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In his pioneering research, G.K. Zipf observed that more
frequent words tend to have more meanings, and
showed that the number of meanings of a word grows
as the square root of its frequency. He derived this rela-
tionship from two assumptions: that words follow Zipf’s
law for word frequencies (a power law dependency
between frequency and rank) and Zipf’s law of meaning
distribution (a power law dependency between number
of meanings and rank). Here we show that a single
assumption on the joint probability of a word and a
meaning suffices to infer Zipf’s meaning-frequency law
or relaxed versions. Interestingly, this assumption can
be justified as the outcome of a biased random walk in
the process of mental exploration.

Introduction

G.K. Zipf (1949) investigated many statistical regularities

of language. Some of them have been investigated inten-

sively, such as Zipf’s law for word frequencies (Fedorowicz,

1982; Ferrer-i-Cancho, & Gavald�a, 2009; Font-Clos,

Boleda, & Corral, 2013; Ferrer-i-Cancho, 2016a) or Zipf’s

law of abbreviation (Strauss, Grzybek, & Altmann, 2006;

Ferrer-i-Cancho et al., 2013). Some others, such as Zipf’s

law of meaning distribution, have received less attention. In

his pioneering research, Zipf (1945) found that more fre-

quent words tend to have more meanings. The functional

dependency between l, the number of meanings of a word,

and f, the frequency of a word, has been approximated with

(Ilgen & Karaoglan, 2007; Baayen & Moscoso del Prado

Mart�ın, 2005; Zipf, 1945)

l / f d; (1)

where d is a constant such that d � 1=2. Equation 1 defines

Zipf’s meaning-frequency law. Equivalently, the meaning-

frequency law can be defined as

f / l1=d: (2)

Zipf derived the meaning-frequency law assuming two laws,

the popular Zipf’s law for word frequencies and the law of

meaning distribution. On the one hand, Zipf’s law for word

frequencies states that the relationship between the frequency

of a word and its rank (the most frequent word has rank i 5 1,

the second most frequent word has rank i 5 2 and so on) as

f / i2a; (3)

where a � 1 is a constant (Zipf, 1945, 1949). On the other

hand, the law of meaning distribution (Zipf, 1945, 1949)

states that

l / i2c; (4)

where c � 1=2. Notice that i is still the rank of a word

according to its frequency. The constants a, c, and d can be

estimated applying some regression method as in Zipf’s pio-

neering research (Zipf, 1945, 1949).

Sometimes, power-laws such as those described in Equa-

tions (1–4) are defined using asymptotic notation. For

instance, random typing yields f 5Hði2aÞ, that is, for suffi-

ciently large i, one has (Conrad & Mitzenmacher, 2004)

a1i2a � f � a2i
2a; (5)

where a1 and a2 are constants such that a1 � a2. Equation 5

can be seen as a relaxation of Equation 3. Similarly, Heaps’
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law on the relationship between V, the number of types, as a

function of T, the number of tokens, is defined as V5HðTbÞ
with 0 < b < 1 (Baeza-Yates & Navarro, 2000), a relaxed

version of V / Tb (see Font-Clos & Corral, 2015, for a criti-

cal revision of the power law model for Heaps’ law).

The meaning-frequency law (Equation 1) and the law of

meaning distribution (Equation 4) predict the number of

meanings of a word using different variables as predictors.

The meaning-frequency law has been confirmed empirically

in various languages: directly through Equation 1 in Dutch

and English (Baayen & Moscoso del Prado Mart�ın, 2005) or

indirectly through Equation 4 and the assumption of Zipf’s

law (Zipf, 1945; Ilgen & Karaoglan, 2007) in Turkish and

English. Qualitatively, the meaning-frequency law defines a

positive correlation between frequency and the number of

meanings. Using a proxy of word meaning, the qualitative

version of the law has been found in dolphin whistles (Fer-

rer-i-Cancho & McCowan, 2009) and in chimpanzee ges-

tures (Hobaiter & Byrne, 2014). Thus, the law is a candidate

for a universal property of communication.

Zipf (1945) argued that Equation 1 with d51=2 follows

from Equation 3 with a 5 1 and Equation 4 with c51=2.

Indeed, it has been proven that Equation 1 with d5c=a fol-

lows from Equations 1 and 4 (Ferrer-i-Cancho, 2016b). Here

we consider alternative derivations of Equation 1 or relaxed

versions of Equation 1 from the assumption of a biased ran-

dom walk (Sinatra, G�omez-Garde~nes, Lambiotte, Nocosia,

& Latora, 2011; G�omez-Garde~nes & Latora, 2008) over

word-meaning associations. The remainder of the article is

organized as follows.

First, we will present the mathematical framework.

Second, we will present a minimalist derivation of the

meaning-frequency law (Equation 1) with d51=2 law that is

based on just one assumption on the joint probability of a

word and a meaning. Suppose a word s that is connected to

l meanings and a meaning r that is connected to x words.

