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Abstract— Robotic manipulation often requires adaptation to
changing environments. Such changes can be represented by a
certain number of contextual variables that may be observed or
sensed in different manners. When learning and representing
robot motion –usually with movement primitives–, it is desirable
to adapt the learned behaviors to the current context. Moreover,
different actions or motions can be considered in the same
framework, using contextualization to decide which action
applies to which situation. Such frameworks, however, may
easily become large-dimensional, thus requiring to reduce the
dimensionality of the parameters space, as well as the amount of
data needed to generate and improve the model over experience.

In this paper, we propose an approach to obtain a generative
model from a set of actions that share a common feature.
Such feature, namely a contextual variable, is plugged into the
model to generate motion. We encode the data with a Gaussian
Mixture Model in the parameter space of Probabilistic Move-
ment Primitives (ProMPs), after performing Dimensionality
Reduction (DR) on such parameter space, in a similar fashion
as in [1]. We append the contextual variable to the parameter
space and obtain the number of Gaussian components, i.e.,
different actions in a dataset, through Persistent Homology.
Then, using multimodal Gaussian Mixture Regression (GMR)
[2], we can retrieve the most likely actions given a contextual
situation and execute them. After actions are executed, we use
Reward-Weighted Responsibility GMM (RWR-GMM) update
the model after each execution. Experimentation in 3 scenarios
shows that the method drastically reduces the dimensionality of
the parameter space, thus implementing both action selection
and adaptation to a changing situation in an efficient way.

I. INTRODUCTION

Movement primitives (MP) are nowadays the standard tool
for learning robotic tasks, due to their versatile approxima-
tion of robot motion that allows for different operations,
as well as learning. In particular, robot motion learning is
often performed by direct Policy Search (PS) [3], where the
policy parameters - the MP parameters - are optimized so
as to maximize the expected reward of executing the newly-
generated motions. However, many robot applications need

Manuscript received: February 24th, 2018; Revised: May 29th, 2018;
Accepted: July 3rd, Year.

This paper was recommended for publication by Editor Dongheui Lee
upon evaluation of the Associate Editor and Reviewers’ comments.

This work was partially developed in the context of the project
CLOTHILDE ("CLOTH manIpulation Learning from DEmonstrations"),
which has received funding from the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and innovation programme
(Advanced Grant agreement No 741930). This work is also supported by
the Spanish State Research Agency through the María de Maeztu Seal
of Excellence to IRI MDM-2016-0656 and by European project I-DRESS
(PCIN-2015-147).

1Institut de Robòtica i Informàtica Industrial (IRI), CSIC-UPC,
Barcelona, Spain. [acolome@iri.upc.edu, torras@iri.upc.edu].

Fig. 1. Feeding task setup. The arm picks up food from the user-preferred
plate and brings it to the mouth of the mannequin’s head. The vision from
a Kinect camera is shown in a red frame.

to adapt to changing situations, i.e.: contextual features. An
example would be to learn to feed a person from a plate,
while changing their positions (see Fig. 1) from a bottle into
a glass. If we change the glass position, the motion must
adapt to the new contextual situation. Therefore, a lot of
effort has been put during the last years on being able to learn
adaptive behaviors. In [4], a popular PS algorithm named
Relative Entropy Policy Search (REPS) was extended to
include contextual dependency on the newly obtained policy.
In [5] this work is extended by combining such methodology
with Covariance Matrix Adaptation [6] to overcome the
greedy-ness of some contextual PS algorithms. In [7], a
hierarchical structure of actions is learned, representing a
probability distribution over the contextual variables. This
structure is then updated, taking care of keeping locality
below controlled margin by setting entropy and Kullback-
Leibler divergence bounds between the newly generated
policies and previous ones.
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Having several alternatives for similar motions that share
a contextual variable - which is the ultimate responsible for
deciding which action to take - can result in a very high
dimensionality of such representation. Therefore, it is inter-
esting to keep the information of a contextual, hierarchical
structure of movement primitives in a smaller dimensional
structure. The work in [8] presents a GMM in the time-
space domain that is combined with a Hidden Semi-Markov
Model (HSMM) that helps to transition between components
of the GMM along time. Other contextual adaptations in
literature include force sensors to adapt motion [9] or build
a dynamical system that can be modulated [10].

