
ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА
ПО НАПРАВЛЕНИЮ ПОДГОТОВКИ

09.03.01 – «ИНФОРМАТИКА И ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА»

GRADUATE THESIS FILED OF STUDY
09.03.01 – «COMPUTER SCIENCE»

НАПРАВЛЕННОСТЬ (ПРОФИЛЬ) ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ
«ИНФОРМАТИКА И ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА»

AREA OF SPECIALIZATION / ACADEMIC PROGRAM TITLE:
«COMPUTER SCIENCE »

Иннополис, Innopolis, 2018

Автономная некоммерческая организация
высшего образования

«Университет Иннополис»

Autonomous noncommercial organization
 of higher education
 “Innopolis University”

Тема

Topic Quoridor Agent using Monte Carlo Tree Search

Работу выполнил /

Thesis is executed by

Victor Massagué Respall
подпись / signature

Научный руководитель /
Thesis supervisor

Joseph Alexander Brown
подпись / signature

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185525709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 2

2 Literature Review 4
2.1 Quoridor . 4

2.1.1 Rules of the game . 4
2.1.2 Notation . 6
2.1.3 Game complexity . 8

2.2 Agents in different board games 9
2.2.1 Chess . 9
2.2.2 Carcassonne . 9
2.2.3 Checkers . 10

2.3 Agents using MCTS . 10
2.3.1 Go . 10
2.3.2 Backgammon . 10
2.3.3 Scrabble . 10

2.4 Previous agents for Quoridor . 11
2.5 Game tree . 11
2.6 Monte Carlo Tree Search . 12
2.7 Genetic Algorithm . 14

3 Methodology 17

4 Implementation 19

5 Evaluation and Discussion 25
5.1 Experimental Settings . 25

5.1.1 120k Simulations Agent 25
5.1.2 60k Simulations Agent . 25
5.1.3 Alternative Agent . 25
5.1.4 Genetic Algorithm Agent 26

5.2 Results . 27

6 Conclusion 29

List of Tables

2.1 Example of sequence moves in Figure 2.5 8
2.2 Complexities of Some Well-Known Games 9

5.1 Population used for the tournament with weights of each feature
and fitness . 27

5.2 Comparison of the 120k Agent to Other Agent Types (Significant
at 95% Confidence in Bold using a Binomial exact test) 28

List of Figures

2.1 Initial state of the board with painted baseline of each player . . 5
2.2 Pawn’s basic moves . 5
2.3 Allowed movements for lower pawn 6
2.4 Board coordinates [1] . 7
2.5 Notation used for the project [1] 7
2.6 Partial game tree for Tic Tac Toe [2] 12
2.7 Outline of Monte Carlo Tree Search 13
2.8 One generation is broken onto a selection phase and recombina-

tion phase. This figure shows strings being assigned into adjacent
slots during selection. In fact, they can be assigned slots ran-
domly in order to shuffle the intermediate population. Mutation
(not shown) can be applied after crossover. [3] 15

2.9 Example of Roulette-wheel where chromosome 1 has the highest
probability to be selected . 16

3.1 Breadth First Search example . 18

4.1 Example of graph representation of a board from pink player
point of view . 20

4.2 Moving a pawn . 20
4.3 Adding a fence . 21
4.4 Monte Carlo tree search for deciding which move to perform next 22
4.5 Selection phase . 22
4.6 Expansion phase . 22
4.7 Backpropagation phase . 23
4.8 Simulation phase . 23
4.9 Heuristic function used for simulating the game 23
4.10 Internal representation of the board 24

Abstract

This thesis presents a preliminary study using Monte Carlo Tree Search (MCTS)
upon the board game of Quoridor. Quoridor is an interesting game for expan-
sion of player agents in MCTS due to having a mechanically simple rule set,
however, Quoridor has a state-space complexity similar to Chess and a higher
game-tree complexity. The system is shown to perform well against current ex-
isting methods, defeating a set of player agents drawn from an existing digital
implementation as well as a previous method using Genetic Algorithms.

Chapter 1

Introduction

With the emergence of computers, building artificial intelligence agents for dif-
ferent games have become an exciting sphere. An agent is an autonomous char-
acter that takes in information from the game data, determine what actions to
take based on the information, and carry out those actions [4].

The goal is to develop an agent able to beat human players in one particular
game, or in other words, solving the game. The first attempts were trying to
generate the whole game tree, but in most of the games, this is not efficient due
to the size of the tree and the computational time required. The biggest chal-
lenge is to find alternatives and new techniques to solve games in a reasonable
computational time.

There has been a predominant trend of introducing artificial intelligence in
games. Strategy based games are the most appealing to be played against an
artificial player. However, generating winning solutions via an algorithm is quite
challenging. Taking for example Tic Tac Toe, it is affordable to use the Minimax
algorithm but looking into a more complicated game like Chess [5] [6] [7] and
Go [8] [9] [10], generating the whole game tree is not affordable. Sometimes
using techniques such as alpha-beta pruning [11] [12], which reduces the size of
the tree significantly, is not feasible either. This is why new methods to build
an agent are emerging.

