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Abstract

A simple variant of the BDDC preconditioner in which constraints are imposed on a selected set of subobjects
(subdomain subedges, subfaces and vertices between pairs of subedges) is presented. We are able to show

that the condition number of the preconditioner is bounded by C
(
1 + log(L/h)

)2
, where C is a constant,

and h and L are the characteristic sizes of the mesh and the subobjects, respectively. As L can be chosen
almost freely, the condition number can theoretically be as small as O(1). We will discuss the pros and cons
of the preconditioner and its application to heterogeneous problems. Numerical results on supercomputers
are provided.
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1. Introduction

It is well-known in the literature [12, 13, 14, 16, 8, 7] that the condition number of the BDDC method

and the closely related FETI-DP method is bounded by κ ≤ C
(
1 + log(H/h)

)2
, where C is a constant, and

H and h are the characteristic sizes of the subdomain and the mesh, resp. Consequently, when the mesh
and its partition are fixed, users can only vary the number of constraints to adjust the convergence rate.

Traditionally, these constraints are values at subdomain corners, or average values on subdomain edges or
faces. In the perturbed formulation of BDDC [6, 5], any combination of vertex, edge or face constraints can
be used. Normally, these combinations provide enough options for users to choose their desired convergence
rate. However, for difficult problems, such as the ones with heterogeneous diffusion coefficients, see, e.g.,
[1], the convergence of the BDDC method [9] can be unsatisfied even if all possible constraints are used.

In this work, we propose to impose constraints on coarse objects (subdomain subedges and subfaces,
and vertices between subedges) that are adapted to the local mesh size and to the user’s desired rate of
convergence. We refer to this new variant as BDDC-SO. If L is the characteristic size of the objects, we can
prove that the conditioned number κ of the BDDC-SO preconditioned operator is bounded by

κ ≤ C
(
1 + log(L/h)

)2
.

As L can be as small as h, there is no restriction in the rate of convergence of BDDC-SO. However, the
trade-off is having to solve larger coarse problems. Therefore, the BDDC-SO can be seen as a standalone
method for small to medium problems (tested up to 260 million unknowns on 8K processors), or as a proven,
simple approach to improve the rate of convergence. In addition, BDDC-SO is perfectly robust w.r.t. the
variation of the diffusion coefficient when coarse objects are chosen such that the coefficient associated with
each object is constant or varies mildly. BDDC-SO also has great potentials to be extended to multi-level.
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2. Model problem and abstract multispace BDDC framework

Let Ω be a bounded domain in Rn, n = 2, 3. We consider the Poisson’s equation with homogeneous
Dirichlet conditions. Its weak formulation reads as follows: find u(x) ∈ H1

0 (Ω) such that

a(u, v) = 〈F, v〉, ∀v(x) ∈ H1
0 (Ω), (1)

where a(u, v) :=
∫

Ω
∇u · ∇v dx, 〈F, v〉 :=

∫
Ω
f(x) v(x)dx.

Let T be a shape-regular mesh of Ω with characteristic mesh size h, and U ⊂ H1
0 (Ω) be the corresponding

Finite Element (FE) space of continuous piecewise linear functions that vanish on ∂Ω. Then the discrete
problem associated with (1) is to find u ∈ U such that

a(u, v) = 〈F, v〉, ∀v ∈ U. (2)

We quote the following definition of the abstract multispace BDDC preconditioner from [15].

Definition 1. Assume that a(·, ·) is defined and symmetric semipositive definite on some larger space W ⊃
U and there exist subspaces Vk ⊂ W and projections Qk : Vk → U , k = 1, . . . , N , such that Vk are a-
orthogonal, i.e., Vk ⊥ Vl for k 6= l, a(·, ·) is positive definite on each Vk, W̃ =

∑N
k=1 Vk ⊃ U and

∀u ∈ U :

[
u =

N∑
k=1

vk, vk ∈ Vk

]
⇒ u =

N∑
k=1

Qkvk.

Then the abstract multispace BDDC preconditioner B : r ∈ U ′ → U is defined by

B : r 7→ u =

N∑
k=1

Qkvk, vk ∈ Vk : a(vk, zk) = 〈r,Qkzk〉, ∀zk ∈ Vk.

3. Balancing domain decomposition by constraints associated with subobjects

We will present the formulation of our proposed BDDC preconditioner using the abstract BDDC frame-
work introduced in Section 2. First, we consider a partition Θ = {Ωi}Ni=1 of Ω into non-overlapping open
subdomains. We further assume that every subdomain Ωi ∈ Θ is a union of elements in T and is connected.
Let Γ be the interface of Θ. For each Ωi, let Wi be the space of FE functions which vanish on ∂Ω ∩ ∂Ωi.
We define W = W1 × · · ·WN and note that functions in W can be discontinuous across Γ.

