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and Eduard Ayguadé1,2
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Abstract. Designing a balanced HPC system requires an understand-
ing of the dominant performance bottlenecks. There is as yet no well
established methodology for a unified evaluation of HPC systems and
workloads that quantifies the main performance bottlenecks. In this paper,
we execute seven production HPC applications on a production HPC plat-
form, and analyse the key performance bottlenecks: FLOPS performance
and memory bandwidth congestion, and the implications on scaling out.
We show that the results depend significantly on the number of execution
processes and granularity of measurements. We therefore advocate for
guidance in the application suites, on selecting the representative scale
of the experiments. Also, we propose that the FLOPS performance and
memory bandwidth should be represented in terms of the proportions of
time with low, moderate and severe utilization. We show that this gives
much more precise and actionable evidence than the average.

Keywords: HPC applications · Bottlenecks · FLOPS · Memory band-
width · Scaling-out.

1 Introduction

Deploying an HPC infrastructure is a substantial investment in time and money, so
it is extremely important to make the right procurement decision. Unfortunately,
evaluating HPC systems and workloads and quantifying their bottlenecks is hard.
There are currently three main approaches. The approach taken by TOP500 and
Green500 is to evaluate systems using a prominent HPC benchmark, such as
High-Performance Linpack (HPL) [20] or High Performance Conjugate Gradients
(HPCG) [5]. Another approach is to measure the sustained performance of the var-
ious components in the system using specialized kernel benchmarks, such as HPC
Challenge [13]. By design, kernel benchmarks quantify only the sustainable perfor-
mance of individual system components, so they lack the capability to determine
how a real-world production HPC application will behave on the same platform.

The final approach, which is the one taken in this paper, is to mimic production
use by running a set of real HPC applications from diverse scientific fields [23].
We execute seven production HPC applications, together with HPL and HPCG,
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on a production x86 platform, and we reach two main conclusions. Firstly, we find
that HPC application performance and CPU/memory system bottlenecks are
strongly dependent on the number of application processes. This is typically
overlooked in benchmark suites, which seldom define how many processes should
be used. We argue that it is essential that HPC application suites specify narrow
ranges on the number of processes, so that the results are representative of real
world application use, or that they at least provide some guidelines. Secondly,
we find that average values of bytes/FLOP, bytes/s and FLOPs/s can
be highly misleading. Our results show that the applications under study
have low average FLOPs/s utilization and moderate pressure on the memory
bandwidth. However, we identified several applications, such as ALYA and GENE,
with a moderate average memory bandwidth that spend more than 50% of their
computation time in phases where the memory bandwidth bottleneck is severe.
We therefore recommend that rather than thinking in terms of average figures,
one measures the percentage of time that the utilization of memory bandwidth
or FLOPs/s is low (below 40% of sustainable maximum), moderate (40% to 80%)
and severe (above 80%). These three figures give a much more precise picture of
the application behavior than the average.

In summary, given the substantial investment of time and money to deploy an
HPC system, it is important to carefully evaluate HPC architectures. Compared
with benchmarks or kernels, system evaluation with HPC application suites
can give a more complete picture of the HPC system behavior. However, our
results show that it is very important that HPC application suites specify narrow
ranges for the number of processes that are representative of real-life application
behavior, or at least provide some guidelines so users themselves could determine
these ranges for their target platforms. In addition, reporting key application
measurements using the average values may conceal bursty behavior, and give
a misleading impression of how performance would be affected by changes in
the platform’s memory bandwidth. We suggest to avoid average figures when
evaluating performance or bottlenecks, and instead measure the percentage of time
that these figures are low, moderate and severe, with respect to their sustained
peak, which gives a more precise picture of the application’s or system’s behavior.

We hope our study will stimulate awareness and dialogue on the subject among
the community, and lead to improved standards of evaluating and reporting
performance results in HPC.

2 Experimental environment

In this section, we explain the experimental platform, workloads, methodology
and tools we used in our analysis.

