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Comb-like ionic complexes of hyaluronic acid and 

alkanoylcholine surfactants as platform for drug 

delivery systems 

Ana Gamarra,
a
 Sebastián Muñoz-Guerra,

a
* Antxon Martínez de Ilarduya

a
 

Héloïse Thérien-Aubin,
b
 Katharina Landfester

b
 

 

aUniversitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain. 

bMax Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany 

 

Non-toxic alkanoylcholine soaps (nACh) were synthesized from choline and fatty acids with 

numbers of carbons n equal to 12, 14, 16 and 18, the latter including both saturated and 9-cis 

unsaturated alkanoyl chains. Coupling of nACh with hyaluronic acid (HyA) rendered comb-like 

ionic complexes nACh·HyA that were non-water soluble. The complexes were thermally stable 

up to temperatures above 200 ºC but readily degraded by water, in particular when 

hyaluronidases were present in the aqueous medium. In the solid state, these complexes were 

self-assembled in a biphasic layered structure in which the surfactant and the polysaccharide 
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 2

phases were alternating regularly with a periodicity dependent on the length of the alkanoyl 

chain. The paraffinic phase was found to be crystallized in saturated complexes with n ≥ 14 but 

only 18ACh·HyA showed reversible melting-crystallization when subjected to cyclic heating-

cooling treatment. Nanoparticles with diameters in the 50-150 nm range were prepared by 

ionotropic gelation from unbalanced 18ACh·HyA complexes with surfactant:HyA ratios of 0.5 

and 0.25. These nanoparticles were also structured in layers, swelled slowly in water, and were 

shown to be non-cytotoxic in in vitro assays against macrophages cells. It was also shown that 

the anticancer drug Doxorubicin was efficiently encapsulated in both films and NPs of 

18ACh·HyA and its release was shown to be almost linear and complete after one day of 

incubation in physiological medium. The nACh·HyA complexes constitute a highly promising 

biocompatible/biodegradable platform for the design of systems suitable for drug transport and 

targeting delivery in anticancer chemotherapy. 

INTRODUCTION   

Hyaluronic acid (HyA) is a mucopolysaccharide ubiquitous in the human body where it plays 

an essential physiological role as one of the main components of the extracellular matrix and 

synovial fluids.1,2 HyA promotes inflammation and therefore contributes importantly to regulate 

reaction associated with injury.3,4 Due to its distinctive properties such as good mucoadhesion, 

high viscoelasticity, and extraordinary capacity to hold water, HyA has traditionally received 

great attention as a biomaterial for biomedical applications, in particular in arthritis treatment and 

surgery.5,6 Additionally HyA displays excellent biocompatibility and biodegradability, and it is 

able to interact with specific cells by binding to CD447,8 and RHAMM8 receptors, which are 

over-expressed at the surface of a variety of tumor cell. This unique behavior has largely 

encouraged the interest for HyA as drug carriers for targeted drug delivery research, especially 
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 3

for cancer chemotherapy.9-11 The applicability of HyA in drug delivery is however hampered by 

its great affinity for water and high degradation rate under physiological conditions. HyA has a 

half-life of about 2-5 min in the bloodstream12 and its daily turnover in the human body is 

extremely rapid (in an adult of 70 kg it amounts to about 5 g). A number of strategies based on 

the chemical modification of the carboxylate and hydroxyl groups of HyA have been developed 

for overcoming such limitations and broadening its potential in biomedicine.13,14  

Polymer nanoparticles (NPs) able to load drugs, to preserve their activity, and to release them 

at a specific site of action in a sustained manner while the polymer is degraded into non-toxic 

fragments, are today sought after systems for cancer chemotherapy. Despite recent research 

efforts in this field, adverse effects such as insufficient delivery specificity and poor flow 

stability are still associated with drug-loaded nanoparticles. HyA is viewed as a very promising 

candidate to circumvent these effects because of its dual ability to form a water-compatible 

outer-shell of the NPs due to its hydrophilic nature, and because of its targeting function acting 

as a ligand for CD44 or RAHMM receptors expressed in cancer cells.15 Consequently, a wide 

variety of approaches based on amphiphilic derivatives of HyA prepared by taking benefit from 

the functionality present in this polysaccharide, have been explored to design core-shell NPs.16 In 

one popular approach, HyA-based NPs consisted of a hydrophobic preformed particle, made of a 

typical biodegradable polymer,  coated with HyA. In other cases, HyA was chemically modified 

with a hydrophobic reagent to generate an amphiphilic structure able to self-assemble in a nano-

sized carrier and where the HyA-moiety was exposed on the surface of the resulting NP.  

In contrast with conventional HyA-NPs synthetic techniques based on the covalent 

modification of the HyA, a new class of HyA nanocarriers, based on ionic complexes of 

hyaluronate and positive-charged compounds, has recently emerged. This approach offers 
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simplicity as a remarkable advantage since chemical linkages are avoided in the construction of 

the amphiphilic structure. The ability of these systems to form stable ionic coupled 

nanostructures is highly depending on the hydrophilic-hydrophobic balance of the drug. 

Spherical NPs made of coupled cisplatin-HyA with a size around 100–200 nm were first reported 

by Jeong et al in 2008.17 These NPs were prepared by simple mixing of cisplatin with an aqueous 

solution of HyA and they delivered the drug, continuously, for 4 days. Colloidal dispersions 

made of doxorubicin (DOX) coupled with HyA with a drug content of 60% were later reported 

by Battistine et al.18. These complexes showed a high internalization in cancer cells and a rather 

slow drug release. In some cases, DOX-HyA complexes were covered with a phospholipid 

bilayer to create encapsulated liposomal carriers with a size of ~130 nm.19  These DOX-HyA-LP 

systems displayed remarkable drug-administration properties such as well-sustained release 

profile, improved cell uptake, and reduced multi-organ toxicity. 

