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Abstract: In the context of electromagnetism and nonlinear optical interactions, damping is 
generally introduced as a phenomenological, viscous term that dissipates energy, proportional 
to the temporal derivative of the polarization. Here, we follow the radiation reaction method 
presented in [G. W. Ford, Phys. Lett. A 157, 217 (1991)], which applies to non-relativistic 
electrons of finite size, to introduce an explicit reaction force in the Newtonian equation of 
motion, and derive a hydrodynamic equation that offers new insight on the influence of 
damping in generic plasmas, metal-based and/or dielectric structures. In these settings, we 
find new damping-dependent linear and nonlinear source terms that suggest the damping 
coefficient is proportional to the local charge density and nonlocal contributions that stem 
from the spatial derivative of the magnetic field. We discuss the conditions that could modify 
both linear and nonlinear electromagnetic responses. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Historically, the notion of radiation reaction, or radiation damping, was elaborated by 
Abraham and Lorentz soon after the development of electron theory during the early 1900s 
[1,2]. A relativistic covariant form of the equations was published by Dirac [3]. The theory 
accounts for the fact that an accelerated charge simultaneously emits and reacts to its own 
electromagnetic field. Over the years many attempts have been made to alleviate a significant 
drawback of the original theory, namely that it gives rise to unphysical, exponentially 
growing solutions of the electron’s velocity in the absence of an externally applied force. A 
comprehensive review of the subject for charged particles in harmonically varying fields in 
classical, quantum, relativistic and non-relativistic domains may be found in [4] and 
references therein. An additional controversy over radiation emission when the charged 
particle is placed in a constant, uniform accelerating field was resolved after some debate [5]. 
That notwithstanding, the question has still not been fully resolved, and an equation of motion 
that accurately describes the motion of a radiating charge is still not available. 

From a classical standpoint the electron is generally described as a point particle with rest 
mass 0m . The essence of the problem begins with the original derivation summarized in the 

Abraham-Lorentz equation of motion, which takes the form [4–7]: 
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, where e is its charge and c is the speed 

of light. The physical implications of the derivative of the acceleration in Eq. (1) indicates a 
force that changes as a function of time. The interested reader may consult reference [8] for 
further discussion on that topic. 

The inadequacy of Eq. (1) may be ascertained by setting 0ext =F , an action that leads to a 

possible solution having the form 0/
0
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extended discussion, and range of validity of Eq. (1) may be found in references [4–7]. A 
method alternative to Eq. (1) that avoids unphysical, runaway solutions may be obtained by 
assuming the electron has uniform charge density over its volume, and thus finite radius, by 
defining the reaction force in terms of the applied force as follows [9,10]: 
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where 13
0 ~ 10c cmτ −  is the classical electron radius. Although Eq. (2) had originally been 

presented as a Taylor series expansion [9], the authors in [10] showed that Eq. (2) is exact and 
valid in the quantum domain, provided a proper interpretations of the variables is made. Our 
present goal is to use Eq. (2) as the starting point to derive a new hydrodynamic equation of 
motion that includes linear and nonlinear damping contributions, and we contrast the result 
that emerges from our development with the hydrodynamic equation that follows from the 
usual introduction of a phenomenological damping coefficient [11,12], independent of the 
type of externally applied force. In addition, we will explore the consequences of using this 
approach to the dynamics that ensues in media whose physical description requires multiple 
polarization components. 

2. Model 

We first develop the equation of motion of a charged particle and derive the electron 
polarization component for a nonrelativistic electron gas. Assuming the particle is acted upon 
by an external electromagnetic field that induces a Lorentz force, and that it is subject to 
internal electron gas pressure, Eq. (2) becomes, in Gaussian units: 
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where 
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∇− is the pressure term, which gives rise to nonlocal effects, and we have used the 

total derivative identity ( )d
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v on both sides of Eq. (2). An immediate observation 

that can be made in examining Eq. (3) is that the number of nonlinear source terms has more 
than tripled, a result that may be consequential at ultra-high intensities and/or in a relativistic 
context. We also note that the lowest order terms in the bracketed expression on the right 

hand side of Eq. (3) are the linear terms: 0
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All pressure terms on the right hand side may be reworked by exploiting the continuity 

equation, ( ),en tρ = = −∇ • = −∇ •r J P  , from which the solution 0

1
n n

e
= − ∇ • P  follows. 