Assuming that the joint probability of s and r is proportional

to l if s and r are connected and zero otherwise, it suffices

to obtain Equation 1 with d51=2. A problem of the argu-

ment is that the definition is somewhat arbitrary and theoret-

ically superficial.

Third, we will replace this simplistic assumption by a

more fundamental assumption, namely, that the joint proba-

bility of s and r is proportional to lx if s and r are connected

and zero otherwise. This assumption is a more elegant solu-

tion for two reasons: it corrects the arbitrariness of the

assumption of the minimalist derivation, fits into standard

network theory, and it can be embedded into a general the-

ory of communication. From this deeper assumption we

derive the meaning-frequency law following three major

paths. The first path consists of assuming the principle of

contrast (Clark, 1987) or the principle of no synonymy

(Goldberg, 1995, p. 67), namely, x � 1 for all words, which

leads exactly to Equation 1. The second path consists of

assuming that meaning degrees are mean independent of

word degrees, which leads to a mirror of the meaning-

frequency law (Equation 2)

E½pjl� / l1=d; (6)

where E½pjl� is the expectation of p, the probability of a

word, knowing that its degree is l. Notice that p is linked

with f as p � f=L, where L is the length of a text in tokens,

that is, total number of tokens (the sum of all type frequen-

cies; Moreno-S�anchez, Font-Clos, & Corral, 2016). The

third path makes no assumption to obtain a relaxed version

of the meaning-frequency law, namely, the number of mean-

ings is bounded above and below by two power-laws over f,
that is

b1f
d � l � b2f

d;

where b1 and b2 are constants such that b1 � b2. The result

can be summarized as

l5Hðf dÞ: (7)

Put together, these three paths strongly suggest that lan-

guages are channeled to reproduce Zipf’s meaning-

frequency law.

Fourth, we will review a family of optimization models

of communication that was put forward to investigate the

origins of Zipf’s law for word frequencies (Ferrer-i-Cancho

& D�ıaz-Guilera, 2007) but that has recently been used to

shed light on patterns of vocabulary learning and the map-

ping of words into meanings (Ferrer-i-Cancho, 2016c). Inter-

estingly, models from that family give Equation 1 with

d 5 1 (Ferrer-i-Cancho, 2016b). Crucially, however, the true

exponent is d � 1=2 (Zipf, 1945; Ilgen & Karaoglan, 2007).

The mismatch should not be surprising. Imagine that a

speaker has to choose a word for a certain meaning. Those

models assume that given a meaning, all the words with that

meaning are equally likely (Ferrer-i-Cancho & D�ıaz-

Guilera, 2007). However, this simple assumption is not sup-

ported by psycholinguistic research (Snodgrass & Vander-

wart, 1980). We will show how to modify their definition so

that the words that are used for a certain meaning do not

need to be equally likely and one can obtain Equation 1 with

d51=2 or relaxed versions. Finally, we will discuss the

results, highlighting the connection with biased random

walks, and indicate directions for future research.

A Mathematical Framework

As in the family of models of communication above, we

assume a repertoire of n words, s1,. . .,si,. . .sn and a reper-

toire of m meanings, r1,. . .,ri,. . .,rm. Words and meanings

are associated through an n 3 m adjacency matrix A5faijg:
aij 5 1 if si and rj are associated (aij 5 0 otherwise). A
defines the edges of an undirected bipartite network of

word-meaning associations. The degree of the i-th word is

li5
Xm

j51

aij (8)
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while the degree of the j-th meaning is

xj5
Xn

i51

aij: (9)

In human language, the relationship between sound and

meaning has been argued to be arbitrary to a large extent

(Saussure, 1916; Hockett, 1966; Pinker, 1999). That is, there

is no intrinsic relationship between the word form and its

meaning. For example the word “car” is nothing like an

actual automobile. An obvious exception are onomatopoeias,

which are relatively rare in language. However, despite the

immense flexibility of the world’s languages, some sound-

meaning associations are preferred by culturally, historically,

and geographically diverse human groups (Blasi, Wichmann,

Hammarstr€om, Stadler, & Christiansen, 2016). The frame-

work above is agnostic concerning the type of association

between sound and meaning. By doing that, we are borrowing

the abstract perspective of network theory, that is a priori neu-

tral concerning the nature or the origins of the edges (New-

man, 2010; Barth�elemy, 2011). Our framework could be

generalized to accommodate Peirce’s classic types of refer-

ence, that is, iconic, indexical, and symbolic (Deacon, 1997),

or the state-of-the-art on the iconicity/systematicity distinction

(Dingemanse, Blasi, Lupyan, Christiansen, & Monaghan,

2015). A crucial reason to remain neutral is that the distinc-

tions above were not made when defining the laws of mean-

ing that are the target of this article.

