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Abstract—Three different 3-D printing technologies—5
stereolithography, fused deposition modeling, and HP Multi6
Jet Fusion technology—are compared to build a parabolic7
reflector operating at 100 GHz. Fabrication tolerance and surface

Q1

8
roughness before and after metallization are accurately measured.9
The performance of the reflectors is measured in the near field,10
and it is compared against an optical grade reflector. In this way,11
the performance of the final product is thoroughly assessed.12

Index Terms—Millimeter-wave devices, reflector antennas,13
three-dimensional printing.14

I. INTRODUCTION15

ADDITIVE manufacturing technologies have become an16

effective alternative for the manufacturing of antennas.17

The major challenge in producing antennas in millimeter- and18

submillimeter-wave regions is to ensure the accuracy in the19

manufacturing [1], [2]. In addition, in the particular case of20

reflector manufacturing, the metallization process has to be also21

taken into account. Surface reflector roughness is a major source22

of gain reduction in a reflector. The well-known Ruze’s formula23

[3] expresses the gain loss or reflector surface efficiency as24

ΔG = −685.81
( ε

λ

)2
(dB) (1)

where ε is the root mean square (rms) surface error and λ is25

the wavelength. It means that at a frequency of 100 GHz, the26

rms error has to be smaller than 36 μm to have a gain loss27

smaller than 0.1 dB. Three-dimensional (3-D) printers have res-28

olutions of the order of 10–100 μm; therefore, it is interesting to29

measure the accuracy of different printing technologies to deter-30

mine the upper frequency limit in which they can be used to print31

reflectors. To this end, three different printing technologies—32

stereolithography (SLA), fused deposition modeling (FDM),33

and HP Multi Jet Fusion (MJF) technology—are compared.34

Manuscript received April 12, 2018; revised May 22, 2018 and June 29,
2018; accepted July 17, 2018. Date of publication; date of current version. This
work was supported in part by the Spanish Inter-Ministerial Commission on
Science and Technology (CICYT) under Grant TEC201678028-C3-1-P, Grant
TIN2014-55413-C2-1-P, Grant TEC2017-85244-C2-2-P, and Grant TEC2017-
83524-R, and in part by FEDER and the Unidad de Excelencia Maria de Maeztu
under Grant MDM-2016-0600, which is financed by the Agencia Estatal de
Investigación, Spain. (Corresponding author: Jordi Romeu.)

J. Romeu, S. Blanch, and A. Aguasca are with the Department of Signal The-
ory and Communications, CommSensLab, Universitat Politècnica de Catalunya
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Fig. 1. Test object (left) and the metallized reflector (right).

A 90° offset parabolic reflector has been printed and metallized. 35

The geometry of the reflector has been chosen to be the same 36

as a commercial optical grade reflector, so their performance 37

can be benchmarked against it. The mechanical accuracy of the 38

printed and metallized surfaces has been measured by a confo- 39

cal optical profiler that is able to provide accurate contactless 40

surface profiles. Finally, a planar near-field scan of the reflectors 41

has been done to assess their electromagnetic performance. The 42

paper is organized as follows. In Section II, the 3-D printing, 43

metallization, and mechanical verification of the printed reflec- 44

tors are described. In Section III, the electromagnetic behavior 45

of the reflectors is presented, and finally, the conclusions are 46

presented in Section IV. 47

II. MANUFACTURING PROCESS 48

A. 3-D Printing and Metallization 49

Two sets of objects have been printed and metallized. The 50

first is the test object shown in Fig. 1 (left). It is a sphere of 51

radius 50 mm intersected with a cube of 30 mm side. This test 52

object has the advantage that its measured profile can be easily 53

compared with the theoretical one. 54

The second object shown in Fig. 1 (right) is a 90° offset 55

reflector of 101.6 mm diameter with a parent focal length of 56

76.2 mm. This geometry has been chosen to be the same as 57

commercial optical grade reflector made by Edmund Optics that 58

will be used as a benchmark for the 3-D-printed reflectors. The 59

reference parabolic reflector has nominal rms roughness smaller 60

than 0.01 μm and has an Aluminum 6061-T6 coating with a 61
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TABLE I
SURFACE ERROR FOR THE TEST OBJECT

