5(B), corresponding to the more ballistic motion shown Fig 2(C). We calculate the aver-

age speeds from the temporal evolution of the speed for both living cells and for the numerical

simulations. For our model we find that the speed depends linearly on the parameter ka, see

the linear fit in Fig 5(C). For choices of ka that reproduce the experimentally observed averaged

cell speeds, the numerical time traces yield good agreement with the experimental results see

Fig 5(A) and 5(B).

Autocorrelation function of cell speed. Apart from the average speed, we also calculated

the autocorrelation functions of the temporal evolution of the cell speeds plotted in Fig 5(A)

and 5(B). The resulting autocorrelation functions are plotted on the right hand side of the

respective speed time traces. Starting from a value of 1 for a correlation time of zero seconds,

the correlation function gradually decreases with increasing time shift because of the

Fig 4. Averaged cell motion in experiments and numerical simulations. The mean square displacement divided by the time

during the whole motion of four cells (A) with different averaged velocities, see legend, and for four numerical simulations (B) for

four different values of ka = 2 − 5 corresponding to the velocities in the legend. Solid lines (A,B) correspond to fits of Fürth’s formula

for the MSD. We extract the diffusion coefficients of cells (C) and the persistent time (D) from the fitting of Fürth’s formula to the

motion of 23 cells (grouped in four sets depending on the average velocity: v = 0.09 (N = 8 cells), v = 0.12 (N = 8 cells), v = 0.15

(N = 7 cells), v = 0.19 (N = 1 cells)) and compared with the fitting to 7 large computer simulations (10000 s) for the corresponding

velocities. Fits in (C) and (D) are to guide the eye.

https://doi.org/10.1371/journal.pone.0201977.g004
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stochasticity of the speed trace. Eventually, coherence is lost and the autocorrelation function

fluctuates around zero. To quantify the decrease in temporal correlation, we define the charac-

teristic autocorrelation time (τa) as the time at which the correlation function decays to 0.5. In

Fig 5(D), we display the characteristic autocorrelation time as a function of the model parame-

ter ka determined from our numerical simulations. Although the average speed continuously

grows with ka, see Fig 5(C), the value of τa saturates for large values of ka.
For the experimental data, there is no parameter directly accessible that corresponds to the

model parameter ka. However, the linear relationship between the average cell speed and the

model parameter ka suggests that we can uniquely assign a characteristic correlation time τa to

each speed value. For the model, we thus obtain a saturation curve similar to the one displayed

in Fig 5(D) when plotting the characteristic correlation time as a function of the average cell

speed, see the blue data points in Fig 5(E). This relation can now be compared to experimental

data, as both the characteristic correlation time and the average cell speed are readily accessible

from our imaging data. We determined the mean characteristic correlation time for several

cells with similar average speeds and compare the resulting data points (red symbols) to the

relation between τa and cell speed from our model, see Fig 5(E). We obtain a qualitative agree-

ment between both cases. Note that no averaging was performed for the cell velocity, so that

Fig 5. Speed and temporal correlation. Comparison of in vivo and in silico instantaneous speeds of the center of mass of the cell and

the corresponding temporal autocorrelation function for cells with an average speed of 0.09 μm/s (ka = 2) (A) and 0.15 μm/s (ka = 5)

(B). Dependence of the average speed (C) and of the characteristic correlation time (D) on the parameter ka, where points

correspond to the resulting values and lines to fits to guide the eye. (E) Relation between cell speed and characteristic correlation

time for experiments (red) and simulations (blue).

https://doi.org/10.1371/journal.pone.0201977.g005
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the rapid decay in the autocorrelation function at short times mostly reflects the decaying cor-

relations in the fluctuating short timescale velocity. This is not related to the characteristic

directional persistence time of cell motion that typically results in a slow decrease of the veloc-

ity autocorrelations at longer time scales, see for example [17].

Non-Gaussian velocity distributions. In Fig 6, we show the distributions of the instanta-

neous velocity component vx obtained from long-term computer simulations for two different

values of the parameter ka. The distributions are centered at zero and are of non-Gaussian

shape. A Gaussian best fit, displayed together with the distributions in Fig 6, systematically

underestimates the probabilities of velocities around 0 and in the tails. Note that this effect is

more pronounced for small values of ka and is most likely an effect of the short sampling time

scales [55]. The distributions of the perpendicular component vy are identical and can be seen

in S1 Fig.