This paper is structured as follows: In Section II, we
briefly introduce Probabilistic Movement Primitives [11], to
then adapt the authors’ work [1] in Section II-A to perform
linear DR in the parameter space of a ProMP. In Sections
III-A, III-B, we introduce Gaussian Mixture Models (GMM)
[12] and Regression (GMR). This paper proposes a novel
approach in which the MPs parameters are represented by
using a combination of latent space MP weights with the
context variables. This allows to then infer a probability
distribution of MPs given a context, which is adapted to the
contextual observations. We also introduce Persistent Homol-
ogy [13] to find the number of Gaussians (corresponding to
different actions) composing the GMM. This allows the pro-
posed method to work in those cases where no information
regarding the number of actions is given a priori, as seen in
the experiments. Using the responsibilities provided by the
conditional GMM obtained, the most suitable action can be
selected, executed and evaluated, and the entire model can
be updated, following the guidelines presented in [14], as
described in Section III-C, which are adapted for iterative
optimization in Section III-D. An overview of the method
and its experimental validation follow in Sections IV and V,
respectively.

II. PROBABILISTIC MOVEMENT PRIMITIVES

ProMPs are a general approach to learn and encode a
set of similar motion trajectories that present time-dependent
variances over time. Given a number of basis functions per
DoF, Nf , ProMPs use time-dependent Gaussian kernels Φt

to encode the state of a trajectory, Φt being the vector of
normalized kernel basis functions (e.g., uniformly distributed
Gaussian basis function over time). Thus, the position and/or
velocity state vector yt can be represented as

yt = ΨT
t ω + εy, (1)

where ΨT
t = Id ⊗ΦT

t , Id being the d-dimensional identity
matrix and Φt an Nf -dimensional column vector with the
Gaussian kernels associated to one DoF at time t. Moreover,
εy ∼ N (0,Σy) is a zero-mean Gaussian noise and the
weights ω are also treated as random variables with a
distribution

p(ω) = N (ω|µω,Σω). (2)

This distribution can be fitted, given a set of demonstration
trajectories τ j = {yjt}t=1..Nt , j = 1..Nd, by obtain-
ing the weights ωj of each demonstration through least

squares. Subsequently, the parameters of the distribution
θ = {µω,Σω,Σy}, Σy being the state covariance, are fitted
by means of a maximum likelihood estimate, i.e., computing
the sample mean and the sample covariance of ω. Then the
probability of observing a yt is:

p (yt;θ) =
∫
N (yt|ΦT

t ω,Σy)N (ω|µω,Σω)dω

= N
(
yt|ΦT

t µω,Σy + ΦT
t ΣωΦt

) (3)

Due to the probabilistic representation, ProMPs can rep-
resent motion variability while keeping other MP properties
such as rescalation and linear representation wrt. parameters.
ProMPs also allow for other operations such as modulation
via probabilistic conditioning and combination by product,
as well as providing a model-based stochastic controller that
reproduces the encoded trajectory distribution [11].

A. Dimensionality Reduction of ProMPs

In [1], the authors proposed to reduce the dimensionality
of a ProMP by performing linear DR in the space of degrees
of freedom (DoF) of the robot, to reduce the number of
DoFs from d to r. This had the impact of reducing the
dimensionality of the parameter vector ω from dNf to rNf ,
with r < d, Nf being the number of Gaussian kernels
used per DoF. While reducing the dimensionality in the
robots’ DoF has advantages such as a better qualitative
understanding of the task, a smaller linear projection matrix
which is easier to estimate, and it is also used in other
approaches [18]; However, here we propose to reduce the
dimensionality in the space of the Gaussian weight vectors
ω. This variation is introduced to then build a GMM in
the common latent parameter space and has the advantage
of fine-tuning the dimensionality of the latent space, given
that we can encode actions that are more different, without
loosing too much information. In this section, we describe
the expression of such DR, which is derived in the Appendix.
We will reduce the dimensionality through a linear mapping
Ω (dNf ×Mf ) so that the state is represented as:

