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Abstract

Nowadays, microcontrollers used in critical real-time embedded systems use

mostly one core, but are being replaced with more powerful hardware plat-

forms that implement multicore systems. Among the latter, it is possible to

identify in the space domain, for instance, the Cobham Gaisler NGMP de-

veloped for the European Space Agency (ESA), which is built with a SPARC

quad-core processor that has a two-level cache hierarchy. For what concerns

automotive and avionics environments, very flexible platforms like the Zynq

UltraScale+ EG one has been regarded as a very powerful platform for these

high-performance safety-critical systems. In fact, the aforementioned Zynq

board implements two multicore clusters, namely an ARM dual-core Cortex

R5 and an ARM quad-core Cortex A53, as well as a GPU and an FPGA.

Due to the industrial trend towards the deployment of autonomous driving

in the automotive domain and unmanned vehicles in the avionics domain,

boards with such multicore systems are very promising.

The use of multicores brings a concern related to contention (interference) in

the access to shared hardware resources, which challenges timing verification

needed to prove that all critical real-time tasks will execute by their respect-

ive deadlines. In particular, Worst-Case Execution Time (WCET) estimates

for tasks need to account for the impact in execution time that contention

in shared resources may have. While such analysis has been performed on

relatively-simple multicores, like the NGMP, it needs to be carried out on the

more powerful and complex Zynq UltraScale+ EG platform. In particular,

it is required to analyze the different sources of interference for the multicore
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clusters and how tasks need to be consolidated so that resource sharing is

performed efficiently across tasks, thus minimizing the impact on execution

time for the most critical real-time tasks.

In this Master thesis work, the measurement-based methodology developed

at Barcelona Supercomputing Center (BSC) to quantify the interference that

arises across cores due to contention in shared hardware resources, is ported

from the (simple) NGMP platform to each of the computing clusters of the

Zynq UltraScale+ EG platform. Such methodology consists in the use of

small microbenchmarks that aim at stressing specific shared hardware re-

sources to create very high contention. Hence, this thesis investigates how to

produce high contention in the shared hardware resources of the Zynq UltraS-

cale+ EG platform, thus integrating those concepts working on the SPARC

V8 instruction set of the NGMP to the ARM v7 and ARM v8 instruction sets

of the Zynq platform. This requires porting and adapting microbenchmarks

written partly in assembly code, verifying the Performance Monitoring Unit,

and analyzing the sources of contention. As final step, guidelines are devised

to properly consolidate software to be implemented on the target platform

in order to contain as much as possible interference on critical tasks.
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Sommario

Oggigiorno, i microcontrollori utilizzati nei sistemi conosciuti come critical

real-time embedded systems utilizzano principalmente un core, ma tendono

sempre di più ad essere sostituiti con piattaforme hardware più potenti che

implementano sistemi multicore. Tra questi ultimi, è possibile identificare

nel dominio spaziale, per esempio, il NGMP Cobham Gaisler sviluppato per

l’European Space Agency (ESA), che è stato sviluppato con un processore

quad-core SPARC con una gerarchia di cache a due livelli. Per quanto ri-

guarda l’ambiente automotive e quello avionico, piattaforme molto flessibili

come quella denominata Zynq UltraScale + EG sono state considerate come

piattaforme molto potenti per questi specifici sistemi embedded dal punto di

vista della sicurezza ad alte prestazioni. Infatti, la Zynq board menzionata

precedentemente implementa due cluster multicore, cioè un ARM dual-core

Cortex R5 e un ARM quad-core Cortex A53, oltre a una GPU e un FPGA. A

causa della tendenza industriale verso lo sviluppo della guida autonoma nel

settore automobilistico e dei veicoli senza conducente nel settore dell’avionica,

le piattaforme con tali sistemi multicore sono molto promettenti.

L’uso di multicore pone un problema legato alla contesa, ovvero legato all’

interferenza, nell’accesso alle risorse hardware condivise, il quale mette in dis-

cussione la verifica dei tempi necessaria per dimostrare che tutte le attività

che necessitano di essere calcolate in tempo reale (critical real-time tasks)

verranno eseguite rispettando le rispettive scadenze. In particolare, le stime

del Worst-Case Execution Time (WCET) per le attività devono tenere conto

dell’impatto nei tempi di esecuzione che può avere la contesa nelle risorse
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condivise. Mentre tale analisi è stata eseguita su multicores relativamente

semplici, come il NGMP, essa deve essere eseguita anche sulla più potente

e complessa piattaforma Zynq UltraScale+ EG. In particolare, è necessario

analizzare le diverse fonti di interferenza per i cluster multicore e come le

attività (tasks) devono essere consolidate in modo che la condivisione delle

risorse sia eseguita in modo efficiente tra le attività, riducendo cos̀ı l’impatto

sui tempi di esecuzione per le attività più critiche in tempo reale.

In questo lavoro di tesi di Master, la metodologia basata sulla misurazione svi-

luppata presso l’azienda Barcelona Supercomputing Center (BSC) per quan-

tificare l’interferenza che si genera tra i core a causa della contesa nelle risorse

hardware condivise, viene portata dalla (semplice) piattaforma NGMP a cias-

cuno dei cluster di calcolo della piattaforma Zynq UltraScale+ EG. Tale met-

odologia consiste nell’uso di piccoli microbenchmark che mirano a stressare

specifiche risorse hardware condivise per creare una controversia molto alta.

Quindi, questa tesi indaga su come produrre alta contesa nelle risorse hard-

ware condivise della piattaforma Zynq UltraScale+ EG, integrando cos̀ı quei

concetti che lavorano sul set di istruzioni SPARC V8 dell’NGMP ai set di

istruzioni ARM v7 e ARM v8 della piattaforma Zynq. Ciò richiede il porting

e l’adattamento dei microbenchmark scritti in parte in codice assembly, la

verifica dei Performance Monitoring Counters e l’analisi delle fonti di con-

flitto. Come passo finale, sono state ideate delle linee guida per consolidare

correttamente il software da implementare sulla piattaforma di destinazione

al fine di contenere il più possibile l’interferenza nelle attività critiche.
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Chapter 1. Introduction

Chapter 1

Introduction

Nowadays, the demands of high-performance systems are increasing consist-

ently in automotive and avionics domains since industry is adopting plat-

forms that are able to perform increasingly complex functionalities in real-

time. For instance, those functionalities related to autonomous driving in

automotive and unmanned vehicles in avionics require capabilities for object

detection, trajectory prediction, navigation and routing among others, and

those capabilities have strict (real-time) deadlines. In fact, many of those

systems can be classified as Safety critical systems, meaning that a failure in

those systems can cause casualties (or severe injuries), harm the environment

or compromise the integrity of the system itself [1]. Failures can be of many

types, being them classified mostly as functional and timing. Functional

failures correspond to the cases when the system does not perform its expec-

ted activities or leads to wrong results (e.g. not braking to avoid running

over pedestrians). Timing failures correspond to the cases when the system

performs its expected activities too late (e.g. braking too late to avoid the

collision against pedestrians). The latter are the focus of this Thesis.

In this chapter, an overall introduction of the work done for this Master

thesis is given, defining in particular objectives, procedures and work plan

followed. Afterwards, it’s explained the Master thesis’ structure, highlighting

the issues and the arguments addressed in each chapter.

1 Lorenzo G. Toscano



Chapter 1. Introduction

1.1 Objectives

In such Critical Real-Time Embedded Systems (CRTES), it’s critical and

mandatory to ensure safety in real-time. Due to the need of increasingly

high performance, multi-core processors have been adopted to perform all

those critical activities within expected deadlines since they provide suffi-

cient levels of performance. However, several challenges arise on the timing

behavior due to the effect of inter-task interference in such systems. In fact,

when two or more cores are accessing the same hardware shared resources,

contention is experienced, reducing the overall performance of the system.

Contention has a direct effect on the execution time of tasks, which may in-

crease. Hence, real-time systems must undergo a validation step to assess to

what extent execution time may grow, so that the platform (including hard-

ware and software) can be guaranteed to perform all its activities correctly

and timely.

So far, such assessment has been performed mostly on relatively simple mul-

ticores such as the Infineon AURIX TC27x architecture for the automot-

ive domain or the Cobham Gaisler LEON4 processor for the space domain.

However, autonomous navigation in avionics and automotive requires the

adoption of further complex platforms with larger core counts and diverse

computation resources (e.g. time-predictable cores, high-performance cores,

accelerators).

In this context, the goal of this Master thesis is to assess whether the Zynq

UltraScale+ EG platform, a high-performance platform of the interest for

several CRTES domains, fits the needs to execute safety-critical real-time

software. In particular, this thesis aims at revealing how much execution

time may grow due to the contention on the access to shared hardware re-

sources to understand whether it is a suitable platform (and for what type

of applications), and how software must be consolidated to make an effective

use of the platform.

In order to obtain such information, the aim is generating as much pressure

Lorenzo G. Toscano 2



Chapter 1. Introduction

as possible on specific resources of the Zynq UltraScale+ EG platform with

stressful workloads provided by specific codes that are devised for such pur-

pose. Such workloads are intended to expose how much execution time grows

when accessing different shared hardware resources with different types of op-

erations. In order to maximize the stress on these specific resources, different

types of operations and particular parameters are needed to be employed and

the details will be addressed in chapter 5.

In particular, the target of this thesis has been assessing how much such

inter-task interference (contention) can affect the performance of the Zynq

UltraScale+ EG platform, focusing on the memories cache of both Cortex

A53 and Cortex R5 processors, which are implemented in the aforementioned

multi-core system. Therefore, execution time has been studied and observed

under specific experiments, which aim to stress the cache levels and memory

hierarchy implemented in the target processor emulating potential contention

scenarios that may arise when consolidating tasks onto this processor.

1.1.1 Requirements

In order to achieve the objectives explained before, some requirements have

to be fulfilled by the codes that are devised for the Zynq UltraScale+ EG

platform:

� Algorithms have to be written in C/C++ and assembly programming

languages. This facilitates binary generation and guaranteeing that

binaries perform exactly their intended activities.

� Simplicity and flexibility, meaning that they can easily be implemented

in other processor architectures with minimal modifications and, as

done in this thesis, can be easily used in different cores with different

cache hierarchies with negligible additional effort.

� The amount of memory that their code occupies in the levels caches of

the target architecture has to be minimal, so that contention can be

3 Lorenzo G. Toscano



Chapter 1. Introduction

studied with the data patterns accessed without side effects caused by

the code footprint.

1.2 Activities

In this Master thesis, the following activities were carried out in order to

perform the desired work on the target platform:

� Definition of the work to be done, which is divided into the following

steps:

– Understand clustered architectures and I/O resources implemen-

ted on the Zynq UltraScale+ EG platform.

– Understand the timing behavior of such architecture, focusing on

the cluster-related resources and/or I/O interfaces.

– Build on existing debugger for Zynq to run experiments and collect

measurements from such platform.

– Devise a set of micro-benchmarks1 that provides empirical evid-

ence of the worst-case and average contention effects.

� Study a priori of the materials given by Barcelona Supercomputing

Center (BSC). In particular:

– Background on the LEON architecture, the AMBA bus interface

and the GRMON interface, including the access to the relevant

debug/system software.

– Background on the Zynq UltraScale+ EG architecture.

– Microbenchmarks. Research papers describing what they do and

how they do it.

1The starting point was a set of the already existing micro-benchmarks for another

architecture, thus using different assembler instructions and different processor parameters.

Lorenzo G. Toscano 4



Chapter 1. Introduction

1.3 Work plan

The development of this work was organized in order to conclude it in four

months approximately, following the schedule represented below:

� Reading documentation and getting familiar with the hardware plat-

form: March

� Porting and development of microbenchmarks: April - May

� Evaluation and Master thesis writing: June

By the way, further time was needed to perform and conclude correctly all

the steps described so far. Therefore, this led both to perform experiments

on the target platform and to write this Master thesis also in July.

Details on the schedule described so far are addressed in the section below,

underlining the names of each task and the time spent to complete them.

1.3.1 Gantt chart

The tasks followed and performed for this Master thesis are shown in the

Gantt chart represented in figure (1.1), while in table (1.1) are represented

the names of each of them.

In the last week of February, it was defined the work plan of this Master

thesis described previously in section (1.3) (Work plan definition) and mater-

ials were provided by BSC in that period. Such documentation was studied

from the beginning of March until the end of the same month. As shown

in the chart (1.1), the largest part of the time was spent to devise the mi-

crobenchmarks to be performed on the single cores, which was approximately

between the beginning of April and the middle of May. Then, experiments

on single cores were ran between middle of May until almost the end of

June, while the final ones were performed on multi-cores until middle of July.

5 Lorenzo G. Toscano



Chapter 1. Introduction

Figure 1.1: Gantt chart

# Tasks names

1 Work plan definition

2 Arguments definition

3 Work time definition

4 Materials provided by BSC

5 Study before implementations

6 Microbenchmark study

7 SPARC instruction set study

8 Porting from SPARC to ARM processor architecture

9 Microbenchmark implementation

10 Tests performed on single cores

11 Experiments performed with all the cores in parallel

Table 1.1: Gantt chart legend

Lorenzo G. Toscano 6



Chapter 1. Introduction

1.4 Master thesis structure

Next, the structure of this Master thesis is described.

In the second chapter, some background on key aspects of this thesis

are provided. This includes details on how timing validation is performed

for CRTES, some information on cache memories structure and their way

of working, as well as an overview of the main features of the processor

architecture employed by the Zynq UltraScale+ EG platform.

For what concerns the third chapter, it’s addressed the state-of-the-

art on micro-benchmarks, with particular emphasis on those devised to

stress specific timing behavior relevant for timing analysis.

The fourth chapter focuses on describing the methodologies chosen to

perform the experiments on the target platform. In particular, it’s explained

the general working principle for which the micro-benchmarks are devised,

and the general schematic of the ones employed in this work are described

in details. Moreover, it’s described how Performance Monitoring Counters

(PMCs) work in the processors like ARM architecture and which ones,

relevant for this thesis, are defined in the architectures of the target platform.

In the fifth chapter, the main part of the codes developed and used

for running all the experiments on single cores are described in details, start-

ing from the main function of the whole code until the algorithm employed

to exploit the PMCs implemented in the aforementioned ARM architectures.

The sixth chapter collects the results obtained with all the experi-

ments performed, considering both the ones obtained on single cores and

the ones obtained when all the cores are executing microbenchmarks at the

same time. Results are analyzed conveniently reaching relevant research

7 Lorenzo G. Toscano



Chapter 1. Introduction

conclusions.

Finally, in seventh and eighth chapters cost assessment and conclusions are

given respectively.

Lorenzo G. Toscano 8



Chapter 2. Background

Chapter 2

Background

2.1 Timing analysis

The estimation of the WCET of real-time programs has been investigated for

decades. Two main paradigms can be found in the literature on how to estim-

ate the WCET: static timing analysis (STA) and measurement-based timing

analysis (MBTA). STA relies on building a timing model of the processor

on which to perform abstract interpretation of a structural representation

of the program to be analyzed to predict how much each instruction (and

hence the whole program) can take to execute, without actually executing

the program.

In particular, the timing model of the target processor architecture is built

identifying each hardware component, as well as their behavior and relation-

ships in what refers to timing behavior. For instance, cache memories are

modelled, including their contents and so, whether a given access would hit

or miss. Then, the representation of the source code of the program (in the

form of assembly instructions) is analyzed to model both, the execution path

flow and the data flow of the program, so that STA can account for the

behavior of the different execution paths and potential data values.

9 Lorenzo G. Toscano



Chapter 2. Background

In general, abstract interpretation builds upon unknown information such as,

for instance, unknown input data values, which may affect memory access

patterns and execution paths. Hence, this leads to an explosion of potential

states that can be reached after the execution of every instruction. STA

makes the problem tractable by making “safe” (i.e. pessimistic) assumptions

that allow merging different states into few ones that lead to the highest

execution times possible. For instance, if the address accessed by a given

load instruction cannot be determined, instead of modelling all potential

states corresponding to all potential addresses that could be fetched, STA

typically assumes that the access is a miss, that no useful data is fetched

into cache, and that some cache contents are evicted (either a cache line or

a full cache way). Overall, STA trades complexity and pessimism to keep

computational cost tractable. A survey on timing analysis, with particular

emphasis on STA, can be found in [2].

However, STA has increasing difficulties with increasingly complex hardware,

as analyzed in [3]. In particular, simplifying the analysis process by merging

states leads to potentially high pessimism. In general, the higher the hard-

ware complexity (e.g. by using cache memories and multicores), the larger

the number of potential states and execution time variation across states, and

hence the higher the pessimism to merge states. Moreover, processor timing

models are typically derived from processor specifications, which may have

thousands of pages, which jeopardizes the reliability of the timing models.

Moreover, those specifications are often subject to errata, thus increasing the

uncertainty on the reliability of STA [3].

On the other hand, MBTA builds upon execution time measurements of

the program under analysis on the target hardware platform to estimate

the WCET. MBTA also brings several sources of uncertainty due to the

difficulties to guarantee that execution time conditions considered include

the WCET or execution time values sufficiently close to it. For instance,

generating inputs that trigger the highest number of iterations of loops, the

worst paths in conditional constructs (e.g. if-then-else, switch), the worst
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memory patterns, etc. is in general out of reach for end users. However, the

fact that measurement collection is affordable and WCET estimates built

upon measurements are not necessarily overpessimistic makes end users often

rely on MBTA [4]. It is common reusing those inputs used for functional

test of the software, which typically trigger the different operation modes of

software, to obtain execution times relevant for WCET estimation. Then,

either by adding an engineering factor to the maximum observed execution

time (MOET) (e.g. MOET+20%), or by applying more sophisticated logic

(e.g. using some static information about path analysis as done by tools like

RapiTime [5]), a WCET estimate is obtained.