Monte Carlo Tree Search (MCTS) [13] [14] is a technique well-known these
days [15] due to the efficient results obtained in the board game Go [8]. This
game, produces difficulty for an AI expert to create an agent, due to its space-
complexity, branching factor and difficulties to evaluate the state of the game
in the middle. To deal with these, Monte Carlo tree search was used because
of its following properties. It uses UCT (Upper Confidence Bound applied
to Trees) [16] for evaluating the final states of the game. Also, it consists of
Monte Carlo roll-outs, explained later in section 2.6. , to estimate the value
of each state in the search tree. As the tree grows larger more accurate values
are generated. The average of these roll-outs can provide an effective position
evaluation achieving accurate performance in games such as Backgammon [17]
and Scrabble [18].

3

This thesis presents the research on the board game Quoridor to develop
an artificial player agent using the Monte Carlo tree search algorithm. Due
to the lack of research done on this board game, we decided to create our
agent using this technique because of its efficient performance in Go [8], and
favourable results in other board games as Backgammon [17] and Scrabble [18].
Quoridor has a state-space complexity similar to Chess [5] and a higher game-
tree complexity (explained in section 2.1.3). These characteristics have led to
the application of the MCTS algorithm for Go [8].

The remainder of the paper is organized as follows. Chapter 2 explains
Quoridor with the rules and notation used for this project, related works and
basic knowledge about Monte Carlo Tree search and Genetic Algorithm. Chap-
ter 3 the method used. Implementation of this method has been explained in
Chapter 4. Chapter 5 presents the experiments and results obtained. Finally
the conclusions extracted from all the research done are provided in Chapter 6.

Chapter 2

Literature Review

2.1 Quoridor

Quoridor [19] is a strategy board game for two to four players. It was created
in France by Gigamic in 1997 as a result of the evolution of a game created
by Mirko Marchesi in 1975. Quoridor received the Mensa Mind Game prize in
1997 and the Game Of The Year in the USA, France, Canada and Belgium.

Compared to well-known games like Chess and Go, Quoridor is a relatively
new game and has not been extensively analysed. This game is not solved and
a little information about winning strategies can be found.

2.1.1 Rules of the game

Quoridor is played in a nine by nine board, and this project is focused only on
the two-player version. Each player is represented by a pawn which begins at
the centre space in opposite edges of the board (Figure 2.1), the baselines. The
goal is to be the first player to move their pawn from its side to the opposite
side of the board, the opposite baseline.

2.1 Quoridor 5

Figure 2.1: Initial state of the board with painted baseline of each player

The main feature that makes this game interesting and tactical is its fences.
Fences are flat two-space-wide pieces which can be placed in the groove be-
tween the squares of the board. Fences have the ability to facilitate the player’s
progress or block the path of the pawns, which must go around them. Each
player has ten fences at the start of the game, and once placed, cannot be
moved or removed.

Each player at his turn can choose to move his pawn or to place one of his
fences. once the player runs out of fences, its pawn must be moved. Pawns are
moved one square at a time, horizontally or vertically, forwards or backwards
(Figure 2.2).

Figure 2.2: Pawn’s basic moves

When two pawns face each other on neighbouring squares which are not

6 Chapter 2 – Literature Review

separated by a fence, the player whose turn is it can jump over the opponent’s
pawn and place himself behind the opponent’s pawn, thus advancing an extra
square. If there is a fence behind the said pawn, the player can place his pawn
to the left or the right of the opponent’s pawn. Fences may not be jumped,
including when moving laterally due to a fence being behind a jumped pawn
(Figure 2.3).

Figure 2.3: Allowed movements for lower pawn

Fences can be placed directly between two spaces, in any groove not already
occupied by a fence. However, a fence may not be placed which cuts off the
only remaining path of any pawn to the goal. The first player who reaches one
of the 9 squares of his opponent’s base line is the winner.

2.1.2 Notation

In order to allow for the games to be examined, we must come up with a novel
notation for the moves made by both players. There is no official notation for
Quoridor, so for this project, we use a notation from a community of players [1].

The notation proposed shown in Figure 2.4 is similar to algebraic Chess
notation. Each square gets a unique letter-number designation. Each column is
given a letter A-I and each row is given a number 1-9. A move is recorded as
the column followed by the row. The first player always starts on E1 and the
second player always starts on E9. This marks the top and the bottom of the
board, which are needed for recording fence placement.

2.1 Quoridor 7

Figure 2.4: Board coordinates [1]

Each fence move is defined by the lower left square they touch along with
their direction, horizontal or vertical. Every fence touches four squares, so we
denote the position of the fence by the square closest to the A1 corner of the
board (Figure 2.5).