The framework allows one to model lexical ambiguity: a

lexically ambiguous word is a word such that its degree is

greater than one. Although the model starts from a flat hier-

archy of concepts (by default all concepts have the same

degree of generality), a word with an abstract meaning could

be approximated either as a word linked to a single abstract

concept or as a word linked to the multiple specific mean-

ings it covers (Ferrer-i-Cancho, 2016c). As for the latter

approach, the word for vehicle would be linked to the mean-

ings for car, bike, ship, airplane, etc.

Suppose that pðsi; rjÞ is the joint probability of the unor-

dered pair formed by si and rj. By definition,

Xn

i51

Xm

j51

pðsi; rjÞ51: (10)

The probability of si is

pðsiÞ5
Xm

j51

pðsi; rjÞ (11)

and the probability of ri is

pðrjÞ5
Xn

i51

pðsi; rjÞ: (12)

Our model shares the assumptions of distributional seman-

tics that the meaning of a word is represented as a vector of

the weights of different concepts for that word (Lund & Bur-

gess, 1996). In our framework, the meaning of the word si is

represented by the m-dimensional vector

fpðsi; r1Þ; . . . ; pðsi; rjÞ; . . . ; pðsi; rmÞg

The joint probabilities pðsi; rjÞ for all words and meanings

defines a weighted matrix of the same size of A. In the com-

ing sections, we will derive the meaning frequency-law

defining pðsi; rjÞ as a function of A. Put differently, we will

derive the law from a weighted undirected bipartite graph

that is built from the unweighted undirected graph defined

by A. This organization in two graphs (one unweighted and

the other weighted) instead of a single weighted graph is

borrowed from successful models of communication (Fer-

rer-i-Cancho, 2016c) and allows one to apply the theory of

random walks (Sinatra, G�omez-Garde~nes, Lambiotte, Noco-

sia, & Latora, 2011; G�omez-Garde~nes & Latora, 2008), as

we will see later on.

A Minimalist Derivation of the Law

The law of meaning distribution can be derived by mak-

ing just one rather simple assumption, that is

pðsi; rjÞ / aijli; (13)

Applying Equation 10, one obtains

pðsi; rjÞ5caijli; (14)

where c is a normalization constant defined as

c5
1Xn

i51

Xm

j51

aijli

5
1Xn

i51

li

Xm

j51

aij

5
1Xn

i51

l2
i

:

Notice that c is not a parameter and its value is determined

by the definition of probability in Equation 10. Applying

Equation 11 to Equation 14 gives

pðsiÞ5cl2
i ;

Namely, Equation 1 with d51=2. Our derivation of the

strong and relaxed version of the meaning-frequency law is

simpler than that of Zipf’s in the sense that it requires

assuming a smaller number of equations (we are assuming

only Equation 13, while Zipf assumed Equations 3 and 4).

However, the challenge of our approach is the justification

of Equation 13.

A Theoretical Derivation of the Law

The definition of pðsi; rjÞ in Equation 13 suffices as a

model but not for the construction of a real theory of lan-

guage. Equation 13 is simple but somewhat arbitrary: the

degree of the word, li, contributes raised to 1 but the degree

of the meaning xj has no direct contribution, or one may say
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that it contributes raised to 0. Therefore, a less arbitrary

equation would be

pðsi; rjÞ / aijðlixjÞ/; (15)

where / is a positive parameter (/ � 0). Applying Equation

10 to Equation 15, one obtains

pðsi; rjÞ5caijðlixjÞ/ (16)

with c51=M

and

M5
Xn

i51

Xm

j51

aijðlixjÞ/5
Xn

i51

l/
i

Xm

j51

aijx
/
j : (17)

Notice that / is the only parameter of the model given n and

m. Applying Equation 11 to Equation 16, one obtains

pðsiÞ5cl/
i

Xm

j51

aijx
/
j : (18)

Equation 15 is theoretically appealing for various reasons. If

pðsi; rjÞ is regarded as the weight of the association between

si and rj, it defines the general form of the relationship

between the weight of an edge and the product of the

degrees of vertices at both ends that is found in real net-

works (Barrat, Barth�elemy, Pastor-Satorras, & Vespignani,

2004). For this reason, a unipartite version of Equation 15 is

assumed to study dynamics on networks (Baronchelli, Cas-

tellano, & Pastor-Satorras, 2011). When /50, it matches

the definition of models about the origins of Zipf’s law for

word frequencies (Ferrer-i-Cancho, 2005b), the variation of

the exponent of the law (Ferrer-i-Cancho, 2005a, 2006) and

vocabulary learning (Ferrer-i-Cancho, 2016c). When /51,

it defines an approximation to the stationary probability of

observing a transition involving si and rj in a random walk

on a network that is biased to maximize the entropy rate of

the walks (Appendix A1), thus suggesting that the meaning-

frequency law could be a manifestation of a particular ran-

dom walk process on semantic memory.