However, while MBTA has been proven to be very efficient for single-core

processors, multicore processors bring new difficulties due to the potential

contention that the task under analysis can experience in the access to shared

hardware resources. Thus, specific microbenchmarks causing high levels of

contention have been considered to obtain execution time measurements rel-

evant for WCET estimation in multicores [6]. This is the focus of this thesis

for a hardware platform – the Zynq UltraScale+ – that brings increasing dif-

ficulties due to the use of multiple and heterogeneous core cluster. However,

such platform offers high computation power, which is of high interest for

many industries such as those in the avionics and railway domains among

others.

2.2 Cache memory

One of the more important parameters to evaluate the performance of a

multicore processor is the speed access to memory. Low latencies are achieved

thanks to the use of cache memories, which are fast enough to serve data

and code at high speed. However, such speed is achieved at the expense of

making them small enough. Moreover, the introduction of cache memory

allows to reduce power consumption and the number of external memory

accesses performed by the system to the main memory, which cause slow
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downs in the overall system [7].

Typically, the levels of cache implemented in processors aimed to achieve

high performances like ARM Cortex-A53 and Cortex-R5 are arranged as

represented in figure (2.1).

Figure 2.1: General cache memory arrangement

In such figure, two cores are represented as example with two levels of cache,

which are the first level (L1) and the second one (L2). Note that L1 cache is

divided into Instruction Cache (I-Cache) and Data Cache (D-Cache), namely

a modified Harvard architecture within which instruction and data buses are

separated in order to reduce interference among them building on the fact

that instruction and data access streams are naturally decoupled in program

execution. The level-2 cache is a resource typically shared among several

cores (e.g. within a cluster of cores) and it receives and sends both instruction

and data to the different cores.

When a data is required for the first time, there is no improvement in terms of

access time to the memory since that it is not yet present in the cache system.

Therefore, the first time some data is accessed, the data will be fetched from

the Main Memory block, and it will go through the interconnection network

(e.g. an AMBA AHB processor bus) to reach the most internal level cache,
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typically being stored first in the shared L2 cache and then in the L1 Cache.

Subsequent accesses to the same data will be much faster since it is already

stored in the internal cache and there is no need to fetch such data from the

main memory [7].

Depending on the fact that data is found or not in the cache, the two previous

cases can be distinguished as follows:

� Cache hit is the case when the data is found in the cache, allowing

fast accesses.

� Cache miss corresponds to the case when the data is not found in the

cache and it has to be sought in higher cache levels or directly in the

main memory, namely the highest memory level. Then, such data has

to be copied in the cache. These steps lead to slow memory accesses,

reducing system performance.

2.2.1 Cache structure

The types of cache structures that can be found in processors like the ones

implemented in the Zynq UltraScale+ EG platform considered in this Master

thesis are the following ones:

� Cache Fully Associative, thanks to which each location in main memory

can be stored in any position of the cache. In general, allowing any data

to be placed in any cache location requires expensive searches upon

an access to determine whether the data is available in cache or not.

Hence, this type of caches is expensive and used only for small caches.

� Cache Direct Mapped, which is the opposite of the previous cache struc-

ture. In fact, in this case, each location in main memory can be mapped

in just one cache entry. Hence, searching for a given data is a cheap

process since a single location needs to be checked. Thus, such struc-

ture is very convenient for large caches. However, the fact that each

data has a predetermined location leads to cache conflicts where few
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data contend for the same cache entry despite large parts of the cache

are empty.

� N-way set associative cache is a combination of direct-mapped and

fully-associative caches. Each address is placed to a predetermined

cache set, as in direct-mapped caches, but in each set there are mul-

tiple entries (the same number in each set) and lines can be freely

allocated in any line within their set, as in fully-associative caches.

Hence, the degree of associativity (number of entries per set) determ-

ines the performance and efficiency of these caches. In general, they

are the preferred choice for large caches since they allow obtaining most

of the benefits of fully-associative caches with costs close to those of

direct-mapped ones.

Note that N-way set associative cache is the cache structure that is mainly

implemented in almost all the main caches of ARM cores [7]. In fact, in this

Master thesis all the level caches of the two ARM architecture processors

part of the Zynq board are N-way set associative caches. For this reason,

further details are given about such cache structure.

N-way set associative cache

An N-way set associative cache structure is conceptually arranged into S sets

(rows) and N columns (ways), as shown in figure (2.2). Each cell in the plot

is a cache line. Each location in main memory can be mapped to one and

only one set, but its contents can be placed in any of the cache lines (ways)

in that set. Therefore, the lookup of a specific data is made in a group of N

cache lines (those within the corresponding set).

Cache lines have a specific size (in bytes). In general, for the sake of im-

plementation efficiency, all parameters are powers-of-two, and the size of the

cache is determined as the product of the number of ways (N), the number

of sets (S) and the cache line size (B). For instance, a 4-way cache with 128

sets and 64-byte cache lines is a 32 kB cache.
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Figure 2.2: 4-way set associative cache

2.2.2 Cache policies

Different policies are needed in caches regarding replacement of lines on full

sets, write policies, inclusion policies, etc. It is not the purpose of this section

reviewing all those policies, but providing insights on those that are relevant

for this Master thesis, so next we introduce some Replacement policies and

Write policies.

Focusing on the first ones, there are two of them that are quite popular and

employed in many caches:

� Replacement policies:

– Least-Recently-Used (LRU), which aims to replace the data in a

cache line that is the least recently used out of all those in the

set. This policy builds on the fact that it is quite common reusing

data recently used.

– Pseudo-Random, which ensures that on a miss, a way in the cor-

responding set is randomly evicted to make room for the new

cache line [8]. As this policy is used in some of the caches of the

platform considered in this thesis, we analyze it later in detail.

� Write policies:
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– Write-back (WB), which updates the main memory just when a

cache line is evicted in the cache [7]. Thus, on a write operation, if

the data is present in cache, it is only updated in the cache. This

policy is quite convenient in terms of performance, since many

memory accesses are avoided, but it’s complex in terms of imple-

mentation since delayed memory writes need to be managed.

– Write-through (WT), which aims to update both the cache and

the main memory of the system upon a write operation [7]. Note

that this policy is not so convenient in terms of performance, since

each write operation is forwarded to memory, but on the contrary

it’s easier to implement it in the target cache since there is no

need to control dirty lines and perform delayed updates.

Pseudo-Random Replacement policy

Knowing that in a N-way set associative cache it’s implemented a Random

Replacement policy, it’s possible to note that the probability that a specific

cache line will be evicted is equal to 1
N

for each set [8]. Hence, cache hits

or misses are, in theory, truly probabilistic within the cache set. It has been

shown that the hit probability for a specific access, for instance Aj, in an

access sequence to its cache set like < Ai, Bi+1, ..., Bj−1, Aj > is obtained

using the following equation:

PhitAj
=

(
N − 1

N

)∑n−1
k=i+1 PmissBk

(2.1)

where Bk corresponds to the accesses that are performed to cache lines dif-

ferent from the one where is presentA.

Therefore, the probability that A is not evicted upon an eviction is equal

to N−1
N

, meaning that increasing the number of evictions in the cache set,

increases the probability to evict A as well [8].

While this is the theoretical behavior of random replacement policies, actual

implementations in processors may use poor pseudo-random number gener-
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ators that do not produce fully random replacements. As shown later in

the evaluation section, results show that, in fact, the random replacement

policies implemented in the target platform may not be sufficiently random.

2.3 SPARC instruction set

In order to devise correctly the microbenchmarks for the ARM processor ar-

chitectures, firstly the microbenchmarks employed for the Next Generation

MicroProcessor (NGMP) were studied. Note that this architecture imple-

ments a SPARC V8 quad-core processor, which was developed by Cobham

Gaisler for the future European Space Agency (ESA) missions [6]. For this

reason, it was needed to study some instructions provided by the SPARC V8

instruction set, including the syntax implemented in such processor architec-

ture in assembly programming language.

The most important instructions to be studied are the ones relative to

memory write and read operations, since they need to be reproduced in the

ARM instruction set to produce analogous access patterns:

� ld stands for load, which has the following syntax:

ld [rs], rd (2.2)

where rs is the source register and rd is the destination one.

This is a memory read operation and it fetches from the main memory

the data that is stored in the memory address specified in the register

rs. Afterwards, the content fetched is saved in the register rd of the

SPARC processor [9].

� st stands for store, which has the following syntax:

st rs, [rd + offset] (2.3)
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where it’s employed the same notation used for equation (2.2).

The store instruction is a memory write operation, which has the goal

to deliver into a specific memory address defined in the register rd of

the main memory a specific data that is found in the register rs [9].

Note that between the brackets where the register rd is placed, there

is the possibility to add an offset value, which is a number that allows

to deliver the data in memory addresses close to the initial one. This

feature is very useful for the microbenchmarks to perform many store

operations in memory addresses that are close one another.

Knowing the syntax of these instructions, it was easier to study the syntax

of ARM processor architectures studied for the Zynq UltraScale+ platform,

which is different from the one implemented in the SPARC one.

2.4 Multi-cores: benefits and drawbacks

Before going into deep details of the platform studied for this work, it’s im-

portant to recall issues that lead to the use of multicore system and the

tradeoffs involved in their implementation.

The best choice in terms of complexity and efficiency is to employ cores that

are devised exclusively to perform the specific tasks they are intended to ex-

ecute. However, in general, real systems end up executing a large variety of

tasks and hence, many commercial multicores use general-purpose processing

cores. However, even in this context, those cores may be especialized to some

extent so that some cores prioritize performance over power or vice versa,

or limit complexity, etc. Further, those heterogeneous cores can be deployed

together in the same platform [10] so that end users (or some software layers

on their behalf) can offload their applications on those cores that are expec-

ted to maximize the metric of interest (e.g. performance, power).

Multicores replicate across cores those resources with higher stress to increase

performance, whereas those resources with a typically lower utilization are

shared across cores for the sake of efficiency. For instance, the utilization
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of some large cache memories and memory bandwidth is relatively low for

many applications. Hence, it is common setting up processors with multiple

cores that, beyond a given level of the cache hierarchy, share the rest of the

hierarchy (e.g. L2 cache and main memory access channels).

Of course, sharing some resources, despite being an efficient solution in terms

of resource utilization, bring a new issue: access arbitration due to conten-

tion. This is a relevant challenge since multiple cores may attempt to access

a given shared resource simultaneously, and arbitration policies must provide

balanced choices not to starve any core or, at least, configurable arbitration

so that the user can decide what the most convenient way to share the re-

source is. Often, policies like round-robin are used to grant access to shared

resources, so that all cores are granted access to the shared resource period-

ically. Still, if the amount of requests to access this shared resource is high

(at least during some time periods), requests may get delayed, thus lead-

ing to lower performance to that that would be obtained on a single core

architecture.

2.5 Zynq Ultrascale+

The Xilinx® UltraScale multiprocessor system-on-chip (MPSoC) considered

for this Master Thesis implements in the same device both, a processing

system (PS) and user-programmable logic (PL).

For what concerns the PS, it features three main processing units.

� Cortex-A53 application processing unit (APU)

� Cortex-R5 real-time processing unit (RPU)

� Mali-400 graphics processing unit (GPU)

The first two individual embedded blocks are the ones targeting general-

purpose applications, and those of interest for the work in this master thesis.
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In particular, the Zynq UltraScale+ platform includes two clusters of pro-

cessors that feature two different architectures: the ARM v8 architecture-

based 64-bit for the APU and the ARM v7 architecture-based 32-bit for the

RPU.

In the following subsections, Cortex-A53 and Cortex-R5 cache features will

be described in detail.

2.5.1 ARM Cortex-A53 Processor

The APU of this platform consists of four Cortex-A53 MPCore processor

cores and a L2 Cache, which is a shared resource among these four processor

cores.

The Cortex-A53 processor is devised with a modified Harvard architecture

that leads to have different buses both for instructions and data. For this

reason, in the internal Level-1 (L1) cache, there are two caches, i.e. instruc-

tion cache (I-cache) and data cache (D-cache). Moreover, L1 Caches are

implemented as Set associative caches.

Next we describe the main parameters of the APU with regard to its cache

hierarchy:

� ARM v8-A architecture instruction set.

– Possibility to choose either A64 instruction set in 64-bit mode or

A32/T32 instruction set in 32-bit mode.

� I-Cache and D-Cache are separated.

� Cache size of both L1 caches corresponds to 32 KB.

� Cache line size is fixed to 16 words, which corresponds to 64 bytes,

both for L1 I-Cache and L1 D-Cache. Hence, each of those caches has

512 cache lines of 64 bytes each.

� L1 I-Cache is implemented as a 2-way Set associative cache, whereas

the L1 D-Cache is implemented as 4-way Set associative cache. Hence,
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the L1 I-cache has 256 sets with 2 cache lines each, whereas the D-cache

has 128 sets with 4 cache lines each.

� Level-2 (L2) Cache size is equal to 1 MB.

� The replacement policy implemented for L1 caches is the Pseudo-

random one.

� For what concerns the cache update policies, the L1 data and L2 caches

use write-back policy. Since the I-cache does not modify the code

stored, it does not need any write policy.

2.5.2 ARM Cortex-R5 Processor

The RPU is a cluster including a dual-core Cortex-R5 for real-time pro-

cessing.

It’s important to note that also in this case a modified Harvard structure

and N-way Set associative caches are implemented in the Cortex-R5 pro-

cessor cores.

The main features of those processors are reported below:

� ARM v7-R architecture instruction set.

– The available instruction set is A32/T32.

� Instruction and data caches are separated thanks to the implemented

Harvard architecture.

� Cache size of both L1 caches corresponds to 32 KB.

� Cache line size is fixed to 32 bytes, which corresponds to 8 words of

4 bytes each, both for instruction and data caches. Hence, each cache

has 1,024 cache lines.

� L1 instruction and data caches are 4-way Set associative. Hence, they

have 256 sets with 4 cache lines each.
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� Level-2 (L2) cache is not present in this cluster.

� Caches of the Cortex-R5 cores implement Pseudo-random replacement

policy, which is the same implemented in Cortex-A53.

� The write-back policy is implemented in the Cortex-R5 L1 data cache.
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Chapter 3

State of the art

As explained before, it is common in industry relying on MBTA for WCET

estimation, and some approaches based on the use of microbenchmarks to

model multicore contention have been found appropriate. Hence, in this

section we review some of the main works in the are of microbenchmark de-

velopment to induce high stress conditions in multicores. In particular, ap-

proaches generating stressful scenarios consider not only performance stress-

ful conditions, but also power and temperature conditions as a means to

assess relevant non-functional metrics of processors and applications.

3.1 Performance Stressing Benchmarks

In the context of critical real-time systems, and with particular emphasis

on commercial off-the-shelf (COTS) multicore processors, software testing

has been largely exploited to test functional and non-functional properties

of software. In particular, those tests are run during the analysis phase of

the system, in early design stages, when many applications are still under

development. In the case of WCET estimation, the objective is obtaining

WCET estimates during unit testing (i.e. when the task under analysis has

been implemented), without the need of waiting for other units (e.g. tasks
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that will run concurrently) to also be implemented. This allows assessing

whether execution time budgets allocated to tasks suffice to run them and,

if this is not the case, address this issue as soon as possible, since detecting

timing violations during late design stages incurs high costs and may impact

time-to-market.

Therefore, since tasks running concurrently are unknown during WCET es-

timation, assumptions need to be made on the contention those tasks can

generate. Usually, this has been accounted for using simple programs (aka mi-

crobenchmarks) that place specific amounts of contention on specific shared

hardware resources. For instance, one may develop a microbenchmark read-

ing constantly from memory to generate high contention in the access to

memory to measure how sensitive the task under analysis is to such conten-

tion.

Strategies to create contention relevant for WCET estimation are diverse.

Some authors created those types of microbenchmarks to study the impact

of contention on high-performance Intel and AMD processors [11]. While

those processors are generally regarded as inappropriate for critical real-time

embedded systems due to the large number of hard-to-control sources of ex-

ecution time variation, the strategy followed to develop microbenchmarks

has been later reused to evaluate more appropriate processors. In particular,

authors developed microbenchmarks with simple loops sufficiently small to

fit in L1 instruction caches, but sufficiently large so that the overhead to in-

crease the loop counter and jump was negligible. Then, those loops contain

a sequence of instructions of the same type accessing a especific shared re-

source (e.g. the second level, L2, cache) with the aim of creating the highest

contention possible.

A similar strategy was applied on the Cobham Gaisler LEON4 processor [6],

whose target is the Space domain. Experiments performed with microbench-

marks revealed that an early design of the LEON4 allowed to cause 20x

slowdowns on a 4-core multicore. Microbenchmarks showed that, by using

a non-split bus, the worst contention impact occurred when the task under
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analysis was performing sustained L2 hits whereas all other contenders were

performing L2 misses. Upon an access to L2, the non-split bus gets locked

by the accessing task and it is not released until the transaction completes.

Hence, each (short) L2 hit of the task under analysis may have to wait for 3

memory accesses (L2 misses) caused by each of the 3 contender tasks. This

behavior turned to be particularly exacerbated for store operations whose

latency for L2 hits is very low, whereas sustained store L2 misses caused 2

memory accesses each: one to evict a dirty line modified by previous stores

and another to fetch the line accessed by the store itself.

While maximum stress contention scenarios are relevant for WCET estim-

ation, they may be overly pessimistic for some platforms and applications.

Hence, some authors extended microbenchmarks for the LEON4 platform to

consider especific amounts of contention [12]. Authors build upon the concept

of partial time composability instead of full time composability, meaning that

contention bounds obtained are only valid under especific amounts of conten-

tion. In particular, authors show how to account for especific access counts

to each shared hardware resource so that contention bounds obtained are

valid as long as contenders do not exceed those access count bounds. This

approach is particularly useful when some information about contenders is

available, so that especific access count bounds can be set with the aim of

upper bounding real access counts but without having to account for the

maximum number of accesses possible. This approach builds on the use

of maximum stress microbenchmarks to derive per-resource latencies, which

are later used to statically model the maximum contention possible under

especific loads. Also, this work devises microbenchmarks performing espe-

cific access counts as a means to verify that contention bounds estimated

statically match those obtained empirically in the worst case.