yt = ΨT
t Ων + εy, (4)

where ν is an Mf -dimensional weight vector in the latent
space of ω. This results in a new probability distribution of
yt (compared to Eq.(3)):

p(yt;θ) =
∫
N (yt|ΦT

t Ων,Σy)N (ν|µν ,Σν)dν

= N
(
yt|ΦT

t Ωµν ,Σy + ΦT
t ΩΣνΩ

TΦt

)
(5)

where θ = {µν ,Σν ,Ω,Σy} is the set of parameters of this
DR-ProMP representation. In order to obtain such parame-
ters, two main approaches can be used, as in [1]: Weighted
Maximum likelihood estimation (WMLE) -derived in the
Appendix-, or Principal Component Analysis (PCA), which
is also helpful to obtain a sufficient value for Mf and an
initialization to the problem.



III. GAUSSIAN MIXTURE MODELS (GMMS) AND
REGRESSION (GMR)

In this section, we recall the basic expressions of GMMs
and GMR, that will be used together with a reward-weighted
responsibility as detailed in Section III-C.

A. Gaussian Mixture Models

A Gaussian Mixture Model (GMM) distribution over a
random variable x can be written as a weighted superposition
of K Gaussians with mean µk and covariance Σk, weighted
by their mixing proportions πk [12], for k = 1..K:

p(x) =

K∑
k=1

πkN (x|µk,Σk), (6)

where it is common to consider πk as the probability of a K-
dimensional random variable z, with zk ∈ {0, 1} and p(zk =
1) = p(zk = 1, z6=k = 0) = πk [12]. Note that 0 ≤ πk ≤ 1

and
∑K
k=1 πk = 1. Therefore, p(x|zk = 1) = N (x|µk,Σk)

and, marginalizing x wrt. z we obtain Eq. (6) again:

p(x) =
∑

z

p(x|z)p(z) =

K∑
k=1

πkN (x|µk,Σk) (7)

The GMM model in Eq.(6) can be obtained with an
Expectation-Maximization (EM) algorithm [12], for which
we need to compute a term γ(zik) , p(zk = 1|xi) by using
the Bayes’ rule:

γ(zik) =
πkN (xi|µk,Σk)
K∑
j=1

πjN (xi|µj ,Σj)

. (8)

γ(zik) is called the responsibility of the component k as-
sociated with a sample xi. Using the aforementioned EM
algorithm with a set of N data samples X, the log-likelihood
of the GMM model and the data lnp(X|π,µ,Σ) can be
maximized in an iterative way:
• E-step: Evaluate the responsibilities using current pa-

rameters with Eq. (8).
• M-step: Re-calculate the parameters with (see [12]):

µnew
k =

1

Nk

N∑
i=1

γ(zik)xi (9)

Σnew
k =

1

Nk

N∑
i=1

γ(zik)(xi − µnew
k )(xi − µnew

k )T (10)

πnew
k =

Nk
N

(11)

where N =
∑
kNk and

Nk =

N∑
i=1

γ(zik) (12)

• Evaluate the log-likelihood:

lnp(X|π,µ,Σ) =

N∑
i=1

ln

[
K∑
k=1

πkN (x|µk,Σk)

]
,

(13)
and check for convergence.

An important point when using GMMs is to decide the
number of Gaussians that will form the model, i.e.: K. In
case there is no prior knowledge, the number of components
is often set arbitrarily or using clustering methods. In this
work, we used Persistent Homology [13], which permits
computing the Betti numbers of the triangulation of a data
set, to determine the number of clusters depending on a
threshold. This threshold defines the maximum distance
allowed to connect two data points when building the triangu-
lation and, using computational topology tools [13], we can
evaluate the evolution of the number connected components
(0-Betti number), one-dimensional holes (1-Betti number)
and so on wrt. the selected threshold. In the case of GMM,
the 0-Betti number provides useful information to decide
on the number of Gaussian components. The choice of
the maximum threshold is crucial for obtaining both valid
results and computationally inexpensive calculations. We
found empirically that, for the different datasets we tried,
a good threshold was Lmax = 1

2

√
Ndmaxiλi, where λi are

the eigenvalues of the covariance matrix on the dataset of
vectors x.