Earlier statistical analyses of experimental trajectories have demonstrated that the distribu-

tions of the instantaneous velocity components of motile Dictyostelium cells are indeed non-

Gaussian [16], which can be seen as a typical signature of non-equilibrium processes such as

active motion [57] and, in particular, cell motility [58]. Note that Gaussian distributions are

recovered for larger sampling time scales [55]. In the present experiments, we do not have a

sufficient amount of cell trajectories to obtain meaningful velocity distributions, see the experi-

mental distributions in S1 Fig. This is because we imaged at a higher magnification compared

to previous studies, in order to capture the dynamics of the cell shape that we will analyze in

the following.

Variability in cell shape dynamics

Local membrane displacements. The cellular membrane deforms during the process of

cell migration, resulting in continuous changes of the cell shape. In both experiments and

computer simulations, we determine the positions of the membrane elements every second

and calculate their relative displacements with respect to the previous positions. Resulting

Fig 6. Histograms of the instantaneous velocity component vx and the corresponding Gaussian fits (Solid lines) expected for

Brownian motion. Results of large computer simulations corresponding to: ka = 2 (10000 s) (A), and ka = 5 (50000 s) (B).

https://doi.org/10.1371/journal.pone.0201977.g006
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experimental and computer-generated kymographs are shown in Fig 7(A)–7(D) and 7(E)–

7(H), respectively. They show the local membrane displacement at 400 equidistant points

along the cell perimeter over time.

For a slow moving non-polar cell shown in Fig 2(A), small membrane protrusions continu-

ously appear and disappear at changing locations along the cell border. In this case, the cell

does not move in a persistent fashion but rather hovers randomly around its initial location.

This is reflected by small random displacements of the membrane over short times in all direc-

tions, see Fig 7(A). These experimental observations are qualitatively comparable with model-

ing results obtained for low values of the parameter ka shown in Fig 7(E).

In contrast, panels (D) and (H) of Fig 7 correspond to a fast moving cell and a simulation

with a higher value of ka = 5, respectively. Here, the persistent direction of motion of the cell is

reflected by displacements of the cell membrane that stably occur at the same position on the

cell perimeter over more than 500 seconds. The displacements are positive in the front of the

cell and negative at the back. Again, the results of both space-time diagrams, experimental

and numerical, agree satisfactorily. In between these two limiting cases, the displacements and

their persistence is systematically becoming more pronounced as the averaged velocity of the

cell increases, i.e. for larger values of the parameter ka, resulting in more ballistic motion. The

remaining panels in Fig 7 show these intermediate cases.

Cell elongation. For the same set of cells, we have also quantified the elongation of the

cell shape. Specifically, for each of 400 equidistant points along the cell membrane we deter-

mined the distance to the centroid of the cell. The temporal evolution of the distances between

each point and the cell center is displayed as a kymograph in Fig 8. For a circular cell shape

every point on the membrane would be at the same distance from the centroid and the corre-

sponding space-time plot would be uniform. The color coding in Fig 8 reflects the deviations

from the circular shape, with red (blue) regions being further away from (closer to) the center

than the average. This shape parameter is related to the local displacements of the cell mem-

brane, which was shown in Fig 7 above. However, while the elongation measure takes high val-

ues for the front and back parts of an elongated cell, the local displacement is positive at the

front and negative at the back of the cell. This becomes particularly obvious when comparing

panels (C,G) and (D,H) of Figs 8 and 7. In contrast, the distance to the centroid agrees closely

Fig 7. Comparison of the spatio-temporal evolution of the local displacement of the membrane with respect to its previous

position in vivo (A-D) and in silico (E-H). The spatio-temporal evolutions in vivo correspond to cells with a speed of v = 0.09 μm/s
(A), v = 0.12 μm/s (B), v = 0.15 μm/s (C), and v = 0.19 μm/s (D). The spatio-temporal evolutions in silico correspond to parameter

values of ka = 2 (E), ka = 3 (F), ka = 4 (G), and ka = 5 (H).

https://doi.org/10.1371/journal.pone.0201977.g007
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with the profiles of the curvature, see S2 Fig, and can be seen as a local integration in space of

the membrane curvature deformations.

Actin patterns. The intracellular distribution of filamentous actin is shown in Fig 2 for

two cells with different speeds, where the cell moving with higher velocity presents a more pro-

nounced, persistent localization of filamentous actin at the front of the cell. In Fig 9(A)–9(D),

we show kymographs of the concentration of filamentous actin along the cell membrane for

four cells with different speeds. Two observations can be extracted from these figures. First,

the persistent accumulation of actin at the front of fast, ballistically moving cells is confirmed

and, second, regions of increased actin concentration co-localize with positive displacements

of the cell membrane, compare Figs 9(A)–9(D) with 7(A)–7(D).