Let aΘ(·, ·) be the extension of a(·, ·) on W associated with Θ: aΘ(u, v) =
∑

Ωi∈Θ

∫
Ωi
∇u∇vdx. Denote

by UI the space of functions in U that are zero on Γ. Let P be the aΘ-orthogonal projection from W onto
UI . The functions in (I − P )W are called discrete harmonic. They are aΘ-orthogonal with functions in UI
and they possess the smallest energy among functions in W having the same values on Γ.

Given a mesh partition, the BDDC method is characterized by the selection of certain coarse degrees of
freedom and some weighting operator that projects functions in W onto U . Coarse degrees of freedom are
usually defined as functionals, which are values at or averages over some geometrical coarse objects. In the
standard BDDC method, these coarse objects are vertices and/or edges and/or faces of subdomains. For
systematic ways of classifying degrees of freedom into objects, we refer the reader to [10, 1].

In this work, we propose to further partition edges and faces of the subdomains into subedges, subfaces
and vertices between pairs of subedges. One way to obtain this is to partition each subdomain Ωi into smaller

subsubdomains. These new subsubdomains together form a new partition Θ̂ = {Ω̂j}N̂j=1 of Ω. Denote by

Γ̂ the interface of Ω̂, we emphasize that Γ̂ ⊃ Γ. The BDDC-SO method selects objects from the set of
subdomain vertices, edges and faces of Θ̂ to define its coarse degrees of freedom. A simple example in 2D is
illustrated in Figure 1. On the left, standard coarse objects consisting of a vertex and four edges are shown.
On the right, obtained from a finer partition {Ω̂j}8j=1, we have 8 subedges and 5 vertices between them. We
emphasize that one normally does not have to impose constraints on all available objects.
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Figure 1: Standard objects (left) and subobjects (right): vertices and (sub)edges are marked by crosses and bold shade.

Remark 2. The decision to break each original subdomain Ωi into smaller subsubdomains Ω̂j can be made
locally in practice. However, in order to classify degrees of freedom (DOFs) into subobjects, see, e.g., [11, 1],

one needs to know the list of subsubdomains Ω̂j each interface DOF belongs to. In a distributed-memory
context, this can be obtained after a cheap nearest-neighbor communication sweep among original subdomains.

Let W̃ ⊂W be the BDDC space (of BDDC-SO) consisting of functions in W that have common values
(continuous) at the selected coarse degrees of freedom. As we use a finer partition of the interface, the
BDDC space associated with BDDC-SO is generally a subspace of the one associated with the standard
BDDC.

Next, let E be the weighting operator (projection) from W̃ onto U , that takes weighted average of
contributions from subdomains, more precisely

Eu(ξ)
.
=
∑
i: Ωi3ξ

δ†i (ξ)ui(ξ), where δ†i (ξ)
.
=

card({j : Ω̂j 3 ξ and Ω̂j ⊂ Ωi})
card({j : Ω̂j 3 ξ})

. (3)

Here card(S) denotes the cardinality of the set S. In general, the weight δ†i (ξ) defined by (3) is the same as
the usual multiplicity weighting in, e.g., [16]. However, for some (but not all) DOFs on the interface of the

partition Θ̂, the two weightings can be different. An example of such a DOF is depicted in Figure 1 with a
big solid dot and labeled as ξ. For this particular DOF,

δ†1(ξ) =
card({1, 2})

card({1, 2, 5})
= 2/3,

while its multiplicity weight would be 1/2.

It can be checked that a(·, ·) = aΘ(·, ·), V1 = UI , V2 = W̃ , Q1 = I and Q2 = (I − P )E satisfy the
assumptions in Definition 1; see, e.g., [15].

4. Convergence Analysis

In order to establish the condition number bound for the BDDC-SO preconditioner, we consider an
auxiliary BDDC preconditioner, BDDC-A. This preconditioner is constructed similar to BDDC-SO using
the abstract multispace framework introduced in Section 2. However, there are three fundamental differences.

First, BDDC-A is defined on the partition Θ̂ = {Ω̂j}N̂j=1 introduced in Section 3 to form subobjects. This
partition has characteristic size L. The new partition leads to a larger space of discontinuous functions
Ŵ ⊂ W and a different projection P̂ onto the space of inner functions associated with Θ̂. Second, coarse
objects of BDDC-A are chosen such that it shares the same BDDC space W̃ with BDDC-SO. This is done
as follows: i) on Γ, subobjects of BDDC-SO, which are associated with regular geometrical objects (vertices,

edges and faces of subsubdomains Ω̂j), are selected, ii) on Γ̂\Γ, each degree of freedom is treated as a vertex.
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In other words, we impose full continuity on the part of the interface outside of Γ. Third, the weighting
operator Ê : W̃ → U is the standard counting weighting operator defined by

Êu(ξ)
.
=

∑
j: Ω̂j3ξ

δ̂j(ξ)uj(ξ), where δ̂j(ξ)
.
=

1

card({j : Ω̂j 3 ξ})
. (4)

From (3) and (4), it should be noted that Êu = Eu for all u ∈ W̃ .