Two equivalent linguistic principles, the principle of con-

trast (Clark, 1987) and the principle of no synonymy (Gold-

berg, 1995, p. 67) can be implemented in our model as

xj 2 f0; 1g. From an algebraic standpoint, the condition xj

2 f0; 1g is equivalent to orthogonality of the word vectors

of the matrix A. If Ai� indicates the row vector of A for the i-
th word, Ai� and Ak� are orthogonal if and only if

Ai� � Ak�50, where the dot indicates the scalar product of

two vectors. To simplify matters, we assume that there is no

row vector of A that equals~0, a vector that has 0 in all com-

ponents. So far, we have used li and xj to refer, respec-

tively, to the degree of the i-th word and the j-th meaning.

We define le
i and xe

i as the degree of the word and the

degree of the meaning of the i-th edge. le
i and xe

i are

components of the vectors ~le
i and ~xe

i , respectively. We have
~le

i � ~xe
i > 0 because le

i ;x
e
i � 1 by definition. A deeper

insight can be obtained with the concept of remaining

degree, the degree at one end of the edge after subtracting

the unit contribution of the edge (Newman, 2002). The vec-

tors of remaining degrees are then

~li
0e5~le

i 2~1

~xi
0e5~xe

i 2~1:

The condition xj 2 f0; 1g is equivalent to ~xi
0e5~0. xj 2 f0;

1g leads to ~li
0e ~xi

0e50 but trivially for being ~xi
0e null.

The assumption /51 and xj 2 f0; 1g (orthogonality of

row vectors of A), transforms Equation 18 into Equation 13

because aij 5 0 and xj50 are equivalent when xj does not

exceed 1. In general, Equation 18 combined with the princi-

ple of contrast gives

pðsiÞ5cl/
i

Xm

j51

aij

5cl/11
i

and finally Equation 1 with

d5
1

/11
:

When /51, we get d51=2 again. Interestingly, the principle

of contrast follows from the principle of mutual information

maximization, a more fundamental principle that allows one to

predict vocabulary learning in children and that can be com-

bined with the principle of entropy minimization to predict

Zipf’s law for word frequencies (Ferrer-i-Cancho, 2016c).

With Equation 15, we follow Bunge (2013, pp. 32–33) pre-

venting scientific knowledge from becoming “an aggregation

of disconnected information” and aspiring to build a “system

of ideas that are logically connected among themselves.”

It is possible to obtain a relaxed meaning frequency-law

under more general conditions. In particular, we would like to

get rid of the heavy constraint that meaning degrees cannot

exceed 1. Suppose that d is a constant such that 0 < d � n.

Some obvious but not very general conditions are xj 2 f0; dg
for all j or xj5d for all j. It is easy to see that they lead again

to Equation 13 when /51. A more general condition can be

defined as follows. First, we define E½x/jl� as the conditional

expectation of x/ given l for an edge. Here l and x are

the degrees at both ends of an edge. Then suppose that A is

given and that x/ is mean independent of l, namely, E½x/jl�
5E½x/� for each value of l (Kolmogorov, 1956;

Poirier, 1995), then the expectation of pðsiÞ (as defined in

Equation 18) knowing li is

E½pðsiÞjli�5E cl/
i

Xm

j51

aijx
/
j

����li

" #
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5cl/
i E

Xm

j51

aijx
/
j

����li

" #

5cl/
i

Xm

j51

aijE x/
j

����li

� �

5cl/
i

Xm

j51

aijE x/
j

h i

5cE½xj�l/11
i ;

which can be seen as a regression model (Ritz & Streibig,

2008) for the meaning-frequency law (Equation 1) with

word degree as predictor. Notice that mean independence is

a more general condition than mutual or statistical indepen-

dence but a particular case of uncorrelation (Ferrer-i-Can-

cho, Hern�andez-Fern�andez, Baixeries, Debowski, &

Mačutek, 2014).

So far, we have seen ways of obtaining the meaning-

frequency law from Equation 15 making further assump-

tions. It is possible to obtain a relaxed version of the

meaning-frequency law making no additional assumption

(except Equation 15 or the biased random walk that justifies

it). Equation 18 can be expressed as

pðsiÞ5l/
i

Xm

j51

aijTj (19)

with

Tj5cx/
j :

Assuming that

Tmin � Tj � Tmax;

Equation 19 leads to

Tminl
/11
i � pðsiÞ � Tmaxl

/11
i (20)

or equivalently

1

Tmin
pðsiÞ

1
/11 � li �

1

Tmax
pðsiÞ

1
/11:

Recalling p � f=L, these results can be summarized using

asymptotic notation as f 5Hðl/11Þ or l5Hðf 1=ð/11ÞÞ. The

power of the bounds above depends on the gap between Tmin

and Tmax. The gap can be measured with the ratio

Tmax

Tmin
5

x/
max

x/
min

;

where xmin and xmax are the minimum and the maximum

meaning degree, respectively. The principle of mutual infor-

mation maximization between words and meanings, a

general principle of communication (Ferrer-i-Cancho,

2016c), puts pressure for concordance with the meaning-

frequency law. To see it, we consider two cases: n � m and

m � n. When n � m, its maximization predicts xj � 1

(Appendix A2). As unlinked meanings are irrelevant (they

do not belong to the support set), we have xmin51. As pres-

sure for mutual information maximization increases, xmax

tends to 1 and thus Tmax=Tmin tends to 1. Put differently, the

gap between the upper and the lower bound in Equation 20

reduces as pressure for mutual information maximization

increases. When n � m, mutual information maximization

predicts that xj5d, where d is an integer such that

d 2 ½1; bn=mc� (Appendix A2). We have seen above that

one obtains the meaning-frequency law (Equation 1) imme-

diately from Equation 15 when xj is constant. We conclude

that the chance of observing the meaning-frequency law

increases as pressure for mutual information maximization

increases.

A Family of Optimization Models
of Communication

Here we revisit a family of optimization models of com-

munication (Ferrer-i-Cancho & D�ıaz-Guilera, 2007) in the

light of the results of the previous sections. These models

share the assumption that the probability that a word si is

employed to refer to meaning rj is proportional to aij, that is

pðsijrjÞ / aij; (21)

Applying

Xn

i51

pðsijrjÞ51

to Equation 21, we obtain

pðsijrjÞ5
aij

xj
: (22)

We adopt the convention pðsijrjÞ50 when xj50.

Equation 22 defines the probability of transition of a stan-

dard (unbiased) random walk to a word (Noh & Rieger,

2004), that is, given a meaning, all related words are equally

likely. This is unrealistic in light of picture-naming norms

(Snodgrass & Vanderwart, 1980; Du~nabeitia et al., 2017).

Consider the picture-naming norms compiled by Snodgrass

and Vanderwart (1980), who simply asked participants to

name 260 black-and-white line drawings of common

objects. For some objects (for example, balloon, banana,

sock, star) there was 100% agreement among the partici-

pants for the word used to name the pictured object. How-

ever, for other objects there was considerable variability in

the word used to name the pictured object. Important for the

present argument, the other words that were used in such

cases were not selected with equal likelihood. For example,

the picture of a wineglass had 50% agreement, with the
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word glass (36% of the responses) and the word goblet
(14% of the responses) also being used to name the object,

showing that all the words that could be used for a given

meaning are not equally likely. Although subjects tend to

provide more specific responses when the concept is pre-

sented in textual form with respect to a visual form presenta-

tion (Tversky & Hemenway, 1983), we used the visual case

simply to challenge the assumption of an unbiased random

walk in general and justify a more realistic approach.

In contrast to Equation 22, the fundamental assumption

in Equation 15 leads to

pðsijrjÞ5
aijl

/
iX

k

akjl
/
k

; (23)

Namely, the transition probabilities of a biased random walk

when / > 0 (Sinatra, G�omez-Garde~nes, Lambiotte, Noco-

sia, & Latora, 2011; G�omez-Garde~nes & Latora, 2008). To

see it, notice that the combination of Equation 12 and 16

produces

pðrjÞ5
Xn

i51

pðsi; rjÞ5cx/
j

Xn

i51

aijl
/
i : (24)

Recalling the definition of conditional probability

pðsijrjÞ5
pðsi; rjÞ

pðrjÞ

and applying Equation 16 again, one obtains Equation 23.

Recalling the definition of xj in Equation 9, it is easy to

realize that Equation 22 is a particular case of Equation 23

with /50. While the family of models above stems from a

concrete definition of a conditional probability, that is,

pðsijrjÞ in Equation 22, the general model that we have pre-

sented in this article is specified by a definition of the joint

probability, that is, pðsi; rjÞ in Equation 15.

Models within that family are generated through

pðsi; rjÞ5pðsijrjÞpðrjÞ; (25)

assuming an unbiased random walk from a meaning to a

word (Equation 22) and making different assumptions on

pðrjÞ.
If one assumes that all meanings are equally likely

(pðrjÞ51=m with xj � 1) one obtains the first model (Fer-

rer-i-Cancho & Sol�e, 2003). If one assumes that the proba-

bility of a meaning is proportional to its degree (pðrjÞ / xj)

one obtains the second model (Ferrer-i-Cancho, 2005b).

While in the second model pðrjjsiÞ defines an unbiased ran-

dom walk from si to rj (all rj’s connected to si are equally

likely), this is not necessarily the case for the first model

(Ferrer-i-Cancho & D�ıaz-Guilera, 2007). Therefore, the sec-

ond model defines a pure unbiased random walk while the

first model is unbiased from meaning to words but biased

from words to meanings.

Now we will introduce a generalized version of the fam-

ily of models above consisting of replacing Equation 22 by

Equation 23 and generating the corresponding variants of

the first and the second model applying the same procedure

as in the original family, namely, via Equation 25. Notice

that Equation 23 defines the probability of reaching si from

rj in a biased random walk when / > 0.