Figure 2.5: Notation used for the project [1]

8 Chapter 2 – Literature Review

Player 1 Player 2
1 E2 E8
2 E3 E7
3 E4 E6
4 E3h G6v

Table 2.1: Example of sequence moves in Figure 2.5

To distinguish between if it is a pawn move or a fence move, we can see in
Table 2.1 that pawn moves are just denoted as a cell coordinate in compari-
son with fence moves that need to indicate the orientation, either horizontally
(denoted cellCoordinate + h) or vertically (denoted cellCoordinate + v).

2.1.3 Game complexity

The state-space complexity of a game is the number of legal game positions
reachable from the initial position of the game [20]. If this is too complex to
calculate, an upper bound can often be computed by including illegal positions
or positions that can never arise in the course of a game.

Quoridor has the number of possible ways to determine a fast upper bound
on complexity, such as pawns moves multiplied by the number of possible ways
to place the fences. Since the board has eighty one squares, we can place the
first pawn in any of them, and the second one in eighty, due to the first pawn
already placed on the board. Hence, the total number of positions, Sp , with two
pawns is given by the following equation:

Sp = 81 ∗ 80 = 6480 (2.1)

Further, for the fences, since each fence occupies 2 squares, there are eight
ways to place a fence in one row. Given that there are eight rows, there are sixty
four possible places to put a fence horizontally. Since the board is a square, we
have the same number of rows and columns, one fence can be put in one hundred
and twenty eight places. We have to take into account that one fence occupies
four fence positions, except for the squares on the border. So the total number
of positions of the twenty fences, Sf , is given by the following equation [21]:

Sf =

20∑
i=0

i∏
j=0

(128− 4i) = 6.1582 ∗ 1038 (2.2)

Finally, the upper bound of the size of the state space is [21]:

S = Sp ∗ Sf = 6480 ∗ 6.1582 ∗ 1038 = 3.9905 ∗ 1042 (2.3)

Table 2.2 shows a comparison between complexities of different well-known
games. Quoridor has a state-space complexity similar to Chess and a higher
game-tree complexity, shown to be 10162 in [21].

2.2 Agents in different board games 9

Game State-space complexity 1 Game-tree complexity 1

Tic-tac-toe 3 5
Checkers [22] [23] 20 or 18 31

Connect Four [22] [24] 13 18
Nine Men’s Morris [22] 10 50

Reversi [22] 28 58
Chess [25] 47 123

Connect6 [26] 172 140
Backgammon [27] 20 144

Quoridor [28] 42 162 [21]
Carcassonne [29] >40 195

Go (19x19) [22] [30] [31] 170 360

Table 2.2: Complexities of Some Well-Known Games

2.2 Agents in different board games

In this section some characteristics of relevant AI agents for board games are
explained. Algorithms used, features and results obtained for each one of them.

2.2.1 Chess

Deep Blue [5] was a chess-playing computer developed by IBM, and the first
computer chess-playing system to win both a chess game and a chess match
against a reigning world champion under regular time controls. The system
derived its playing strength mainly from brute force computing power. It was
a parallel system designed specially for searching into chess game tree. It was
capable of evaluating 200 million positions per second. Deep Blue’s evaluation
function was initially written in a generalized form, with many to-be-determined
parameters.

2.2.2 Carcassonne

Carcassonne is a recently board game for 2 to 5 players which the entire state of
the game is fully observable to each of the players. It is a non-deterministic game
because randomly the player has to take tiles at each turn. The algorithm used
for developing this agent is Expectimax search [32], which is based on Minimax
search. Applying negamax algorithm [33] and alpha-beta pruning [11] [34] the
performance was improved reducing the branching factor number. The level
achieved allows to win against advanced human players.

1As log to base 10

10 Chapter 2 – Literature Review

2.2.3 Checkers

Chinook is a computer program that plays checkers [35]. It was developed by
a team led by Jonathan Schaeffer. It is the first computer program to win the
world champion title in a competition against humans. Chinook’s algorithm
includes an opening book, a library of opening moves from games played by
grandmasters, a deep search algorithm, a good move evaluation function and an
end-game database for all positions. The evaluation function considers several
features of the game board, including piece count, kings count, trapped kings,
turn and runaway checkers.

2.3 Agents using MCTS

This section describes the most relevant board games that successfully applied
MCTS.

2.3.1 Go

AlphaGo is an agent that plays the board game Go [9], developed by Google. In
October 2015, AlphaGo became the first computer Go program to beat a human
professional Go player without handicaps on a full-sized 19x19 board. This agent
uses a Monte Carlo tree search algorithm to find moves based upon knowledge
by machine learning, specifically by an artificial neural network, extensively
trained both from human and computer play.