The comb-like ionic complexes resulting from stoichiometric or nearly stoichiometric 

coupling of polycarboxylic biopolymers with cationic surfactants are well-studied systems that 

are known to be stable and to adopt biphasic amphiphilic nanostructures. These complexes were 

first reported by Ponomarenko et al.20,21 for poly(α,L-glutamate) ionically coupled with 

alkyltrimethylammonium surfactants (nATMA) bearing alkyl chains with n equal to 12, 14, 16 

and 18 carbon atoms. Later, similar complexes made from microbial poly(γ-glutamic acid) 

(PGGA) and poly(β,L-malic acid) with alkyltrimethylammonium and/or 

alkyltrimethylphosphonium surfactants were described.22-25  Also, ionic complexes of certain 

polyuronic acids (alginic, galacturonic, hyaluronic) with similar surfactants have been 

examined.26-28 In all cases, the surfactant-biopolymer complexes were able to self-assemble in 
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 5

the characteristic biphasic layered arrangement although displaying some structural differences 

depending on the chemical constitution of the two building blocks.  

Alkyltrimethyl-onium soaps are compounds with a remarkable biocidal activity and therefore 

unsuitable for therapeutic applications implying cell internalization. Conversely, alkanoylcholine 

surfactants (nACh) are claimed to be harmless for living organisms since they have been proved 

to be readily hydrolyzed by butyrylcholine esterase generating common components of human 

metabolism.29 Alkanoylcholines are compounds closely related to naturally occurring 

phospholipids like lecithin that belongs to one of the bio-surfactants groups. They are recognized 

in pharmacology for their capacity to modify the blood pressure30 and to favor the adsorption of 

drugs from the gastrointestinal tract.31 They show also a good penetration through the Blood 

Brain Barrier (BBB) with therapeutic effects on cognitive-related illnesses such as Alzheimer 

disease.32,33 nACh bearing long alkanoyl chains have been coupled to PGGA to produce ionic 

complexes (nACh·PGGA) with structure and properties similar to those prepared from 

nATMA.34  Nanoparticles of 50-100 nm diameter prepared from these complexes were able to 

load efficiently DOX although the release kinetics of the drug was slow with less than 10% 

released after 30 days.35 

Consequently, the combination of HyA and alkanoylcholines to form ionic complexes appears 

as an excellent approach toward the design of biocompatible systems for targeted drug delivery 

on tumoral cells. The simplicity of the preparation method, the outstanding bio-properties of the 

two components, and the amphiphilic biphasic arrangements that the complexes tend to adopt 

will make these systems highly promising in the drug delivery field. Here, we report the 

synthesis of new NPs made by the complexation of HyA and alkanoylcholines with alkyl chains 

made of n carbon atoms (12, 14, 16 and 18) (Figure 1). A library of nACh·HyA complexes has 
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 6

been synthesized and characterized in detail with special emphasis placed on the dependence of 

their nanostructure and properties on the length of the alkanoyl group. Nanoparticles were then 

prepared from some of these complexes, their cytotoxicity in vitro evaluated, and the loading and 

release of the anticancer drug doxorubicin preliminary examined. 
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Figure 1. Chemical structure of the ionic complexes made of HyA and choline esters of 

saturated (a) and unsaturated (b) fatty acids. 

EXPERIMENTAL  

Materials. The sodium salt of hyaluronic acid (Na·HyA) with a weight-average molecular 

weight of about 50,000 Da used in this work was purchased from Enze Chemicals. 

Alkanoylcholine surfactants salts (nACh·I with even n values ranging from 12 to 18)  were 

synthesized as we have previously described.33 Doxorubicin ((7S,9S)-7-[2R,4S,5S,6S)-4-amino-

5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-

dihydro-7H-tetracene-5,12-dione (DOX) was supplied by AKSci (Union City. CA, USA). 

Solvents were supplied from Panreac and used without further purification.    

Measurements. FTIR spectra were recorded on a FTIR Perkin Elmer Frontier 

spectrophotometer within the 4000-600 cm-1 interval which was provided with a universal ATR 
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 7

sampling accessory for the examination of solid samples. 1H and 13C NMR spectra were 

recorded on a Bruker AMX-300 NMR instrument operating at 300.1 and 75.5 MHz, 

respectively, with samples dissolved in deuterated methanol (CD3OD) or chloroform (CDCl3). 

Calorimetric measurements were performed with a Perkin-Elmer DSC 8000 differential scanning 

calorimeter (DSC) instrument calibrated with indium and zinc. Sample weights of about 2-5 mg 

were examined in a temperature range of -30 to 120 ºC under a nitrogen atmosphere. 

Thermogravimetric analyses (TGA) were performed at a heating rate of 10 ºC·min-1 between 30 

to 600 ºC under nitrogen on a Mettler-Toledo TGA/DSC 1 Star System thermobalance.  

Polarizing optical microscopy (POM) images were obtained on an Olympus BX51 microscope 

equipped with a digital camera. For observation, several drops of a 5% (w/v) solution of the 

nACh·HyA complex in methanol were placed between two microscope cover slides and left to 

dry. Real-time X-ray diffraction in both WAXS and SAXS regions were performed using X-ray 

synchrotron radiation at the BL11 beamline (NCD, Non-Crystalline Diffraction) of ALBA in 

Cerdanyola del Vallès (Barcelona). Variable temperature experiments were performed at heating 

and cooling rates of 10 ºC·min-1. The employed radiation energy corresponded to a 0.10 nm 

wavelength, and spectra were calibrated with silver behenate (AgBh) and Cr2O3 for SAXS and 

WAXS, respectively. Transmission electron microscopy (TEM) of nACh·HyA complexes was 

carried out at the Physical Chemistry of Polymers center of the Max Planck Institute of Polymer 

Research (Germany) using a Tecnai F20 electron microscope operating at 200 kV. Specimens for 

observation were prepared by casting a solution of nACh·HyA complexes in MeOH:BuOH (4:1) 

over a water surface, taking out pieces of the complex film with carbon coated grids, and finally 

staining them with aqueous 4% uranyl acetate. For NPs imaging, drops of the suspensions were 
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 8

placed onto carbon-coated grids and the adhered material washed with water and stained as 

before. 