Concerning the first model, suppose that the probabilities

of the meanings are given a priori (they are independent

from the A matrix), for example, all meanings are equally

likely. Then it is easy to show that the model yields a

relaxed version of the meaning-frequency law, namely,

li5HðpðsiÞdÞ, the number of meanings is bounded above

and below by two power-laws (Appendix A3)

b1pðsiÞd � li � b2pðsiÞd; (26)

where b1 and b2 are constants (b1 � b2) and d51=ð/11Þ.
Equation 26 defines nontrivial bounds when d 6¼ 1 (Appen-

dix A3). The case d 5 1 matches an optimization model of

Zipf’s law for word frequencies (Ferrer-i-Cancho, 2005b,

2016b).

To generate a variant of the second model, recall that

Equation 23 comes from Equation 15. Equations 12 and 16

produce Equation 24. This variant of the second model

derives all probability definitions from Equation 15. We

have shown above that this variant is able to generate the

meaning-frequency law.

Discussion

We have seen that it is possible to obtain the meaning-

frequency law (Equations 1 and 2) from Equation 15 making

certain assumptions. We have also seen that a relaxed ver-

sion of the law (Equation 7) can be obtained from Equation

15 without making any further assumption. Our findings

suggest that word probabilities are channeled somehow to

manifest the meaning-frequency law. We have seen that the

principle of mutual information maximization contributes to

the emergence of the law. Our derivation is theoretically

appealing for various reasons. First, it is more parsimonious

than Zipf’s concerning the number of equations that are

assumed (we only need Equation 15 while Zipf involved

Equations 3 and 4). Second, it can help a family of optimiza-

tion models of language to reproduce the meaning-

frequency law.

Therefore, a crucial assumption is Equation 16, that we

have justified as the outcome of a random walk that is biased

to maximize the entropy rate of the paths (Appendix A1). A

random walk is the correlate in network theory of the con-

cept of mental exploration (navigation without a target or

nonstrategic search) in cognitive science and related fields

(Baronchelli, Ferrer-i-Cancho, Pastor-Satorras, Chatter, &

Christiansen, 2013). Semantic memory processes can be

usefully theorized as searches over a network (Thompson &

Kello, 2014; Abbott, Austerweil, & Griffiths, 2015) or some

semantic space (Smith, Huber, & Vul, 2013). These

6 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2018

DOI: 10.1002/asi



approaches support the hypothesis of a Markov chain pro-

cess for memory search (Bourgin, Abbott, Griffiths, & Vul,

2014), provide a deeper understanding of creativity (Kenett

& Austerweil, 2016), and help to develop efficient naviga-

tion strategies (Capit�an et al., 2012).

A random walk in a unipartite word network of word–

word associations has been argued to underlie Zipf’s law for

word frequencies (Allegrini, Gricolini, & Palatella, 2004).

Here we contribute with a new hypothesis linking random

walks with a linguistic law: that the meaning-frequency law

would be an epiphenomenon of a biased random walk over

a bipartite network of word-meaning associations in the pro-

cess of mental exploration. The bias consists of exploiting

local information, namely, the degrees of first neighbors

(Sinatra et al., 2011). Transitions to nodes with a higher

degree are preferred. Our model shows that it is possible to

approximate the optimal solution to a problem (maximizing

the entropy rate of the paths) following an apparently non-

strategic search (Hills, Jones, & Todd, 2012; Abbott et al.,

2015).

The probability of a word in Equation 18 defines the

probability that a random walker visits the word in the long

run. This probability is what the PageRank algorithm esti-

mates in the context of a standard (nonbiased) random walk

(Page, Brin, Motwani, & Winograd, 1998). The assumption

of a random walk with the particular bias above could help

to improve random walk/PageRank methods to predict the

prominence in memory of a word (Griffiths, Steyvers, &

Firl, 2007) or the importance of a tag (J€aschke, Marinho,

Hotho, Schmidt-Thieme, & Stumme, 2007). A virtue of our

biased random walk is that it predicts an uneven conditional

probability of a word given a meaning (Equation 23) as hap-

pens in real language (Snodgrass & Vanderwart, 1980). A

standard (uniform) random walk cannot explain this fact and

for that reason the family of optimization models of lan-

guage revisited above fails to reproduce the meaning-

frequency law with d51=2.

Although biased random walks have already been used to

solve information retrieval problems (see Duarte Torres,

Hiemstra, Weber, & Pavel, 2014, and references therein), a

bias based on the degree of neighbors has not been consid-

ered as far as we know. We hope that our results stimulate

further research on linguistics laws and biased random walks

in the information sciences. Specifically, we hope that our

article becomes the fuel of future empirical research.