2.3.2 Backgammon

McGammon [36] is an agent that uses MCTS in Backgammon for training a
neural network by playing millions of offline games. It is presented a contrast-
ing approach consisting of using only online simulated games from the current
position. A simplification of the game rules is made for computing random
games faster. The agent is able to play 6500 approximately per second on a
quad-opteron 2.6 GHz CPU. It is able to find some expert moves just even with
a simplified version of the game.

2.3.3 Scrabble

MAVEN [18] was the first program to demonstrate that it is possible to beat
human players in Scrabble. It is a game of imperfect information with a large
branching factor. The techniques successfully applied in two-player games such
as chess do not work here. MAVEN combines a selective move generator, simu-
lations of likely game scenarios, and the B algorithm (basically techniques used
in MCTS) to produce a world-championship-caliber Scrabble-playing program.
If a perfect human player play against MAVEN he could only win 51 percent of
the games.

2.4 Previous agents for Quoridor 11

2.4 Previous agents for Quoridor

As mentioned earlier, there is not much research on this game as it is relatively
new. The main attempts to build an agent on Quoridor are mentioned as follows:

1. Mastering Quoridor by Lisa Glendenning [28] : Agent development has
been done by implementing a search algorithm, using iterative-deepening
alpha-beta negamax search algorithm with few modifications. For the
evaluation function, the ten features chosen are summarized as:

• Shortest path to the goal for both players

• Markov Chain for both players

• Manhattan Distance for both players

• Pawn Distance

• Goal Side for both players

• Number of fences of the player

For the learning algorithm, a variant of a genetic algorithm is using as a
fitness evaluation function, the number of games that a chromosome wins
against the others inside the population. This agent was shown to be easy
to beat by human play.

2. A Quoridor-playing Agent [21]: MiniMax algorithm is used in this case
with Alpha-Beta pruning, but the game tree is to large to perform Min-
iMax search all the way down to the leaves of the tree. Therefore, the
solution is limiting the depth of the MiniMax search. Further, an evalu-
ation function is applied to determine the value of a position in order to
allow for a quicker return. The result obtained is a weak Quoridor agent
as it is unable to see depth in the game.

MCTS balances the want for a fast evaluation mixed with the ability to
see beyond a set horizon depth.

2.5 Game tree

A game tree is a directed graph whose nodes are states of a game and each edge
represents a move. A game tree is complete if it contains all possible moves or
possible states of the game from the initial position.

12 Chapter 2 – Literature Review

Figure 2.6: Partial game tree for Tic Tac Toe [2]

In Figure 2.6 is shown a part of Tic Tac Toe game tree. The root determines
the current state of the game and also the player that plays next. The children
of it are all possible moves that the current player can perform.

Game trees are so important in artificial intelligence because one way of
deciding which move is better is applying some search algorithm on them like
Minimax algorithm or MCTS. Specifically for Tic Tac Toe it is very convenient
to build the complete game tree because it has a low branching factor. But for
bigger branching factors such as Chess, it is too large to compute it completely.
Instead of using a complete game tree, for this kind of games you have to work
with partial game trees.

2.6 Monte Carlo Tree Search

Monte Carlo Tree Search is a probabilistic search algorithm with a unique
decision-making ability because of its efficiency in open-ended environments
with an enormous amount of possibilities. To deal with the size of the game
tree, it applies Monte Carlo method [37]. It is based on simulating games where
the AI agent and the opponent player play pseudo-random moves. As it is based
on random sampling of game states, it does not need to use brute force. This
characteristic allows us to simulate a big number of simulation games to collect
information about movement perform.

2.6 Monte Carlo Tree Search 13

Figure 2.7: Outline of Monte Carlo Tree Search

For building a game tree this algorithm follows this four phases:

1. Selection: In this initial phase, the algorithm starts with a root node and
selects a child node such that it picks the node with maximum win rate.
In order to make sure that each node is given a fair chance to be selected
and to balance the situation between exploration and exploitation, we use
UCT [16].

wi

ni
+ c ∗

√
ln(t)

ni
(2.4)

Where

• wi = number of wins after the i-th move

• ni = number of simulations after the i-th move

• c = exploration parameter (theoretically equal to
√

2 [14])

• t = total number of simulations for the parent node

This formula ensures that agent will play promising branches more often
than their counterparts, but will also sometimes explore new options to
find a better node, if exists.

It selects the best node of the entire generated tree, traverses down the
tree and selects a leaf node.

2. Expansion: When it can no longer apply UCT to find the successor node,
it expands the game tree by generating all possible states from the leaf
node.

14 Chapter 2 – Literature Review

3. Simulation: After expansion phase, the algorithm picks a node randomly
and it simulates the game until the very end, randomly for both players.

4. Backpropagation: This last phase consists of updating the nodes according
to the result of the simulation. It evaluates the state to figure out which
player has won and traverses upwards to the root incrementing visit counts
and win scores, i.e. a count of if the player of that position has won, of
each node visited.

The algorithm keeps looping these four phases until some fixed number
of iterations. Higher the number of iterations, more reliable the estimate
becomes.