A similar approach has been followed for the Infineon AURIX TC27x pro-

cessor family [13]. Due to the particular characteristics of this platform

to count events, an Integer Linear Programming (ILP) model has been de-

veloped to obtain upper and lower bounds to access counts from stall cycle
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counters. On the other hand, microbenchmark technology to measure max-

imum latencies and to create contention scenarios is the same as for [12].

Such strategy has also been considered for the Qualcomm SnapDragon 810

processor within the framework of the H2020 SAFURE project [14]. Such

processor has been regarded as appropriate for the telecommunications do-

main and used in many embedded systems such as the Sony Xperia smart-

phone. While the strategy followed for this platform has been analogous to

that for the LEON4 and AURIX processors, results showed that document-

ation is incomplete and inaccurate for this platform [15]. In particular, the

prefetcher could not be disabled and events monitored by PMCs were insuf-

ficient to estimate contention with meaningful accuracy. Thus, this platform

has been regarded as inappropriate unless documentation available increases

so that the platform can be mastered to a sufficient extent.

Other authors attempted to model the contention in the interconnection net-

work of the NXP P4080 processor – relevant for avionics and railway domains

– by developing similar microbenchmarks [16, 17]. Their work revealed that

contention is not linear with the number of cores, thus exposing that, while

this 8-core architecture may seem to be symmetric, it is not. In particu-

lar, experiments revealed that contention caused by some cores was higher

than that caused by others, thus exposing the fact that the interconnection

network organizes cores into two different clusters, and contention between

cores of the same cluster may be higher than across clusters. Further ana-

lysis of the NXP P4080 has been carried out with microbenchmarks assessing

other types of execution time interference across cores, and revealing that,

for instance, some asymmetric behavior is caused by snoop accesses for cache

coherence despite tasks run may not share any data [18].

Other approaches have focused on performing some form of stochastic ana-

lysis of contention with the aim of identifying typical timing behavior under

high contention on shared hardware resources, but without explicitly consid-

ering the worst case, thus providing a family of testing techniques building

on the correlation of PMCs [19]. Those approaches build also upon the use
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of microbenchmarks to expose dependencies across events which, ultimately,

requires the creation of some microbenchmarks producing high contention to

reveal dependencies in the access to shared hardware resources. A similar

approach building on similar types of microbenchmarks have been devised

with the aim of applying statistical techniques such as principal component

analysis to predict the worst contention bounds of critical real-time tasks on

multicores [20].

Finally, some authors have attempted to model contention at late design

stages by running simultaneously tasks that may contend against each other,

modifying their time alignment (i.e. their relative starting time) to account

for the worst – yet realistic – contention that especific tasks can cause on

each other [21].

3.2 Power and Thermal Stressing Bench-

marks

Stressing benchmarks have been used in other contexts with the aim of pre-

dicting other non-functional metrics such as power and temperature. Next we

provide few illustrative examples of those applications of microbenchmarks.

Thermal analysis by means of software-based solutions has been mostly con-

sidered for post-silicon validation of processors with the aim of identifying

the Thermal Design Power (TDP), which is the maximum sustained temper-

ature that a processor can produce. A proper identification of the TDP is key

for chip manufacturers to size the cooling solution needed to keep the pro-

cessor under specific temperatures. Triggering the TDP typically requires

the development of the so-called power virus programs, which create sus-

tained high-power activities [22, 23]. For instance, floating point operations

have been shown to consume high energy, while allowing virtually executing

one such operation per cycle per core. Hence, microbenchmarks building on

those types of operations are often used to trigger specific high-temperature

scenarios.
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In essence, benchmarks intended to trigger high execution times (due to con-

tention) or high temperature have similar structures (loops with specific pat-

terns that repeat many times) varying the type of operation that is executed

sustainedly depending on whether the objective is to create high contention

or high temperature.
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Chapter 4

Methodology

In this chapter, the methodology used for the experiments performed will

be explained in detail, explaining why and how such experiments are per-

formed in order to achieve the expected objectives. In particular, different

microbenchmarks and functions devised both in C/C++ and assembly pro-

gramming languages will be addressed in details, describing how they work

and their features.

In this thesis, the methodology consists of using specifically designed mi-

crobenchmarks to collect empirical evidence directly on the target platform.

Those microbenchmarks are executed in isolation in some experiments and

together with other microbenchmarks (either identical or different) in other

cores in other experiments. Results of the execution are collected reading

the PMCs that exist in the platform under study. In order to ensure that

results are reliable, the following steps have been followed, which attempt to

expose sources of variability incrementally:

� Tests on one core of the Cortex A53 and Cortex R5 cluster processors

of each relevant microbenchmark devised. These tests have to be per-

formed when all the cores (except the one where the microbenchmark

runs) are in power-down mode, avoiding any type of interference. In

this way, it can be verified that both the microbenchmark and the tar-
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get main core are working properly. Moreover, it is possible to verify

if the features represented in the corresponding manuals are correct or

not. The rationale behind these experiments is that microbenchmarks

have a known behavior on the specific hardware where they are run.

Thus, approximate values for some parameters such as executed instru-

tions, cache accesses, memory accesses, etc. are known a priori and can

be doublechecked against results measured.

� Study of PMCs behavior, understanding if they work properly and how

much noise and other type of disturbances can affect their operation. In

this way, it is possible to assess that such counters are reliable enough

to be used for achieving the goal of this Master thesis. This is an

important step since it is not unusual having documentation where

PMC description is scarce, so that their definition is ambiguous. Also,

since PMCs are not critical for operation, they are often less debugged

that other parts of the processor and may have unexpected behavior

(e.g. counting just a subset of the events they should).

� Collecting data of the PMCs when all cores are active, thus verifying

that all PMCs can be interfaced properly even when all cores in both

clusters are running. This is important to verify that events corres-

ponding to shared hardware resources can be counted on a per-core

basis, thus avoiding interference on PMC values themselves.

� Run several experiments with all the cores in running mode, using

the same microbenchmarks devised before. Each experiment is distin-

guished among the other ones since that different microbenchmarks

are executed in parallel, meaning that there are processor cores behav-

ing as “contenders”, which are the processor cores that can generate

inter-task interference due to the contentions that arise in the hardware

shared resources with the main core under observation. These are the

most relevant experiments since they represent the scenario that a given

critical real-time task may experience in the system during operation.
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� Collecting data of the PMCs results when all the processors are execut-

ing simultaneously, comparing them with the ones obtained for single

cores. While the previous set of experiments exposes the actual beha-

vior in terms of execution time, this set of experiments offers details

on why execution time in parallel operation differs from that in single

core operation. Thus, results from this set of experiments allows reach-

ing conclusions on what type and degree of interference occurs in each

shared hardware resource. Such information is crucial to understand

what the most convenient way to consolidate tasks is.

4.1 Microbenchmarks

As explained before, microbenchmarks are becoming more and more useful

to evaluate performance of multi-core architectures. Reasons of such

statement are confirmed from the fact that they are designed to be easily

adapted to other processor architectures thanks to the simplicity with

which they can be developed in programming languages like C/C++. Also,

industry preference for quantitative evidence on the target platform is also

a plus for this approach.

The size of each microbenchmark (in terms of code footprint) is small

enough to fit in the instruction cache. This allows controlling the stress on

each shared hardware resource by controlling the amount of data used, the

access frequency and the type of access, without suffering any meaningful

interference from the code itself. Therefore, the experiments are focused

mainly on generating very high loads in the different levels of the memory

hierarchy, namely L1 data and the L2 cache, and main memory.

Algorithm 1 represents the conceptual schematic employed for the mi-

crobenchmarks implemented in the target platform studied in this Master

thesis.

We identify each algorithm with appropriate names (i.e.

Name Microbenchmark in the algorithm). Then, the parameters A and
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B represent the input arguments of such functions written in C/C++

programming language, where A changes depending on the type of opera-

tions performed, while B is the number of times that the main loop of the

microbenchmark has to be executed. Afterwards, memory allocation and

initialization procedures take place. Note that memory initialization may

require setting specific contents in memory so that the main loop of the

microbenchmark maximizes the number of accesses per cycle as detailed in

next chapter.

Finally, the loop represented in such algorithm is written mostly with

the ARM instruction set (assembly code) and it is featured by Memory

instructions that are repeated several times. Note that the type of in-

struction chosen and the number of instructions defined change among the

microbenchmarks depending on what effect they are intended to produce.

Therefore, there are memory instructions that read from the main memory

or cache (loads) and other ones that write to the main memory or caches

(stores).

As shown in the next chapter, for implementation efficiency and flexibility

purposes, the initialization/allocation phase and the main loop can be

decoupled across different functions so that initialization/allocation code is

shared across different microbenchmark types.

4.2 Performance Monitoring Counters

The quantitative evaluation of the results obtained with the microbench-

marks described in the previous section (4.1) is performed through the use

of the Performance Monitoring Units (PMUs) existing in each core, which

include a set of Performance Monitoring Counters (PMCs) each.

These units are included in both the Cortex-A53 and Cortex-R5 processor

cores and they are useful in order to verify that the experimental results

correspond to the expected ones, and to analyze how interference occurs in

shared hardware resources.
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Algorithm 1 General structure of the implemented microbenchmarks

int Name Microbenchmark (A, B)

{
/* S ta r t memory a l l o c a t i o n procedures

( . . . )

*/ End o f such ope ra t i on s

/* S ta r t assembly code

S ta r t Loop

Memory Read/Write I n s t r u c t i on (A’ −> Reg i s t e r /Main Memory)

Memory Read/Write I n s t r u c t i on (A’ −> Reg i s t e r /Main Memory)

( . . . )

Memory Read/Write I n s t r u c t i on (A’ −> Reg i s t e r /Main Memory)

End Loop

*/ End assembly code

}

In fact, the PMCs can be configured to measure different events, so they

need to be configured properly to count the events of interest. Then, it is

important to enable PMCs right before the execution of the microbenchmark

and disable them right after so that only the activity of the microbenchmark

is effectively monitored. Once this is guaranteed, the values obtained for a

given event type with PMCs can be compared against the values expected.

If the number obtained for one event is the expected one, then we can rely on

the PMCs counting such event correctly, so that knowledge can be built on

top of its results when collecting data for single core and multi-core experi-

ments. For this reason, firstly experiments were performed in order to check

if the PMCs of such processor are working properly. Later, after that PMCs

are confirmed to work properly, they were interfaced in C/C++ program-

ming language together with the microbenchmarks. The PMCs interfacing

has been integrated in the function where the microbenchmark was defined

in order to improve the reliability of the measurements of each event counted.

The PMU events available are several for these architectures and in the fol-
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lowing are listed the most important ones that are considered for the exper-

iments performed. Firstly, the common events are reported and afterwards

the Cortex-A53 and Cortex-R5 specific events are described.

4.2.1 Common events

1. L1D CACHE - This counter stands for L1 Data cache access and it

counts how many times the L1 Data cache is accessed by read and write

operations. Therefore, read and write accesses are not discriminated.

2. L1I CACHE - L1 instruction cache access, which counts instruction

memory accesses to both the L1 Instruction cache and L1 instruction

memory structures like refill buffers.

3. L1D CACHE REFILL - L1 Data cache refill, which corresponds to the

number of read and/or write misses that occurs in the L1 Data cache.

In this case, the PMC counts each access to L1 cache causing a refill

of a cache line brought from the upper level (either main memory or

another cache level).

4. L1I CACHE REFILL - L1 Instruction cache refill, which corresponds

also to the number of read misses that occurs in the L1 Instruction

cache. Note that instructions can only be read in general, so only read

operations can occur.

5. CPU CYCLES - This counter counts the number of processor cycles.

Note that the processor may operate at a different frequency than other

components (e.g. main memory), so the operating frequency of the

processor needs to be used to obtain execution time. Combining this

counter with other ones, it’s possible to figure out, for instance, the

frequency at which some specific events occur (e.g. number of L1 data

cache misses per cycle).
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4.2.2 Exclusive Cortex-A53 events

Since the architecture of the Cortex-A53 cluster differs from that of the

Cortex-R5 cluster, some events are specific for each core type. For instance,

the Cortex-A53 cluster has an L2 cache in between L1 caches and memory,

whereas the Cortex-R5 cluster has not.

1. L2D CACHE REFILL - L2 Data cache refill is the event that counts

the number of accesses to the L2 cache causing a refill of a L2 cache line,

regardless of whether they also cause a refill of the L1 instruction cache,

the L1 data cache or none of them. This means that events 4 and 3 may

overlap with this event if they miss in L2. Such observation is backed

in chapter (6), within which the results of this work are presented.

2. L1D CACHE WB - L1 Data cache Write-Back, which corresponds to

the number of write-back of data performed from L1 Data cache to

higher memory levels like L2 cache or the main memory. In other

words, it counts how many times a modified line in L1 Data cache is

evicted.

3. L2D CACHE WB - L2 Data cache Write-Back, which corresponds to

the number of write-back of data performed from L2 Data cache to

main memory.

4. L2D CACHE - L2 Data cache access counter considers all accesses to

a cache line of the L2 Data cache caused by read and write operations

coming from the cores. Therefore, it includes the number of refills of

both L1 Instruction and Data caches and the number of write-backs

of data performed from L1 data cache. This means that this event is

the sum of all the accesses performed to a cache line of the L2 cache

performed by L1 caches (so events 4, 3 and 2).

5. APU EXT MEM REQUESTS - The external memory request counter

is defined for the APU of Cortex-A53 and it increments for each memory
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access request that is external, thus including L2 cache misses and L2

cache write-back operations.

4.2.3 Exclusive Cortex-R5 events

1. RPU DCACHE WB - L1 Data cache Write-Back counter for the two

processors in the RPU cluster increases when one write-back of data is

performed from L1 Data cache to higher memory levels like the main

memory. Note that for this processor there is no L2 data cache, but

just Tightly Coupled Memories (TCMs) and the main memory.

2. RPU EXT MEM REQUESTS - This PMC is defined for Cortex-R5 in

the RPU cluster and it increments for each access request from L1 data

cache to an external memory like the main memory. It is analogous to

APU EXT MEM REQUESTS, but for the Cortex-R5 cluster instead

of for the Cortex-A53 one.

4.3 Tools

The following tools were employed for this Master thesis:

� Debugger interface for Zynq UltraScale+ EG platform, which is called

Xilinx System Debugger, and it is exploited for directly connecting to

the board, in order to perform operations like reading the registers

of each processor core in real-time or reset the target processor when

errors occur, among other operations.

� MobaXterm, which is a software for Windows for remote access to other

computers. This software allowed to connect to the private BSC server,

within which Unix commands have to be used in order to compile codes

and to run experiments. Such BSC server is the host of the Zynq

platform and has a cross-compiler able to generate ARM binaries to be

run on the Zynq platform.
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Chapter 5

Implementation

This chapter explains in details how the microbenchmarks described theor-

etically in section 4.1 are implemented in practice through the use of both

C/C++ and assembly programming languages. Firstly, insights of the main

function are given in section 5.1 and descriptions and features of the experi-

ments performed for this study that are declared inside the aforementioned

main function are listed in section 5.2.

5.1 Main function

The experiments were performed using the main function represented in Al-

gorithm 2. Note that the overall execution time is spent in the Array ini-

tialization function (executed just once) and the microbenchmark chosen to

be run. In particular, the latter is nested in the do/while loop, which can

be an infinite loop if the status variable returned by the microbenchmark is

always 0. In this way, such microbenchmark can be executed an infinite num-

ber of times, stressing a specific resource of the target processor sustainedly

as desired, and accounting for an execution time arbitrarily larger than the

initialization part.

Note that it was needed to define some C/C++ pre-processor commands in
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order to make the code more flexible. In fact, as shown in the main function,

depending on whether the macro-name A or B are defined or not, it is possible

to initialize the array in different ways. Other pre-processor commands were

implemented, which are not shown in the aforementioned function just for

the sake of simplicity.

Algorithm 2 Main function

{
int s t a t u s = 0 ;

D i s a b l e P r e f e t c h ( ) ;

#i f de f ined A // Array i n i t i a l i z a t i o n func t i on . . .

int ** array = mem init ( a r r a y s i z e , s t r i d e ) ;

#e l i f de f ined B // . . . to acces s the same s e t .

int rep lacements = X; // N◦ o f rep lacements ;

int ** array = mem init (One−Way stride * replacements , One−
Way stride ) ;

#endif

do

{
s t a t u s = Microbenchmark ; // Desired microbenchmark

}
while ( s t a t u s==0) ;

return 0 ;

}

5.2 Experiments

The experiments performed to stress the cache hierarchy of the two different

processor clusters are the following ones:

1. L1 data cache and L2 cache read misses and hits accessing different

sets.
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2. L1 data cache and L2 cache read misses and hits forcing the processor

to access always the same set.

3. L1 data cache and L2 cache store misses and hits.

In the following sections the microbenchmarks used for such experiments

written in C/C++ and assembly programming language will be presented

in details. In particular, section 5.2.1 introduces read microbenchmarks,

section 5.2.2 introduces write microbenchmarks, section 5.2.3 describes how

prefetch interference is avoided, and section 5.2.4 describes how PMCs have

been interfaced.

5.2.1 Cache read operations: Load instructions

The microbenchmark devised for cache read operations is used for both L1

and L2 data cache. In fact, setting properly both the size of the whole array

and the stride for each array element, it is possible to impose cache read hits

or misses in L1 or L2 data cache. Since updating the stride to access the

following element requires at least a non-load operation, this could lead to a

load frequency lower than the maximum possible. To address this concern, it

is needed to implement the Pointer Chasing technique (Algorithm 3). Such

pointer chaising is part of the initialization process and hence, needs to be

performed before the actual microbenchmark code (e.g. Algorithms 4 and

5) is executed. Next, we introduce how pointer chaising works and how it

allows read microbenchmarks execute roughly only load operations.