B. Gaussian Mixture Regression

Gaussian Mixture Regression (GMR)[2] is a regression

tool that, given a GMM on a variable x =

[
s
ν

]
(note we

already use the notation for the contextual variables s and
latent space ProMP weights ν), approximates the probability
p(ν|s). Given the GMM on x:

p(x) =

K∑
k=1

πkN
(

s
ν

∣∣∣∣ µskµνk ,
Σs
k Σsν

k

Σνs
k Σν

k

)
, (14)

this approximation is often calculated so that the resulting
conditioned distribution is a unimodal Gaussian. However,
in this work, we keep the result of the regression as a multi-
modal distribution, i.e.: a GMM on the variable z, given a
value of y. This can be obtained by setting [2]:

p(ν|s) ∼
K∑
k=1

hk(s)N
(
µ̂νk(s), Σ̂

ν

k

)
, (15)

where
µ̂νk(s) = µνk + Σνs

k (Σs
k)−1(s− µsk) (16)

and
Σ̂
ν

k = Σν
k −Σνs

k (Σs
k)−1Σsν

k (17)

and the mixing proportions are calculated as:

hk(s) =
πkN (s|µsk Σs

k)
K∑
j=1

πjN (s|µsj Σs
j)

(18)



The rationale behind not approximating p(ν|s) with a
single Gaussian is to keep the shape of each one of the
different actions associated with each component of the
GMM. Using GMR allows to generate stochastic motion in
the following manner: We can firstly observe a contextual
variable ssample, and obtain the conditioned mixture model
p(ν|s). We can then generate a sample νsample from such
conditioned GMM, and map it to the robot state with Eq.
(4) to obtain a sample that will be adapted to the observed
contextual variable s. The responsibilities associated to each
action after conditioning will also provide enough informa-
tion of which action -or cluster- is predominant for each
context. Nevertheless, in case there actually exists an overlap
between components, we also use a method for updating
the GMM with a reward-weighted responsibility [14], as
presented in subsection III-C.

C. Reward-Weighted Responsibility GMM

In the previous sections, we introduced an approach based
on GMM and GMR which, using a joint distribution of the
latent space ProMP parameters and context variables, proves
to be very useful, for instance, as a generative model for
providing trajectories given a context sample value. However,
this model can be further improved by evaluating a sample
and changing the model according to the behavior observed.
Let sj be a contextual value observed, and νj a sample
from the distribution of ν given sj , as explained in the
previous section. Then, let rjk be a reward associated with
sampling from the action -or GMM component- k given
context sample sj . If the rewards rjk of a number of rollouts
j = 1..Ns are converted into relative weights dj using a
policy search algorithm such as REPS [15], we can then
define the reward-weighted responsibility of an action as

ϕjk = djkγ(zjk), (19)

Given such weighted responsibilities, we can substitute
dskγ(zsk) for γ(zsk) in Eqs.(9)-(12) and obtain a Reward-
Weighted Responsibility GMM (RWR-GMM) [14], which
can be used both for selecting a ProMP component from the
mixture and to adapt it according to the contextual variable
by GMR III-B.

µnew
k =

1

Nk

N∑
j=1

djkγ(zjk)xj (20)

Σnew
k =

1

Nk

N∑
j=1

djkγ(zjk)(xj − µnew
k )(xj − µnew

k )T (21)

πnew
k =

Nk
N
, (22)

where N =
∑
kNk and

Nk =

N∑
j=1

djkγ(zjk). (23)

Algorithm 1 RWR-GMM

Input: GMM0 with {π0
k,Σ

0
k,µ

0
k, N

0
k}

Number of samples Ns per update. Number of updates
Nupdates
Output: Updated GMM parameters {πk,Σk,µk, Nk}