2.1 Experimental platform

The experiments are executed on the MareNostrum 3 supercomputer [3], the third
version of one of the six Tier-0 (largest) HPC systems in Europe [21]. It comprises



dual-socket Intel Sandy Bridge-EP E5-2670 nodes. Each socket comprises eight
cores operating at 3.0 GHz. As in most HPC systems, hyperthreading is disabled.
The processors connect to main memory through four channels, each with a single
DDR3-1600 DIMM. Regular MareNostrum compute nodes include 32 GB of
DRAM memory, i.e., 2 GB per core. The nodes are connected with an InfiniBand
FDR-10 (40 Gb/s) interconnect, as a non-blocking two-level fat-tree topology.

2.2 Workloads

High-performance Linpack
For a long time, the High-Performance Linpack (HPL) [20] benchmark has
been the de facto metric for ranking HPC systems. It measures the sustained
floating-point rate (GFLOPs/s) for solving a dense system of linear equations
using double-precision floating-point arithmetic. The linear system is randomly
generated, with a user-specified size, so the user can scale the problem to achieve
the best performance on a given system. HPL stresses only the system’s floating
point performance, without stressing other important contributors to overall
performance, such as the memory subsystem. The most prominent evaluation
of HPC systems constitutes the TOP500 list [24], which has been criticized for
assessing system performance using only HPL [12]. The community has pointed
out the weaknesses of HPL and advocated for a way to evaluate HPC systems
that is better correlated with the needs of production HPC applications [6].

High-performance Conjugate Gradients
High Performance Conjugate Gradients (HPCG) [5], has been released as a
complement to the FLOPs-bound HPL. It is based on an iterative sparse-matrix
conjugate gradient kernel with double-precision floating-point values. While HPL
can exploit data locality and thus cope with relatively low memory bandwidth,
HPCG performance is largely proportional to the available memory bandwidth.
HPCG is a good representative of HPC applications governed by differential
equations, which tend to have much stronger needs for high memory bandwidth
and low latency, and tend to access data using irregular patterns.

HPC applications
Evaluating HPC systems using benchmarks that target specific performance
metrics is not enough to determine the performance of a real-world application.
It is therefore essential to execute production applications on an HPC system to
better understand the bottlenecks and constraints experienced by a production
HPC application. There are efforts in making suites of HPC applications that
could be used in benchmarking purposes, such as NSF [17], NCAR [15] and
NERSC Trinity benchmarks [16] in USA, and EuroBen [8], ARCHER [25] and
Unified European Application Benchmark Suite (UEABS) [18] in Europe.

In our evaluation, we used a set of UEABS applications. UEABS represents
a set of production applications and datasets, from various scientific domains,



Table 1: Scientific HPC applications used in the study

Name Area Selected no. of processes

ALYA Computational mechanics 16–1024
BQCDa Particle physics 64–1024
CP2K Computational chemistry 128–1024
GADGET Astronomy and cosmology 512–1024
GENE Plasma physics 128–1024
NEMO Ocean modeling 512–1024

QEb Computational chemistry 16–256

a Quantum Chromo-Dynamics (QCD) is a set of five kernels. We study
Kernel A, also called Berlin Quantum Chromo-Dynamics (BQCD), which is
commonly used in QCD simulations.
b QE stands for Quantum Espresso application. QE does not scale on more
than 256 processes.

designed for benchmarking the European HPC systems, included in the Partner-
ship for Advanced Computing in Europe (PRACE) [21], for procurement and
comparison purposes. Parallelized using the Message Passing Interface (MPI),
these applications are regularly executed on hundreds to thousands of cores. We
study 7 of 12 applications from UEABS [18], listed in Table 1.3

Tools and methodology
The applications come with input datasets and a recommended range of CPU
cores for the experiments. We use the Test Case A datasets, which are deemed
suitable for Tier-1 systems up to about 1,000 cores [18]. In all experiments, we
execute one application process per CPU core. The number of processes starts
from 16 (a single MareNostrum node) and it increases by powers of two until 1,024
processes. Some of the applications have memory capacity requirements that
exceed the available node memory, which limits the lowest number of processes
in the experiments, e.g., BQCD cannot be executed with fewer than 64 processes
(four nodes). The presented analysis keeps constant the input dataset and varies
the number of application processes, which refers to a strong scaling case.4

3 We could not finalize the installations of Code Saturne and GPAW. The errors have
been reported to the application developers. The remaining three applications had
problems once the measurement infrastructure was included.