Array initialization using pointer chasing

The pointer chaising approach aims at placing in memory the addresses of

the data to be loaded in the location loaded right before so that, on a load,

we fetch the (precomputed) address of the next address to be loaded, so that

we avoid having to compute such an address during the execution of the

microbenchmark.
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As shown in the Array initialization code (Algorithm 3), the mem init func-

tion receives two inputs: the size of the array (array size) and the distance

between two consecutive array elements (stride). Afterwards, their initial

value is divided by the size that the pointer to an integer variable occupies

in the memory of the processor, which changes from architecture to archi-

tecture. This step is needed since each array element occupies 8 bytes in

memory but the actual size of the pointer may vary across architectures, be-

ing either 4 or 8 bytes. Hence, we must make sure that we access appropriate

addresses and the specified number of times. If this step was not done, there

would be the risk that, after a number of accesses, memory accesses could

occur beyond the boundaries of the array, thus leading to potential memory

violations and, more importantly, to undesired timing behaviour for the mi-

crobenchmark.

Afterwards, we allocate the required amount of memory for the microbench-

mark with the malloc function given by C/C++ programming language.

Later, the real array initialization takes place, which is mainly achieved us-

ing a “for” loop with a simple conditional inside to capture the case of the

last element of list. Therefore, the first array element will store the memory

address of the next array element that is placed in cnt+stride, which corres-

ponds to the stride updated on each iteration. The stride is chosen in order

to not violate the word-alignment, meaning that it has to be a multiple of 4

bytes. Note that cnt variable increases in each iteration by an amount equal

to the stride defined initially. This means that just some array elements will

be accessed by the microbenchmark, while the other ones will remain unset.

For instance, with a stride of 16-bytes, the first element of the array contains

the address of the array element 16 bytes away, which in turn contains the

address of the array element 16 further bytes away, and so on and so forth.

Elements in-between those ones are neither set nor used.

The microbenchmark algorithm uses this initialized array in order to perform

cache and memory read operations.
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Algorithm 3 Array initialization using pointer chasing

int **mem init (unsigned long int a r r a y s i z e , int s t r i d e )

{
a r r a y s i z e = a r r a y s i z e / s izeof ( int *) ;

s t r i d e = s t r i d e / s izeof ( int *) ;

int ** array = ( int **) mal loc ( s izeof ( int *) * a r r a y s i z e ) ;

unsigned long int cnt ;

for ( cnt =0; cnt < a r r a y s i z e ; cnt+=s t r i d e )

{
I f ( cnt < a r r a y s i z e − s t r i d e )

{
array [ cnt ] = ( int *) &array [ cnt+s t r i d e ] ; //Each array

element po in t s to the address o f the next array element .

}
Else

{
array [ cnt ] = ( int *) array ; //The l a s t accessed

element in the array po in t s to the f i r s t e lement .

}
}

return array ;

}

Microbenchmark based on Load instructions

The code aimed to perform memory read operations (Algorithm 4) is based

on Load instructions, which are defined in the processor architecture and

they have to be written for this reason in assembly code to ensure that the

compiler does not alter the access pattern or decreases the load frequency.

Note that this corresponds to the first experiment (1) performed for the two

different clusters.

Firstly, two pointer variables are defined in order that they will point to the

same address of the first element of the initialized array described previously
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(Algorithm 3). Afterwards, the first load instruction (LDR) is performed,

which fetches the content of the first array element from the main memory

and puts it in a register of the processor architecture.

Since the content of the first array element corresponds to the address of

the next array element to be accessed by this microbenchmark, the second

load instruction fetches the content of the element whose address has just

been fetched from main memory, putting it in another register. The same

reasoning holds for the other 126 load instructions, where data loaded from

memory is always the next address to be accessed, thus not needing to com-

pute any address during the execution of the microbenchmark.

After these 128 load instructions are executed, a compare instruction (CMP)

checks if the last memory address stored in the register accessed by the last

load instruction corresponds to the one of the first array element. Depending

on whether all array elements were accessed or not, and whether all iterations

have been exhausted, either we iterate in the loop performing further load

instructions or the loop finishes. Such control is performed with the BNE and

SUBS instructions at the end of the loop.

Note that this microbenchmark is used for causing both, either all cache hits

or all cache misses. In fact, such events occur depending on the size of the

whole array to be stored in the target data cache and the particular stride

used. Therefore, if the whole array fits completely in the target data cache,

cache hits occur, otherwise cache misses will be experienced as long as the

stride is equal or larger than cache line size (under Least Recently Used,

LRU, replacement policy). Other cases are not relevant for contention eval-

uation since we look for pure-hit or pure-miss cases in each cache memory,

so mixed behaviour is not interesting.

For instance, with this behaviour we can generate a microbenchmark hitting

in L1 (array size not exceeding L1), missing in L1 and hitting in L2 (array

size larger than L1 but not exceeding L2 size), and missing in both L1 and

L2 (array size larger than L2). In all cases, we use a stride matching a cache

line size to ensure that accesses occur in different cache lines so that cache
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line locality does not interfere with the experiment.

Algorithm 4 Microbenchmark based on Load instructions

int Loads ( register int ** array , register int i t e r a t i o n s )

{
register int ** q = array ;

register int ** r = array ; //Array prov ided by the Pointer

Chasing a l gor i thm .

/* S ta r t assembly code

asm v o l a t i l e (

” . d a t a c a ch e l a b e l L1 :” ”\n\ t ”
”LDR %0, [%1]” ”\n\ t ”
”LDR %1, [%0]” ”\n\ t ”

. . .

. . .

”LDR %0, [%1]” ”\n\ t ”
”LDR %1, [%0]” ”\n\ t ” //Tota l o f 128 load i n s t r u c t i o n s

”” ”\n\ t ”
”CMP %2, %1” ”\n\ t ”
”BNE . da t a c a ch e l a b e l L1 ” ”\n\ t ”
”SUBS %3, %3, \#1” ”\n\ t ”
”BNE . da t a c a ch e l a b e l L1 ” ”\n\ t ”
” . l a b e l L 1 e x i t :” ”\n\ t ”
:

: ” r ”( q ) , ” r ”( array ) , ” r ”( r ) , ” r ”( i t e r a t i o n s )

) ;

*/ End assembly code

return 0 ;

}
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Microbenchmark for accessing the same set

The microbenchmark methodology has been assessed in the past on caches

implementing LRU replacement, but not specifically on caches using pseudo-

random replacement. To assess the impact of using such a replacement policy

of both the ARM Cortex-A53 and the ARM Cortex-R5 processors, we needed

to perform a second experiment (2) and to devise another microbenchmark

aiming to access the same set of cache lines in the L1 data cache. For

this reason, in the Array initialization code (Algorithm 3), the stride and

the size have to be changed properly with respect to the ones employed in

(Algorithm 4). In particular, the stride is changed making it match the size

of one way of the L1 data cache, which is computed as follows, where the

size of the cache and the size of the stride are expressed in the same units

(i.e. either bytes or array elements):

One Way stride =
Data Cache Size

N◦ ways
(5.1)

Therefore, the stride is set in such a way that the next array element accessed

is at 1-way distance in the array, so that it is mapped exactly in the same

L1 cache set. The corresponding code is shown in Algorithm 5.

It can be noted that such microbenchmark is very similar to the one based

on Load instructions (Algorithm 4). The main difference is the number of

Load instructions employed. In fact, the number of ways in which the two

levels data caches (L1 and L2) are divided for both processor clusters is lower

than the 128 load instructions used in the Load instructions microbenchmark

(Algorithm 4). For this reason, it is not needed to use so many Load instruc-

tions.

Moreover, by using a variable number of load instructions, the microbench-

mark is made more flexible from a programming point of view allowing a

finer-grain control on the number of different cache lines competing for the

space in a cache set. In fact, the size of the whole array is set to be:
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Data Cache Size = One Way stride ·N◦ replacements (5.2)

where N◦ replacements stands for the number of different cache lines

(number of replacements) competing for the space in a cache set. Hence, de-

pending on the number of replacements chosen, the size of the array changes.

According to Equation 5.2, the number of replacements corresponds to the

total number of unique addresses loaded in the loop. Therefore, the real

number of replacements performed in the same set of L1 (or L2) data cache

has to be computed after all those addresses have been accessed for the first

time so that a steady state is achieved.

45 Lorenzo G. Toscano



Chapter 5. Implementation

Algorithm 5 Microbenchmark to access the same set

int LDR L1waysN( register int ** BDA, const int i t e r a t i o n s )

{
register int ** p = BDA;

register int ** q = BDA;

/* S ta r t assembly code

asm v o l a t i l e (

” . l 1waysn loop beg in :” ”\n\ t ”
”LDR %1, [%0]” ”\n\ t ”
”LDR %0, [%1]” ”\n\ t ”
”” ”\n\ t ”
”CMP %2, %0” ”\n\ t ”
”BNE . l 1waysn loop beg in ” ”\n\ t ”
”SUBS %3, %3, #1” ”\n\ t ”
”BNE . l 1waysn loop beg in ” ”\n\ t ”
:

: ” r ”(p ) , ” r ”(BDA) , ”r ”( q ) , ” r ”( i t e r a t i o n s )

) ;

*/ End assembly code

return 0 ;

}

5.2.2 Cache write operations: Store instructions

For what concerns the cache and memory write operations, a microbench-

mark different from the ones addressed in section 5.2.1 has to be developed.

In fact, it is not needed anymore to create an initialized array variable, mean-

ing that the Pointer Chasing technique (Algorithm 3) will not be employed

for the third topology of experiments (3) shown in Section 5.2. The reason is

that write operations will not be fetching data where we can have the pointer

to the next address to access. Instead, contents will be sent to memory, so

addresses to be accessed need either being computed or read from somewhere

which, in practice, implies using non-store instructions to set the address to
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be accessed by the following store instruction.

In the following, microbenchmarks that stress data write features in the L1

and L2 data cache are presented.

Microbenchmark based on Store instructions - Hits

The algorithm addressed in this section (Algorithm 6) employs Store instruc-

tions to perform memory write operations and its goal is to cause hits in the

target cache of the Cortex A53 processor cluster. Such instructions, as for

the Load ones, are pre-defined in the processor architecture and assembly

language is needed to use them, avoiding the compiler to interfere with the

desired microbenchmark behaviour.

Firstly, memory allocation is performed with the malloc function so that

stores can be performed on this memory structure. The address of the alloc-

ated memory is stored in the st array integer pointer variable within which

the data will be stored. Afterwards, the st pointer integer pointer variable

is used to access the allocated memory structure, so it is defined to point

to the memory address previously assigned to the st array first. Then, the

useless data (DEADBEEF) is the data that will be stored in the allocated

memory region. Note that this data corresponds to a size of 32-bit, namely

one word size. This is in line with the fact that the stride between each Store

instruction has to be a multiple of 4 bytes to avoid unaligned accesses.

The main core of this microbenchmark consists of a for cycle including a

total of 32 Store instructions. Therefore, in each iteration, 32 memory write

operations will be carried out, meaning that the word “DEADBEEF” will be

written 32 times. Depending on the iterations variable value, it performs a

higher or lower number of Store instructions and such value must be chosen

so that the amount of data accessed (and how many times it is accessed)

produces the desired behavior, which in this case is a sequence of store hits

(except for the first access to each cache line).

The microbenchmark based on store hits represented in this section uses a

stride of 64 bytes between each element, meaning that the useless data will
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be stored to memory addresses with 64 bytes of distance each other. Such

stride is used for Cortex-A53 processor and it was chosen in such a way that

each store instruction will access the next cache line (64-byte size for Cortex-

A53 cores).

Each store instruction has the same memory address as the initial argument

between square brackets plus an offset (stride) of 64 additional bytes with

respect to the previous store. In order to allow that consecutive instructions

are stores without needing instructions to update the stride, strides need to

be written manually directly in the assembly code.

When the 32 store instructions are performed, an ADD instruction is used

to update the total stride for the next iteration. In particular, such stride

is 2048 bytes, thus equal to the 64 bytes per store multiplied by 32 store

operations. In this way, in the next iteration, the store instructions will be

performed on the next available memory address of the st array variable.

Before the next iteration starts, it is checked whether the st pointer vari-

able points to a valid range of memory addresses, namely to the ones assigned

to the array st array by not exceeding the array size. Such array is sized

to ensure that store instructions cause cache hits. In fact, in this work, 24

kB was defined as upper limit since the L1 cache size is equal to 32 kB.

Therefore, after the first 12 iterations, which correspond to 24 kB, cache hits

are always experienced due to the fact all the memory addresses are stored

in the L1 data cache. Note that we could use up to 32 kB of data, but since

some temporal variables are stored in cache, this would create some conflicts

and so, some misses. Thus, we use an array size smaller than the total cache

size.

Whenever the st pointer can access beyond the bounds of the array, in

order to avoid errors due to access non-allocated memory regions and also

causing misses, it is set to the initial st array memory address.

At the end of the microbenchmark, the function free is employed to clear

the memory allocated to the st array variable.

The reasoning made so far for Algorithm 6 also holds for the one represented
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after this first one and used for the Cortex-R5 processor cores (Algorithm

7).

It’s possible to observe that in the main differences between the two mi-

crobenchmarks are as follows:

� Stride value, which is of 32 bytes in Cortex R5 since cache lines in those

cores are 32-byte instead of 64-byte long.

� The total number of instructions per iteration is set to 64 instead of

32 so that the amount of data accessed per iteration remains constant,

although this constraint is not needed in practice and strides could be

adapted accordingly.
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Algorithm 6 Microbenchmark for store hits - Cortex A53

int s t o r e h i t (unsigned long int s i z e , const int i t e r a t i o n s )

{
s i z e = s i z e / s izeof ( int *) ;

int * s t a r r a y = ( int *) mal loc ( s i z e * s izeof ( int *) ) ;

int * s t p o i n t e r = s t a r r a y ;

int u s e l e s s d a t a = 0 xdeadbeef ;

register int j ;

for ( j = 0 ; j < i t e r a t i o n s ; j++) {

/* S ta r t assembly code

asm v o l a t i l e (

”STR %1, [%2 , #64]” ”\n\ t ”
”STR %1, [%2 , #128]” ”\n\ t ”

. . .

. . .

”STR %1, [%2 , #2048]” ”\n\ t ” //Tota l o f 32 s t o r e s

i n s t r u c t i o n s

”ADD %0, %2, #2048” ”\n\ t ”
: ”=r ”( s t p o i n t e r )

: ” r ”( u s e l e s s d a t a ) , ” r ”( s t p o i n t e r )

) ;

*/ End assembly code

i f ( ( int ) s t p o i n t e r +(32*64) > ( int ) s t a r r a y + (24*1024) )

s t p o i n t e r = s t a r r a y ;

else

s t p o i n t e r += 0 ;

}

f r e e ( s t a r r a y ) ;

return 0 ;

}
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Algorithm 7 Microbenchmark for store hits - Cortex R5

int s t o r e h i t (unsigned long int s i z e , const int i t e r a t i o n s )

{
s i z e = s i z e / s izeof ( int *) ;

int * s t a r r a y = ( int *) mal loc ( s i z e * s izeof ( int *) ) ;

int * s t p o i n t e r = s t a r r a y ;

int u s e l e s s d a t a = 0 xdeadbeef ;

register int j ;

for ( j = 0 ; j < i t e r a t i o n s ; j++) {

/* S ta r t assembly code

asm v o l a t i l e (

”STR %1, [%2 , #32]” ”\n\ t ”
”STR %1, [%2 , #64]” ”\n\ t ”

. . .

. . .

”STR %1, [%2 , #2048]” ”\n\ t ” //Tota l o f 64 s t o r e s

i n s t r u c t i o n s

”ADD %0, %2, #2048” ”\n\ t ”
: ”=r ”( s t p o i n t e r )

: ” r ”( u s e l e s s d a t a ) , ” r ”( s t p o i n t e r )

) ;

*/ End assembly code

i f ( ( int ) s t p o i n t e r +(32*64) > ( int ) s t a r r a y + (24*1024) )

s t p o i n t e r = s t a r r a y ;

else

s t p o i n t e r += 0 ;

}

f r e e ( s t a r r a y ) ;

return 0 ;

}
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Microbenchmark based on Store instructions - Misses

The microbenchmark used to cause cache misses in Cortex A53 processor is

represented below (Algorithm 8) and it is very similar to the one described

previously (Algorithm 6), both in terms of concept and of implementation.

The main difference is the upper limit of the data array traversed, which is

DCL2 SIZE*2 instead of 24 kB (so twice the size of the L2 cache) if accesses

are intended to miss in L1 and L2. If accesses must miss in L1, but not in

L2, then the size of the array traversed should be larger than L1 (32 kB)

but smaller than L2 (1 MB). For instance, we could use an array of 64 kB.

Therefore, each store instruction has to cause a cache miss, since each cache

line is written once (at the beginning of every cache line) in the target data

cache and, since the number of lines accessed is larger than the number of

cache lines available (in each cache set), those cache lines cannot fit in the

L1 data cache (and L2 cache).

An analogous microbenchmark is employed also for Cortex R5 processor

(Algorithm 9) and the same observations made about Algorithm 6 are valid

also for this one.

As before, the stride value is 32 bytes instead of 64 bytes. Also note that

the upper limit of the array traversed is, in this case, DC SIZE*2, where

DC SIZE corresponds to 32 kB, namely the L1 data cache size, since the

Cortex-R5 processor cluster does not have L2 cache. Therefore, systematic

cache misses are experienced since the amount of data accessed exceeds L1

cache space available.
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Algorithm 8 Microbenchmark for store misses - Cortex A53

int s t o r e m i s s (unsigned long int s i z e , const int i t e r a t i o n s )

{
s i z e = s i z e / s izeof ( int *) ;

int * s t a r r a y = ( int *) mal loc ( s i z e *2* s izeof ( int *) ) ;

int * s t p o i n t e r = s t a r r a y ;

int u s e l e s s d a t a = 0 xdeadbeef ;

register int j ;

for ( j = 0 ; j < i t e r a t i o n s ; j++) {
asm v o l a t i l e (

”STR %1, [%2 , #64]” ”\n\ t ”

. . .

. . .