2.7 Genetic Algorithm

Genetic algorithm (GA) is a method inspired in natural selection [3]. Basically
it encodes a candidate solution to a specific problem on a simple data structure
called chromosome. All implementations of this algorithms start with creating
a population, in other words, a group of chromosomes, typically random. The
size depends on the problem. During each successive generation, a part of
the population is selected to breed the next generation. Solutions are selected
according to a fitness evaluation, that tells how good is that solution for our
problem.

Also this algorithms use mutation and crossover operators to generate new
sample points in a search space. At each generation usually the best chromo-
somes reach the next generation. The key point on this algorithms is how to
evaluate the fitness of a chromosome, because this will determine how good is
your solution. For computing the fitness of each chromosome it is applied a
fitness evaluation function.

2.7 Genetic Algorithm 15

Figure 2.8: One generation is broken onto a selection phase and recombina-
tion phase. This figure shows strings being assigned into adjacent slots during
selection. In fact, they can be assigned slots randomly in order to shuffle the in-
termediate population. Mutation (not shown) can be applied after crossover. [3]

After this phase, selection is the next step. There are many ways for imple-
menting this [38]:

• Roulette Wheel Selection (RWS): This method says that the probability
for a chromosome to. be selected is proportional to the fitness of itself. It
follows this formula [39]:

pi =
wi∑N
i=1 wi

(i = 1, 2, ...,N)

16 Chapter 2 – Literature Review

Figure 2.9: Example of Roulette-wheel where chromosome 1 has the highest
probability to be selected

• Stochastic Universal Sampling (SUS): This technique uses a single ran-
dom value to sample all the solutions by choosing them at evenly spaced
intervals. This gives weaker members of the population, according to their
fitness, a chance to be chosen and thus reduces the unfair nature of fitness-
proportional selection methods. It starts from a small random number,
and chooses the next candidates from the rest of population remaining,
not allowing the fittest members to saturate the candidate space.

• Linear Rank Selection (LRS): It defines the target sampling rate (TSR)
of an individual x as:

TSR(x) = Min + (Max −Min)
rank(x)

N − 1

where rank(x) is the index of x when the population is sorted in increasing
order based on fitness, and N is the size of the population. The TSR is
the number of times an individual should be chosen as a parent for every
N sampling operations [40].

• Tournament Selection (TOS): The idea is choose some number of indi-
viduals randomly from a population, select the best individual from this
griup fro further genetic processing and repeat as often as desired. [41]

Chapter 3

Methodology

Considering all the research presented in earlier sections, we decided to use
Monte Carlo Tree Search algorithm for building the AI agent for Quoridor, as it
appears to be an efficient algorithm for this type of board game and game tree
size.

The proposed search algorithm works as follows: We have built a game tree
with a root node, then it is expanded with random simulations of the game. In
the process, we maintain the number of times we have visited a specific node
and a win score, used to evaluate the state of the board. The game is simulated
until the end 120000 times per each decision that the agent has to do. In the
end, we select the node with higher win score. In case of having more than one
node with maximum win score, we take a random one from all best candidates.

When we did some experiments with the system, we realized that it is not
working as we wanted. After this amount of simulations we were expecting good
decisions from our agent as theory shows, but due to the amount of possible
places that a fence could be placed in the board, the chances of moving the
pawn were so low. This implies that all fences were placed in the first turns of
the game almost randomly because both pawns are still in the initial position.
This makes the agent so easy to beat, just waiting that the agent has no more
fences, for example moving the pawn between two positions all the time, and
afterwards start moving forward to the goal and placing fences to the agent’s
path for reaching first the goal.

For improving our decisions, we should make MCTS less random giving more
information about the status of the board. Simulation phase should be changed.
Instead of just taking a random child every time, what we do for solving the
problem is simulating with an heuristic function our game until the very end for
getting results more significant and valid for our agent. An heuristic function
is a way of ranking all possible moves and select an approximate one to the
optimal solution. For a better performance the heuristic function should be
easy to compute, taking reasonable time for finding a solution and solving the
problem. This solution as stated before may not be the best of all possible
solutions, or it may just approximate the exact solution. However it is relevant

18 Chapter 3 – Methodology

because it does not require a huge amount of time to find it.
It is clear that the key of this game is maximizing the opponent’s shortest

path while minimizing yours. So the heuristic developed will work for this
purpose and also for balancing pawn moves and placement of fences.

The main feature used in the heuristic decision is shortest path to the goal
of current player and opponent player. The algorithm used is Breadth First
Search (BFS). BFS is an algorithm for traversing or searching tree or graph data
structures. It starts at the tree root (or some arbitrary node of a graph) and
explores the neighbour nodes first, before moving to the next level neighbours.
In our case, the tree root is the position of the player and the algorithm stops
as soon as it reaches the goal. It is guaranteed that as soon as we reach some
goal square of the board, it will be the shortest path. That’s the reason why we
can stop the algorithm before traversing the whole board.