Fig 8. Comparison of the spatio-temporal evolution of the distance from the membrane to the centroid of the cell in vivo (A-D)

and in silico (E-H). The spatio-temporal evolutions in vivo correspond to cells with a speed of v = 0.09 μm/s (A) v = 0.12 μm/s (B)

v = 0.15 μm/s (C) and v = 0.19 μm/s (D). The spatio-temporal evolutions in silico correspond to parameter values of ka = 2 (E), ka = 3

(F), ka = 4 (G), and ka = 5 (H).

https://doi.org/10.1371/journal.pone.0201977.g008

Fig 9. Comparison of the spatio-temporal evolution of the concentration of filamentous actin at the membrane in vivo (A-D)

and the concentration of the biochemical component c at the membrane in silico (E-H). The spatio-temporal evolutions of the

concentration of filamentous actin in vivo correspond to cells with a speed of v = 0.09 μm/s (A), v = 0.12 μm/s (B) v = 0.15 μm/s (C)

and v = 0.19 μm/s (D). The spatio-temporal evolutions of the concentration of the biochemical component c in silico correspond to

parameter values of ka = 2 (E), ka = 3 (F), ka = 4 (G), and ka = 5 (H).

https://doi.org/10.1371/journal.pone.0201977.g009
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It is also remarkable that the actin patterns persist longer than the rapid pseudopods which

appear and disappear on a faster time scale, compare Figs 9(A) and 7(A). This indicates that in

the case of a fast moving cell, the accumulation of actin at the inner part of the membrane cor-

relates with pseudopod formation and directed locomotion, whereas for slow moving cells,

pseudopod formation is not confined to regions of increased actin accumulation and cell

motion remains random.

The second part of Fig 9 displays the corresponding computer simulations, see panels

(E-H). Here, the generic concentration c from Eq (6) of the model is shown, which exhibits

more localized maxima in the concentration field compared to the experimentally observed

actin patterns, which are smoother. The concentration c is not directly corresponding to the

concentration of filamentous actin but can be regarded as an effective concentration that

incorporates the dynamics of several signaling factors and cytoskeletal components that are

involved in pseudopod formation. For example, it is known that increased concentrations of

freshly polymerized actin co-localize with PIP3-rich membrane regions [51]. Therefore not

more than a qualitative agreement of the generic concentration c with the experimentally

observed actin patterns can be expected at this level of approximation.

Discussion

In this article, we have introduced a mathematical model of amoeboid motility that was

designed to capture the cell-to-cell variability in motile Dictyostelium cells by tuning the bal-

ance between polarity formation and intracellular noise. After introducing our model, we have

presented a detailed comparison of experimental data from motile Dictyostelium cells and

numerical simulations of the model. The cell trajectories, the evolution of the cell shape, and

the actin-related intracellular concentration patterns generated by our model are in good

agreement with the experimental observations. Even though the model produces a large vari-

ety of specific information, which can be compared with the experiments, it has a compara-

tively simple structure in comparison to other more complex biochemically inspired models

that were previously presented. Specifically, our model combines a simplified biochemical

dynamics in terms of a bistable reaction-diffusion equation, with a standard noise description

based on the extensively studied Ornstein-Uhlenbeck process. In contrast to specific noise

sources designed to produce the desired pseudopods and membrane deformations, we deliber-

ately reverted to a very basic noise term and found this sufficient to produce realistic dynamics

of intracellular patterns and cellular shape changes when combined with a dynamic phase field

model of the cell shape. We will now compare our model with other models of Dictyostelium
motility and discuss the differences in more detail.

The most basic models of Dictyostelium motility consider only the random motion of the

center of mass of the cell and reduce the entire dynamics to stochastic ordinary differential

equations for the motion of the cell center, see for example [16–18]. Such descriptions permit

large realizations and the extraction of detailed statistical information about the random

motion [59]. While a detailed stochastic analysis of our model trajectories is still missing, our

first results on the non-Gaussian instantaneous velocity distributions show agreement with

earlier analyses of experimental cell trajectories [16]. This is most likely an effect of our short

sampling time scale. Using larger sampling intervals for the calculation of the velocities will

result in an averaging effect and will eventually produce a Gaussian distribution [55].