”STR %1, [%2 , #128]” ”\n\ t ”

”STR %1, [%2 , #2048]” ”\n\ t ” //Tota l o f 32 s t o r e s

i n s t r u c t i o n s

”ADD %0, %2, #2048” ”\n\ t ”

: ”=r ” ( s t p o i n t e r )

: ” r ” ( u s e l e s s d a t a ) , ” r ” ( s t p o i n t e r )

) ;

i f ( ( int ) s t p o i n t e r +(32*64) > ( int ) s t a r r a y + (DCL2 SIZE

*2)

s t p o i n t e r = s t a r r a y ;

else

s t p o i n t e r += 0 ;

}

f r e e ( s t a r r a y ) ;

return 0 ;

}
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Algorithm 9 Microbenchmark for store misses - Cortex R5

int s t o r e m i s s (unsigned long int s i z e , const int i t e r a t i o n s )

{
s i z e = s i z e / s izeof ( int *) ;

int * s t a r r a y = ( int *) mal loc ( s i z e *2* s izeof ( int *) ) ;

int * s t p o i n t e r = s t a r r a y ;

int u s e l e s s d a t a = 0 xdeadbeef ;

register int j ;

for ( j = 0 ; j < i t e r a t i o n s ; j++) {
asm v o l a t i l e (

”STR %1, [%2 , #32]” ”\n\ t ”

”STR %1, [%2 , #64]” ”\n\ t ”

. . .

. . .

”STR %1, [%2 , #2048]” ”\n\ t ” //Tota l o f 64 s t o r e s

i n s t r u c t i o n s

”ADD %0, %2, #2048” ”\n\ t

: ”=r ” ( s t p o i n t e r )

: ” r ” ( u s e l e s s d a t a ) , ” r ” ( s t p o i n t e r )

) ;

i f ( ( i n t ) s t p o i n t e r +(32*64) > ( i n t ) s t a r r a y + (DC SIZE

*2)

s t p o i n t e r = s t a r r a y ;

e l s e

s t p o i n t e r += 0 ;

}

f r e e ( s t a r r a y ) ;

r e turn 0 ;

}

5.2.3 Data prefetcher

The ARM v8 and v7 architectures have implemented a Data prefetcher which

changes consistently the behavior of the processor under study when the mi-
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crobenchmarks are performed. In fact, it can anticipate the fetch of a cache

line in the memory cache when a cache miss occurs. In general, it is hard to

determine how many L1 and L2 cache and memory accesses will perform the

prefetcher, thus creating both arbitrary interference on other cores, and al-

tering in unpredictable ways the sensitivity to interference of the task under

analysis. Therefore, it is needed to disable it during operation for the sake

of time predictability. Thus, it must also be disabled before running the mi-

crobenchmarks described previously in this chapter. In order to disable such

prefetcher in both processor cluster architectures, two functions were devised:

one to be employed for the Cortex A53 processor cores (Algorithm 10) and

the other one to be used for the Cortex R5 processor cores (Algorithm 11),

which are written in both C/C++ and assembly programming languages.

Focusing on the first one, it can be seen that firstly the content of the CPU

Auxiliary Control Register of 64-bits is read and stored in the r variable.

Afterwards, a mask with all bits set except the one of the prefetcher (mask)

is operated with a bitwise AND operation with the register in r, so that its

contents are preserved except the prefetch bit, which is reset. As a last step,

this variable overwrites the content of the register read before, thus disabling

the Data prefetcher.

An analogous procedure is followed in the second algorithm to disable the

data prefetcher in the Cortex R5 processor cores. In fact, in this case, the

assembly code is different from the other one since that the architecture is

different as well. Once the variable leggi contains the bit values of the

ACTRL register of 32-bits (Auxiliary Control Register), it is operated with

a bitwise OR with the corresponding mask (Mask R5 Dis prefetch) to set

the bits that disable the prefetcher. Note that this last variable is a bit-mask

defined as constant that changes two specific bits from zero to one in order to

achieve the disabling of such data prefetcher as explained in the manual [24].

After this operation, the leggi variable overwrites the content of the ACTRL

register, disabling the Data prefetcher.

Note that the Data prefetcher of both Cortex A53 and Cortex R5 are enabled
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again at the end of the PMC function devised to read the PMCs described in

section (4.2), which will be described later, for the sake of returning the plat-

form to its initial state. In the system during operation, prefetchers would be

disabled in all cores before starting the execution of critical real-time tasks

in any core. Then, whenever those tasks would finish, prefetchers could be

set back to maximize average performance of non-critical software. The com-

mand lines used for enabling the Data prefetcher for Cortex A53 and Cortex

R5 processors are very similar to those in Algorithms 10 and 11 respectively.

The only difference between the respective functions is that, in the case of

the Cortex A53 cores, the &= logic operation is substituted with the |= one in

the Data prefetcher enabling function. Regarding the Cortex R5 processor,

instead, firstly the complement of the constant bit-mask is computed and

then the &= logic operation is used instead of the |= operator.

Algorithm 10 Disabling Data Prefetcher - A53

#define mask DPreFetch 0xA000 //Bit mask f o r D i sab l i n g data

p r e f e t c h i n g

void D i s a b l e P r e f e t c h ( )

{
unsigned long long r = 0 ;

unsigned long long mask = ˜mask DPreFetch ;

a sm v o l a t i l e ( ”MRS %0, S3 1 C15 C2 0 ” : ”=r ” ( r ) ) ; //

Read EL1 CPU Aux i l i a r y Contro l Reg i s t e r

r &= mask ;

a sm v o l a t i l e ( ”MSR S3 1 C15 C2 0 , %0” : : ” r ” ( r ) ) ; //

Write EL1 CPU Aux i l i a r y Contro l Reg i s t e r

}
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Algorithm 11 Disabling Data Prefetcher - R5

#define Mask R5 Dis pre fetch 0x3000 //Bit mask f o r D i sab l i n g

data p r e f e t c h i n g

void D i s a b l e P r e f e t c h ( )

{
unsigned int l e g g i = 0 ;

a sm v o l a t i l e ( ”MRC p15 , 0 , %0, c1 , c0 , 1” : ”=r ” ( l e g g i )

) ; // Read ACTLR

l e g g i |= Mask R5 Dis pre fetch ;

a sm v o l a t i l e ( ”MCR p15 , 0 , %0, c1 , c0 , 1” : : ” r ” ( l e g g i )

) ; // Write ACTRL

}

5.2.4 Events counting: PMCs

To monitor cache hits or misses of the target cache, it’s needed to use the

Performance Monitoring Counters defined in the specific processor architec-

ture.

The C function defined to perform events counting is shown in Algorithm 12,

which has as input arguments the initialized array with Pointer Chasing tech-

nique (p) and the number of times that the microbenchmark has to be per-

formed (nruns) that is chosen by the user.

Firstly, some arrays have to be defined in such function:

� In PMCs[N◦ Events], each array element corresponds to one PMC and

the array is initialized with the identifiers of the events to monitor.

� PMCs start[N◦ Events] contains the value of each PMC at the time of

start counting the corresponding events defined in PMCs[N◦ Events].
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� PMCs stop[N◦ Events], instead, contains the value of each PMC after

the execution of the microbenchmark for the corresponding events

defined in PMCs[N◦ Events].

Note that t PMC data and t cnt values are defined in the overall code as

unsigned int and long long type respectively.

After these first steps, the prefetcher is disabled, and invalidation of the

instruction cache and flush of the data cache are performed thanks to

the Xil ICacheInvalidate and Xil DCacheFlush functions defined in the

Xilinx environment. Then, the PMCs are enabled to start counting and their

initial values are saved in PMCs start[], and immediately after the desired

microbenchmark is executed. Upon the completion of the microbenchmark,

the PMCs are disabled and their values retrieved to PMCs stop[]. Then,

the for loop iterates across the different PMCs monitored printing their

identifiers and the number of events occurred during the microbenchmark

execution, which is equal to the difference between PMCs stop[j] and

PMCs start[j]. Finally, flush and invalidation of the relative caches are

performed again and the Data prefetcher can be brought to his initial state,

namely enabled.

It’s important to note that data and instructions are processed continuously

in the processor and they can affect the PMCs counting, meaning that the

number of events counted can vary due to effects not strictly related to the

execution of the microbenchmark. Therefore, the best solution to mitigate

measurement noise as much as possible is to enable PMCs right before the

microbenchmark loop (inside the microbenchmark) and disable them right

after. For the sake of illustration, however, we indicate PMC enabling and

disabling outside the microbenchmark, as this facilitates understanding the

operation of the whole process. In practice, those operations occur inside

the microbenchmarks themselves.
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Algorithm 12 Performance Monitoring Counter function

int PMC( register int ** p , int nruns )

{
register int i , j , s t a t u s ;

t PMC data PMCs[N◦ Events ] = {A,B , . . . } ;

t c n t v a l u e s PMCs start [N◦ Events ] ;

t c n t v a l u e s PMCs stop [N◦ Events ] ;

u i n t 3 2 t l en = N◦ Events ;

D i s a b l e P r e f e t c h ( ) ;

X i l I C a c h e I n v a l i d a t e ( ) ;

Xil DCacheFlush ( ) ;

start PMCs ( PMCs start [ ] ) ;

s t a t u s = Microbenchmark (p , nruns ) ; // Target microbenchmark to

be monitored

stop PMCs ( PMCs stop [ ] ) ;

for ( j =0; j<l en ; j++){ // Reading PMCs

p r i n t f ( ”#PMCs: %x\n” , PMCs[ j ] ) ;

p r i n t f ( ” %l l d \ t # low\n” , PMCs stop [ j ] − PMCs start [ j ] ) ;

}

X i l I C a c h e I n v a l i d a t e ( ) ;

Xil DCacheFlush ( ) ;

Enab le Pre f e tch ( ) ;

return s t a t u s ;

}
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Chapter 6

Results

In this chapter, the experimental results obtained with the microbenchmarks

described in section 5.2 are shown. Firstly, results for the execution on

isolation are reported. Then, results with contenders are discussed, along

with the research findings.

6.1 Experiments in Isolation

Several experiments of tasks in isolation have been performed for this Master

thesis. Given that four Cortex-A53 cores are included in the APU of the

Zynq platform and two Cortex-R5 cores are included instead in the RPU,

having A53 and R5 cores and clusters different characteristics, we need to

assess their performance and cache features separately. Therefore, in the

following, experimental results for one core in each of the clusters, both

of the APU and RPU, will be represented and discussed. For the sake of

convenience, we refer to the core analyzed as the “main core”, although all

cores in each cluster are identical.

61 Lorenzo G. Toscano



Chapter 6. Results

6.1.1 Cortex-A53 laboratory results

In the following, the results obtained for the main core of the Cortex-A53

processor are analyzed in detail, since it is mandatory to assess the reliability

of the microbenchmarks implemented, their performance on just one core

and whether there are glitches on the board under study (i.e. whether actual

behavior matches specifications).

Level-1 data cache: accessing different sets

The first microbenchmark performed in this work is the one aimed to access

different sets of the target cache (Algorithm 4). Then, changing the array

size while keeping the stride value constant, read cache hits and misses can

be experienced, as explained in previous chapter.

L1 read cache hits. To obtain L1 data cache hits accessing different sets,

fixed array size of 24 kB and stride of 64 bytes were set, getting the results

shown in table 6.1.

The number obtained in the laboratory of the L1D CACHE event, which

is one of the events of the PMC events discussed in section 4.2, is higher

than the one expected. In fact, before the Load instructions are performed,

accesses to L1 data cache occur due to other instructions needed for the im-

plementation of the microbenchmark, which justifies this small discrepancy.

Looking at the APU L2D CACHE event, the expected results match quite

well the ones obtained in laboratory since that no access to Level-2 cache

is required and it is just the sum of two PMCs already addressed, namely

L1D CACHE REFILL and L1I CACHE REFILL.

In fact, the first one is equal to 384, which is expected since that:

Array size

stride
=

24 · 1024 Bytes

64 Bytes
= 384 (6.1)

Note that L1I CACHE REFILL is always equal to 11 for all the iterations
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performed. Moreover, in this case, the APU L2D CACHE REFILL event

matches the previous one named APU L2D CACHE, as expected, since no

dirty data is evicted from any cache memory.

For what concerns the remaining events named

APU EXT MEM REQUESTS and APU MEM ACCESS, they also match

the expected results. In fact, the first one gives a result that is the sum of the

L1D CACHE REFILL and L1I CACHE REFILL events, which is expected

since that external memory requests cause cache line refills of both L1 data

and instruction cache. The second one, instead, is counting not only the

cache line refills of the first level of cache, but also other instructions that

are needed for the implementation and execution of the microbenchmark

employed.

When more iterations are performed of the same microbenchmark, it’s

possible to note that the results obtained for some PMCs are almost equal

to the ones obtained with just one iteration. For such counters, which are

related to data cache accesses and cache line refills of the two cache levels

implemented in Cortex-A53, is expected that the number of events counted

doesn’t change. In fact, the size of the initialized array completely fits in

the Level-1 data cache and no other cache line refills or external memory

requests are performed.

Counting of memory and L1 data cache accesses, instead, increase as

expected, since that with higher number of iterations, more accesses to the

first level of cache have to performed.

In terms of CPU CYCLES, we observe that they are around 50,000 for

just one iteration, thus more than 100 cycles per memory instruction

(L1D CACHE). This is expected because with just one iteration all accesses

miss in cache. When increasing iterations to 10, then execution time is

around 50,000 cycles plus 3 cycles per hit. Since there are in the order of

3,500 cache hits (3,500 additional L1D CACHE accesses), we can conclude

that each L1 data cache hit costs around 3 cycles to lead to the 10,000

cycles increase w.r.t. 1 iteration. As we increase the number of iterations,
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the same conclusion holds, being execution time (in cycles) around 3 times

L1D CACHE plus 50,000 cycles.

Overall, we can conclude that, as expected, this microbenchmarks causes

all-misses during the first iteration and all-hits during the following ones.
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L1 (read) Hits - A53 0

Iterations PMC events Lab. results Expected results

1

L1D CACHE 397 384

APU L2D CACHE 395 384+11

L1D CACHE REFILL 384 384

APU L2D CACHE REFILL 395 384+11

CPU CYCLES 50728 -

APU MEM ACCESS 408 >384

APU EXT MEM REQUESTS 394 384+11

10

L1D CACHE 3853 3840

APU L2D CACHE 394 384+10

L1D CACHE REFILL 384 384

APU L2D CACHE REFILL 394 384+10

CPU CYCLES 60703 -

APU MEM ACCESS 3864 >3840

APU EXT MEM REQUESTS 394 384+10

100

L1D CACHE 38413 38400

APU L2D CACHE 394 384+10

L1D CACHE REFILL 384 384

APU L2D CACHE REFILL 394 384+10

CPU CYCLES 164439 -

APU MEM ACCESS 38424 >38400

APU EXT MEM REQUESTS 394 384+10

1000

L1D CACHE 384013 384000

APU L2D CACHE 394 384+10

L1D CACHE REFILL 384 384

APU L2D CACHE REFILL 394 384+10

CPU CYCLES 1202360 -

APU MEM ACCESS 384024 >384000

APU EXT MEM REQUESTS 394 384+10

Table 6.1: L1 reads cache hits accessing different sets - A53 0
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L1 read cache misses. For what concerns L1 read cache misses, it’s

needed to employ an array size bigger than the size of such data cache.

Since that L1 data cache of Cortex-A53 is equal to 32 kB, an array size of 40

kB is a reasonable choice. Therefore, selecting this array size with 64 bytes

of stride, results in table 6.2 are obtained.

In the first iteration, similar results are obtained for events like L1D CACHE

and APU MEM ACCESS compared with the ones represented in table 6.1.

The only relevant difference is that, since a larger array is traversed (40 kB

instead of 24 kB), the number of accesses, and so the values of these event

counters, increase proportionally. In any case, this result is fully expected

since the first iteration performs all-misses in both cases.

It is also noted that the APU L1D CACHE WB counter is not zero. This

is an unexpected result since array data is only read and never modified, so

cache lines evicted from the L1 data cache are clean. Thus, we would expect

this counter to be zero, but it is not. In fact, it corresponds exactly to the

number of array elements that don’t fit in the L1 data cache. The total num-

ber of array elements is 640 using the expression 6.1, but the L1 data cache is

32 kB, meaning that just 512 array elements can be stored without evictions.

Therefore, making the difference between these two last numbers, 128 is the

number of array elements that are evicted from L1 to higher memory levels

with 1 iteration, and the value read for this counter is 134, so with only a

negligible discrepancy due to other instructions in the microbenchmark. As

we increase the number of iterations, it holds that APU L1D CACHE WB is

roughly equal to L1D CACHE REFILL minus 512. Overall, a relevant con-

clusion of this analysis is as follows: APU L1D CACHE WB does not count

only dirty L1 data evictions, but all evictions (dirty and clean), which does

not match the specifications.

Note that the counted number of L2 data cache accesses is quite con-

sistent and this is due to the fact that such counter includes both

L1 data misses (L1D CACHE REFILL) and L1 data cache write-backs

(APU L1D CACHE WB), as explained in section 4.2. Moreover, the num-
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ber of events counted for L1I CACHE REFILL PMC is always equal to 10

for each number of iterations performed.

Note that the number of L1 data cache misses (L1D CACHE REFILL) does

not match the number of L1 data cache accesses (L1D CACHE). In fact, the

target number of misses for this microbenchmark is as shown in the following

expression:

N◦ missestotal iterations = N◦ misses1 iteration ·N◦ iterations (6.2)

Such relation has been proven to hold in other processors where the cache

replacement policy is LRU. However, since the L1 data cache replacement

policy implemented is Pseudo-Random in our case, many cache hits are ex-

perienced. In our microbenchmark, by traversing an array of 40 kB, we place

5 different cache lines (namely A, B, C, D and E) in each 4-way set. Under

LRU, we would fetch A, B, C, D first, then E would evict A, A would evict

B, B would evict C and so on an so forth so that each access would evict

the cache line needed next, thus creating an all-misses patterns. In the case

of pseudo-random replacement, once A, B, C, D have been fetched, E may

or may not evict A, so that some times it leads to a miss and some others to

a hit. For instance, if E evicts C, A will hit, B will hit and C will miss, thus

leading to another eviction, which may or may not evict D. Overall, a relev-

ant fraction of hits is expected, which matches with the results obtained. In

particular, as we increase the number of iterations, the miss rate approaches

40% instead of the 100% desired.