1: for epoch = 1 : Nupdates do
2: for j = 1 : Ns do
3: Generate or observe a context value sj
4: Obtain sample νj given sj with GMR (Eq. (15))
5: Execute the motion νj and evaluate rj
6: end for
7: Obtain relative importance weights dj for each exe-

cution, given the rewards rj .
8: while no convergence do
9: Update the GMM iterating through Eqs. (24)-(29)

until convergence.
10: end while
11: Update the old distribution GMM0=GMM for next

epoch
12: end for

D. Iterative RWR-GMM

Moreover, given an initial GMM composed of
{µ0

k,Σ
0
k, π

0
k, N

0
k}k=1..K we can add a set of N new

samples {x1, ...,xN} = {ν1, s1; ...;νN , sN} with their
associated rewards r1, ..., rN . In this work, we propose to
update the model by iterating through equations (20)-(23),
keeping in mind some of the terms corresponds to the
previous model, and others correspond to the effect of
the new samples. Otherwise, the effect of the old model
would fade at every iteration. Then, for each iteration i, we
compute:

ϕjk|i+1 = dn
πk|ip (xn|µk|i,Σk|i)∑
k πk|ip (xn|µk|i,Σk|i)

(24)

Nk|i+1 = N0
k +

Ns∑
j=1

ϕjk|i+1 (25)

πk|i+1 =
Nk|i+1

K∑
l=1

Nl|i+1

(26)

µk|i+1 =
1

Nk|i+1

N0
kµ

0
k +

Ns∑
j=1

ϕjk|i+1xj

 (27)

Σk|i+1 =
N0

kΣ0
k

Nk|i+1
+

+ 1
Nk|i+1

[
Ns∑
n=1

ϕjk|i+1(xn − µk|i+1)(xn − µk|i+1)T
]
(28)

Additionally, a forgetting factor λ can be added to the
update of Nk, so as to give more importance to new samples.
This will allow new samples to have a higher impact on the



Algorithm 2 Building a GMM-DRProMP model

Input: {yjt}t,j , for each trajectory sample j = 1..Nd and
each timestep t = 1..Nt.
Output: GMM parameters {πk,Σk,µk} and latent space
projection Ω

1: Use all trajectory data {yjt}t,j with PCA to initialize θ =
{µν ,Σν ,Ω,Σy}, as well as the latent space dimension
Mf .

2: Use data {yjt}t,j and θ to obtain a new Ω with Eq.(38).
3: Obtain the Gaussian weight vector νj for each trajectory
{yjt}t.

4: Using the joint variable x =

[
s
ν

]
, cluster data and

determine the number of clusters using persistent ho-
mology.

5: Build the GMM on x using Eqs. (9)-(12).

results as, otherwise, Nk will grow every time the policy is
updated and new samples will have less effect.

Nk = Nkλ (29)

Algorithm 1 how a RWR-GMM is updated. For a number
of epochs, Ns samples are generated by observing a context
value sj and conditioning the GMM to it. Once all the sam-
ples have been run in the robot/simulator, their evaluations
(rewards) can be converted to relative weights with a policy
search method as REPS [15]. Then, the GMM is updated by
iterating Eqs. (24)-(29) until convergence.

IV. METHOD OVERVIEW

The proposed framework is summarized in Algorithm 2.
In order to build a model, we firstly use Principal Component
Analysis, without taking contextual variables into consider-
ation, in order to initialize a ProMP with all the sample
trajectories. This PCA will provide an initialization of the
unimodal model that we will refine with the EM algorithm
in the Appendix, but most importantly, provides a way of
setting the dimensionality Mf < dNf . In this work, we took
Mf so that the first Mf singular values σ1..Mf

represent a
portion ρ of the information, i.e.:

min Mf , s.t.
∑Mf

i=1 σ
2
i∑dNf

i=1 σ
2
i

≥ ρ. (30)

After initializing and refining Ω, we fit each trajectory j
weight vector νj by solving (through least squares): yj1

...

yjNt

 =

 Ψ1

...
ΨNt

Ωνj . (31)

Once having all νj , j = 1..Nd, and their respective
observed contextual values sj , we can use their joint variable
xj and, applying persistent homology (see Section III-A)
obtain the number of clusters to build our model.