On the other hand, many modeling efforts have focused on the intracellular dynamics of

signaling patterns and cytoskeletal activity. For example, they consider the biochemical inter-

actions at the cell membrane assuming a circular or spherical cell shape [30, 31, 60]. These

models permit the study of the pattern formation mechanisms at the membrane of the cell
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with static borders. Waves, oscillations, and patches of the membrane concentrations are

observed and the interactions with specific noise sources were studied [60]. Also the interior of

the cell, together with the membrane, has been employed in the study of the intracellular pat-

tern formation in circular cells [61] and in irregular cells generated with a static phase field

[62].

An important improvement in the modeling of Dictyostelium motility was the coupling of

the dynamics of membrane-bound intracellular concentrations patterns with cell shape defor-

mations. Such coupling has been done with a membrane formed by finite elements coupled to

biochemical reactions [63], and by the accommodation of the contour of the cell according to

a one-dimensional dynamics of the biochemicals at the surface [9]. Also detailed combinations

of biochemically inspired excitable and oscillatory signaling networks have been proposed to

drive cell shape dynamics in models that also incorporate the viscoelasticity of the cell mem-

brane [42, 43, 64].

The introduction of a dynamic phase field provides an elegant way to calculate also con-

centration patterns inside moving cell boundaries and not only restricted to the cell mem-

brane. In recent years, this approach has become increasingly popular to model the motion

of different cell types, such as fish keratocytes [38, 65], mammalian cells on micropatterns

[66], or colliding cells in confined environments [67]. Also more detailed models of actin

dynamics have been combined with the phase field approach. For example in [36], the local

orientation of actin is taken into account and determines membrane deformations and

movement of the cell. The phase field approach has also been applied to address specific

aspects of amoeboid motility. In [32] a phase field was combined with a detailed model of

phosphoinositide membrane signaling to analyze the impact of PIP3 waves on membrane

deformation. In this model, a tailored noise source is introduced by assuming random events

of PIP3 synthesis of a specific spatial extent. More recently, a complex description that com-

bines actin and myosin dynamics with an activator representing the upstream signaling

activity at the membrane was implemented together with a phase field to model Dictyoste-
lium motility in open and confined environments [37]. This complex model comprises 28

parameters and was analyzed for a fixed setting that corresponds to a starvation-developed

cell with a high velocity of v = 0.175 μm/s. Also here, noise was introduced in a specific way,

related to detailed modeling assumptions.

Unlike these earlier Dictyostelium models, we take a reductionist approach and propose a

minimal model based on a bistable reaction-diffusion system that accounts for the intracellular

biochemistry and a generic Ornstein-Uhlenbeck noise term. In this sense, our approach is

more closely related to previous phase field models for keratocyte motility. However, unlike

the keratocyte descriptions, our model captures the highly dynamic shape changes that are

characteristic for pseudopod-driven amoeboid cell motion. In addition, our model has a

unique parameter (ka) that encodes the cell-to-cell variability typically observed in experimen-

tal motility data from Dictyostelium experiments. By tuning this parameter, we consistently

recover the variations observed in terms of velocity, polarity, and persistence of motion. We

thus assume that ka is constant but may take values that are different from cell to cell. The

distribution of ka values across a cell population is not prescribed by the model but can be

inferred from our experimental data: as ka is linearly related to the average cell speed (see Fig

5(C)), the distribution of ka values is identical to the speed distribution shown in Fig 2(A),

except for a constant factor. We may also interpret the parameter ka as a measure for the

degree of development of a cell and attribute variability in a population to an underlying het-

erogeneity in the developmental state of the cells. In this case, our model would encode the

dependence of developmental progress on starvation time in a straightforward fashion, such

that ka = kao + Δk t, where Δk is different for each cell, explaining the behavioral variety in a
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population of Dictyostelium cells after four hours of starvation in our experiments. To account

for cell-to-cell variability, we propose a random distribution of values of Δk that has to be cho-

sen mimicking the experimental distribution of speeds shown in Fig 2(A). Note, however, that

development does not necessarily progress in a linear fashion and that also de-differentiation

effects may play a role, as they are known to have pronounced effects on the motility of Dic-
tyostelium cells [68, 69]. Furthermore, our data indicates that ka is not uniquely related to

the developmental state but may also undergo more rapid changes, so that cells can switch

between episodes of fast and slow movement, see S3 Fig.