Therefore, a different experiment is needed to cause an all-misses behavior,

which allows us to maximize contention in the desired shared hardware re-

sources.
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L1 (read) Misses - A53 0

Iterations PMC events Lab. results Expected results

1

L1D CACHE 653 640

APU L2D CACHE 784 640+10+134

L1D CACHE REFILL 640 640

APU L2D CACHE REFILL 650 640+10

CPU CYCLES 83902 -

APU MEM ACCESS 664 >640

APU L1D CACHE WB 134 134

10

L1D CACHE 6413 6400

APU L2D CACHE 5440 >2968+10+2461

L1D CACHE REFILL 2968 6400

APU L2D CACHE REFILL 650 640+10

CPU CYCLES 130327 -

APU MEM ACCESS 6424 >6400

APU L1D CACHE WB 2461 5894

100

L1D CACHE 64013 64000

APU L2D CACHE 51471 >25984+10+25477

L1D CACHE REFILL 25984 64000

APU L2D CACHE REFILL 651 640+10

CPU CYCLES 602222 -

APU MEM ACCESS 64024 >64000

APU L1D CACHE WB 25477 63494

1000

L1D CACHE 640013 640000

APU L2D CACHE 512463 >256480+10+255973

L1D CACHE REFILL 256480 640000

APU L2D CACHE REFILL 650 640+10

CPU CYCLES 5335666 -

APU MEM ACCESS 640024 >640000

APU L1D CACHE WB 255973 639494

Table 6.2: L1 reads cache misses accessing different sets - A53 0
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Level-1 data cache: accessing the same set

The microbenchmark devised to cause all-misses in the L1 data cache with

the implemented Pseudo-Random replacement policy is the one aimed to

force many accesses to occur on the same set of cache lines (Algorithm 5).

Such algorithm forces all cache lines accessed be placed in the same set so

that few different cache lines are enough to exceed the space in a cache set.

While we cannot enforce all accesses to be misses due to the Pseudo-Random

replacement policy, where the probability of survival of a cache line is never

zero, we can approach asymptotically such case by increasing the number of

cache lines largely above the cache set space.

Therefore, employing the One-Way stride value (5.1) and adjusting the array

size with respect to the number of replacements to be performed, the results

in table (6.3) were obtained. In such experiment, “replacements” stands for

the number of cache lines fetched in excess of the cache space. For instance,

4 replacements means that we access 8 different cache lines for a 4-way cache,

thus making sure that at least 4 replacements occur.

As shown the table, the laboratory results of L1D CACHE matches always

the expected ones since that each load instruction has to cause one access

to the L1 data cache. Note that the laboratory results of such counter are

slightly bigger than the expected ones (by 14 events) because of other L1

data cache accesses performed before the load instructions implemented in

the specific microbenchmark.

From the laboratory results of the L1 cache line refills counter, instead, it’s

possible to figure out that the cache miss rate increases with higher number

of replacements performed in the same set of cache lines. In fact, increasing

the number of replacements, the laboratory results are getting closer to the

expected ones, meaning that the probability of cache misses are increasing

as well while cache hits are less likely. In the most extreme case, with 116

replacements the miss rate is around 99%, since 120 different cache lines

contend for 4 physical cache lines in the set.
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L1 Misses: accessing same set - A53 0

Replacements PMC events Lab. results Expected results

4

L1D CACHE 8014 8000+14

L1D CACHE REFILL 6122 8000

CPU CYCLES 222453 -

12

L1D CACHE 16014 16000+14

L1D CACHE REFILL 14501 16000

CPU CYCLES 538315 -

20

L1D CACHE 24014 24000+14

L1D CACHE REFILL 22502 24000

CPU CYCLES 2172028 -

28

L1D CACHE 32014 32000+14

L1D CACHE REFILL 30545 32000

CPU CYCLES 4567597 -

36

L1D CACHE 40014 40000+14

L1D CACHE REFILL 38546 40000

CPU CYCLES 6560729 -

76

L1D CACHE 80014 80000+14

L1D CACHE REFILL 78547 80000

CPU CYCLES 13714240 -

116

L1D CACHE 120014 120000+14

L1D CACHE REFILL 118546 120000

CPU CYCLES 20732514 -

Table 6.3: L1 reads cache misses accessing the same set - A53 0

Level-1 data cache: store instructions

Another type of microbenchmark was devised to perform writes to the L1

data cache as described in detail in section (5.2.2). Note that two different

microbenchmarks have to be run because of the different stride values that

it’s needed to cause hits or misses in the cache.
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L1 write cache hits. Using the microbenchmark to perform memory write

operations aimed to cause cache hits (Algorithm 6), the results shown in

table (6.4) were obtained. Note that for each case of the number of itera-

tions defined, the stride value from each store instruction was set to 64 bytes

and a total of 32 store instructions are performed in each iteration.

Firstly, with just one iteration, the L1D CACHE counter generated a num-

ber that is high compared with to the expected value (32 store instructions).

In fact, it was experimentally tested that there are 20 accesses to L1 data

cache without considering the 32 store instructions of the microbenchmark

implemented, being 6 of them within the main loop. Then, it’s possible to

conclude that the laboratory results match the expected ones.

For what concerns the counter related to the accesses to the L2 data cache,

it can be observed that it includes also the sum of the instruction and

data cache line refills counters represented in the same table. In fact, the

L1I CACHE REFILL counter is always equal to 7 for each case of iterations.

Similar observations can be made regarding the L2 data cache line refills and

the external memory requests counters. The first one matches the expected

results, since that it is the sum of the data and instruction L1 data cache line

refills counters, while the second one matches, as expected, the number of

accesses performed to the second level cache, which is external to the inner

one.

Note that the number of cache misses (L1D CACHE REFILL) is 32 for 1 it-

eration, thus reflecting the 32 misses due to the 32 store instructions, which

fetch 2 kB of data. When we increase iterations to 10, there are 320 misses

(20 kB of data). For 100 iterations we have 383 misses (≈24 kB of data).

In this latter case, we fetch the whole array several times, so we experience

the maximum number of misses possible. Finally, for 1,000 iterations the

number of misses remains constant (383), so the increase on execution time

w.r.t. the case with 100 iterations is caused only due to store hits in the

L1 data cache. Therefore, there is an increase in execution time of around

55,000 cycles caused by 900 iterations with 32 store operations each, which
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leads to an overall latency of 2 cycles to process each store hit operation on

average.

Note also that, by having 6 “unwanted” memory accesses within the loop,

the L1D CACHE counter matches approximately 32+6 accesses per itera-

tion. Those 6 accesses correspond to the code checking the condition to

update the array pointer and few other variable accesses. They could likely

become register accesses with some compiler optimizations. However, com-

pilation was performed without optimizations to prevent the compiler from

altering the assembly code placed to create specific cache behavior.
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L1 (write) Hits - A53 0

Iterations PMC events Lab. results Expected results

1

L1D CACHE 52 32+6+14

APU L2D CACHE 38 32+6

L1D CACHE REFILL 32 32

L1I CACHE REFILL 7 ∼7

APU L2D CACHE REFILL 37 ∼38

CPU CYCLES 1172 -

APU EXT MEM REQUESTS 38 ∼37

10

L1D CACHE 394 320+60+14

APU L2D CACHE 390 320+6

L1I CACHE REFILL 7 ∼7

L1D CACHE REFILL 320 320

APU L2D CACHE REFILL 326 ∼326

CPU CYCLES 9672 -

APU EXT MEM REQUESTS 326 ∼326

100

L1D CACHE 3830 3200+600+14

APU L2D CACHE 390 383+7

L1I CACHE REFILL 7 ∼7

L1D CACHE REFILL 383 384

APU L2D CACHE REFILL 388 ∼390

CPU CYCLES 16828 -

APU EXT MEM REQUESTS 326 ∼326

1000

L1D CACHE 38180 32000+6000+14

APU L2D CACHE 390 383+7

L1I CACHE REFILL 7 ∼7

L1D CACHE REFILL 383 384

APU L2D CACHE REFILL 388 ∼390

CPU CYCLES 71671 -

APU EXT MEM REQUESTS 389 ∼390

Table 6.4: L1 writes cache hits - A53 0
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L1 write cache misses. To cause L1 cache misses on memory write oper-

ations, the microbenchmark based on store instructions with a stride value

of 64 bytes is needed, namely one cache line length, which is explained in

detail in section (5.2.2). Using a total of 32 store instructions for just one

iteration, the results shown in table (6.5) are obtained.

Considering the case when the microbenchmark is executed just once (itera-

tion), the laboratory results of the L1 data cache access counter are analogous

to those for the L1 write cache hits microbenchmark, since both microbench-

marks cause all-misses behavior for just one iteration. Similar conclusions

can be reached for 10 iterations since both microbenchmarks still cause all-

misses behavior.

When increasing iterations to 100, instead, the number of misses in the L1

data cache (L1D CACHE REFILL counter) increases to 3,200, thus highly

in line with the 32 store misses per iteration of the microbenchmark. We

also note that the number of L1 data cache accesses (L1D CACHE counter)

includes 6 hits per iteration as in the all-hits case.

Regarding L2 accesses, APU L2D CACHE, we observe that it includes two

types of accesses: L1 cache misses (mostly L1D CACHE REFILL counter)

and L1 data cache write-backs (APU L1D CACHE WB counter), being the

latter indicated as wb in the table. The former corresponds to data requested

from L1 caches, whereas the second corresponds to data evicted from the L1

data cache. In the case of 1 and 10 iterations, the amount of data accessed

is 2 kB and 20 kB respectively, thus not enough to fill the cache (32 kB), so

not causing any L1 data cache eviction. However, after 16 iterations the L1

data cache gets full, as shown with the expression below:

Data size = N◦iterations ·N◦ stores

iteration
· stride = 16 · 32 · 64 = 32kB (6.3)

Therefore, except those first 512 stores (32 stores per iteration during 16

iterations), all remaining stores cause an L1 data cache eviction, and so an

additional L2 cache access. Hence, in the case of 100 iterations we would ex-
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pect 3,200 L2 accesses due to store misses and 3,200-512=2,688 L2 accesses

due to L1 data cache line eviction. Thus, the total number of observed L2

accesses (5,910) matches quite well the expectations (3,200+2,688=5,888).

Results for 1,000 iterations follow the same trends with 32,000 L1 data cache

misses, 31,500 L1 data cache write-backs and 63,500 L2 cache accesses.

A somewhat unexpected result corresponds to the APU L2D CACHE WB

counter (not shown in the table), which is always 0. The L2 cache has 1

MB capacity. Hence, when using the microbenchmark with 1, 10 and 100

iterations we are unable to fill it and therefore, no evictions occur. How-

ever, when performing 1,000 iterations, 2 MB of data are fetched, thus

meaning that the latest half of the 32,000 store accesses should produce

L2 evictions. If this was the case, APU L2D CACHE WB would be 16,000

and APU EXT MEM REQUESTS would be 48,000 (32,000 misses + 16,000

evictions). However, L2 evictions are neither counted by the L2 evictions

counter nor by the memory access counter. This indicates that either those

events are not monitored correctly or their configuration (as described in

the specifications) is not properly described. This has been double-checked

and no error was found in the code, which configures the corresponding

PMCs as indicated in the specification. Also, the fact that this issue affects

two different event counters provides some indication that the event may

not be monitored properly by the hardware, thus not counting it as expec-

ted. Overall, another relevant conclusion is that APU L2D CACHE WB and

APU EXT MEM REQUESTS event counters may not work properly.

Finally, we want to note that the execution time (in cycles of this microbench-

mark reaches 1,220,000 cycles approximately for 32,000 store misses. This

leads to the conclusion that the processor can perform a store operation in

memory every 40 cycles on average. This is in contrast with load latencies,

which were largely above 100 cycles, thus reflecting that stores can be pro-

cessed offline to some extent without stalling execution despite the fact that

memory latency may be above 100 cycles.
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L1 (write) Misses - A53 0

Iterations PMC events Lab. results Expected results

1

L1D CACHE 48 32+6+10

APU L2D CACHE 38 32+6+wb

L1D CACHE REFILL 32 32

APU L2D CACHE REFILL 37 31+6

CPU CYCLES 1191 -

APU EXT MEM REQUESTS 38 ∼38

APU L1D CACHE WB 0 0

10

L1D CACHE 390 320+60+10

APU L2D CACHE 326 320+6+wb

L1D CACHE REFILL 320 320

APU L2D CACHE REFILL 326 320+6

CPU CYCLES 9700 -

APU EXT MEM REQUESTS 326 ∼326

APU L1D CACHE WB 0 0

100

L1D CACHE 3810 3200+600+10

APU L2D CACHE 5910 ∼3200+6+wb

L1D CACHE REFILL 3201 3200

APU L2D CACHE REFILL 3205 3200+6

CPU CYCLES 93470 -

APU EXT MEM REQUESTS 3207 ∼3206

APU L1D CACHE WB 2703 ∼2688

1000

L1D CACHE 38010 32000+6000+10

APU L2D CACHE 63508 ∼32000+6+wb

L1D CACHE REFILL 32000 32000

APU L2D CACHE REFILL 32005 ∼32000

CPU CYCLES 1220134 -

APU EXT MEM REQUESTS 32006 ∼32006

APU L1D CACHE WB 31503 ∼31488

Table 6.5: L1 writes cache misses - A53 0
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6.1.2 Cortex-R5 laboratory results

The experimental results obtained for the main core of the RPU that includes

the two Cortex-R5 cores are presented next.

Level-1 data cache: accessing different sets

Focusing on the memory read operations, firstly accesses to different sets were

performed through the use of the same microbenchmark used for Cortex-A53

(Algorithm 4). Therefore, the same reasoning regarding the array size and

the stride value for Cortex-A53 holds also for the ARM v7 architecture, with

the only difference that cache line size differs across Cortex A53 and R5 cores,

as explained before.

L1 read cache hits. L1 read data cache hits are obtained using a fixed

array size of 24 kB and stride of 32 bytes, which corresponds to one cache

line length, obtaining the results shown in table (6.6).

As it can be seen, the number of L1 data cache accesses matches almost

perfectly the expected one. The only difference between the practical and

the theoretical results of the L1D CACHE counter is that there are other

accesses to the L1 data cache that are related just to the implementation of

the microbenchmark.

Considering the formula about computing the number of cache line refills

(Equation 6.1), it can be highlighted that the results obtained for the counter

of the cache line refills experienced by L1 data cache matches the expected

ones, since that 768 is the number of load instructions performed by the

specific microbenchmark: 768 loads with stride 32, for a total of 24 kB.

Therefore, it corresponds also to the number of cache line refills (misses)

that L1 data cache is experiencing.

Then, the number of external memory requests matches the one of the cache

line refills since, in the first iteration, the processor has to fetch all the array

elements from the main memory, thus being all accesses misses.

Afterwards, as we increase the number of iterations, since that the size of the
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array completely fits in the L1 data cache, the number of L1 data cache line

refills and external memory requests doesn’t change. As expected, instead,

more accesses to the L1 data cache are performed increasing the number of

iterations and the numbers obtained match always the expected results.

L1 (read) Hits R5 0

Iterations PMC events Lab. results Expected results

1

L1D CACHE 778 768+10

L1D CACHE REFILL 768 768

L1I CACHE REFILL 18 ∼18

CPU CYCLES 43193 -

RPU EXT MEM REQUESTS 768 768

10

L1D CACHE 7690 7680+10

L1D CACHE REFILL 768 768

L1I CACHE REFILL 18 ∼18

CPU CYCLES 64318 -

RPU EXT MEM REQUESTS 768 768

100

L1D CACHE 76810 76800+10

L1D CACHE REFILL 768 768

L1I CACHE REFILL 18 ∼18

CPU CYCLES 275546 -

RPU EXT MEM REQUESTS 768 768

1000

L1D CACHE 768010 768000+10

L1D CACHE REFILL 768 768

L1I CACHE REFILL 18 ∼18

CPU CYCLES 2387851 -

RPU EXT MEM REQUESTS 768 768

Table 6.6: L1 reads cache hits accessing different sets - R5 0

L1 read cache misses. The array size chosen to cause cache misses in

Level-1 cache of the main core Cortex-R5 is 40 kB with stride value of 32

bytes, obtaining the results shown in table 6.7, noting that Pointer Chasing
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technique is employed.

When just one iteration is performed, the number of accesses to the L1

data cache counted by L1D CACHE is almost equal to the one predicted

theoretically. In fact, in this case, recalling Equation 6.1, 1280 is the number

of array elements and it corresponds to the number of cache lines that L1

data cache should handle. The remaining 10 accesses correspond to other

memory instructions in the microbenchmark excluding the loads place on

purpose in the loop.

When considering the data cache line refills and the external memory requests

counted with 1 iteration, it can be noted that the results match the expected

ones: around 1,280 L1 data cache misses and memory accesses to fetch 40

kB of data.

As we increase the number of iterations, we observe some trends analogous

to those of the Cortex-A53 core case: a large number of loads hits in the L1

data cache due to the pseudo-random replacement policy, with the miss rate

being around 40%. For instance, with 10 iterations we have around 12,800

L1 data cache accesses (L1D CACHE), out of which 5,380 approximately

are L1 data cache refills (L1D CACHE REFILL) and main memory accesses

(RPU EXT MEM REQUESTS).