Figure 3.1: Breadth First Search example

Chapter 4

Implementation

This project is implemented in Java programming language, using standard
libraries. This section explains main classes and data structures used. We start
describing the classes related to the game and its playability and we finish with
the algorithm for our agent.

The class Square, represents a single square inside a real board. It has the
coordinates in String way (i.e. E5, B7, A2) and also numerical ones, replacing
the letters for numbers. The reason is because it makes things easier when it is
inside a matrix, using indexes rather than letters.

For representing a player in our game, the class Player stores the id for
identifying which player it is, the current position of the player, the number of
fences and a Set with all neighbour squares, in other words, the squares that
the player is able to move the pawn.

Now we are able to build the board of the game using the two classes ex-
plained before, Board class. For representing the board we create an ArrayList
of one dimension with all possible squares, and two players since this thesis
just analyses two players version. The idea is to represent the board with an
undirected graph. An example is shown in Figure 4.1.

20 Chapter 4 – Implementation

Figure 4.1: Example of graph representation of a board from pink player point
of view

For managing the neighbours of each square we use a Map that given a
coordinate (i.e. E5) returns the current neighbours of that square, in other
words, returns the adjacent nodes in the graph for a given coordinate. Finally
for making things faster, we have a Set containing all possible positions that a
fence could be placed. This class also contains all functions related to perform
moves, check that rules are followed and giving information to other classes
about the state of the board.

We have two possible moves that a player can do at each turn, moving the
pawn or placing a fence. For moving a pawn the following function is used 4.2
where checkMove() function checks if new position is inside the list of neighbours
of that player and updatePlayerNeighbours() updates the neighbours from new
position square.

function movePlayer(new_position) {
if checkMove(new_position) {

player.setPosition(new_position)
updatePlayerNeighbours()

}
}

Figure 4.2: Moving a pawn

For placing a fence, first we need to check that the position where we want
to place the fence is inside our Set of fences (i.e. if we have a fence placed
in E5h, our Set would not contain E5v because a fence cannot be intersected
by another). If this is fulfilled we need to check that there exists a path for
each player until the correspondent goal. This is done applying BFS algorithm

21

inside checkPath(). If there exists a path for each player, then the neighbours
of the players will be updated, and the adjacent nodes to the affected squares
too. updateFenceList() removes all positions that are no longer available and
removeFence() it undoes the fence placed for testing 4.3.

function addFence(position) {
if fences.contains(position) {

placeFence(position)
if checkPath() {
updateFencesList()
updatePlayerNeighbours()
}
else {

removeFence(position)
}

}
}

Figure 4.3: Adding a fence

The system explained before for storing all possible positions that fence
could be placed is also useful for returning all possible movements available to
the player.

From here, we have a system for playing Quoridor with the standard rules.
Now we will add and agent able to play this game in our system.

The class Monte Carlo Tree Search, contains the brain for our agent. It
builds the tree and decides which move to perform next. The first attempt
to implement the tree was including in each node the board of the game. The
problem was since it contains a huge amount of information and data structures,
the program ran out of memory just with 5000 simulations, because MCTS was
generating too many nodes. The solution is, instead of saving the board in each
node generated, we store the move that we should perform and the scores of the
node. Then each time when we visit a node we need to compute the move in a
temporal board. The score added to each winning node is 10.

22 Chapter 4 – Implementation

function findNextMove() {
while simulations < max_simulations {

node = selectPromisingNode()
nodeToExplore = expandNode(node)
playoutResult = simulateRandomPlayouts(nodeToExplore)
backPropagation(playoutResult)
++simulations

}
return root.getChildrenWithMaxScore()

}

Figure 4.4: Monte Carlo tree search for deciding which move to perform next

As shown in Figure 4.4, four phases are executed max simulation times.
First the promising node is selected 4.5 using UCT method, then this node
is expanded 4.6, it means that all possible children are generated. From all
children, one is selected randomly for simulating 4.8 the game until the very
end, with simulateRandomPlayouts. Finally the result of the simulation is back
propagated 4.7 until the root. When the maximum number of simulations is
reached, it returns the child of the root with maximum win score.

function selectPromisingNode() {
while node.children not null {

node = findBestNodeWithUCT()
}
return node

}

Figure 4.5: Selection phase

function expandNode() {
node.addChildren(getAllPossibleMoves)

}

Figure 4.6: Expansion phase

23

function backPropagation() {
while node != null {

node.incrementVisit()
if (node.player == winner) {

node.addScore(WINSCORE)
}
node = node.parent

}
}

Figure 4.7: Backpropagation phase

function simulateRandomPlayout() {
while gameStatus != END {

node.togglePlayer()
node.heuristicDecision()