4 The alternative would be a weak scaling analysis, in which the problem size scales with
the number of nodes. Unlike HPL and HPCG, for which the problem size is defined by
the user and the input data is generated algorithmically, application benchmark suites
include specific input problem data. We are not aware of a production application
benchmark suite that has problems suitable for weak scaling analysis. Although some
of the UEABS benchmarks are distributed with two input datasets, small and large,
they are not comparable so are insufficient for weak scaling analysis [26].



The application’s computation bursts were instrumented with Limpio [19] and
Extrae [4]. We used core performance counters [10] to measure FLOPS perfor-
mance (scalar and vector FLOPS counters) and uncore performance counters [9]
to measure memory bandwidth (read and write CAS commands counters).

We analyze the application behavior at two levels of granularity. First, we plot
mean FLOPs and memory bandwidth utilization using end-to-end measurements
and averaging the values of all application processes. Second, we analyze the
fine-granularity measurements done at the computational burst level. For each
computational burst, we measure the FLOPs, bandwidth utilization and the burst
execution time. Afterwards, we analyze the cumulative distribution function of
the measurements. 5 As we show in this paper, these two levels of the analysis
can, and often do, actually lead to different conclusions.

3 Results

In this section, we analyze the stress of the production HPC applications on the
CPU and memory resources, and pay special attention to understand how this
stress may change during execution and as the application scales.

3.1 Floating-point performance analysis

Figure 1a plots the average FLOPs/s utilization for different numbers of ap-
plication processes. The results show that the average FLOPs/s utilization of
production HPC applications is fairly low: for most applications it is below 30%,
and in the best case it reaches only 51% (CP2K-128 experiment). Figure 1b sum-
marizes the distribution of measurements done at computational burst level. We
divide the computational burst measurements into five clusters: 0–20%, 20–40%,
40–60%, 60–80% and 80–100% of sustained FLOPs/s, and then plot the portion
of execution time represented by each cluster. For example, in the BQCD-64
experiment, 72% of the time the FLOPs/s utilization is between 0 and 20%,
while for the remaining 28% of the time it is between 20% and 40%.

Our results show that detailed measurements are indeed needed, and that
plotting only average values may hide important information. The most obvious
case would be the QE-16 experiment. Although the average FLOP utilization is
only 24% (Figure 1a), the application actually puts extremely high pressure on
CPU FLOPs for around 18% of its computation time (Figure 1b).

We also analyze changes in the application behavior when executing them us-
ing different numbers of processes. Both, average and per-burst measurements indi-
cate significant changes in the application behavior as the applications scale-out6.

This opens a very important question: Which application behavior is the
correct/representative one, i.e. which number should we report?

5 The cumulative distribution function, y = F (x), in this case presents the fraction of
samples y that are less or equal to a certain value x.

6 We remind the reader that we used the official input datasets, and followed the
recommendations about the range of CPU processes that should be used in the
experiments (see Section 2.2).
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(b) FLOPS utilization on burst granularity

Fig. 1: Production HPC applications show fairly low FLOPS utilization, both on
lowest and highest number of processes.

3.2 Memory bandwidth analysis

Memory bandwidth has become increasingly important in recent years. Keeping
the memory bandwidth balanced with the CPU’s compute capabilities, within
affordable costs and power constraints, has become a key technological challenge.
The increasing awareness of this challenge also resulted in the introduction of the
HPCG benchmark, as an alternative to HPL. The industry also responded to
the growing need for more memory bandwidth, and high-bandwidth 3D-stacked
DRAM products are hitting the market. Their manufacturers promise significant
performance boosts over standard DDRx DIMMs, although some independent
studies doubt whether and to what extent high-bandwidth memory will benefit
HPC applications [22].

Memory bandwidth collision can indeed have the strong negative performance
impact. When a workload uses more than 40% of maximum sustainable bandwidth,
concurrent memory accesses start to collide, which increases memory latency
causing performance penalties. Using more than 80% of maximum sustainable
bandwidth causes severe collisions among concurrent memory requests; thus
memory latency increases exponentially and memory bandwidth becomes a
serious performance bottleneck [11].