Another relevant information is that the number of L1 data cache write-backs

is virtually zero. This is in contrast with the case of the Cortex-A53 core,

where the number of write-backs was similar to the number of refills despite

cache lines being clean. We regard the case of the Cortex-R5 core as the

correct case, since it is the one matching the description in the specifications.
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L1 (read) Misses R5 0

Iterations PMC events Lab. results Expected results

1

L1D CACHE 1290 1280+10

L1D CACHE REFILL 1281 1280

L1I CACHE REFILL 17 ∼18

CPU CYCLES 72057 -

RPU EXT MEM REQUESTS 1286 1280

RPU DCACHE WB 3 0

10

L1D CACHE 12810 12800+10

L1D CACHE REFILL 5382 12800

L1I CACHE REFILL 17 ∼18

CPU CYCLES 324630 -

RPU EXT MEM REQUESTS 5388 12800

RPU DCACHE WB 6 0

100

L1D CACHE 128010 128000+10

L1D CACHE REFILL 51462 128000

L1I CACHE REFILL 18 ∼18

CPU CYCLES 3118184 -

RPU EXT MEM REQUESTS 51721 128000

RPU DCACHE WB 6 0

1000

L1D CACHE 1280010 1280000+10

L1D CACHE REFILL 512262 1280000

L1I CACHE REFILL 18 ∼18

CPU CYCLES 31055075 -

RPU EXT MEM REQUESTS 512534 1280000

RPU DCACHE WB 5 0

Table 6.7: L1 reads cache misses accessing different sets - R5 0

Level-1 data cache: accessing the same set

In the case of R5 processor, the same microbenchmark (5) used for the Cor-

tex A53 core was employed in order to access the same set of cache lines
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in the L1 data cache. Therefore, maintaining the same stride value of 8 kB

between each replacement, namely the distance of one way w.r.t. the next

one, and changing the array size depending on the number of replacements

to be implemented, it was possible to get the results shown in table 6.8.

The laboratory results obtained for the L1D CACHE matches always the

expected ones, with the minor difference caused by other (few) memory ac-

cesses excluding the load pattern tested.

Regarding the counter of cache line refills (misses), it is surprisingly always

equal to the number of times that the array elements are read from the main

memory. This is an unexpected behavior of the L1 data cache of R5 since,

given that it implements a pseudo-random replacement policy, we would

expect results analogous to those of the Cortex-A53 core, where an increas-

ing number of replacements leads to a miss rate approaching asymptotically

100%. However, as shown in these experiments, with 4 replacements (8 lines

competing for 4 ways in the set), all accesses become misses. While this is

counterintuitive, it is possible and compatible with the fact that our results

for the read misses case reveal that the replacement policy is pseudo-random.

In particular, in the previous experiment we traversed a 40 kB array, thus pla-

cing 5 cache lines per set (thus with 1 replacement). Depending on how the

pseudo-random replacement policy is implemented, it may lead to systematic

scenarios where 1 replacement is random, but 4 replacement systematically

evict all 4 lines in the set.

While the actual implementation is unknown, a recent work has proposed

a replacement policy with exactly those characteristics [25]. In particular,

such policy proposes to perform a random permutation of the cache ways to

select the next cache line to be evicted. Hence, the first choice is random, the

second choice is random among the non-evicted lines, and so on and so forth

until the N th replacement (where N stands for the number of cache ways)

evicts systematically the only way not evicted so far, and a new random per-

mutation is generated. Such a policy, therefore, would evict 1 random line

with 1 replacement, and all 4 lines in the set with 4 replacements (in random
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order).

Overall, while using different implementations for the same replacement

policy across core types is somewhat unexpected, it is possible in general,

and thus we accept this hypothesis as the most likely one, and the one com-

patible with our measurements. Hence, Cortex-A53 and R5 cores differ on

the behavior of some PMCs and on the implementation of the pseudo-random

replacement policy.
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L1 Misses: accessing same set - R5 0

Replacements PMC events Lab. results Expected results

4

L1D CACHE 8011 8000+11

L1D CACHE REFILL 8000 8000

CPU CYCLES 483899 -

12

L1D CACHE 16011 16000+11

L1D CACHE REFILL 16000 16000

CPU CYCLES 983038 -

20

L1D CACHE 24011 24000+11

L1D CACHE REFILL 24000 24000

CPU CYCLES 1680904 -

28

L1D CACHE 32011 32000+11

L1D CACHE REFILL 32000 32000

CPU CYCLES 2336809 -

36

L1D CACHE 40011 40000+11

L1D CACHE REFILL 40000 40000

CPU CYCLES 2921230 -

76

L1D CACHE 80011 80000+11

L1D CACHE REFILL 80000 80000

CPU CYCLES 5842789 -

116

L1D CACHE 120011 120000+11

L1D CACHE REFILL 120000 120000

CPU CYCLES 8764792 -

Table 6.8: L1 reads cache misses accessing the same set - R5 0
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Level-1 data cache: store instructions

Analogous microbenchmarks to those devised to perform writes to the L1

data cache of Cortex A53 are employed for Cortex R5 processor, with the

aforementioned difference of the stride (32 instead of 64 bytes) and the num-

ber of stores in the loop (64 instead of 32). For this reason, two different

experiments have to be distinguished, which are the one that causes cache

store hits and the one that causes cache store misses in the L1 data cache.

L1 write cache hits. The results shown in table (6.9) were obtained em-

ploying the microbenchmark aimed to cause cache hits with store instructions

(Algorithm 6). It’s important to observe that, in this case, the stride value

from each store instruction was set to 32 bytes and a total of 64 store in-

structions are performed in each iteration as explained before.

Considering the case with just one iteration, the L1D CACHE PMC increases

more than expected and this is due to the fact that there are 20 accesses to

L1 data cache that are counted without considering the 64 store instructions

of the microbenchmark implemented. Out of those 20 accesses, 6 of them

are within the loop, as in the case of the Cortex-A53 cores. Then, it can be

concluded that the Laboratory results match the expected ones.

The L1D CACHE REFILL event (L1 data cache misses) is almost equal to

the expected results. Analogous conclusions can be reached for the number of

memory accesses (RPU EXT MEM REQUESTS). The fact those counters

are slightly lower than expected is very likely because the microbenchmark

finalizes its execution while some stores are still in flight and thus, not coun-

ted yet, since stores are typically processed asynchronously.

In any case, for 1 iteration the number of misses matches the expectations:

64 store misses to fetch 2 kB of data. For 10 iterations, the behavior is still

all-misses since 20 kB of data are fetched and never accessed again. How-

ever, as for the Cortex-A53 core case, the full array (24 kB) is fetched after

12 iterations, thus with 768 L1 data cache misses. Hence, the remaining it-

erations in the cases with 100 and 1,000 iterations perform all-hits accesses.
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The relation between number of accesses, the number of stores per iteration

and the stride, and the data size fetched, is shown in the following equation:

Data size = N◦iterations ·N◦ stores

iteration
· stride = 12 · 64 · 32 = 24kB (6.4)

Overall, the first 12 iterations have an all-misses behavior and the remaining

ones an all-hits behavior. Hence, by observing the increase in execution time

from 100 to 1,000 iterations (258,000 cycles), we can conclude that one store

hit is processed every 4.5 cycles (258,000 / (900 x 64)). Note that in the case

of loads, the average hit latency was around 3 cycles for the R5 cores.
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L1 (write) Hits - R5 0

Iterations PMC events Lab. results Expected results

1

L1D CACHE 81 64+6+14

L1D CACHE REFILL 61 64

L1I CACHE REFILL 9 ∼10

CPU CYCLES 3474 -

RPU EXT MEM REQUESTS 60 ∼64

RPU DCACHE WBACK 0 0

10

L1D CACHE 711 640+60+14

L1I CACHE REFILL 9 ∼10

L1D CACHE REFILL 637 640

CPU CYCLES 34846 -

RPU EXT MEM REQUESTS 636 ∼640

RPU DCACHE WBACK 0 0

100

L1D CACHE 7019 6400+600+14

L1I CACHE REFILL 9 ∼10

L1D CACHE REFILL 768 768

CPU CYCLES 66968 -

RPU EXT MEM REQUESTS 768 ∼768

RPU DCACHE WBACK 0 0

1000

L1D CACHE 70094 64000+6000+14

L1I CACHE REFILL 9 ∼10

L1D CACHE REFILL 768 768

CPU CYCLES 324959 -

RPU EXT MEM REQUESTS 768 ∼768

RPU DCACHE WBACK 0 0

Table 6.9: L1 writes cache hits - R5 0
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L1 write cache misses. Results for the all-misses store microbenchmark

are shown in table (6.10).

Considering the case when just 1 or 10 iterations of the microbenchmark are

executed, the L1D CACHE PMC shows the same results obtained in table

(6.9), which corresponds to the microbenchmark for store hits, since the first

12 iterations experience only misses in both cases.

Using an array of 2 MB, as for the Cortex-A53 core case, would lead to no

data reuse at all and hence, we would obtain all-misses behavior for 100 and

1,000 iterations. Since previous experiments revealed an abnormal behavior

for the pseudo-random replacement policy in the L1 data cache, an array of

64 kB instead has been used. Such array has a size twice as large as the L1

data cache so, to some extent, has the same behavior as the 4-replacements

case when accessing the same set.

The results obtained are on the one hand consistent and on the other unex-

pected. They are consistent since that the number of write-back operations

(RPU DCACHE WBACK counter) plus the number of L1 data cache re-

fills (L1D CACHE REFILL counter) match precisely the number of memory

requests (RPU EXT MEM REQUESTS counter). However, results are un-

expected because the miss rate is not 100% as for the 4-replacements case

when accessing a single set. In particular, miss rates for the stores are around

84% for 100 iterations (5,400 misses out of 6,400 stores), and around 75% for

1,000 iterations (48,000 misses out of 64,000 stores). This reveals that the

behavior of the pseudo-random replacement policy may vary noticeably even

when the number of cache lines fetched (and the pattern to access them)

remains the same for any given set, as it is the case for our experiments

accessing a single set or all of them.

Again, while such behavior is possible, it reveals that the pseudo-random

replacement policy is far from being sufficiently random, thus leading to sys-

tematic behavior in specific scenarios. This plays against time predictability

in general and hence, suggests that one cannot rely much on cache hits in the

L1 data cache of this processor unless all data fits so that an all-hits behavior
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is expected.

Finally, in terms of memory latency, it can be noted that one store operation

in served by memory every 56 cycles on average. If we take into account

that a number of store hits are served in between store misses, then this

latency may be even lower. Furthermore, if we consider that each memory

store operation carries out also another access due to the dirty eviction, then

a memory request may be served every 28 cycles on average. This is in con-

trast with the case of the load misses where, for instance, 120,000 misses are

served in around 8,760,000 cycles, thus averaging around 70 cycles per load

miss. Hence, as in the Cortex-A53 case, stores can be served at a higher rate

than loads.
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L1 (write) Misses - R5 0

Iterations PMC events Lab. results Expected results

1

L1D CACHE 81 64+6+14

L1D CACHE REFILL 61 64

L1I CACHE REFILL 10 ∼10

CPU CYCLES 3572 -

RPU EXT MEM REQUESTS 60 ∼64

RPU DCACHE WBACK 0 0

10

L1D CACHE 711 640+60+14

L1I CACHE REFILL 10 ∼10

L1D CACHE REFILL 637 640

CPU CYCLES 34944 -

RPU EXT MEM REQUESTS 636 ∼640

RPU DCACHE WBACK 0 0

100

L1D CACHE 7014 6400+600+14

L1I CACHE REFILL 10 ∼10

L1D CACHE REFILL 5457 6400

CPU CYCLES 300378 -

RPU EXT MEM REQUESTS 9917 >6400

RPU DCACHE WBACK 4451 ∼5376

1000

L1D CACHE 70044 64000+6000+14

L1I CACHE REFILL 10 ∼10

L1D CACHE REFILL 48489 64000

CPU CYCLES 2715226 -

RPU EXT MEM REQUESTS 96893 >64000

RPU DCACHE WBACK 47832 ∼62976

Table 6.10: L1 writes cache misses - R5 0
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6.2 Experiments with contenders

The single-core tests on the Cortex A53 and Cortex R5 were performed step

by step. From the results obtained with such tests, it was verified that

each microbenchmark is working as expected, forcing the target cache to

perform specific operations, and some unexpected behaviors of the platform

were revealed. For this reason, it’s possible to perform several experiments

with such microbenchmarks when all the cores in each cluster of the target

platform are turned on, thus potentially contending for the shared hardware

resources.

In this section, firstly the different experiments performed will be explained in

detail. Afterwards, results collected from the PMCs will be summarized and

discussed comparing them with the ones obtained with the tests performed

on single core mode.

6.2.1 List of experiments

Several experiments were defined to be executed for the Zynq UltraScale

EG+ board. In particular, 36 experiments were performed, noting that:

1. Experiments from 1 to 12 are aimed to collect the results from the

PMCs of the main core of the RPU cluster, which is R5 0 of Cortex

R5 processors. Those experiments are listed in table (6.11).

2. For what concerns the remaining experiments, they collect results of

the PMCs related to the main core of the Cortex A53 cluster, which is

A53 0. In this case, 24 experiments were performed, which are listed

in two different tables in order to distinguish the ones focused just

on load instructions (6.12) and the ones aimed to perform just store

operations (6.13).
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6.2.2 Task analysis: main core of the Cortex R5 cluster

Considering the experiments from number 1 to 12 (table 6.11), it’s possible

to note that the first 6 ones focus on load instructions, whereas the other

ones focus on store instructions.

In each cell of such table, there are written the abbreviations of the names of

the microbenchmarks implemented in each core for the specific experiment

to be performed. Therefore, it’s important to highlight what they are aimed

to do:

� LoadL1 is the microbenchmark that has to generate high workload on

the L1 data cache using just load instructions. This means that it

is focused on memory read operations and no cache misses will be

experienced (so load hits).

� The microbenchmark named as LoadMem aims to cause systematic cache

misses in the L1 data cache, forcing the system to perform just memory

read operations at the main memory. Therefore, L1 data cache has to

fetch the data always from the main memory (so load misses), meaning

that such microbenchmark suffers and causes high contention.

� StoreL1 is the algorithm that has to cause cache hits in L1 data cache

using store instructions. This means that the same data will be written

in specific memory addresses that can be completely mapped in the

cache lines of the L1 data cache.

� The last microbenchmark employed for these experiments is called

StoreMem and its goal is to generate cache misses in L1 data cache

with store operations (store misses). In fact, this microbenchmark will

write data in many memory addresses in such a way that they can-

not be mapped in the first level cache and eviction will be experienced

for each store instruction. Note that this microbenchmark uses a very

large array size (2 MB) instead of the 64 kB one used in the last set
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of results shown before so that roughly no store hits occur despite the

pseudo-random replacement policy in the L1 data cache.

The descriptions given about the aforementioned microbenchmarks give the

possibility to understand the goal of each experiment. In the first experi-

ment, for instance, all the cores are running at the same time the LoadL1

microbenchmark, meaning that the analysis aims to observe if the task to be

handled by the main core of Cortex R5 cluster is affected by the actions of

the other cores. In fact, since that no cache misses should be experienced, the

data handled in each core has to be kept in each local L1 cache. Therefore,

no contention should happen and this can be noted with the results obtained

with the PMCs of the target processor architecture.

In general, experiments have been built to test the impact of contention

incrementally. For instance exp1 keeps all activities local in L1. exp2 makes

the neighbor core in the same cluster to create contention, keeping the main

core with local accesses in L1. exp3 raises the level of contention with memory

accesses from the cores in the other cluster. Then, exp4, exp5 and exp6 are

analogous, but with the main core accessing memory sustainedly so that it

should suffer the impact of contention.

6.2.3 Task analysis: main core of the Cortex A53

cluster

For what concerns the remaining 24 experiments, they are aimed to observe

the dynamics of the main core in the APU of the target Zynq board when load

instructions (table 6.12) and store instructions (table 6.13) are performed.

Each cell of the aforementioned tables represents the microbenchmarks em-

ployed in each core for each experiment, as explained in section (6.2.2) for

table (6.11). Note that the same (conceptual) microbenchmarks are used

also for these cases.

Two additional microbenchmarks devised for the L2 cache of Cortex A53

processors are included in the task analysis of the Cortex A53 0 core, which
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Task analysis - Main core R5 0

# R5 0 R5 1 A53 0 A53 1 A53 2 A53 3

Exp1 LoadL1 LoadL1 LoadL1 LoadL1 LoadL1 LoadL1

Exp2 LoadL1 LoadMem LoadL1 LoadL1 LoadL1 LoadL1

Exp3 LoadL1 LoadMem LoadMem LoadMem LoadMem LoadMem

Exp4 LoadMem LoadL1 LoadL1 LoadL1 LoadL1 LoadL1

Exp5 LoadMem LoadMem LoadL1 LoadL1 LoadL1 LoadL1

Exp6 LoadMem LoadMem LoadMem LoadMem LoadMem LoadMem

Exp7 StoreL1 StoreL1 StoreL1 StoreL1 StoreL1 StoreL1

Exp8 StoreL1 StoreMem StoreL1 StoreL1 StoreL1 StoreL1

Exp9 StoreL1 StoreMem StoreMem StoreMem StoreMem StoreMem

Exp10 StoreMem StoreL1 StoreL1 StoreL1 StoreL1 StoreL1

Exp11 StoreMem StoreMem StoreL1 StoreL1 StoreL1 StoreL1

Exp12 StoreMem StoreMem StoreMem StoreMem StoreMem StoreMem

Table 6.11: Task analysis for main core of Cortex R5 cluster

are exclusively used for Cortex A53 processors since L2 cache is present just

in the APU:

� LoadL2 is the one that aims to cause cache hits in the L2 cache through

the use of load instructions. Therefore, cache misses are experienced

in L1 data cache and no information will be fetched from the main

memory.

� The last microbenchmark introduced in the experiments from number

25 to 36 is called StoreL2. The goal of this algorithm is to force the

storing of specific data in L2 cache, causing cache misses in L1 and

cache hits in L2. Therefore, after some iterations, such data will not be

fetched from the main memory as it happens in the case of the LoadL2

microbenchmark and it will be found always in L2 data cache.

Due to the presence of the L2 data cache that is a hardware resource shared

among the four cores of the Cortex A53 cluster, it’s needed to perform more

experiments in order to consider the different scenarios that can occur in

93 Lorenzo G. Toscano



Chapter 6. Results

avionics and/or automotive systems when consolidating some critical tasks.

Therefore, L2 data cache has to be stressed like the L1 data one.

The goal of each experiment is quite similar to that of the experiments from

number 1 to 12 performed for R5 0 (see Table 6.11). The experiment num-

ber 16, for instance, is almost equal to experiment number 3, since that each

core is executing the LoadMem microbenchmark, except the main core, which

executes the LoadL1 microbenchmark. These experiments are different just

because the target core is not R5 0 but A53 0, meaning that LoadL1 is ex-

ecuted now by this last one.