Let aΘ̂(·, ·) be the extension of aΘ(·, ·) on Ŵ associated with Θ̂. The following is our main result.

Theorem 3. The condition number κ of the BDDC-SO preconditioner is bounded by

κ ≤ max

{
sup
w∈W̃

‖(I − P )Ew‖aΘ
‖w‖aΘ

, 1

}
≤ max

{
sup
w∈W̃

‖(Î − P̂ )Êw‖aΘ̂
‖w‖aΘ̂

, 1

}
≤ C(1 + log(L/h))2. (5)

Proof. Since the formulation of BDDC-SO follows the abstract framework of multispace BDDC, its con-
dition number κ can be bounded as in the first inequality in (5), see [13, 15]. In addition, as BDDC-A is
a standard BDDC preconditioner with regular coarse objects, standard weighting operator, and defined on
the partition Θ̂ having characteristic size L, the third inequality in (5) is a standard result (see [13, 15]).
We only need to prove the second inequality in (5).

First, we note that w ∈ W̃ can be discontinuous across Γ but is always continuous in each Ωi. Therefore,
‖w‖aΘ = ‖w‖aΘ̂ for all w ∈ W̃ . Second, as P and P̂ are projections onto the space of inner functions

that respectively vanish on Γ and Γ̂ ⊃ Γ, we have (I − P )Ew|Γ = Ew|Γ = Êw|Γ = (Î − P̂ )Êw|Γ. On the
other hand, (I − P )Ew is discrete harmonic in Ω with partition Θ. This implies that it has the smallest
aΘ(·, ·)-norm among functions in W which share its value on Γ. In other words,

‖(I − P )Ew‖aΘ ≤ ‖(Î − P̂ )Êw‖aΘ = ‖(Î − P̂ )Êw‖aΘ̂ .

Here, we note that the last equality is due to the fact that (Î− P̂ )Êw is continuous in each Ωi. This finishes
the proof.

Remark 4. The BDDC-SO preconditioner can be extended to the case with variable diffusion coefficients,
i.e., when the bilinear form becomes a(u, v) =

∫
Ω
α∇u · ∇v dx, where α varies from element to element.

As our analysis relies on the convergence of the auxiliary preconditioner BDDC-A, the subobjects need to
be chosen in such a way that the coefficient has to be constant in each subsubdomain Ω̂j. In addition,

the weighting operator E in (3) needs to be updated to incorporate α with δ̂i(ξ)
.
=
(∑

j: Ω̂j3ξ, Ω̂j⊂Ωi
αj

)
/(∑

j: Ω̂j3ξ αj

)
. We have explored this direction and obtained first results for multi-material problems in [1].

Remark 5. As the proof of Theorem 3 is based on the standard result for an auxiliary BDDC precondi-
tioner, we need to fulfill all requirements of that result [12, 16]. Among these requirements, it is crucial to
have enough primal constraints (the constraints we actually impose on subobjects) so that for every pair of
neighboring subsubdomains, there exists an acceptable path, see [12, 16, 11, 1]. In general, we can guarantee
the existence of acceptable paths by choosing either all edge or all face subobjects on the original interface.
Using all the possible vertex constraints also leads to a scalable preconditioner but is less common in practice
due to its poor performance, especially in 3D, see, e.g.,[16]. For algorithms to find close-to-minimal set of
primal constraints, we refer the reader to [11, 1].

5. Numerical Experiments

The standard BDDC and BDDC-SO preconditioners have been implemented in FEMPAR, a parallel frame-
work for the massively parallel FE simulation of multiphysics problems governed by PDEs [4, 3]. We will
test these preconditioners on MareNostrum 4 at Barcelona Supercomputing Center on the Poisson problem
(1) with f = 1, Ω the unit cube, and Dirichlet boundary conditions imposed on the whole boundary of Ω.
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number of iterations size of the coarse problem

Local problem size (k) 4 8 16 24 32 4 8 16 24 32
BDDC(vef) 5 6 9 10 11 5,859 5,859 5,859 5,859 5,859
BDDC-SO(vef) 4 4 4 4 4 5,859 32,319 150,039 354,159 532,269
BDDC-SO(vf-min) 5 4 4 4 4 2,304 13,259 53,919 146,979 236,439

Table 1: Number of PCG iterations required by BDDC and BDDC-SO and associated size of the coarse problem for increasing
local problem sizes k.

