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Educación a Distancia (UNED), 28004 Madrid, Spain (e-mail:

josema@dia.uned.es,sdormido@dia.uned.es).
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Abstract: Frequency domain is one of the most popular and powerful framework to design
control system. Usually this procedure is done using the open-loop transfer function. In this
work, it is explored the possibility to perform the controller design by closed-loop shaping. It is
analyzed how graphical representation and interactivity can be used in this framework to help
automatic control students during the learning process.
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1. INTRODUCTION

Nowadays, computers offer excellent graphical and inter-
activity functionalities, even small cellphones and tablets
can be used to play computer games. All these capabilities
can also be used in interactive teaching and design.

Control engineering is a multidisciplinary subject that is
part of the curriculum of aerospace, industrial, mechanical,
electrical and chemical engineering students. Typically,
an introductory undergraduate course on fundamentals
of control systems includes the following contents (Dorf,
1967; Astrom and Murray, 2012; Longchamp, 2006): math-
ematical models of dynamic systems, analysis of the time-
response of dynamic systems, analysis of the root locus,
analysis of the frequency response of dynamic systems,
design of basic feedback control systems using lead com-
pensators, lag compensators, lag-lead compensators, and
PID controllers.

Most of these contents have a nice an intuitive graphi-
cal representation: time series plot, poles-zeros map, root
locus, and frequency domain plot (Bode plot, Nyquist
plot, or Nichols plot). These diagrams are related to each
other. For example, a change in the position of a pole
of a linear system in the poles-zeros map produces a
modification of its time response, root locus and frequency
response. Likewise, a change in the corner frequency of a
pole in a frequency plot produces a change in the time
response, poles-zeros map and root locus. These charac-
teristics have been extensively used to design graphical
and interactive tools to design control systems and learn
automatic control (Longchamp, 2006; Astrom and Murray,
2012; Dormido et al., 2002; Piguet and Longchamp, 2006;
Guzmán Sánchez et al., 2012; Costa-Castelló et al., 2016;
Guzmán et al., 2016).

Between others the frequency domain is one of the most
powerful tools that is currently used in controller design

(Lewis, 2004; Sánchez-Peña and Sznaier, 1998). Using this
methodology, it is possible to analyze closed-loop steady-
state performance by analyzing the closed-loop frequency
response, to study the closed-loop stability by examin-
ing the open-loop frequency response, and to determine
robustness properties of the closed loop system through
this framework (using both the open-loop or the closed-
loop frequency response). At the same time, some time
domain characteristic like settling time and overshoot can
be indirectly obtained from the frequency domain analysis.
Finally, the well known limitations (Seron, 2010; Sánchez-
Peña and Sznaier, 1998) in the design are better described
in the frequency design.

Due to this nice properties in this work it is analyzed how
the frequency domain can be used to develop graphical
and interactive tools to design, learn and teach control
systems.

The paper is organized as follows, section 2 describes the
proposed controller architecture and the most important
control objectives. Section 3 presents fundamental con-
cepts used in open-loop shaping. Section 4 describes funda-
mental concepts behind the closed-loop shaping method-
ology based on controller parametrization. Finally section
5 contains some conclusions and future works.

2. PROBLEM FORMULATION
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Figure 1. Closed-loop Control System architecture
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Figure 1, shows the most popular control structure (Dorf,
1967; Astrom and Murray, 2012). In this scheme G(s)
stands for the plant (system to be controlled), C(s) is the
control system to be designed, Y (s) is the output signal to
be regulated, R(s) is the reference, E(s) is the error signal,
U(s) is the control action, N(s) is the measurement noise,
and D(s) and Di(s) are the output and input disturbances
respectively.

Most relevant control objectives to be achieved are that
the closed-loop system is stable and robust, the output
should track the reference, the controller system should
try to reject the disturbance effect and to be as insensitive
as possible to the measurement noise.

The first step to analyze the closed-loop system behavior
is obtaining the most relevant transfer functions. These
transfer function are:

• Open-loop transfer function: L(s) = C(s)G(s)
• Sensitivity transfer function: S(s) = 1

1+L(s)

• Complementary sensitivity transfer function: T (s) =
L(s)

1+L(s)

From these transfer functions it is possible to build the
relationship between the system inputs and most relevant
points in the control system (Figure 1):

[
Y (s)
E(s)
U(s)

]
=

[
T (s) G(s)S(s) S(s) −T (s)
S(s) G(s)S(s) −S(s) −S(s)

C(s)S(s) T (s) −C(s)S(s) −C(s)S(s)

] R(s)
Di(s)
D(s)
N(s)


Each transfer function has it own desired values. As an
example, it can easily analyzed that to force the output
to track the reference the complementary sensitivity func-
tion must be equal to 1, similarly to guarantee that the
disturbances are rejected the sensitivity function must be
equal to 0. These two values are compatible because it is
well known that: T (s) + S(s) = 1. Additionally in order
to make the system insensitive to noise it is necessary
that the complementary sensitivity function must be equal
to 0, which clearly it is not compatible with previous
statements.