}
}

Figure 4.8: Simulation phase

Finally, instead of using random decisions in the simulation phase of Monte
Carlo Tree Search, we improved our system by adding a heuristic. The heuristic
helps us to balance the placement of fences and the moves of the pawn. Running
MCTS with random simulation shows that our agent spends all fences at the
beginning of the game and on average is better to save them until the middle
of the game. The heuristic decision used in the simulation phase is basically
based on comparing if the shortest path until the goal of the current player is
less than the opponent’s one. If yes, just pawn moves are available, for making
the game faster on finishing, else all possible moves are candidates 4.9.

function heuristicDecision() {
if distanceToGoalPlayer1 <= distanceToGoalPlayer2 || player1.fences == 0 {

followShortestPath()
}
else {

Random(allPossibleMoves)
}

}

Figure 4.9: Heuristic function used for simulating the game

To keep track on the game situation, a board is printed each round using
the following example of representation:

24 Chapter 4 – Implementation

9 . .|. . .|.|. . .
---|--- | |

8 . .|. . .|.|. . .
--- --- ---

7

6 . . .|.
--- |

5 .|. 2|. .|. . . .
| |

4 .|. . .|.|. . . .
|

3 . 1 . .|.
--- --- --- ---

2|. . . .
--- ---|

1|. . . .
A B C D E F G H I

Figure 4.10: Internal representation of the board

The numbers 1 and 2 inside the board represent each player. Player 1 starts
always at position E1 and Player 2 at E9. Each dot represents a square of the
board and the fences are represented as dashes between the dots.

Chapter 5

Evaluation and Discussion

5.1 Experimental Settings

Due to limited research on the game of Quoridor and no human Elo rankings,
we cannot measure the level of the agent globally. However, we have tried to
evaluate our player against self play with more simulation steps and against
other player agent types to have an idea of how efficient our agent is.

5.1.1 120k Simulations Agent

The default agent for running the experiments uses MCTS with the heuristic
described before. It performs 120000 simulations of the game per decision.

5.1.2 60k Simulations Agent

This agent was created to see the influence in the number of simulations of the
game per decision. The only difference between this agent and the one stated
in subsection 5.1.1 is that this agent is doing 60000 simulations per decision.

5.1.3 Alternative Agent

To further evaluate the MCTS method, an alternative Quoridor agent base was
found with four different agent levels (Brain1, Brain2, Brain3 and Brain4) [42].
Brain1 simply moves the pawn at every turn without placing any fence. Brain2,
places all fences at the beginning of the game, wasting all resources. Brain3
places fences more strategically, but still the problem of placing all fences at
the beginning of the game. That gives a lot of advantage to the opponent
then. Brain4 is the smartest agent, it focuses on reaching the goal and it uses
fences during the middle of the game. It is sadly impossible to describe the
algorithm that is using, because of the lack of information about the API from
the developers.

26 Chapter 5 – Evaluation and Discussion

5.1.4 Genetic Algorithm Agent

This agent is based on a previous work, mentioned in Section 2.4, Mastering
Quoridor of Lisa Glendenning [28]. For developing such an agent we used Min-
imax algorithm [43] with some modifications to improve its performance. It is
possible to modify the game tree values to use just maximization operations,
negating the returned values from the recursion. This approach is called Nega-
max algorithm [33]. However the problem with Minimax search [43] is that the
number of states it has to examine is exponential in the number of moves. For
reducing this amount of moves it is applied alpha-beta pruning [11] [34] tech-
nique, that basically prunes away branches of the tree that cannot influence
the final decision. Last modification applied was iterative-deepening due to the
agent plays with time limit decision for every move. This allows us to return the
best value computed until that point [44]. After each execution of alpha beta,
it is required an evaluation function for selecting the best state of the board.
Eight features are proposed for Quoridor:

• Shortest Path Player (SPP), length of Breadth First Search path for the
player

• Shortest Path Opponent (SPO), length of Breadth First Search path for
the opponent

• Manhattan Distance Player (MDP), Manhattan distance for the player
(straight distance from the player to the goal)

• Manhattan Distance Opponent (MDO), Manhattan distance for the op-
ponent (straight distance from the opponent to the goal)

• Pawn Distance (PD), the distance between pawns using Breadth First
Search

• Goal Side Player (GSP), boolean that tells if the player is between the
midpoint of the board and the goal

• Goal Side Opponent (GSO), boolean that tells if the opponent is between
the midpoint of the board and the goal

• Number Fences Player (NFP), number of fences of the player

Finally a genetic algorithm (GA) [3] [45] [46] is used for weighting each feature
described before. A chromosome is represented as a vector of weights and the
fitness of each one is determined by the number of games that a chromosome
wins against the other chromosome of the population. To create a population it
is initialized with random float point values. It is established with a probability
of 0.3 that a chromosome has a non-zero weight in some feature.