5.1. A preconditioner with O(1) condition number

In the first experiment, which is a proof of concept of the result in Theorem 3, we solve the problem on
a set of uniform meshes with 10k × 10k × 10k hexahedra, where k = 4, 8, 16, 24, 32. We use 103 processors,
each of which is responsible for a local problem of size k3 cells. In Table 1, we report the number of PCG
iterations required to reduce the 2-norm of the residual by a factor of 106 using BDDC and BDDC-SO
preconditioners. For both of them, vertex, edge and face constraints (vef) will be used. For BDDC-SO, as
the meshes get finer and finer we will use smaller subobjects to keep the ratio L/h constant (L/h = 4).
We can see that, even when all the possible constraints are used, the number of iterations of BDDC(vef)
method increases as the local problem size increases. The number of iterations of BDDC-SO(vef), on the
other hand, remains constant throughout. In addition, even when we drop edge constraints and only use
half of the face constraints (vf-min), the number of iterations is still the same except for k = 4. These
results confirm the estimate in (5) and indicate that one does not need to impose constraints on all available
subobjects to achieve the desired rate of convergence.

5.2. 3D channels problem

In practice, we rarely want to keep L/h small at all cost as in Section 5.1 because the size of the coarse
problem could be prohibitively large. In many situations, an introduction of a relatively small number of
subobjects can greatly improve the convergence. In order to demonstrate that, we consider (1) with the
modification described in Remark 4. We assume that the material has the background with α = 1 and a
system of channels with high diffusion coefficient α = 10`, ` = 2, 4, 6, 8, see Figure 2 (left). First, we test the
robustness of the two preconditioners when solving a small problem with the mesh of 40×40×40 hexahedra
partitioned into 4×4×4 subdomains. For BDDC-SO, each subdomain is split into two smaller subdomains,
one associated with the background and the other associated with the channels. These smaller subdomains
form the fine partition {Ω̂j} to define the subobjects. In Figure 2 (right), we plot the number of PCG
iterations required by standard BDDC using all possible vertex, edge and face constraints (BDDC(vef)),
and BDDC-SO using only face constraints (BDDC-SO(f)) to reduce the 2-norm of the residual by a factor
of 106. We can see that while the number of iterations of BDDC(vef) increases significantly as the contrast
(`) increases, the number of iterations of BDDC-SO(f) is constant throughout. This verifies that BDDC-SO
can be very robust for heterogeneous material problems.

Next, we consider ` = 8. We build uniform meshes with 32m× 32m× 32m hexahedra. The largest mesh
has more than 260 million grid points. These meshes are partitioned into regular partitions of m×m×m
subdomains, for m = 2, 4, 6, 8, 10. The subobjects of BDDC-SO are defined similarly. In Figure 3, we present
the weak scalability study in both PCG number of iterations and time (in seconds) of standard BDDC and
BDDC-SO. For each preconditioner, we consider two variants: one using vertex and edge constraints (ve),
the other using vertex, edge and face constraints (vef). We can observe excellent weak scalability and
robustness of BDDC-SO (bottom row). On the other hand, the performance of standard BDDC (top row)
varies widely as the number of processors increases. BDDC-SO methods are also much faster. They require
less than 21 iterations and less than 9 seconds to converge. Standard BDDC methods, on the other hand,
need more than 1500 iterations and more than 300 seconds to converge when m = 6 (512 subdomains).
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Figure 2: 3D channels problem: channel of high coefficient (left) and contrast robustness of BDDC and BDDC-SO (right).
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Figure 3: Weak scalability in number of PCG iterations (left) and in time in seconds (right).

6. Conclusion

We have introduced a new variant of BDDC preconditioner called BDDC-SO, where constraints are
imposed on a selected set of subobjects: subedges, subfaces and vertices between subedges of subdomains.
We are able to show that the new preconditioner has superior rate of convergence: the condition number
depends only on the ratio of the characteristic sizes of the subobjects and the mesh. In addition, the proposed
preconditioner is very robust w.r.t. the contrast in the physical coefficient. Numerical results verify these
for problems with up to 260 millions of unknowns solved on 8K processors. However, the advantages come
at the cost of solving larger coarse problems. Even though one does not need to impose constraints on all
available subobjects to maintain the logarithmic bound of the condition number (only needs to have enough
subobjects to guarantee the existence of the so-called acceptable paths between neighboring fine subdomains,
see [12, 10, 1]) the size of the coarse problem of BDDC-SO can be significantly larger than that of BDDC.
Therefore, two-level BDDC-SO is only suitable for small to medium size problems. In order to use BDDC-
SO for large scale problems, one needs to extend BDDC-SO to its multi-level version, see [17, 15] for the
formulation of the multi-level BDDC method, and [2] for its extreme scale HPC implementation. Indeed,
BDDC-SO is very appealing for the multi-level implementation approach in [2] as users have great flexibility
in defining subobjects at all coarser levels to have suitable coarser problem sizes and more balanced workload
among levels.
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