In order to design controllers which can make the sys-
tem work as expected designers take profit from the fact
that the different signals in Figure 1 have different fre-
quency components. By default it is assumed that the
reference and the disturbances have frequency components
below ωband while the noise has frequency components
over ωnoise. This assumption induces a partition of the
frequency range which automatically defines the desired
value of most relevant transfer functions:

• Low-frequency range, this region corresponds to fre-
quencies in the range [0, ωband). In this frequency
range the goal is to track references and reject dis-
turbances, consequently T (jω) ≈ 1 and S(jω) ≈ 0
for ω ∈ [0, ωband).
• High-frequency range, this region corresponds to fre-

quencies in the range [ωnoise,∞). In this frequency
range the goal is not to amplify noise, consequently
T (jω) ≈ 0 and S(jω) ≈ 1 for ω ∈ [ωnoise,∞).
• Mid-frequency range, this region corresponds to fre-

quencies in the range [ωband, ωnoise). In this frequency

range no specific specifications are made, it corre-
sponds to a frequency range where the frequency
response changes from one value to another.

Previous specifications must be combined with stability
and robustness. In most systems robustness margins are
defined in the mid-frequency range.
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Figure 2. Open-loop transfer function, L(s), specifications
in the magnitude bode diagram.
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Figure 3. Open-loop transfer function, L(s), specifications
in the Nyquist diagram.

3. LOOP SHAPING

Most popular shaping methods are based on modifying the

controllers, C(s) = NC(s)
DC(s) , so that the open-loop transfer

function:

L(s) = C(s)G(s) =
NC(s)

DC(s)

NG(s)

DG(s)
.

takes the appropriate shape. Note that the poles and zeros
of C(s) are directly poles and zeros of L(s) so it is simple to
shape L(s) modifying/adding/removing poles of zeros in
C(s). This straightforward idea is the foundation of several
different design methods called loop shaping (Astrom and
Murray, 2012; Barratt and Boyd, 1992).



Figure 4. The Linear Control System Design (LCSD) (Diaz et al., 2017) main screen.

For a stable L(s), stability implies that the magnitude,
|L(jω)|, must be small (less than 1) when the argument,
∠L(jω), is more negative than -180o (gain margin) and
that must be greater than -180o when |L(jω)| is close to 1
(phase margin). In summary, a typical set of loop shaping
specifications are the following:

• |L(jω)| > Less for ω ∈ [0, ωband)
• |L(jω)| < Lnoise for ω ∈ [ωnoise,∞)
• −150o < ∠L(jω) < −30o for ω ∈ [ωband, ωnoise)

The values of Less and Lnoise are defined according to the
desired steady-state error in the low-frequency range and
the desired noise attenuation in the high-frequency range
respectively.

The loop shaping design can be performed in a Bode,
Nyquist, or Nichols diagram. In each representation, the
specifications can be associated to a different geometric
shape:

• Bode diagram: Figure 2 shows the structure of L(jω)
fulfilling the desired specifications diagram used for
loop-shaping over the Bode plot.
• Nyquist diagram: Figure 3 shows the structure of
L(jω) fulfilling the desired specifications diagram
used for loop-shaping over the polar plot.

In the polar plot those points that have the same
module are over the same circle centered in the origin.
Accordingly, to meet the specifications in [0, ωband)
the open-loop frequency response must be out of a
big circle of radius defined by the allowed steady-state
error, while in [ωband, ωnoise) the frequency response
must be inside a small circle with a radius defined by
the required noise attenuation.

Regarding to robustness, open-loop frequency re-
sponse must be out of a circle centered in (−1, 0) of
radius defined according to the robustness specifica-
tion.

As the polar plot combines phase and gain in
one diagram it is possible to simultaneously consider
closed-loop stability and robustness. The open-loop
frequency response must combine high gain with a
reduced phase to guarantee performance in a robust
manner.

One drawback about using the Nyquist plot for
loop shaping is that there is no straightforward con-
nection between the movements of the poles and zeros
of the controller and the changes in the curve at a
given point. Additionally, it needs to display values
with big module and others with small module. This
is, in general, difficult to be done because of the linear
nature of the Nyquist plot.

• Nichols diagram is another very popular diagram
where loop-shaping is performed. Quantitative Feed-
back Theory (QFT) (Houpis et al., 2005) is a tech-
nique based on this diagram.

Interactive software tools have proven to be useful tech-
niques with high impact on control education. This kind
of interactive tools have demonstrated in the past that
students learn in a much more active way. A very nice
example is The Linear Control System Design (LCSD)
(Diaz et al., 2017) Tool. It is an interactive tool for
analysis and design of linear control systems with special
emphasis on the open-loop shaping design. The software
tool is implemented in Sysquake, a MATLAB-like language
with fast execution and excellent facilities for interactive
graphics and is delivered as a stand-alone executable that
is readily accessible to students and instructors. Figure 4
shows its main screen, as it can be seen in just one screen
previous concepts are shown and the user can interactively
shape the open-loop transfer function.

Interactiviy has also been exploited in the QFT framework
(Diaz et al., 2005).