0n is the charge density in the absence of applied fields, and is presently taken to be uniform 

throughout the volume. Assuming either an ideal or a quantum electron gas leads to the same 
lowest order, linear pressure contributions [12,13], which may be written for a quantum gas 
as follows: 
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The factor 5/3 arises from the definition of quantum pressure as 
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where 0 0 Fp n E=  and EF is the Fermi energy. The last pressure term on the left hand side is 

purely nonlinear and its contribution is neglected in the development below. Retaining lowest 
order terms on both sides of the Eq. (4) we obtain: 
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As mentioned above, the only surviving terms on the right side of Eq. (4) are the linear terms 
proportional to 0τ  in Eq. (3). Finally, using the Ampere-Maxwell’s equation: 
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, we can rewrite Eq. (6) in a manner that allows us to clearly identify 

linear and nonlinear damping terms: 
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πω =  is the plasma frequency. Equation (8) should be compared with Eq. (9) 

below, which can be derived under conditions similar to Eq. (2), but with the mere insertion 
of a phenomenological damping term, 0mγ v , to fit the experimental data relative to a chosen 

metal or free electron gas system [13]: 
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For silver or gold, for instance, the data suggests 14 110 secγ −≈ , which together with a plasma 

wavelength of 300nmpλ ≈ , leads to an effective 18
0, , 10 secAg Auτ −≈  at low intensities. The 

electron interaction with the lattice thus increases the characteristic time by approximately six 

orders of magnitude compared to the equivalent 
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characteristic length that approaches the size of the atom. We will return to discuss this issue 
below. 
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near surfaces, corners or sharp edges; and (iii) becomes a nonlinear source term. Using Eq. 

(9) it has been shown that, using the identity 0
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∇ • = −P , the relative polarization 

charge density is o order 0.1% in a GaAs-filled metal grating [14], and of order 1% at the 
surface of nanowires of circular cross section, for intensities of order 1GW/cm2 [15], an 
indication that this term may impact the dynamics within hot spots generated by sharp-edged 
objects. Thus these effects may become important particularly in nanoscale optical 
geometries. Another important observation in Eq. (8) is that magnetic effects emerge as a 
combination of linear and nonlinear terms as perturbations to the magnitude of the electric 
field in the first two terms on the right hand side of Eq. (8). We note that linear, nonlocal 
behavior arises independent of electron gas pressure in the form of a spatial derivative of the 
magnetic field. However, notwithstanding the fact that for typical bulk metals 

7
0, 10 cmmetalcτ −≈ , the term ∇× H  could make up some of the discrepancy between the two 

terms, namely in [ ]0cτ+ ∇×E H , and become important if: (i) large-intensity evanescent 

fields are excited; (ii) high local magnetic fields or currents can be generated by engineering 
magnetic resonances; (iii) field delocalization may occur in cavities of all types such that for 
the local fields | |<<E H ; or (iv) via a combination of (i)-(iii). Finally, linear, nonlocal 

contributions to electron gas pressure are also present, which may become important for high 
harmonic generation (beyond blue/violet region of the spectrum) or for ultrashort pulses. 

Additional consequences from Eq. (8) may be garnered in the linear regime. So far we 
have considered only the response of free electrons. Consider the response of typical metals 
over a spectral range where it is necessary to incorporate multiple polarization components, in 
the form of the free electron contribution discussed above, and bound electrons as represented 
by Lorentz oscillators [13–16]. The analysis that follows thus applies to dielectric materials as 
well. Bound electrons obey an equation similar to Eq. (2). We will show that the equations of 
motion of each polarization component is coupled to the other polarizations as a direct 
consequence of the partial time derivative of the electric field. Assuming a linear restoring 
force k− r along with an applied electromagnetic field that gives rise to a Lorentz force, 
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where k is the spring constant, and the subscript b helps us differentiate between free and 
bound effective masses and characteristic times. Neglecting all nonlinear terms in both Eqs. 
(8) and (10) we determine the lowest order, linear contributions of damping and any interplay 
that may ensue between free and bound electrons. Multiplying Eq. (10) by bn e , where bn is 

now assumed to be constant for bound charges, and keeping only linear terms we obtain: 
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respectively, of the bound electron system. An equation similar to Eq. (11) is also discussed 
in reference [6] for a single polarization component, but without the development that 
follows. For multiple polarization species Ampere-Maxwell’s equation takes the form: 
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The total polarization is the vector sum of the two components, Total b f= +P P P . We have 

adopted the subscript f to describe the free electron polarization. Combining Eqs. (8), (11) and 
(12) leads to the following coupled, linear equations of motion: 
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The introduction of damping via Eq. (2) thus appears to alter the linear dynamics by 
directly coupling the two polarizations of the system. Clearly this is not the case in any 
traditional analysis, where one simply injects a phenomenological damping coefficient into 
each of Eqs. (13) [13–16], a procedure that conceals direct coupling and magnetic effects. We 
also note that, similarly to what occurs in the free electron portion of the material, damping 
introduces a nonlocal contribution in the dynamics of bound charges as well, in the form of a 
spatial derivative of the magnetic field. An examination of the data of noble metals like silver 
and gold in the visible and UV ranges suggests that bound oscillators (d-shell electrons) may 
be damped at a rate 15 110 secbγ −≈  [17], corresponding to 17