Dynamic light scattering (DLS) for particle hydrodynamic size measurement was performed 

with PSS NICOMPTM (Particle Sizing System, Inc. Santa Barbara, Calif., USA), and displayed 

values were the average of three readings. ζ-potential measurements were performed with a 

ZetaSizer NS (Malvern Instruments, UK) with particles suspended in deionized water and 

displayed values were the average of twelve readings.  

Complexes formation and decomposition in aqueous environment.  nACh·HyA complexes 

were prepared following the methodology used previously by us for coupling either PGGA or 

polyuronic acids with tetraalkylammonium salts bearing long linear alkyl chains,22,26 and more 

specifically for the preparation of  nATMA·HyA27 and nACh·PGGA complexes.34 In brief, an 

aqueous solution of the nACh·I was added dropwise to an aqueous solution of Na·HyA under 

stirring at a temperature between 25 and 70 ºC depending on the surfactant. The white precipitate 

appearing after several hours of stirring was isolated by centrifugation, repeatedly washed with 

water, and finally dried under vacuum for at least 48 h.  

The propensity of nACh·HyA complexes to decompose by the action of water was evaluated 

using PBS at pH 7.4 and 37 ºC as incubation medium, both in the presence and in the absence of 

hyaluronidases. nACh·HyA complexes with n values of 12 and 18 were selected for this study to 

assess the effect of the alkyl chain length on the stability of the complexes. Films of the 

complexes with a thickness of 100-150 µm were prepared by casting from a 10% (w/w) MeOH 

solution at room temperature. Discs of 5 mm of diameter were cut from films and placed in 

sealed vials, immersed in the incubation medium, and stored at 37 ºC in a thermostated chamber. 
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 9

Discs were withdrawn at scheduled times, washed with distilled water, dried under vacuum at 

room temperature, and finally weighted and examined by FTIR spectroscopy. 

Nanoparticles preparation and drug encapsulation and delivery. NPs made of 

18ACh·HyA and cis18ACh·HyA were prepared in aqueous media by ionotropic gelation 

avoiding thus the use of organic solvents. The procedure was essentially the same that was 

applied for the preparation of the complexes but in this case, surfactant to HyA ratios of 1:4 and 

1:2 were used. NPs were formed in aqueous medium by nanoprecipitation upon dropwise 

addition of the nACh salt solution to the HyA solution under gentle stirring. After leaving the 

mixture under stirring for 4 h further, it was dialyzed against water for 24 h, and the clean NPs 

emulsion was then subjected to characterization 

For drug encapsulation and delivery study, doxorubicin (DOX) was loaded in both films and 

NPs of complexes. DOX-loaded NPs were prepared as described above but using an aqueous 

solution of HyA that contained DOX at a concentration of 10% (w/w).  DOX-loaded films were 

prepared from a solution of the complex in MeOH containing 10% (w/w) of DOX that was 

placed in a petri dish and left to dry at room temperature. The release of the drug from films and 

NPs was followed by placing 5 mg of the loaded material suspended in 2 mL of PBS inside a 

cellulose tube (cut-off Mw 14,000) and left to dialyze under gentle stirring against 15 mL of PBS 

at 37 ºC. Drug release was monitored by UV spectroscopy of the dialysate with calibration made 

with known amounts of free DOX (480 nm). 

Cytotoxicity assays.  The cytotoxicity of nACh·HyA NPs was evaluated in vitro on raw 264.7 

cell line. The murine macrophage cell line RAW 264.7 was cultured with 10% fetal bovine 

serum (FBS) in RPMI medium containing 100 U·mL-1 of penicillin, 100 mg·mL-1 of 

streptomycin (all from Gibco, Germany) in an incubator at 37°C with 5% CO2. The RAW 264.7 
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 10

cells were seeded out in 24-well plates (100,000 cells per well) 1 day before the experiment. On 

the day of the experiment, the cells were incubated in fresh RPMI medium to witch the 

nanoparticle dispersions was added at a concentration of 75 µg·mL-1 and then incubated at 37 ºC 

for different durations. After 4 h or 24 h, the cells were detached using 0.25% Trypsin (Gibco), 

washed by centrifugation (7 min, 300 g), and the pellet resuspended in PBS. The cell viability 

was measured by flow cytometry. The viability of the cells was quantified by staining the sample 

before measurement with the viability dye Zombie Aqua (BioLegend) according to the 

manufacturer protocol. The 405 nm laser was used for the excitation of the Zombie Aqua dye 

(emission: 512 nm). Flow cytometry analysis was conducted on an Attune NxT (Invitrogen). The 

mean values and standard deviations were determined from biological duplicates.   

 

RESULTS AND DISCUSSION 

Synthesis and chemical characterization of nACh·HyA complexes. The synthesis of nACh·I 

(for n = 12, 14, 16, 18 and cis-18) surfactants carried out as previously reported.36 All the 

surfactants were obtained in good yields as white powders. The chemical constitution and purity 

of nACh·I was assessed by 1H and 13C NMR spectroscopy (SI file, Figures S1 and S2). 

nACh·HyA complexes were obtained as white precipitates by the slow mixing of the aqueous 

solutions of HyA and surfactant at the minimum temperature required to dissolve the surfactant. 