Figure 5. Waterbed analysis Interactive Tool : main screen (Costa-Castelló and Dormido, 2015).

4. CLOSED-LOOP SHAPING
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Figure 6. Sensitivity transfer function, S(s), specifications
in the magnitude bode diagram.

As it is shown in section 2, a closed-loop system has
different transfer functions, which are tightly coupled
between them, so it is necessary to select one of them
to simplify the design procedure. From the authors point
of view, an excellent candidate is the sensitivity function.
This function can be developed as:

S(s) =
1

1 + L(s)
=

1

1 + C(s)G(s)
(1)

=
Dc(s)DG(s)

Dc(s)DG(s) +Nc(s)NG(s)
. (2)

The sensitivity function has very interesting properties

• Usually, it is relative degree 0 and lims→j∞ S(s) = 1.
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Figure 7. Sensitivity transfer function, S(s), specifications
in the Nyquist diagram.

The closed-loop poles are directly the poles of the
closed-loop system while the zeros are the poles of the
plant and the poles of the controller.

• ‖S(s)‖∞ provides a quantitative robustness measure.
The distance between the open-loop frequency re-

sponse, L(jω), and the -1 point in the Nyquist plot
can be computed as:



Figure 8. Closed-loop Interactive loop-shaping tool : main screen.
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Figure 9. Closed-loop control system using affine
parametrization.

d (−1, L (jω))

= inf
ω
| − 1− L (jω) | = inf

ω
|1 + L (jω) |

=

[
sup
ω

1

|1 + L (jω) |

]−1
= ‖S(s)‖−1∞ .

• Waterbed effect. The sensitivity function fulfills the
following (Costa-Castelló and Dormido, 2015):∫ ∞

0

ln |S (jω) |dω = −κπ
2

+ π

nnmp∑
k

pk

where pk ∈ C+ are the unstable poles of L(s), nnmp

are the number of unstable poles of L(s) and κ =
lims→∞ sL(s).

The waterbed effect is a complex phenomena that
induces very important consequences over the sensi-
tivity function frequency response. Interactivity has
been used to introduce this concept to students with
excellent results (Costa-Castelló and Dormido, 2015).
Figure 5 shows the main screen of an interactive tool
used to introduce students to this concept.
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Figure 10. Closed-loop control system using affine
parametrization with additive uncertainty.

To shape the sensitivity function it is necessary to identify
its appropriate values in the different frequency ranges.

• Bode plot. In the low-frequency range the magnitude
of S(jω) must be below a certain value which directly
defines the desired steady-state error, while in the
high frequency range it must be below a given max-
imum value which corresponds to the noise amplifi-
cation and the robustness. Figure 6 shows a scheme
with the usual design.

In this simple magnitude Bode plot, performance,
robustness and bandwidth are simultaneously shown.

• Nyquist plot. In the low-frequency range S(jω) must
be inside a small circle centered at the origin with
a radius defined by the maximum allowed steady-
state error while in the high-frequency range should
be inside a circle corresponding to allowed resonances
(robustness) while converging to 1. Figure 6 shows a
scheme with the usual design.

An important drawback of shaping S(s) is that controller
parameters (gain, poles and zeros) are not easily connected
with closed-loop transfer function characteristics. A simple



way to address this issue is using the affine parametrization
(Sánchez-Peña and Sznaier, 1998) (Figure 9):

C(s) =
Q(s)

1−G(s)Q(s)
. (3)

This controller generates the following closed-loop transfer
functions:

T (s) =Q(s)G(s)

S(s) = 1−Q(s)G(s)

C(s)S(s) =Q(s)

with Q(s) is a filter to be designed. If both G(s) and
Q(s) are stable the closed-loop stability is guaranteed by
construction. As it can be seen the closed-loop poles are
the poles of G(s) and Q(s). Also the zeros of T (s) and
C(s)S(s) can be easily connected with the design filter
Q(s).

Another important characteristic is that this framework
allows to design controller for plants with additive uncer-
tainty, i.e:

G(s) = Gn(s) +W a
u (s)∆(s),

with Gn(s) being the nominal plant, W a
u (s) the uncer-

tainty weighting function and ‖∆(s)‖∞ < 1. For this type
of plant the robust stability condition is defined by:

‖C(s)S(s)W a
u (s)‖∞ = ‖Q(s)W a

u (s)‖∞ < 1. (4)

Which can be transformed in the following bounds over
the closed-loop frequency response:

|Q(jω)| < 1

|W a
u (jω)| ∀ω. (5)

Currently, the authors are developing an interactive tool,
shown in Figure 8, which will allow the interactively design
controller using the framework described in this section.
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5. CONCLUSIONS

In this work the use of loop shaping and closed-loop shap-
ing techniques using interactive tools has been analyzed
and compared. Although the most people use open-loop
loop shaping, the authors suggest a new paradigm where
the shaping problem is performed over the closed-loop
transfer function.

The authors are currently developing a new interactive
tool which will allow to design control system using closed-
loop shaping. The tool will allow to deal with nominal
performance, nominal stability, robust stability and robust
performance in a homogeneous framework.
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