Figure 2 plots the memory bandwidth usage of UEABS applications. The
memory bandwidth values are plotted relative to the maximum sustained memory
bandwidth measured by the STREAM benchmark. Again, we plot the results
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Fig. 2: Contrary to FLOPS, memory bandwidth utilization of production HPC
applications is substantial.

at two levels of granularity: Figure 2a plots average utilization over computation
time and for different numbers of application processes, while Figure 2b shows
fine-granularity measurements at the computational burst level. The applica-
tions under study show higher utilization of memory bandwidth, than FLOPs
performance, even for the average values.

Next we analyze the computational bursts measurements, presented in Fig-
ure 2b. The chart shows moderate to high memory bandwidth utilization. All the
applications under study have segments in which memory bandwidth utilization
exceeds 40%, and all but two of them, CP2K and GADGET, spend a significant
portion of time with bandwidth utilization above 60% or even 80%.

The computational burst measurements reveal some interesting scenarios,
which are more apparent in Figure 3. In this figure, the x-axis is the average
memory bandwidth utilization, as in Figure 2a. The y-axis is the proportion of
time for which the memory bandwidth utilization is severe; i.e. more than 80% of
the sustainable maximum, which corresponds to the darkest shade parts of the
bars in Figure 2b. Figure 3 shows that considering the average memory bandwidth
on the x-axis, ALYA-16 and CP2K-128 may seem to be bandwidth insensitive, as
their average bandwidths are around 50% and 40% of the sustained bandwidth.
However, detailed in-time measurements show that they spent significantly
different proportions of the time with severe memory bandwidth utilization:
CP2K-128 spends only about 4% of its computation time, but ALYA-16 spends



55% of its computation time, which presents a serious performance penalty.
We find a similar situation with BQCD-1024, GENE-128 and QE-1024. These
applications all have average memory bandwidth of around 60% of the sustained
maximum. Even so, QE-256 spends only 12% of its computation time with
severe memory bandwidth utilization (more than 80% of maximum sustained). In
contrast, BQCD-1024 and GENE-128 spend 58% and 72% of their computation
time, respectively, with severe memory bandwidth utilization.

This is another confirmation that detailed measurements are needed, and that
plotting only the average values may be misleading. Applications under study
that spend significant amount of their computation time using more than 80% of
the sustained bandwidth have a severe performance bottleneck. In these phases of
their computation time, the applications would benefit out of increased available
memory bandwidth in the system. In our case, ALYA-16, but not CP2K-128, is
likely to benefit from higher bandwidth memories. It would reduce the bottleneck
and increase the application performance. However, reporting only average values
of memory bandwidth cannot point out the necessary details.

Our suggestion would be that memory bandwidth utilization should be
defined at least with three numbers — as the percentage of execution time
that applications use 0–40%, 40–80% and 80–100% of the maximum sustained
bandwidth. This would correspond the portion of the execution time in which the
application experiences negligible, moderate and severe performance penalties
due to collision on concurrent memory requests.

3.3 Discussion

Our analysis emphasizes that HPC application behavior is tightly coupled with
the number of application processes. There are two main reasons for this. First,
application scaling-out increases the inter-process communication time. To il-
lustrate this, in Figure 4 we plot the portion of overall execution time that
applications under study spend in inter-process communication.
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Fig. 3: Average memory bandwidth can mislead and hide potential bottlenecks.
BQCD-1024, GENE-128 and QE-256 have similar average memory bandwidths,
however BQCD-1024 and GENE-128 spend significantly more time utilizing more
than 80% of max. sustainable bandwidth, which is a serious bottleneck.
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Fig. 4: Portion of total execution time spent in the inter-process communication
for UEABS applications, strong scaling.

Even for the low number of application processes, the communication is
non-negligible, and as the number of processes increases, it becomes the domi-
nant part of the overall execution time. The higher the portion of time that is
spent in communication,the lower the average utilization of FLOPs and memory
bandwidth (as detected in Figures 1a and 2a). Also, in general, the higher the
number of processes, the smaller the portion of the input data handled by each
process, which changes the effectiveness of cache memory and the overall process
behavior (as detected in Figures 1b and 2b).