Yields between 70 and 90% were attained by using a 0.01 M concentration for the two solutions 

except in the case of 12ACh·HyA, where it was raised to 0.02 M for improving the yield which 

increased from 45% up to 70%. The whole set of nACh·HyA complexes showed the typical 

solubility behavior of polymers with a strong amphiphilic character, i.e. they were soluble in 

methanol but insoluble in neither water nor chloroform. 
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Table 1. Results for the preparation of nACh·HyA complexes 

Complex 
Mixing condition 

Yield (%) Color Compositionc 
c (M)a 

T (ºC)b 

12ACh·HyA 0.02 45 70 white 1.1:1.0 

14ACh·HyA 0.01 55 77 white 1.2:1.0 

16ACh·HyA 0.01 65 85 white 1.3:1.0 

18ACh·HyA 0.01 70 90 white 1.3:1.0 

cis18ACh·HyA 0.01 40 84 white 1.7:1.0 

a Concentration of the two solutions mixed to form the complex. 

b Temperature selected according to the surfactant solubility in water.  

c Molar ratio of nACh to HyA in the complex 

 

The chemical characterization of nACh·HyA complexes was performed by both FTIR and 1H 

NMR spectroscopies. The FTIR spectra recorded for the whole set of nACh·HyA are compared 

in Figure 2 together with those of Na·HyA and 18ACh·I. As expected, the spectra of all 

complexes contain the bands characteristic of the two components with intensities according to 

composition. Thus, the characteristic broad adsorption of hyaluronic acid at 3300 cm-1 that arises 

from N-H and O-H stretching vibrations appears with an intensity that decays with the increasing 

value of n and that arrives to be almost imperceptible for n 16 and 18.  A similar behavior is 

observed for the 1030 cm-1 band which is characteristic of the glycosidic C-O-C group,37,38 as 

well as for the ~1650 cm-1 group of bands attributed to the different stretching modes of the N-

CO structure present in the acetamide group of HyA. On the other hand, the bands typical of 

nACh·I surfactants at 1738 and 1165 cm-1 (C=O and C-O stretching), 950 cm-1 (C-C-stretching 

vibrations) and 1470, 725 cm-1 (CH2 scissoring and rocking vibrations, respectively) are visible 

in every spectrum and their intensities increasing with the value of n. The spectrum of cis-
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 12

18ACh·HyA fits well in the general trend with the addition of the weak band at ~3005 cm-1 that 

arises from the C-H stretching vibration associated to the double bond.  
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Figure 2. FTIR spectra of the whole set of nACh·HyA complexes. The spectra of Na·HyA and 

18ACh·I are included for reference.  

The NMR spectroscopy was used to confirm the chemical structure of the nACh·HyA 

complexes (SI file, Figures S3 and S4). The 1H NMR spectra of 18ACh·HyA and 

cis18ACh·HyA are shown in Figure 3 to illustrate the differences observed between saturated 

and unsaturated complexes. The later contains all the signals observed for the former in addition 

to two new signals characteristic of the double bond (9,10CH= at 5.2-5.6 ppm and 8,11CH2 –CH=, 

at 1.8-2.2 ppm). The contents of nACh and HyA in the complexes were determined by 1H NMR 

on the basis of the area ratio of selected signals arising from HyA and from the surfactant 

counterparts. Broadening and partial overlapping of signals prevented, however, a reliable area 

quantification. The areas of the inner methylenes (3-17CH2, at 1.0-1.7 ppm) and the CO-CH2 
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 13

methylene (2CH2, at 2.4 ppm) or the end methyl (18CH3, at 0.85 ppm) signals of nACh were 

compared to the signal due to the methyl protons of the acetamide group of HyA (CH3, at  2.0 

ppm). Spectra were acquired at room temperature and also at 60 ºC in order to minimize effects 

due to restricted mobility and loss of signal of the polysaccharide chain. The results obtained by 

these calculations revealed that nACh·HyA complexes have a composition with nACh to HyA 

ratios between of 1.0 and 1.3 for the saturated compounds and around 1.7 for the unsaturated 

cis18ACh·HyA (Table 1). A detailed account of the measurements carried out and 

approximations made for quantification is given in the SI file (Table S1) 

 

Figure 3. 1H NMR spectra of 18ACh·HyA (a) and cis18ACh·HyA (b) complexes recorded in 

CD3OD. 
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Thermal properties of nACh·HyA complexes. The thermal behavior of nACh·HyA 

complexes was examined by TGA and DSC, and data obtained by these analyses are 

summarized in Table 2. The TGA traces recorded from all the samples, as well as their 

derivatives curves, are shown in Figure 4. The thermal decomposition started to be detectable at 

190-210 ºC revealing that both nACh and HyA, which have onset decomposition temperatures at 

ca. 200-210 ºC,40,41 retained their thermal stability after complexation. The first derivative of the 

TGA curves (Figure 4b) shows that saturated nACh·HyA complexes decomposed through a 

process that involves two steps, the first one at a temperature between 220-226 ºC and the second 

one between 255-290 ºC. All these complexes left a residual weight of 12-14% after being 

heated at 600 ºC. max
Td  for the first step were within the 220-226 ºC range, which are values 

close to the max
Td of HyA and nACh.  Conversely, max

Td of the second step were well above 250 

ºC and increased steadily with n, suggesting that decomposition of the alkanoyl chain of the 

surfactant must be involved in this step.  