Acknowledgments

We thank R. Pastor-Satorras and Massimo Stella for

helpful comments and insights. We also thank S. Semple,

M. Gentili, and E. Bastrakova for helpful discussions. This

research was supported by the grant APCOM (TIN2014–

57226-P) from MINECO (Ministerio de Econom�ıa y Com-

petitividad), the grant 2014SGR 890 (MACDA) from

AGAUR (Generalitat de Catalunya) and partially by funds

from the University of Kansas.

Appendix A1: Random Walks

We will show that Equation 15 defines the probability

of observing a transition between si and rj in any direc-

tion in a biased random walk. We will proceed in two

steps. First, we will summarize some general results on

biased random walks on unipartite networks and then we

will adapt them to bipartite networks.

Suppose a unipartite network of n nodes that is

defined by an n 3 n adjacency matrix B5fbijg such that

bij 5 1 if the i-th and the j-th node are connected and

bij 5 0 otherwise. Let ki be the degree of the i-th node,

namely,

ki5
Xn

j51

bij:

Suppose a random walk over the vertices of a network

where pðjjiÞ is the probability of jumping from i to j. A

first order approximation to the pðjjiÞ that maximizes the

entropy rate is (Sinatra et al., 2011)

pðjjiÞ5 bijkjXn

l51

bilkl

: (27)

We choose a generalization (G�omez-Garde~nes & Latora,

2008)

pðjjiÞ5
bijk

/
jXn

l51

bilk
/
l

; (28)

that gives Equation 27 with /51. The stationary proba-

bility of visiting the i-th vertex in the biased random

walk defined by Equation 28 is (G�omez-Garde~nes &

Latora, 2008)

pðiÞ5 k/
i ci

T
; (29)

where

ci5
Xn

j51

bijk
/
j (30)

and

T5
Xn

i51

cik
/
i : (31)

Now we adapt the results above to a bipartite graph of

word-meaning associations. As the graph is bipartite, the

random walker will be alternating between words and

meanings. The probability that the vertex visited is a
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word is 1/2 (the same probability for a meaning). Sup-

pose that there are n words and m meanings. Recall that

the bipartite network of word-meaning associations is

defined by an n 3 m adjacency matrix A5faijg such that

aij 5 1 if the i-th word and the j-th meaning are connected

and aij 5 1 otherwise. li is the degree of the i-th word is

(Equation 8) whereas xj is the degree of the j-th meaning

(Equation 9). The probability of jumping from rj to si

becomes (recall Equation 28)

pvðsijrjÞ5
aijl

/
iXn

l51

aljl
/
l

:

The probability of jumping from si to rj is

pvðrjjsiÞ5
aijx

/
jXm

l51

ailx
/
l

: (32)

The stationary probability of visiting the word si becomes

(recall Equations 29 and 30)

pvðsiÞ5
l/

i

Xm

j51

aijx
/
j

Mv
; (33)

where Mv corresponds to T in Equation 29. Adapting

Equations 31 and 30, one obtains

Mv5
Xn

i51

l/
i

Xm

j51

aijx
/
j 1
Xm

j51

x/
j

Xn

i51

aijl
/
i

52M;

where M is defined as in Equation 17. Applying Equation

33, it is easy to see that

Xn

i51

pvðsiÞ5
1

2M

Xn

i51

l/
i

Xm

j51

aijx
/
j

5
1

2
:

as expected.

The combination of Equations 32 and 33 allows one to

derive the probability of observing the transition from si to rj

as

pvðsi ! rjÞ5pvðrjjsiÞpvðsiÞ

5cvaijðlixjÞ/;

where cv51=ð2MÞ. Similarly, the probability of observing

the transition from rj to si is

pvðsi  rjÞ5pvðsijrjÞpvðrjÞ

5cvaijðlixjÞ/:

Therefore, the stationary probability of observing a transi-

tion between si and rj in any direction (from si to rj or

from rj to si) is

pðsi; rjÞ5pvðsi ! rjÞ1pvðsi  rjÞ

52cvaijðlixjÞ/:

5caijðlixjÞ/:

with c51=M, as we wanted to show.

Finally, we will link pðsiÞ, the probability of a word that

is used in the main text to derive the meaning-frequency

law, with pvðsiÞ. Notice that pðsiÞ5pvðsijSÞ, the latter being

the probability of visiting vertex si knowing that it belongs

to the partition S, the partition of words. Since the graph is

bipartite, pvðSÞ, the probability that the random walk is vis-

iting a vertex of partition S, is 1/2. The joint probability of

visiting vertex si and that the vertex belongs to S is

pvðsi; SÞ5pvðSjsiÞpvðsiÞ

5pvðsiÞ:

Therefore,

pðsiÞ5pvðsijSÞ

5
pvðsi; SÞ

pvðSÞ

52pvðsiÞ:

Then pðsiÞ is the stationary probability of visiting si in a

biased random walk knowing that the vertex is in S.