0, 10 secbτ −≈ . As a result, in the 

absence of magnetic resonances or surface currents that could enhance the magnetic field or 
its derivative, magnetic terms may be ignored in both Eqs. (13). Since for typical metals each 
atom contributes one conduction electron, for simplicity we may assume 

that 0bn n≈ ; 0bm m= ; and that ( )2 2 2
0, 0, , 0, ,2 2b b p b b p b bτ ω ω τ ω γ+ ≈ = . The latter assumption 

implies that the resonance frequency is of the same order of magnitude as the plasma 
frequency. Then, taking the Fourier transform of Eqs. (13) we obtain a coupled pair of 
polarization equations: 
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Eliminating the free electron polarization and solving for the bound and free electron 
polarizations, respectively, yields: 
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The bound electron polarization is explicitly influenced by the dynamics of free electrons, 
and vice versa. In this regard we note that at high frequencies metals are typically 
characterized by many bound electron resonances [17]. Also at high frequencies the number 
of (d-shell) electrons each atom contributes to the dielectric constant increases [18], boosting 
the effective bound electron plasma frequency. As a result, the bP in the second of Eq. (14) 

turns into a sum over all possible resonances that simultaneously contribute to the damping of 

free electrons in a manner similar to Eqs. (15) and (16), i.e. ( )0, ,
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where 0, jω , ,p jω and jγ are, respectively, the resonance and plasma frequencies, and the 

damping coefficients associated with the jth oscillator. By the same token, each bound 
oscillator feels the effects of all other polarization components, including that of free 
electrons. These circumstances, the presence of the lattice, and the fact that the wave scatters 
and continues to interact with the electron, together add damping terms that account for 
modes of decay other than photon emission that help to partially explain why the observed 
damping coefficients and characteristic times associated with nearly-free electrons in metals 
are very different compared to their corresponding nominal values for purely free electrons. 
Adding Eqs. (15) and (16) yields a suggestive expression for the total polarization: 
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from which a dielectric constant for a two-component medium may be determined: 

                                                                     Vol. 26, No. 14 | 9 Jul 2018 | OPTICS EXPRESS 18061 



 

( )

( )

( )
( ) ( )

( )( )

2
0

2
0

2

22 22
0

22 2
0 0

2 2 2
0

4
( ) 1

1
4

         .
2

1
2

f

b f f b

f f

f bb

f b

n e

m i

i

i in e

m i

i i

πε ω
ω γ ω

γ γ ω γ γ ω
ω γ ω ω γ ωπ

γ γ ωω γ ω ω
ω γ ω ω γ ω ω

= −
− −

 +
 + −

− − − −
 +
 − − +

+ − − − − + 
 

 (18) 

While the free electron polarization dominates away from the bound electron resonance, 
in practical terms free and bound polarizations are no longer individually distinguishable: 
both polarizations are intertwined, as Eqs. (15) and (16) suggest. For a given set of parameters 
the extra factor that multiplies the second term in Eq. (18) clearly modifies the dielectric 
constant of the uncoupled system. In Fig. 1 we plot the complex ( )ε ω  of a hypothetical gold-

like metal (i.e. with bγ  and fγ that are roughly those used to fit gold data, as described 

above) with and without the extra factor in Eq. (18): the absorption resonance redshifts by 
approximately 30nm, while amplitude changes are evident in both the real and imaginary 
parts. The changes for the imaginary dielectric function are especially large at longer 
wavelengths. Applying our alternative formalism, integration of either Eqs. (13) and/or their 
fully nonlinear counterparts should proceed by fitting the measured dielectric constant by first 
retrieving oscillator parameters using the full Eq. (18) if, for example, a two-component 
medium is used, rather than fitting Eq. (18) without the extra factor, as is usually done [13–
16]. 
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Fig. 1. Complex dielectric constant plotted with (dashed lines) and without (solid lines) the 
extra factor in the second term of Eq. (17) for a gold-like material modeled by one Drude and 
one Lorentz oscillator with resonance frequency near 400nm. 

3. Conclusions 

In summary, we have applied a new formalism starting with the equation of motion with 
radiation reaction/damping to derive a modified hydrodynamic equation where the damping 
term is a function of local charge density. The formalism also introduces new linear, 
nonlinear, and nonlocal source terms that depend on the spatial derivative of the magnetic 
field, which under the right conditions can influence both linear and nonlinear dynamics, e.g. 
circular dichroism and harmonic generation. We also showed that in a multi-component 
medium, well-represented by a typical metal at near-IR wavelengths and below, or by 
systems where both free electrons and ionic species are the result of ionization, as may occur 
at high intensities or in a relativistic regime [19], the new, more general formulation generates 
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interference between the polarizations, triggering shifts in the position of the resonances and 
changes in the amplitude of the dielectric constant, a fact that requires a reassessment of the 
oscillator parameters that are used to fit any measured data. Of some interest will be the 
development of Eqs. (2)-(8) in the relativistic regime [20]. 
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