conductivity of 2.5 107 S/m. The SLA objects have been printed62

using a XFAB Stereolithographic 3-D printer from DWS. The63

base material is a nanoceramic-filled photopolymer Therma64

294 that allows high resolution modeling (10–100 μm layer65

thickness). For the FDM, a SIGMA 3-D printer manufactured66

by BCN3D with a step resolution of 100 μm has been used and67

the objects have been printed on polylactide (PLA). Finally, an68

HP 3-D MJF 4200 has been used to print the objects on two69

different materials PA 12 and PA 12 GB. These are thermoplas-70

tics the second one with a loading of glass beads to increase the71

mechanical stability. The MJF printed objects have been givenQ2 72

two different finishing processes, sandblasting and tumbling, to73

reduce the surface roughness. The metallization process is by74

copper electrodeposition by electrolysis. A 17 μm thick layer75

of copper is deposited following the process described in [4].76

Further testing has shown that this method provides surface77

resistances close to the ones obtained from copper, in particular78

accurate cavity measurements at 9 GHz have shown a surface79

resistance of 35.93 mΩ for electrodeposited copper on PLA80

compared to 25.68 mΩ for pure copper [5].81

B. Mechanical Verification82

The accuracy of the printed objects has been verified by a83

Plu Neox Optical Profiler manufactured by Sensofar Metrol-84

ogy [6]. The measurement principle is described in [7] and it85

allows contactless high accuracy profile measurements that in-86

clude submicron surface roughness measurements. The goal of87

the mechanical verification is to have a measurement of the sur-88

face roughness as well as deviations from the specified nominal89

shape. To this end, accurate profiles of the test object of Fig. 190

(left) have been measured before and after metallization. The91

description of each object is shown in Table I and the measured92

results are shown in Fig. 2. For each one of the test objects, the93

measured profile compared to the theoretical one is shown on the94

left of the figure. On the right, the surface error is shown. From95

this error curve, the rms surface error is found and it is shown96

in Table I. The results show that the best roughness is obtained97

by the SLA printed object that has a roughness of 8 μm after98

metallization. The profile measurements of Fig. 2 also show the99

effects on the surface of the applied surface treatment. In the100

case of the MJF samples, sandblasting or tumbling has been101

applied. It is observed that these surface treatments smoothen102

the surface, but they can leave residual surface errors. In the103
Fig. 2. Profile measurement results for the test object (left) and surface error
(right).
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Fig. 3. Profile measurement of the metallized FDM and SLA printed
reflectors.

Fig. 4. Profile measurement of the metallized MJF printed reflectors.

case of the FDM object, the 100 μm vertical steps of the printer104

are clearly observable. For this object, prior to the metallization,105

it has been smoothened with a fine grain sandpaper. Therefore,106

the resulting metallized object has a smoother texture. In all107

cases, the surface roughness is below the 36 μm design goal for108

a 100 GHz reflector.109

Once the reflectors have been printed and metallized, and be-110

fore proceeding to the EM testing, their profile has also been111

measured with the optical profiler. Due to the large dimension
Q3

112

of the reflector, a partial profile along the vertical dimension113

has been measured. In Fig. 3, the profiles for the FDM and114

SLA printed and metallized reflectors are compared. In Fig. 4,115

the profiles for the four MJF reflectors are compared. The first116

evident conclusion is that the four MJF reflectors present clear117

differences in their profiles. It is also evident that their rough-118

ness is higher than in the FDM and SLA printed reflectors. For119

unknown reasons, that has to be further investigated as some of120

the MJF reflectors have suffered some deformation during the121

printing process.122

III. EM TESTING123

In order to assess the performance of the reflectors, their radia-124

tion pattern has been measured using a planar near field scanning125

technique at a frequency of 100 GHz. The measurement setup126

Fig. 5. Near-field scanning of a printed reflector.