Appendix A2: Mutual Information Maximization

Suppose that I(S, R) is the mutual information between

words (S) and meanings (R), that can be defined as

IðS;RÞ5HðSÞ2HðSjRÞ; (34)

where H(S) is the entropy of words and HðSjRÞ is the

conditional entropy of words given meanings. For the

case /50, the configurations that maximize I(S, R) when

n � m are defined by two conditions (Ferrer-i-Cancho,

2016c)

1. li5d with d 2 ½1; bm=nc� for i51; 2; . . . ; n.

2. xj 2 f0; 1g for j51; 2; . . . ;m.

When n � m, those configurations are the symmetric,

that is (Ferrer-i-Cancho, 2016c)

1. xj5d with d 2 ½1; bn=mc� for j51; 2; . . . ;m.

2. li 2 f0; 1g for i51; 2; . . . ; n.
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Here we will show that the configurations that maximize

I(S, R) are the same as in the case /50 when / is a positive

and finite real number (/ � 0). By symmetry, it suffices to

show it for the case n � m. We will proceed in three steps.

First, deriving the configurations minimizing HðSjRÞ. Sec-

ond, showing that the configurations above yield maximum

I(S, R). Third, showing that they are the only configurations.

Step 1: Recall that

HðSjRÞ5E½HðSjrjÞ�

5
Xm

j51

pðrjÞHðSjrjÞ

where HðSjrjÞ is the conditional entropy of words given

the meaning rj. Equation 24 implies that pðrjÞ 6¼ 0 is

equivalent to wj > 0 and then

HðSjRÞ5
Xm

j51
pðrjÞ6¼0

pðrjÞHðSjrjÞ

5
Xm

j51
wj>0

pðrjÞHðSjrjÞ:

Knowing that

HðSjrjÞ52
Xn

i51

pðsijrjÞlog pðsijrjÞ

it is easy to see that HðSjrjÞ50 when pðsijrjÞ 2 f0; 1g for

i51; 2; . . . ; n: 0log 050 by continuity since xlog x! 0 as

x! 0 (Cover & Thomas, 2006, p. 14) and obviously

1log 150. Equation 23 implies that pðsijrjÞ51 is equiva-

lent to si being the only neighbor of rj, that is, xj51.

Therefore, HðSjRÞ50 implies xj � 1 for j51; 2; . . . ;m.

Step 2: Notice that the second condition of the case n
� m above implies HðSjRÞ50 (recall Step 1). The second

condition transforms Equation 17 into

M5
Xn

i51

l/
i

Xm

j51

aij5
Xn

i51

l/11
i

and Equation 18 into

pðsiÞ5cl/
i

Xm

j51

aij5cl/11
i : (35)

Adding the first condition, one obtains

M5
Xn

i51

d/115nd/11

pðsiÞ5cl/11
i 5

1

M
d/115

1

n
:

and then HðSÞ5log n (as all words are equally likely). Thus,

H(S) is taking its maximum possible value, whereas HðSjRÞ
is taking its minimum value. As IðS;RÞ5HðSÞ2HðSjRÞ, it

follows that I(S, R) is maximum.

Step 3: Notice that
• If the second condition fails, then HðSjRÞ > 0 and thus

IðS;RÞ < log n even if H(S) is maximum because of
Equation 34. Thus, the second condition is required to
maximize I(S, R).

• If the first condition fails (while the second condition
holds), then words are not equally likely as the probability
of a word is proportional to a power of its degree (Equa-
tion 35). Then one has that HðSÞ < log n and it follows
that I(S, R) is not maximum because IðS;RÞ � HðSÞ.

Appendix A3: New Models

Combining Equations 11 and 23, one obtains

pðsiÞ5
Xm

j51

pðsi; rjÞ5
Xm

j51

pðsijrjÞpðrjÞ5l/
i

Xm

j51

aijTj (36)

with

Tj5
pðrjÞXn

i51

aijl
/
i

:

Suppose that

Tmin � Tj � Tmax

when xj > 0. Equation 36 leads to

l/
i

Xm

j51

aijTmin � pðsiÞ � l/
i

Xm

j51

aijTmax

and finally

Tminl
/11
i � pðsiÞ � Tmaxl

/11
i (37)

recalling the definition of li in Equation 8. Equivalently,

T2d
maxpðsiÞd � li � T2d

minpðsiÞd; (38)

with

d5
1

/11
;

Namely, a relaxed version of the meaning-frequency law

when /51.

Notice that Equations 37 and 38 define nontrivial

bounds in the sense that they are not expected from

bounds on join-probability alone. If the range of variation

of pðsi; rjÞ satisfies

pmin � pðsi; rjÞ � pmax
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when pðsi; rjÞ > 0, then Equation 11 gives

Xm

j51

aijpmin � pðsiÞ �
Xm

j51

aijpmax

and then

pminli � pðsiÞ � pmaxli:

Therefore, the finding that

b1pðsiÞd � li � b2pðsiÞd;

where b1 and b2 are constants is trivial when d 5 1.
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