With the resulting GMM, we can generate trajectories
given a contextual value sj by using GMR as detailed in Sec.
III-B. GMR will provide a new GMM where all actions -or
GMM components- are conditioned to the observed context
value. Then, the proportion weights hk(sj) in Eq. (18) will
allow the GMM to select which component to use and
therefore generate a sample νn, which can be translated into
a robot trajectory by using yt ' ΨT

t Ωνn.
This trajectory can then be executed and evaluated, obtain-

ing a reward for sample j and component k, rjk. This reward
can be converted to a normalized weight djk by suitable PS
methods as REPS [15]. The resulting weight, together with
the sample xj = [sj ;νj ], can then be applied to update the
RWR-GMM with Eqs. (20)-(23).

In the following section, we present three experiments
showing the advantages of our proposed method.

V. EXPERIMENTATION

A. First experiment: modelling a 2D letter dataset

As a first validation test, we used a dataset from [16],
consisting of hand-written letters. We took the first 12
characters in the alphabet (A, B, C, D, E, F, G, H, I, J, K, L).
The trajectories obtained lie in a 2-dimensional space, and
we used Nf = 10 for each DoF, and set ρ = 0.98 in (30).
We obtained Mf = 14 by using PCA on all the trajectory
data, and then performed EM as detailed in the Appendix to
obtain the latent space projection ω =⇒Ω ν. Next, we used
the Javaplex library [17] to compute the barcode representing
the variation in the 0-Betti number, which correctly hinted
there were 12 components, as seen in Fig. 2. After setting

Fig. 2. Persistence of the 30 most important connected components in
the data as the filtration value grows. For a filtration value (ball radius) of
zero, each sample (158 trajectories in this case) is a connected component.
When increasing the filtration value, different samples are linked and so,
the number of connected components decreases. In this figure, we see that
there are possibly 12 components in the data.

the number of components to K = 12, we fitted a GMM to
the space composed of samples x = [s;ν], s being 1 for the
letter A, 2 for letter B, and so on.

With such a model, we could then condition the GMM
to observations s = {1, .., 12} and obtain well-written
characters, as seen in Fig. 3. Additionally, we tested how



the method would behave for intermediate values of s,
evaluating the mixing proportions of the GMM conditioned
on s obtained through GMR, as displayed in Fig. 4. There,
we can see there are parts in the s domain where all
the mixing proportions of the conditioned model are zero.
This means that, given the data, the model assigns a very
small probability to all the actions (letters) and, therefore,
selects none. The domains in Fig. 4 can be widened with a
strong covariance regularization when fitting the GMM on x
through EM, but this resulted in meaningless characters.

B. Second Experiment: Feeding a mannequin

As a second experiment, we scaled up the dimensionality
of the problem with a feeding experiment (see Fig. 1). We
placed a mannequin’s head on a table, together with two
plates, one with pieces of apple and another one with small
balls simulating soup. With a Kinect camera reading the head
and two plates’ positions through QR codes attached to them,
the aim of the experiment was to teach the robot how to feed
the mannequin either of the two types of food (apple, soup).
We kinesthetically taught the robot 20 motions for feeding
each food (40 demonstrations in total), changing the position
of the head and plates in every demonstration. For the robot
state, we considered the pose of the end-effector (6-DoF),
with 15 Gaussians per DoF, totalling 90 parameters, which
were mapped onto a 27-dimensional latent space through
our proposed DR. Regarding contextual representation, we
considered the x− y coordinates on the table of both plates
and the head, plus a choice variable which was 1 for soup and
2 for apples. In total, dim(ν) = 27 and dim(s) = 7, totaling

a state x =

[
ν
s

]
of dim(x) = 34. In the video attachment

(also found in http://www.iri.upc.edu/groups/
perception/#DRGMM), a good qualitative behavior of the
resulting model when conditioning to a given context is
shown, see also Fig. 5.