Table 2. Thermal parameters of nACh·HyA 

Complex  TGAa  DSCb 
     1st Heating  Cooling  2nd Heating 
  oTd

 

(ºC) 

maxTd                                                               
(ºC) 

W 

(%) 
 Tm 

(ºC) 
∆Hm 

(Kcal·mol-1) 
nc  Tc 

(ºC) 
∆Hc 

(Kcal·mol-1) 
 Tm 

(ºC) 
∆Hm 

(Kcal·mol-1) 
12ACh·HyA  200 220/255 14  - - -     - -  

                14ACh·HyA  205 222/265 14  50 0.8 1  - -  - -  

                16ACh·HyA  212 226/272 14  55 1.9 3  - -  - -  
                18ACh·HyA  216 226/290 12  65 3.9 5  49 -2.2  56 2.0  
                cis18ACh·HyA  194 211/274/334 11  - - -  - -  - -  

                18ACh·Ic  209 225/322 0            
                HyA  200 228 35  - - -  - -  - -  
 

 
a ºTd  onset for 5% of weight loss and max

Td maximum rate decomposition temperatures. W: 
remaining weight at 600 ºC. 
b Data obtained from DSC traces;  Tm and Tc: Melting and crystallization temperatures (ºC); ∆Hm 
and ∆Hc: melting and crystallization enthalpies. nc: calculated average number of crystallized 
methylenes.  c Data taken from reference 36. 
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The TGA behavior observed for the nACh·HyA series follows the behavior reported for both 

nACh·PGGA34 and nATMA·HyA27 series suggesting that a similar thermal decomposition 

mechanism pattern could be shared by the three families of complexes. At difference to what 

happens with PGGA, whose thermal decomposition has been studied in details,39,40 the 

decomposition of HyA is more complex and not as well characterized.41,42 Additional TGA 

assays including the analysis of HyA and nACh would be needed to fully understand the thermal 

degradation mechanism of the nACh·HyA complexes. 

 

 

Figure 4. Comparison of the TGA traces for the whole set of nACh·HyA complexes (a) and 

their derivatives curves (b). 

Results for cis18ACh·HyA were found to deviate significantly from the pattern observed for 

the nACh·HyA series, which may be attributed to the presence of the double bond in the 

hydrocarbon tail of the oleyl-derived surfactant. In this case, the TGA derivative curve shows an 

additional third decomposition step in the 330-340 ºC range which is the consequence of the 

higher heat resistance that should be expected for the double bond.  
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The DSC traces for the whole set of complexes are compared in Figure 5a showing that 

saturated complexes with n≥14 contain endothermic peaks at temperatures steadily increasing 

from 50 ºC up to 65 ºC with the value of n. According to the thermal behavior of comb-like ionic 

polymer complexes,20-24 the observed endothermic peaks are associated with the melting of the 

paraffinic phase of the complex composed of the alkyl chains of the surfactant. The enthalpy of 

these peaks diminished from 3.9 to 0.8 Kcal·mol-1 for n decreasing from 18 to 14 indicating that, 

as expected, crystallinity decreased with the length of the alkanoyl chain length. It is noticeable 

that these melting enthalpy values are much lower than those reported for nACh·PGGA34 (values 

ranging from 7 to 4 kcal·mol-1) revealing that HyA is more effective than PGGA in disturbing 

the molecular arrangement required by the alkanoyl chain to crystallize within the complex 

structure. On the other hand, the enthalpy value observed here for 18ACh·HyA is significantly 

larger than that reported for 18ATMA·HyA27 (1.7 Kcal·mol-1) indicating that the flexible ester 

bond of the alkanoylcholine acts as a flexible spacer between the polysaccharide and the 

polymethylene chain favoring its accommodation into the crystal lattice of the paraffinic phase. 

Upon cooling from 120 ºC, only 18ACh·HyA was able to crystallize confirming the dependence 

of crystallinity on n (Figure 5b). As one can expect, the cis18ACh·HyA complex did not show 

any sign of melting or crystallization due to the presence of a double bond in a cis configuration 

hindering the crystal packing of the alkenoyl chains.   Melting temperatures and enthalpies 

measured along the heating-cooling cycles for the whole set of complexes are given in Table 2. 
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Figure 5. a) Heating DSC traces of the nACh·HyA complexes and b) Heating-cooling DSC 

traces for 18ACh·HyA. 

Melting enthalpy may be used for calculating the number of carbons that are crystallized in the 

alkyl chain of each complex.43 Plotting ∆Hm against n (Figure 6) results in the linear equation 

∆Hm = ∆Hend + nk, where ∆Hend and k are constants reflecting the contribution made to the heat of 

fusion by the methyl end group and each methylene added to the alkyl chain, respectively. A 

slope (k) of 0.78 Kcal·mol-1CH2
-1 was found for the first heating, which is in good accordance 

with the slope of 0.8 Kcal·mol-1CH2
-1 found for analogous complexes made of PGGA and 

alkanoylcholines.34 In agreement with the fusion enthalpy values reported for the crystal lattice 

adopted by the paraffinic phase associated to comb-like polymers,22,44 the k value found here 

suggests that the polymethylene chains of nACh·HyA complexes must be packed in a pseudo-

hexagonal structure. The minimum number of methylenes (nm) in the chain required for 

crystallization may be estimated by taking ∆Hm = 0 in the ∆Hm vs n plot, and the average number 

of methylenes (nc) that are crystallized in one chain is given by n-nm. The resulting values for 
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pristine complexes samples are given in Table 3 showing that the percentage of carbons 

crystallized in the alkanoyl chain decreased with its length, to the point that no crystallization 

was perceived for 12ACh·HyA.  
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Figure 6. Melting enthalpy (left), and number of crystallized methylenes (right) against the 

number of carbons contained in the alkanoyl chain of nACh·HyA complexes.  

Structure of nACh·HyA complexes. The structure of nACh·HyA including both crystallinity 

and mesoscopic order was studied by XRD recorded simultaneously at both small and wide 

angles (SAXS and WAXS). The profiles recorded in the SAXS region displayed a sharp peak 

within the 3.9-4.7 nm range with a spacing that steadily moved upwards (higher spacing) with 

the increasing length of the alkanoyl chain (Figure 7a). According to other similar comb-like 

ionic polymer complexes made of either PGGA or HyA, this spacing is associated to the 

periodical distance (Lo) of a biphasic layered structure in which the polysaccharide and the 
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surfactant phases are alternating regularly.22,27,28,34 In Figure 8 the Lo distances in nACh·HyA 

complexes are represented as a function of n and are compared with those reported for 

nACh·PGGA. In both cases, an almost linear fitting was attained with a similar slope of 0.12 

nm·CH2
-1, but with a significant increase in the periodical distance when the polypeptide was 

replaced by the polysaccharide. The observed slope corresponds approximately to an increase of 

half of the C-C-C backbone projection height per additional methylene unit. The expansion 

observed in the value of Lo for n = 0 is fully related to the difference in the contour length of 

these two biopolymers.   