Cell polarity in Dictyostelium is mediated by a number of typical cell front markers, such as

activated Ras, PI3K and PIP3, that correlate with regions of increased actin polymerization

and pseudopod formation. These signaling components localize at the cell front in response to

a chemoattractant gradient. But they may also concentrate in self-organized dynamical patches

at the cell membrane in uniform environments, see for example [70, 71]. Here, we proposed a

model that combines a noisy bistable system to generate these dynamical signaling patches

with a phase field description of a deformable cell boundary. A comparison of model simula-

tions and live-cell recordings show that the model qualitatively reproduces the morphology of

the cell shape and center-of-mass trajectories. Some aspects such as the speed correlation times

even show quantitative agreement. The persistence time of the center of mass motion deter-

mined from our data in Fig 4D is smaller than previously reported values [54, 55]. This is

most likely related to the different growth conditions. Potel and MacKay as well as Li et al.

grew their cells on bacteria, whereas we used HL5 liquid growth medium (axenic growth), and

it is well known, that the motility of Dictyostelium cells differs strongly between bacterially and

axenically grown cells [68]. Indeed, Golé et al., who also used axenically grown cells, reported

τP values closer to ours [56]. Our numbers are lower than the values reported by Golé et al.,

but they used the AX3-derived strain DH1, whereas we worked with AX2 cells, which may

also affect the persistence times [54]. In summary our results thus demonstrate that essential

features of amoeboid motion can be captured by a generic nonlinear mechanism for the for-

mation of signaling patches in combination with a deformable domain. In particular, tuning

the relative strength of patch formation versus noise reproduces the heterogeneity that is typi-

cally observed in a population of motile Dictyostelium cells.

Extensions of the model can be easily implemented to account for the chemotactic move-

ment of Dictyostelium cells under external chemical gradients [72], or under confinement [73].

Furthermore, we may also envision modifications of the model that introduce more realistic

biochemical reaction networks to recover the excitable dynamics observed in previous experi-

ments [26] and explicitly include into our model the detailed dynamics of components that

promote pseudopod formation, such as for example PIP3 and PI3K, as well as the antagonist

concentrations PIP2 or PTEN as has been done in previous studies with more simplistic cell

shapes [30–32, 60]. These extensions will be the focus of our future work.

Supporting information

S1 Video. In vivo motion of a cell with an average speed of v = 0.09 μm/s. Red color is pro-

portional to the concentration of actin. Some snapshots of the video are shown in Fig 2(A).

(AVI)

S2 Video. In vivo motion of a cell with an average speed of v = 0.12 μm/s. Red color is pro-

portional to the concentration of actin.

(GIF)
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S3 Video. In vivo motion of a cell with an average speed of v = 0.15 μm/s. Red color is pro-

portional to the concentration of actin.

(GIF)

S4 Video. In vivo motion of a cell with an average speed of v = 0.19 μm/s. Red color is pro-

portional to the concentration of actin. Some snapshots of the video are shown in Fig 2(C).

(AVI)

S5 Video. In silico motion of a cell with an average speed of v = 0.09 μm/s. Red color is pro-

portional to the concentration c resulting from Eq (6). Some snapshots of the video are shown

in Fig 2(B).

(GIF)

S6 Video. In silico motion of a cell with an average speed of v = 0.12 μm/s. Red color is pro-

portional to the concentration c resulting from Eq (6).

(GIF)

S7 Video. In silico motion of a cell with an average speed of v = 0.15 μm/s. Red color is pro-

portional to the concentration c resulting from Eq (6).

(GIF)

S8 Video. In silico motion of a cell with an average speed of v = 0.19 μm/s. Red color is pro-

portional to the concentration c resulting from Eq (6). Some snapshots of the video are shown

in Fig 2(D).

(GIF)

S1 Fig. Histograms of the velocity distribution for both component of the velocity vx (blue)

and vy (red) and the corresponding Gaussian fits (Solid lines) expected for brownian

motion. Results for large (10000 s) computer simulations corresponding to: ka = 2 (A), ka = 3

(B), ka = 4 (C) for 10000 s, and ka = 5 (D) for 50000 s; and for regular (500 s) experiments, cor-

responding to cells with average velocity: 0.09 μm/s (E), 0.12 μm/s (F), 0.15 μm/s (G), and 0.19

μm/s (H).

(EPS)

S2 Fig. Comparison of the spatio-temporal evolution of the local curvature of the mem-

brane in vivo (A-D) and in silico (E-H). The spatio-temporal evolutions in vivo correspond

to: v = 0.09 μm/s (A), v = 0.12 μm/s (B), v = 0.15 μm/s (C), and v = 0.19 μm/s (D). The spatio-

temporal evolutions in silico correspond to: ka = 2 (E), ka = 3 (F), ka = 4 (G), and ka = 5 (H).

(EPS)

S3 Fig. Variability in the motion pattern of a single cell. Example of a cell that switches from

a slow moving state with only little net displacement to a state of rapid persistent motion.

(EPS)
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