is shown in Fig. 5 where one of the 3-D printed reflectors is 127

tested. 128

The H plane pattern (horizontal cut according to the measure- 129

ment setup of Fig. 5) for all the reflectors is shown in Fig. 6. In 130

Table II, the directivity and the normalized radiated power for 131

each reflector compared to the reference optical grade reflector 132

is shown. Notice that, in this case, all the printed reflectors have 133

been metallized. The observation of the radiation patterns shows 134

similar cross-polar level in all cases. The changes in directiv- 135

ity can be as high as −0.80 dB compared to the optical grade 136

reflector and the reflector that better matches the performance 137

of the optical grade reflector is the FDM. The total radiated 138

power has been compared from the integration of the field com- 139

ponents in the near-field measurements. It is interesting to note 140

that the radiated power for the 3-D printed reflectors is higher 141

than the power radiated by the optical grade reflector in all 142

cases. 143

This fact can be explained due to the lower surface resistance 144

of the copper metallization compared to the aluminum coating 145

of the optical reflector. In addition, the thickness of the alu- 146

minum coating of the optical grade reflector is not known, but it 147

is also possible that the coating thickness is smaller than 30 μm, 148

which is the penetration depth at 100 GHz, finally the fact 149

that the optical grade reflector has sharper edges that probably 150

contribute to higher edge diffraction. The radiated power is Q4151

obtained from the planar near-field measurement; therefore, the 152

scattered power is not properly taken into account. In Table II, 153

the measured roughness for each reflector is also shown. This 154

roughness has been measured following the procedure of [8]. 155

The roughness is the rms height after removing the primary sur- 156

face. The specific way in which it has been computed involves 157

two steps. First an error function is obtained by subtracting the 158

desired parabolic curve from the measured profile. Then the rms 159

value of the error function is obtained after applying a spatial 160

low pass filter of 2 mm cutoff length. It is observed that after 161

metallization, the surface roughness is below 21 μm in all cases. 162

As expected from the results of Figs. 3 and 4, the roughness for 163

the SLA and FDM reflectors is smaller. It is also observed that 164

the H plane 3 dB beam width (horizontal plane) is practically 165

the same in all cases, and differences of the order of 0.1° can be 166

observed in the E plane. Of course the larger beam width incre- 167

ments correspond to the largest decrements in directivity. Due 168

to the similar surface roughness, we think that the directivity 169

reduction is produced by larger scale surface errors. As shown 170
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Fig. 6. H plane radiation pattern for each reflector.

in Fig. 4, the profiles of the MJM-printed reflectors exhibit171

large differences. As a matter of fact, MJM2 and MJM3 have172

similar profiles and their directivity loss compared to the optical173

reflector is similar. On the other hand, MJM1 and MJM4 have174

more different profiles that we must infer that have higher devi-175

ation from the nominal surface that result in higher directivity176

losses.177

Assuming that the FDM reflector is the one that better re-178

produces the nominal reflector shape, the comparison of Fig. 3179

shows that the SLA profile has a ripple around the nominal180

shape. For practical reason, the SLA reflector was printed verti-181

cally and that resulted in this ripple that can be the cause of the182

directivity reduction.183

TABLE II
MEASURED RADIATION PARAMETERS

IV. CONCLUSION 184

The potentiality of 3-D printing of parabolic reflectors for 185

being used in frequencies in the 100 GHz band has been shown. 186

Accurate surface measurements have shown that the metallized 187

reflectors can achieve surface roughness of the order of 10 μm. 188

According to Ruze’s equation, a reflector with such rough- 189

ness could be used for frequencies up to 300 GHz with gain 190

losses of 0.1 dB. Nevertheless, the measurements have shown 191

that although the local roughness can achieve these low values, 192

there may be other larger scale surface errors that can degrade 193

the performance of the reflector. In particular, the best results 194

have been obtained with the FDM reflector that has almost the 195

same performance as the optical grade reflector. In this case, 196

although the printing resolution is not the best, the fact that 197

the printing material is relatively soft leads to easy smooth- 198

ing by hand sanding. Also the printing material PLA does not 199

need high temperatures and that may explain the smaller de- 200

formation of the printed reflector as compared to the HP MJF 201

reflectors. 202
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