C. Third experiment: modeling peg insertion in a movable
hole

Last we used the proposed method for learning and
improving a multiple-solution task and used Algorithm 1 to
improve it over experience. We generated a 2-dimensional
ProMP with 10 Gaussians per DoF. As input data, we
generated planar trajectories aiming at a goal point in a
semicircle (see Fig. 7), and also going through a via-point
generated by adding and offset to the mid-point of the
straight line connecting the origin and the goal point. We
also perturbed the ending point of the trajectory to add error
to the initial trajectories, and we took s = [s1; s2], where
s2 is the desired orientation of arrival to a hole placed at
the goal point. The context variables were initialized with a
GMM with means µs1 = [π6 ; 2π

5 ; 13π
20 ; 11π

14 ], µs2 = µs1 + ε
(ε being a zero-mean Gaussian value with variance 0.1) and
covariances Σs = 0.05I for all components. The reward
function was then the sum of the error in reaching the
goal point, plus a term penalizing the angle between the
peg arrival velocity and the desired insertion orientation in

the hole, also seen in Fig. 7. Furthermore, we added an
acceleration term to prevent too-jerky trajectories.

We fitted the model applying Algorithm 2, and obtained
a latent space dimension Mf = 4. By using persistent
homology (similarly to Sec. V-A), we found the number of
components to be also 4.

Given the initialized model, we performed a learning
experiment using Algorithm 1 by sampling context from
the original context distribution, and converting rewards to
weights by using Relative Entropy Policy Search [15]. We
did 100 policy updates with 100 samples each, using a
decay factor of λ = 0.8 in Eq.(29). In Fig. 6, we can see
the learning curve showing the average sample reward after
every policy update (averaged through 10 learning trials).
Our full proposed method (RWR+GMM+DR) is compared
against a unimodal case with DR (RWR+DR), a multimodal
model without DR (RWR+GMM) and contextual REPS with
covariance matrix adaptation [5]. The results show that a
multimodal model is truly preferable and, while adding DR
might generate a lower-reward in the early stages due to
having a smaller model, DR allows to learn the task faster.
Figure 7 displays some examples of the final policy.

VI. CONCLUSIONS

In this paper, we proposed a generative model that can
store a complex set of actions that share a common contex-
tual feature dependency. The proposed method uses a latent
space projection of the MP parameters of each action and
is capable of drastically reducing the dimensionality of the
problem and, thus the complexity of both action selection
and adaptivity. Moreover, we proposed a tool based on
persistent homology to assess how many actions -Gaussian
components- we must consider given a dataset by using
Persistent Homology, and we derived the equations required
to improve the model when new experiences through an
adapted EM algorithm. The results show that the proposed
method is not only capable of fitting a lower-dimensional
contextualized GMM, but also to improve it with the gained
experience using direct policy search reinforcement learning
methods. Future work includes assessing the capability of the
framework to adapt to changing context in an online manner,
which can be done by blending the currently reproduced
trajectory with a newly adapted one, and also to perform DR
in each action separately, with a common parameter vector
for all components of the GMM.

APPENDIX: DR-PROMPS EQUATIONS

A. Fitting DR-ProMP parameters with EM
In [1], the authors devised an Expectation-Maximization

based method for finding a linear Dimensionality Reduction
(DR) technique to represent ProMPs in a latent space of the
DoF of the robot, using the expression yt = ΩΨT

t ω for
the state space, where Ω was a (d× r) matrix, d being the
DoF of the trajectory and r a latent space dimension. In this
paper, we used the reverse order between the two terms Ω
and Ψt, resulting in:

yt = ΨT
t Ων, (32)

http://www.iri.upc.edu/groups/perception/#DRGMM
http://www.iri.upc.edu/groups/perception/#DRGMM
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Fig. 3. Re-generated letters. Dataset (in red) and different samples generated by conditioning to s = {1, .., 12} (in discontinuous black).
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spoon drawn in grey) is performed to feed the mouth (in cyan). The samples
used for this action are also shown as dots in dark grey.

where Ω is now a (dNf × Mf ) matrix and we use ν ∼
N (µν ,Σν) to represent the latent space parameters. In this
case, the linear DR is performed directly in the Gaussian
weights space of the ProMP, instead of the DoF’ space,
resulting in the probability distribution for the state space:

p(yt) =
∫
ν
N
(
yt|ΨT

t Ων,Σy

)
N (µν ,Σν) dν

= N
(
yt|ΨT

t Ωµν ,Σy + ΨT
t ΩΣνΩΨT

t

) (33)