 

Figure 7.  XRD profiles of nACh·HyA recorded at room temperature in the SAXS (a) and 

WAXS regions (b). 

The occurrence of the biphasic arrangement inferred from SAXS results was firmly supported 

by TEM results. Electron micrographs taken from films of the 18ACh·HyA prepared by casting 

on water showed clearly a striated structure corresponding to a layered structure with a 
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periodicity that, as measured by optical diffraction, coincided with that defined by SAXS of this 

complex (Figure S5 in the SI file).  
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Figure 8. Plot of Lo against n for nACh·HyA and nACh·PGGA complexes. Values for the latter 

have been taken from reference 34. 

The X-ray scattering recorded in the WAXS region (Figure 7b) provided a clear indication of 

the order attained in the paraffinic phase in nACh·HyA complexes.  The results obtained are in 

full agreement with those obtained by DSC. Complexes with n = 16 and 18 displayed a well-

distinct peak at 0.41-0.42 nm which is characteristic of a crystalline state. On the contrary, the 

WAXS profiles recorded from both 12ACh·HyA and cis18ACh·HyA showed a broad peak at 

0.45 nm indicating that the alkanoyl chain remained uncrystallised in these complexes, in the 

former because the polymethylene chain is too short and in the latter because of the disturbing 

presence of the double bond in a cis-configuration. The profile recorded from 14ACh·HyA is 

predominantly amorphous but showed a small shoulder at 0.41 nm indicative of the presence of a 
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minor fraction of crystallized material. According to the degree of order attained by the 

paraffinic phase, either a semicrystalline or a liquid-crystal state is adopted by the complex, 

which can be characterized by POM. Optical micrographs displaying the “batonnet” texture 

suggestive of the presence of a Smectic-A phase for 12ACh·HyA, and the spherulitic 

morphology typical of semicrystalline polymers for 18ACh·HyA are shown in Figure S6 in the 

SI file. 

Temperature effects on the structure of nACh·HyA. To evaluate the effect of heating on the 

structure of the nACh·HyA complexes, they were examined by real-time X-ray diffraction at 

variable temperatures over the 10-120 ºC interval using synchrotron radiation. Data obtained 

from this study are collected in Table 3. The SAXS and WAXS profiles recorded along the 

applied heating-cooling cycle are displayed in Figures 9 and 10 for representative examples 

(18ACh·HyA and cis18ACh·HyA), and the profiles for all the other complexes are provided in 

the SI file (Figures S7 and S8). 

The changes observed in the scattering profiles of 18ACh·HyA produced in the WAXS region 

(Figure 9) are in full agreement with the melting-crystallization process taking place in this 

complex at temperatures between 50 and 70 ºC.  The sharp peak at 0.41 nm disappeared at ~60 

ºC and a broad peak at 0.45 appeared instead. This change is indicative of melting of the 

paraffinic lattice into a disordered structure in which chains are separated by an average distance 

of 0.45 nm. During cooling, the 0.41 nm reappeared at around 50 ºC to melt at 56 ºC after 

reheating, a result that brings into evidence the reversibility of the melting-crystallization process 

in this complex. On the contrary, the WAXS profile of cis18ACh·HyA barely changed along the 

heating-cooling cycle as it should be expected for a disordered phase. The changes observed 

during heating for the other complexes fit well in one of these two patterns depending on the 
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degree of order attained by the alkanoyl chain in each case. During cooling none of the 

complexes showed a recovery of the 0.41 peak so that reversibility seems to be unique of the 

18ACh·HyA complex. 

 

Table 3. X-ray diffraction data of nATMP·PGGA complexes 

Complex 
SAXS WAXS 

L0
10ºC 

L0
120ºC

 L0
10ºC

 d100
10ºC

 d100
120ºC

 d100
10ºC

 

12ACh�HyA 3.9 3.7 3.8 0.45 0.45 0.45 

14ACh�HyA 4.1 3.8 3.8 0.45 (0.41) 0.45 0.45 

16ACh�HyA  4.3 4.4 4.2 0.41 0.45 0.45 

18ACh�HyA  4.7 4.8 4.7 0.41 0.45 0.41 

cis18ACh�HyA 4.5 4.5 4.4 0.45 0.45 0.45 

L0 (lamellar spacing) and  d100 (interplanar spacing) of the paraffinic phase measured at 10 ºC 
(initial), 120 ºC, and 10 ºC (after cooling). 
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Figure 9. WAXS profiles of 18ACh·HyA (top) and cis18ACh·HyA (bottom) at heating (a and b) 

and cooling (a‘ and b´) along the 10-120 ºC range 

 

The SAXS profiles produced by 18ACh·HyA and cis18ACh·HyA complexes are depicted in 

Figure 10. The changes taking place in the long spacing peaks after heating at 120 ºC are very 

slight in both cases. In fact, no shift was perceived for cis18ACh·HyA whereas a small increase 

in the spacing of around 0.1 nm could be observed for 18ACh·HyA. It is worth to mention that 

the change observed for 18ACh·HyA happened abruptly at  ~60 ºC revealing that the 

rearrangement involved in this expansion must be associated with the melting of the paraffinic 

phase. After cooling the initial spacing was recovered although the peak lost some intensity and 

became slightly broader indicating that the original order must be reduced. As expected, the 

behavior observed for 16ACh·HyA is almost the same as for 18ACh·HyA whereas in the cases 
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of both 12ACh·HyA and 14ACh·HyA, a small contraction took place upon heating and was not 

recovered after cooling (Figures S7 and S8 in SI). The different response given by the complexes 

to temperature changes can be accounted by their differences in the arrangement of the alkanoyl 

chain, and it is in agreement with the behavior observed for other closely related complexes 

previously studied.22,25,27,34  

 

Figure 10. SAXS profiles of 18ACh·HyA (top) and cis18ACh·HyA (bottom) at heating (a and 

b) and cooling (a´and b´) along 10-120 ºC range.  