The experiments from number 17 to 20 and from 29 to 32, for instance, are

different from the previous ones. In fact, both sets of experiments aim at

forcing cache hits in the L2 data cache for the main core of the APU when

there are contenders that can create contention. Note that such contenders

are all the other processors, namely the three cores of Cortex A53 and the

two cores of Cortex R5 clusters.

Task analysis - Main core A53 0

# R5 0 R5 1 A53 0 A53 1 A53 2 A53 3

Exp13 LoadL1 LoadL1 LoadL1 LoadL1 LoadL1 LoadL1

Exp14 LoadL1 LoadL1 LoadL1 LoadL2 LoadL2 LoadL2

Exp15 LoadL1 LoadL1 LoadL1 LoadMem LoadMem LoadMem

Exp16 LoadMem LoadMem LoadL1 LoadMem LoadMem LoadMem

Exp17 LoadL1 LoadL1 LoadL2 LoadL1 LoadL1 LoadL1

Exp18 LoadL1 LoadL1 LoadL2 LoadL2 LoadL2 LoadL2

Exp19 LoadL1 LoadL1 LoadL2 LoadMem LoadMem LoadMem

Exp20 LoadMem LoadMem LoadL2 LoadMem LoadMem LoadMem

Exp21 LoadL1 LoadL1 LoadMem LoadL1 LoadL1 LoadL1

Exp22 LoadL1 LoadL1 LoadMem LoadL2 LoadL2 LoadL2

Exp23 LoadL1 LoadL1 LoadMem LoadMem LoadMem LoadMem

Exp24 LoadMem LoadMem LoadMem LoadMem LoadMem LoadMem

Table 6.12: Task analysis for main core of Cortex A53 cluster - Load instructions
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Task analysis - Main core A53 0

# R5 0 R5 1 A53 0 A53 1 A53 2 A53 3

Exp25 StoreL1 StoreL1 StoreL1 StoreL1 StoreL1 StoreL1

Exp26 StoreL1 StoreL1 StoreL1 StoreL2 StoreL2 StoreL2

Exp27 StoreL1 StoreL1 StoreL1 StoreMem StoreMem StoreMem

Exp28 StoreMem StoreMem StoreL1 StoreMem StoreMem StoreMem

Exp29 StoreL1 StoreL1 StoreL2 StoreL1 StoreL1 StoreL1

Exp30 StoreL1 StoreL1 StoreL2 StoreL2 StoreL2 StoreL2

Exp31 StoreL1 StoreL1 StoreL2 StoreMem StoreMem StoreMem

Exp32 StoreMem StoreMem StoreL2 StoreMem StoreMem StoreMem

Exp33 StoreL1 StoreL1 StoreMem StoreL1 StoreL1 StoreL1

Exp34 StoreL1 StoreL1 StoreMem StoreL2 StoreL2 StoreL2

Exp35 StoreL1 StoreL1 StoreMem StoreMem StoreMem StoreMem

Exp36 StoreMem StoreMem StoreMem StoreMem StoreMem StoreMem

Table 6.13: Task analysis for main core of Cortex A53 cluster - Store instructions

6.2.4 Final results and Research Observations

Thanks to the use of Bash scripts, which were specifically devised for this set

of experiments, many results were collected with all relevant PMCs of main

core, regardless of the cluster where the task under analysis was run, and

some of them were used to compute the number of cycles per instruction

that it took to run each experiment. Since the number of experiments is

very large and hence, the number of counters is also huge, only the results of

the CPU CYCLES and INST RETIRED counters are shown in table (6.14).

Therefore, it was possible to obtain the final results shown in table (6.15),

which are represented also in figure (6.1) for the sake of convenience. Note

that each experiment was performed disabling firstly the data prefetcher

of all the cores, including the target main core under analysis, to avoid

uncontrolled behavior of any core.

In this last table, it’s important to highlight that CPI stands for Cycles Per

Instruction and that Mem stands for the main memory. Moreover, all the

experiments are categorized in such a way that the reader can understand
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better the type of microbenchmark studied in the main core, which memory

level they are stressing, the type of instructions used (Load or Store) and

the target processing cluster.

The CPI values were obtained dividing the counter of the CPU cycles of the

target main core (CPU CYCLES) by the number of instructions executed

in the corresponding experiment (INST RETIRED).
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Experiment CPU CYCLES INST RETIRED
Exp 1 394118 130240
Exp 2 394528 130240
Exp 3 394647 130240
Exp 4 8889679 130240
Exp 5 9049911 130240
Exp 6 9174290 130240
Exp 7 534830 133580
Exp 8 539924 133580
Exp 9 567259 133580
Exp 10 4579026 133313
Exp 11 5082107 133313
Exp 12 12047451 133313
Exp 13 1287787 1282160
Exp 14 1297474 1282160
Exp 15 1305180 1282160
Exp 16 1290713 1282160
Exp 17 4639647 130103
Exp 18 5139346 130103
Exp 19 4832349 130103
Exp 20 4818012 130103
Exp 21 16545149 130102
Exp 22 18928491 130102
Exp 23 17066002 130102
Exp 24 19619430 130102
Exp 25 189313 133609
Exp 26 190034 133609
Exp 27 199632 133609
Exp 28 199599 133609
Exp 29 859128 133251
Exp 30 2045853 133251
Exp 31 1131668 133251
Exp 32 1197269 133251
Exp 33 4268173 133112
Exp 34 5624223 133112
Exp 35 8723100 133112
Exp 36 8361755 133112

Table 6.14: CPU cycles and instructions performed in each experiment
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Processing unit Instructions Microbenchmark Experiment CPI

RPU

Load

L1

Exp 1 3.03

Exp 2 3.04

Exp 3 3.04

Mem

Exp 4 68.26

Exp 5 69.49

Exp 6 70.45

Store

L1

Exp 7 4.01

Exp 8 4.06

Exp 9 4.27

Mem

Exp 10 34.35

Exp 11 38.13

Exp 12 90.38

APU

Load

L1

Exp 13 1.00

Exp 14 1.01

Exp 15 1.02

Exp 16 1.01

L2

Exp 17 35.67

Exp 18 39.51

Exp 19 37.15

Exp 20 37.04

Mem

Exp 21 127.18

Exp 22 145.50

Exp 23 131.18

Exp 24 150.81

Store

L1

Exp 25 1.42

Exp 26 1.43

Exp 27 1.51

Exp 28 1.51

L2

Exp 29 6.45

Exp 30 15.36

Exp 31 8.51

Exp 32 9.00

Mem

Exp 33 32.07

Exp 34 42.26

Exp 35 65.55

Exp 36 62.83

Table 6.15: Cycles per instruction results
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Focusing on the plot represented in figure (6.1), instead, it’s possible to

comment the results in a easier better way. As expected, the CPI values

are higher in the experiments that are forcing the specific processing

unit to access the main memory, like the ones from number 4 to 6 or

from number 21 to 24. In fact, even though the number of instruc-

tions performed in the experiments from number 1 to 3 is the same also

in the experiments from 4 to 6, the number of execution cycles is quite bigger.

Cortex-R0 results

First of all, we observe that the CPI for experiments accessing only L1 cache

are virtually insensitive to contention. For instance, in the case of loads

hits, experiments 1-3 have roughly the same CPI, and so it is the case for

experiments 7-9 for store hits. Note that, while this behavior is expected, it

is not always the case in all architectures since cache snooping and cache

inclusion characteristics may lead to some interference even if the task under

analysis does not use any shared resource.

Observation 1: Load hits and store hits are insensitive to contention.

Hence, critical tasks operating mostly with local data can be consolidated

with any other software without specific constraints.

In the case of load misses, we observe that the CPI is also nearly constant

regardless of contention. A closer look at the results reveals, as pointed out

before, that load frequency is lower than store frequency. Thus, load misses

stall execution in the core which, in the case of contenders, prevents them

from creating higher contention. Hence, the task under analysis, although it

experiences some relevant contention, does not suffer a noticeable increase in

its CPI since the intrinsic parallelism of the memory system allows serving

multiple load requests from the different cores in parallel. In fact, in the case

of experiment 6 a very slight CPI increase is observed when memory must
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serve load requests from all cores simultaneously. We, therefore, identify a

key information for task consolidation:

Observation 2: Load misses cause limited contention in practice, so

critical tasks can be consolidated with programs with such profile without

experiencing a relevant increase in their execution time.

When analyzing experiments 10-12, thus for store misses, we realize that,

as shown before, CPI without contention is lower than for loads. However,

those tasks are much more sensitive to contention that load-based ones. For

instance, when adding a store miss contender (exp 11), CPI of the main

core increases by more than 10%. When placing store miss contenders in all

other cores, the CPI grows by a factor of 2.6x (so 160% higher CPI). The

reason behind this behavior is that store misses perform frequent accesses

to memory due to being processed at a higher rate and due to causing

additional accesses for dirty cache line evictions. Thus, this leads to the

third key observation:

Observation 3: Store misses cause high contention in memory, so

critical tasks sensitive to contention must not be consolidated with store-miss

programs as contenders.

Cortex-A53 results

As for the R0 cores, load-hit and store-hit tasks are highly insensitive to

contention. This can be seen comparing experiments 13-16 (load hits) as

well as 25-28 (store hits). As shown, the CPI remains almost constant

regardless of the contention caused by the tasks in the other cores, whose

impact is negligible regardless of whether they access their local L1 caches,

the shared L2 cache or main memory. Hence, similar conclusions can be

reached for load-hit and store-hit programs in the A53 and R0 cores:
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Observation 4: Load hits and store hits are insensitive to contention,

regardless whether it occurs in the L2 cache or in memory. Hence, critical

tasks operating mostly with local data can be consolidated with any other

software without specific constraints also in the A53 cores.

Regarding experiments targeting L2 cache, they have been devised so that

their data fits comfortably in L2 and hence, contention can only occur in

the access ports and queues, but not due to mutual evictions. In practice,

mutual evictions can be avoided using cache partitioning, which was not

considered in the scope of this Master thesis for the sake of simplicity.

Experiments 17-20 evaluate the case for load L2 hits. We observe that

making contenders access also the L2 cache frequently (exp 18 compared

w.r.t. exp 17) leads to a CPI increase of around 10%. Instead, if contenders

access main memory (exp 19-20), their L2 access frequency is lower and

hence, their contention is lower (below 5%). Hence, load L2 hit tasks are

not very sensitive to contention and, only contention in the access to L2 is

relevant. Hence, we raise the following observation for software consolidation:

Observation 5: Load L2 hits are highly insensitive to contention

and only they may suffer some little contention if contenders access L2

frequently. Hence, Load L2 hit tasks may be better consolidated with tasks

keeping data locally in L1 or accessing mostly memory, but integrating them

with L2-hungry tasks has limited effects.

When analyzing the case of store L2 hits (experiments 29-32), we observe

similar trends but with much larger magnitude. In particular, store L2 hits

can make CPI grow above 2x due to contention, whereas memory traffic,

which creates lower L2 contention, can still increase the CPI of the task

under analysis by 30-40%. Overall, this exposes two key facts: store L2

hits create very high contention and are very sensitive to contention. The
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main reason for this behavior is the fact that stores are normally processed

asynchronously, so that the latency of store L2 hits can be normally hidden

with some queues and buffers in L1 and L2 caches. However, as long as

those buffers and queues get saturated due to contention, back pressure is

created and execution in the core gets stalled, thus leading to significant

relative CPI increases. Hence, we raise the following observations:

Observation 6: Store L2 hit critical tasks must not be consolidated

with tasks creating high L2 contention. Hence, they can be consolidated with

tasks keeping their data locally in L1 or, at most, with load misses tasks

that, despite creating some contention in the L2, such contention is limited.

Observation 7: Store L2 hit tasks have the ability to increase contention

in L2 dramatically. Hence, they are compatible with critical tasks as long as

those tasks are insensitive to L2 contention, either because they keep their

data locally in L1 or because they already experience high latency accessing

main memory so that the relative impact of L2 contention is low.

Load misses (experiments 21-24) have already a high CPI, so the relative

impact of contention is low. Still, such impact is relevant when contenders

access L2 cache or memory frequently, which may increase the CPI by

around 14-19%. Thus, the following observation holds:

Observation 8: Load misses are sensitive to contention to some extent.

Hence, consolidating load misses critical tasks with tasks that mostly access

L1 globally is the most convenient solution. Still, having some L2 or memory

intensive tasks running together has limited effects.

Finally, store misses (experiments 33-36) are highly sensitive to contention,

especially if such contention occurs in memory. In particular, store L2 hits

cause a 30% increase in CPI, whereas store misses contenders may make the
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CPI of the task under analysis grow by 2x. Thus, we observe the following:

Observation 9: Store misses are highly sensitive to contention, espe-

cially if such contention occurs in memory. Hence, store misses critical

tasks must be consolidated with tasks causing low contention such as, for

instance, L1 hit tasks and those accessing shared resources not too often

(e.g. load misses).

Observation 10: Store misses create very high contention in memory.

Therefore, critical tasks running together with this type of contenders must

keep their data locally in L1 as much as possible to keep their CPI low.

Figure 6.1: Cycles per instruction plot of the experiments with contenders
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Chapter 7

Budget

In this chapter, it will be presented the different elements to be considered to

estimate the budget for this Master thesis. Firstly, the costs for the devices

employed for the experiments and for the people involved in the project are

presented, then the financial viability of the approach proposed is discussed.

7.1 Costs

� It was needed to buy the Zynq UltraScale+ EG board in order to

implement and evaluate the microbenchmarks devised for this Master

thesis. The cost of purchasing such board is around 2,500e.

� The cost per hour to be incurred for the development of this work

by myself is estimated in 9e. Therefore, given that the Master thesis

work required around 900, which is in line with the 30 × 25-to-30 total

hours planned for a Master project of 30 ECTS, with 25-30 hours per

ECTS, my personnel cost for this master is 8,100e. Note that such

cost includes parts that, for the development of the technology only

would not be incurred (i.e. reading bibliography, preparing this thesis,

preparing the presentation). Still, for the sake of simplicity, these costs

are not broken down.
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� Members of the CAOS team at BSC spent also some of their time

for this work, in particular my advisor Jaume Abella and the engineer

Mike Fernández. Their effort is estimated to be around 10% of the

time devoted by myself. Also, on average, the cost per hour assumed

for people involved in this work is estimated to be twice my cost, so

18e per hour. Hence, this leads to 1,620e.

Overall, the total cost for the development of this technology amounts

12,220e.

Budget End of February - Middle of July

Personal cost ∼8100e

BSC cost ∼1620e

Zynq platform ∼2500e

Table 7.1: Pay and cost per hour for Master thesis

7.2 Financial viability

For what concerns the financial viability, note that any company willing to

use the technology developed in this Master thesis will already need the Zynq

UltraScale+ EG platform for the system to be deployed. Hence, such cost

would not be incurred by the developed technology itself. Instead, the use of

this microbenchmark technology requires instrumenting software tasks of the

end user to collect information on the Zynq board and reach conclusions on

how to consolidate software in the system to be deployed. For that purpose,

we assume that the cost to perform such work for just one task is at most

1 hour. Hence, assuming the cost of a skilled engineer, such cost could be

up to 18e. This leads to the conclusion that the use of this technology has

a very low cost w.r.t. the amount of money spent for the board and the

development and validation of the software to be deployed. In fact, with this

estimation, and assuming that the system to be deployed will consist typically

in a number of tasks in the order of some tens or up to few hundreds of tasks,
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the cost of using this technology is really low (e.g. 3,600e for a 200-task

system).
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Chapter 8

Conclusions

The adoption of high-performance hardware platforms such as the Zynq Ul-

traScale+ EG one on critical real-time embedded systems is a need in do-

mains such as automotive and avionics among others. This work has shown,

through the integration and adaptation of a measurement-based methodology

based on microbenchmarks, that such platform brings some challenges due

to the interference that cores can experience when accessing shared hardware

resources. Therefore, software consolidation must be performed carefully so

that hardware is exploited efficiently, particularly for critical real-time tasks.

The work in this thesis analyzes in detail how contention occurs when ac-

cessing different shared hardware resources, such as shared caches and main

memory, across different computing clusters, namely the real-time Cortex-R5

one and the high-performance Cortex-A53 one, and for different operation

types (loads and stores).

Our results bring highly valuable conclusions in the form of observations,

which are key to allow end users perform appropriate task consolidation in

the system for its deployment. In particular, our observations indicate what

tasks should execute concurrently and what task types must not do it, so

that contention experienced is limited, thus leading to an efficient use of

shared hardware resources by experiencing limited contention. Ultimately,

this provides evidence that WCET estimates for tasks in isolation only grow
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slightly due to contention, so that they can still finish by their respective

deadlines. Hence, the observations in this thesis are a key source of informa-

tion for end users willing to use this platform for critical real-time embedded

systems, since they can build on those observations to properly schedule

tasks.

8.1 Future development

The research findings presented in this thesis open the door to a number of

research paths:

� Task scheduling. While observations are provided in the form of

guidelines for scheduling purposes, scheduling algorithms building upon

profiled information from tasks (with PMCs) can be build on top of our

observations so that efficient schedules are devised automatically, thus

minimizing (or even removing) user intervention.

� Contention models. While our analysis reveals the magnitude of exe-

cution time increase incurred due to contention, actual (fully-reliable)

bounds have not beed completely devised. By further testing the plat-

form, those reliable bounds can be devised and analytical contention

models can be devised so that impact of contention on a given task can

be reliably and tightly estimated without having it to run concurrently

with other tasks of the system. This can be a very valuable input

for task scheduling so that scheduling decisions are based on actual

predictions rather than on qualitative observations.

� Other components. The target of the analysis in this thesis has been

general purpose processor cores. However, the platform includes other

computing resources such as a GPU and an FPGA. Analyzing the

contention experienced by those components remains as future work

to enable their effective use while having guarantees about the impact

of contention on execution time also for those components.
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