HPC application behavior may be known by the application developers, but
it is often overlooked in all HPC application suites for benchmarking purposes.
State-of-the-art HPC application suites do not strictly define the number of
processes to use in experiments. For example, UEABS recommends running the
applications with corresponding input datasets on up to approximately 1,000
processes, but the minimum number of processes is not specified. Similarly, other
HPC application suites either provide loose recommendations about the number
of processes [15–17,25] or do not discuss this issue at all [8]. However, it is not
surprising that HPC application suites overlooked the problem that application
behavior is tightly-coupled with number of application processes. After all, this
problem does not exist for single-threaded benchmarks, and it was not detected
for HPC benchmarks that put high stress to a single resource, such as HPCG,
HPL or HPCC suite.

The essence of benchmarking is to provide representative use cases for charac-
terization and valid comparison of different systems. If the application suite does
not provide it, then the results are misleading. Our results show that it is very
important that HPC application suites specify narrow ranges for the number
of processes that are representative of real-life application behavior, or at least
provide some guidelines so users themselves could determine these ranges for
their target platforms.



4 Related work

There are not many studies that analyse benchmarking methodologies and how to
represent evaluation results of HPC systems and applications. Bailey [1] provides
common guidelines for reporting benchmark results in technical computing,
following his similar summary of misleading claims for reporting results in
system evaluation [2]. He points out the possibilities of misleading conclusions
and potential biases from using projections and extrapolations, tuning levels,
evaluating non-representative segments of the workloads, etc. Nevertheless, he
presents several rules and advocates the community to pay attention and avoid
the biased results.

Hoefler et al. [7] attempt to define ground rules and guidelines for the in-
terpretation of HPC benchmarking. The authors propose statistical analysis
and reporting techniques in order to improve the quality of reporting research
results in HPC and ensure interpretability and reproducibility. In their study,
they identify several frequent problems and propose rules to avoid them. Their
analysis covers methods for reporting the results of speed-up, usage of various
means, summarizing ratios, confidence intervals, normalization, usage of various
chart techniques, and others.

Sayeed et al. [23] advocate the use of real applications for benchmarking in
HPC, and that small benchmarks cannot predict the behavior of the real HPC
applications. They discuss important questions, challenges, tools and metrics
in evaluating performance using HPC applications. Afterwards, they evaluate
the performance of four application benchmarks on three different parallel archi-
tectures, and measure the runtime, inter-process communication overhead, I/O
characteristics and memory footprint. This way, they show the importance of
reporting various metrics, in order to have a better representation of application
and system performance. Since they measure these metrics on several numbers
of execution processes, the results differ from one execution to another. It is
clear from their results that on different numbers of execution processes, different
platforms perform better or worse, which can significantly bias the analysis on
certain scale of the experiments.

Marjanović et al. [14] explore the impact of input data-set for three repre-
sentative benchmarks: HPL, HPCG and High-performance Geometric Multigrid
(HPGMG). They perform an analysis on six distinct HPC platforms at the
node level, and perform scale-out analysis on one of the platforms. Their results
show that exploring multiple problem sizes gives a more complete picture of
the underlying system performance, than a single number representing the best
performance, which is the usual way of reporting the results. They advocate for
the community to discuss and propose a method for aggregating these values
into a representative result of the system performance.

In our study, we focus on two important aspects of benchmarking with
HPC applications: the importance of defining the representative scale of the
experiments and measurement granularity in quantifying performance bottlenecks,
which are often overlooked by the community. To our knowledge, this is the first
study that analyses the importance of a deterministic range for the number of



execution processes. We also suggest a simple way to show several values for
portions of time spent in different utilizations of certain metric. It does not require
additional executions or special evaluation infrastructure, yet it gives much better
representation of application behavior and clearer focus on its bottlenecks.

5 Conclusions

A clear understanding of HPC system performance factors and bottlenecks
is essential for designing an HPC infrastructure with the best features and a
reasonable cost. Such a perception can only be achieved by closely analysing
existing HPC systems and execution of their workloads.

When executing production HPC applications, our findings show that HPC
application performance metrics strongly depend on the number of execution
processes. We argue that it is essential that HPC application suites specify nar-
row ranges on the number of processes, for the results to be representative of
a real-world application use. Also, we find that average measurements of per-
formance metrics and bottlenecks can be highly misleading. Instead, we suggest
that performance measurements should be defined as the percentage of execution
time in which applications use certain portions of maximum sustained values.

Overall, we believe this study offers new guidelines for accurately measuring
key performance factors and their impact on overall HPC performance.
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