Decomposition of nACh·HyA complexes in aqueous environment. Since nACh·HyA 

complexes are designed for building nanocarriers to be used in aqueous environments, a study 

addressed to investigate their response to water was performed.  For that purpose, 12ACh·HyA 

and 18ACh·HyA complexes were incubated under physiological conditions both in the presence 

and in the absence of hyaluronidases, and the changes taking place with time in weight, 

composition, and chemical constitution of the incubated samples were evaluated. In Figure 11, 

the sample weight remaining after incubation is plotted against the incubation time for the two 
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complexes. 12ACh·HyA appeared to be highly sensitive to the presence of water so 

disintegration started in the first several hours of incubation and was almost complete after three 

days. The weight loss was much faster in the presence of hyaluronidases with the sample 

becomes fully disintegrated after 24 h. The attack of water on 18ACh·HyA was much less 

aggressive so that only about 30% of the original weight was lost after three weeks of incubation. 

As before, the presence of hyaluronidases speeded up the degradation process so that the weight 

loss was ca. 60% after such a period of time. The much greater stability displayed by 

18ACh·HyA is obviously due to the long alkanoyl surfactant chain which largely hindered the 

water action on the complex. For n = 18 not only hydrophobicity is increased but the complex 

becomes also partially crystalline. It is worthy to note that the water degradation observed for 

nACh·HyA complexes is much faster than that for their analogues made of PGGA, a difference 

that is reasonable provided the greater capacity of hyaluronic acid to swell which makes easier 

the uptake of water by the complex.43,44 The FTIR spectra recorded from the residual samples 

collected at increasing incubation times are compared in Figure S9 of the SI file. Strikingly, the 

chemical composition remained essentially unchanged and no band indicative of hydrolysis of 

the choline stearate was detected. On the contrary, bands arising from the hyaluronic acid 

increased in intensity, in particular, those associated to end groups generated upon hydrolysis of 

the polysaccharide. Therefore, it is preliminary concluded that decomposition involves mainly 

the breaking of the HyA chain with the subsequent release of ACh-coupled oligosaccharides to 

the aqueous medium. According to what has been reported to occur in similar complexes,35,47 it 

is likely that the decoupling of the ionic pair ACh-Hyal happens to some extent, either in the 

original complex or in the oligomeric species generated by hydrolysis.  
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Figure 11. Weight loss undergone by nACh·HyA complexes with n =12 and 18 upon incubation 

at pH = 7.4 at 37 ºC with and without enzymes added. 

nACh·HyA nanoparticles: Characterization, stability and cytotoxicity. The preparation of 

NPs of nACh·HyA for 18ACh and cis18ACh surfactants has been achieved using the ionotropic 

gelation technique.  We have used previously this technique for the preparation of  NPs made of 

complexes of PGGA and alkanoylcholines, the which showed acceptable stability in suspension 

and controlled degradability in aqueous environments.35 Different experimental conditions were 

explored to optimize the self-assembly of the complexes in NPs whose details are given in Table 

S2 in the SI file. Nanoparticles made of 18ACh·HyA or cis18ACh·HyA with surfactant-to-HyA 

ratios of 0.25 and 0.5, which were prepared by using a concentration of 0.1% (w/w) for the two 

aqueous solutions, were those displaying the best shape and size. The most relevant parameters 

measured for these particles are given in Table 4. No great differences were found among the 

different types of NPs prepared. Hydrodynamic diameters were within the narrow 135-156 nm 

range, with larger sizes corresponding to those with ACh:HyA ratio of 0.25. This is according to 
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the higher degree of swelling that is reasonably expected for such composition. The ζ potential 

significantly increased for lower contents in surfactant as it should be expected since a higher 

concentration of free carboxylic groups will remain on the NP surface at lower surfactant 

concentration. In addition, differences in ζ potential between 18ACh·HyA and cis18ACh NPs 

were negligible indicating that the presence of the double bond affects significantly neither the 

size nor the charge of the NPs. 

 

Table 4. Parameters for nACh·HyA nanoparticles 

a Concentration of the aqueous solutions used for gelation. 

b Average hydrodynamic diameter obtained  by DLS measurements in water.  

c Standard deviation for DLS data. 

 

Figure 12 shows TEM images of NPs made of 18ACh·HyA and cis18ACh·HyA NPs with a 

ACh:HyA ratio of 0.5:1.0 and similar pictures taken for NPs with the ACh:HyA ratio of 0.25:1.0 

can be found in Figure S10 in the SI file. These micrographs show essentially spherical particles, 

Parameters  18ACh·HyA  cis18ACh·HyA 

  18ACh·HyA-0.25 18ACh·HyA-0.5  18ACh·HyA-0.25 18ACh·HyA-0.5 

Na·HyA (wt.%)a  0.1 0.1  0.1 0.1 

nACh (wt.%)a  0.1 0.1  0.1 0.1 

ACh:HyA  0.25:1.0 0.5:1.0  0.25:1.0 0.5:1.0 

T (ºC)  65 65  35 35 

Size (nm)b  149 143  156 135 

STD (%)c  34 35  29 34 

ζ potential (mV)  -28.9 -25.7  -29.3 -25.7 
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most of them with diameters between 50 and 100 nm, which values are much smaller than those 

measured by DLS. Such differences in size are interpreted to be due to the drying underwent by 

the NPs under the vacuum applied for their observation in the microscope, and also to the fact 

that the hydrodynamic diameter is measured by DLS. Similar sizes were observed for both 

18ACh·HyA and cis18ACh·HyA NPs in the TEM images despite the differences noticed by 

DLS. This is fully consistent with the results expected from the deswelling of the gel NPs.  A 

close inspection of the electron micrographs showed indications on the existence of some 

organization of the complex in the NPs at the nanometer scale. The 18ACh·HyA nanoparticle 

seen on the inset of Figure 12a displays a layered arrangement with a periodicity (measured by 

optical diffraction) of 4.7 nm, which is almost coincident with the value measured by SAXS for 

the film of this complex.  A similar analysis of the NPs made of cis18ACh·HyA revealed a 

granular texture (inset of Figure 12b) indicative of a different nanoscale organization. 