We now describe the Expectation-Maximization step for
obtaining the parameters θ = {µν ,Σν ,Ω,Σy} by using the

Fig. 6. Learning curves obtained with four methods in the peg-in-hole
experiment. Mean rewards and their 95% confidence intervals obtained after
100 experiments of 100 policy updates with 100 samples each.

complete-data log-likelihood [12]. ΨT
t will now be a (d ×

Mf ) matrix, and yjt will be a d-dimensional vector. We will
use the vector Yj to denote the concatenated position vectors
of a single trajectory j,

Yj =
[
yj1
T
, ...,yjNt

T
]T
.

Similarly to [1], we want to use our model estimation
algorithm for policy search algorithms that are based on
data reweighting. These algorithms introduce a weighting
dk for each trajectory. Hence, we also have to consider
such a weighting in our EM algorithm. We will maximize
the weighted marginal log-likelihood

∑
k dk log p(yt|s,θ) of

the data and the latent space representation, thus we have
to derive the equations with the marginalized ν with the
difficulties it entails. The following subsections explain how
to obtain the log-likelihood function and differentiate it.

1) Expectation step
In the expectation step, we must find the probabilities for
each demonstration k with the old parameters θold :

p(ν|Yj) =
p(Yj |ν)p(ν)

p(Yj)
∝ p(Yj |ν)p(ν), (34)

where:

p(Yj |ν) = N (Yj |ΨTΩν, INt ⊗Σy). (35)



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 7. Examples of trajectories generated after learning (x and y
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Note that in the contextual case, we have omitted the
conditioning on the context variables for simplicity of the
equations. Using the Bayes rule for Gaussian distributions,
we obtain p(ω|Yj) = N (ν|µj ,Σj), where

µj = µν + Kνsj + ΣνΩ
T
Nt

ΨΓ−1(Yj −ΨTΩNt
µν)

Σj = Σν −ΣνΩ
T
Nt

ΨΓ−1ΨTΩNtΣω,

and Γ is given by Γ = INt
⊗Σy + ΨTΩNt

ΣνΩ
T
Nt

Ψ.

2) Maximization step

Given the probabilities p(ω|Yj) for each demonstration, we
now maximize the weighted expectation of the log-likelihood
function, where dj is used as weight for each trajectory, i.e.,

L =

Nd∑
j=1

djEν|Yj ;θold

[
log
(
p(ν,Yj ;θ)

)]
After some calculations, analogously to [1], we obtain:

L = − 1
2

 Nd∑
j=1

dj

 log |2πΣν |+Nt log |2πΣy|


− 1

2

Nd∑
j=1

dj(µν − µj)Σ
−1
ν (µν − µj)

− 1
2

Nd∑
j=1

dj

Nt∑
t=1

[
(yjt −ΨT

t Ωµj)
TΣ−1

y (yjt −ΨT
t Ωµj)

+tr(ΩTΨtΣ
−1
y ΨT

t ΩΣj)
]
− 1

2

Nd∑
j=1

dj tr(Σ−1
ν Σj).

Then, we derivate L w.r.t. θ = {µν ,Σν ,Ω,Σ
−1
y }:

µν =

 Nd∑
j=1

dj

−1
Nd∑
j=1

dj(µj), (36)

Σν =

 Nd∑
j=1

dj

−1
Nd∑
j=1

dj
[
Σj + (µω − µj)(µω − µj)T

]
,

(37)

Ω =

[
Nt∑
t=1

djΨ
T
t Σ−1

y Ψt

]†  Nt∑
t=1

ΨtΣ
−1
y

Nd∑
j=1

djy
j
tµ

T
j


·

 Nd∑
j=1

dj
(
Σj + µjµ

T
j

)†
(38)

Σy =

 Nd∑
j=1

dj

−1

1
Nt

Nd∑
j=1

Nt∑
t=1

dj
[
yjt (y

j
t −ΨT

t Ωµj)
T + ΨT

t

+Ωµj(Ψ
T
t Ωµj − yjt )

T + ΨT
t ΩΣjΩΨT

t

]
(39)
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