 

Figure 12. TEM micrographs of NPs made of 18ACh·HyA (a) and cis18ACh·HyA (b) with a 

ACh:HyA ratio of 0.5:1.0. Insets: High magnification pictures showing signs of nanometric 

ordering.  
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The stability of the NPs in water was evaluated by measuring the changes in size taking place 

after incubation for 15 and 30 days at 25 ºC (Figure 13). The NP size increased by more than 

twofold after their immersion in water for two weeks and multiplied several times after a month.  

This size increase was also associated with a considerable broadening in dispersity. This effect 

was less pronounced for cis18ACh·HyA NPs, which is in principle a striking result since an 

easier water diffusion could be expected in these amorphous NPs. It cannot be discarded 

however that aggregation with subsequent collapse is favoured in 18ACh·HyA NPs due to the 

occurrence of specific interactions between the crystalline nanophases present in these NPs.  

 

Figure 13. Size evolution of 18ACh·HyA (a) and cis18ACh·HyA (b) NPs along incubation 

time 

The cytotoxicity of 18ACh·HyA and cis18ACh·HyA nanoparticles with ACh:HyA ratios of 

0.5:1.0 and 0.25:1.0 was evaluated in vitro with raw mouse macrophages 264.7 cell line. The 

number of cells still alive after the incubation with the NPs were counted and compared with 

those present in a negative control. Figure 14 shows that the cell vitality were over 80% for all 

the types of NPs assayed after 4 and 24h of incubation, indicating that none of the NPs displays 

important cytotoxicity.  
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Figure 14. Cell viability of mouse macrophages cell lines 264.7 after exposure to 18ACh·HyA 

and cis18ACh·HyA NPs with different Ach·HyA ratios. Standard deviations are less than 0.3.  

nACh·HyA nanoparticles as nanocarriers: DOX loading and releasing assays. A 

preliminary study of the potential use of nACh·HyA complexes as drug delivery systems was 

performed by examining the loading and releasing of DOX from both films and NPs made of 

18ACh·HyA and cis18ACh·HyA. In all cases, the amount of DOX added for loading was around 

5% of the complex and the entrapping efficiency was 100% and 83% for films and NPs, 

respectively. The delivery study was performed by incubation of the loaded films and NPs in 

PBS at room temperature and following the drug release along time by UV spectroscopy. The 

releasing profiles obtained for the two complexes are represented in Figure 15 which reveals the 

following: a) In all cases DOX started to be released at time 0 but with almost no burst detected, 

b) drug delivery happened in general at a high rate that was faster in films, c) delivery rate 

differences between 18ACh·HyA and cis18ACh·HyA complexes were not significant, and d) the 
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complete delivery of DOX from films was accomplished in 24 h whereas only 60% of the drug 

loaded in the NPs was released by that time.  

According to the pattern displayed by the releasing profiles, the drug is expected to be 

entrapped inside the material since surface adsorbed drug would present an initial burst almost 

independent of time, which is not observed. Since DOX is assumed to be ionically coupled with 

HyA, it is predominantly lodged in the HyA-nanophase, which is alternating with the ACh-

nanophase throughout the bulk of the whole particle. The different kinetic behaviour displayed 

by the films and NPs may be attributed to a difference in the degree of drug-HyA ionic 

interaction. The films were prepared by adding DOX to the solution of the complex previously 

formed while NPs were prepared with the DOX present during the formation of the complex. It 

could be expected therefore that DOX have an easier access to the HyA domains in the NPs. The 

DOX-HyA ionic interaction prevailing in NPs would delay the release of the drug compared to 

films where DOX would be physically entrapped in a greater extent. 
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Figure 15. Drug release from films and NPs of 18ACh·HyA and cis18ACh·HyA complexes 

upon incubation at pH 7.4 and 37 ºC. 
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CONCLUSIONS 

Ionic complexes of hyaluronic acid and alkanoylcholine surfactants (nACh·HyA) with a comb-

like architecture could be successfully synthesized by applying the general coupling procedure. 

The nACh·HyA complexes were water-insoluble and stable up to ca. 200 ºC. These amphiphilic 

complexes adopted, in the solid state, an ordered nanoscale structure with the polysaccharide and 

the surfactant segregated in two phases alternating regularly with a periodicity of about 4-5 nm. 

Since the two components of nACh·HyA are biocompatible and biodegradable, and the 

complexes tend to self-assemble with the paraffinic phase segregated in a separated domain, they 

stand out as good candidates for building nanocarriers for both hydrophobic, neutral, and 

ionically charged drugs. Spherical nanoparticles with diameters about 150 nm could be prepared 

by ionotropic gelation from the complexes derived from stearoyl and oleoyl choline with 

ACh:HyA ratios of 0.5 and 0.25. These nanoparticles were stable for a few days in aqueous 

emulsion to finally precipitate after one month of incubation. The cytotoxicity study carried out 

on these NPs has shown that they are biocompatible. Loading and releasing assays of DOX on 

NPs of 18ACh·HyA and cis18ACh·HyA demonstrated a high loading efficiency and a fast but 

controlled drug delivery upon incubation under physiological conditions.  The final conclusion is 

that nACh·HyA complexes may be considered a highly promising biocompatible/biodegradable 

platform for the design of systems suitable for drug transport and targeted delivery in anticancer 

chemotherapy.      
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