The experiments performed are as follows: 120k agent vs 60k agent, 120k
agent vs Brain1, 120k agent vs Brain2, 120k agent vs Brain3, 120k agent vs
Brain4, 120k agent vs GA and 120k agent vs Psi1 which is the best chromosome
extracted from the results of Mastering Quoridor [28].

5.2 Results 27

5.2 Results

For selecting the Genetic Algorithm between all chromosomes created inside a
population, we performed a tournament consisting about creating a population
of 10 chromosomes and each one plays against each other. This will give us the
fitness of the chromosomes. The maximum number of moves to avoid infinite
loops was set to 120, and the decision time to 10 seconds per move. For playing
against our 120k agent we took the two best chromosomes of the tournament,
as shown in Table II, chromosome 2 and 5 with fitness 11 and 10 respectively.

Chromosome SPP SPO MDP MDO PD GSP GSO FSP Fitness
0 0.0 0.0 0.0 0.0 0.412 0.0 0.0 0.0 2
1 0.0 0.0 0.0 0.0 0.412 0.0 0.649 0.0 8
2 0.0 0.0 0.0 -0.249 0.0 0.0 0.649 0.0 11
3 0.244 0.0 0.0 0.0 0.0 0.0 -0.073 0.0 3
4 0.0 0.0 0.0 -0.527 0.0 0.0 0.0 0.0 1
5 0.91 0.0 0.0 -0.249 0.0 0.0 -0.319 0.0 10
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.078 1
7 0.0 -0.339 -0.954 0.0 0.0 0.0 -0.073 0.0 5
8 0.0 0.0 0.0 0.0 0.412 0.0 0.649 0.0 5
9 0.0 -0.339 0.0 0.0 0.0 0.0 0.0 0.0 2

Table 5.1: Population used for the tournament with weights of each feature
and fitness

In all experiments performed, our player was the default, 120k Agent. The
experiment with 60k Agent was done automatically for 250 games since it was
easy to adapt the code to play against itself. However, as we do not have the
source code for the alternative agents, the experiments with all of them were
done manually, taking the moves from our agent and playing them against the
four brains. In the evaluative process, first ten games were played against each
of the four brain types, when there was no an obvious mercy situation, i.e. in
the case of Brain4, then we extended this to 100 games in order to allow for a
statistical evaluation.

28 Chapter 5 – Evaluation and Discussion

Opponent Number of Games Played Percentage (Count) of Wins for 120k
60k Agent 2101 46% (97 games)
Brain1 10 100%
Brain2 10 100%
Brain3 10 100%
Brain4 100 66% (66 games)

Chromosome2 10 100%
Chromosome5 10 100%

Psi1 [28] 10 100%

Opponent Lower Confidence Bound (95%) Upper Confidence Bound (95%)
60k Agent 39.3% 53.2%
Brain1 69.2% 100%
Brain2 69.2% 100%
Brain3 69.2% 100%
Brain4 55.9% 75.2%

Chromosome2 69.2% 100%
Chromosome5 69.2% 100%

Psi1 [28] 69.2% 100%

Table 5.2: Comparison of the 120k Agent to Other Agent Types (Significant
at 95% Confidence in Bold using a Binomial exact test)

Table 5.2 shows that reducing the amount of simulations to 60000, our agent
performs a little bit better than 120k agent, and much faster to decide each
movement. Though this result is not significant at p < 0.05. Note that in play-
ing these games, in 40 instances the MCTS players began to alternate moving a
pawn back and forth, not seeing an obvious solution to winning the game. We
therefore can infer there is a situation in the game which such a delaying tactic
has some amount of value, or for which there is not an obvious good strategy.
This only happened in self play, and more analysis is required to understand
what developed this situation, as there is no obvious tie state.

The first three brains of the alternative agent and Chromosome 2 and 5 of
the GA agent were easy to beat, with significant results over the ten evaluations
each the MCTS would win 100% of the time. However, with Brain4, it is not
possible for our agent to win all the time, but still performed better that the
opponent, significant at p < 0.05. There is no information about which method
is used by this agent so we are unable to make a deep evaluation as to the play
method which is able to at least give some challenge to MCTS. Finally following
the results described in [28], we created the best chromosome achieved, Psi1,
and the MCTS was also able to defeat it in all of the ten games played.

1250 games in total were played with 40 being undecided, we only examine the difference
of wins in decided games

Chapter 6

Conclusion

We have created an MCTS agent for the board game Quoridor and compared
it to a number of previous agent types, including reimplementation of a GA.
This research work completed thus far focuses only in the two players version,
Quoridor can be played with four players, each with the goal of taking their
pawn the opposite end of the board, the two other players take their pawns
horizontally from the side baselines.

We have used Monte Carlo tree search as the main algorithm. It is a proba-
bilistic search algorithm, and a unique decision making because of its efficiency
in open-ended environments with an enormous amount of possibilities. Also,
we have added a heuristic to balance the placement of fences and the moves
of the pawn, in the simulation phase of the MCTS algorithm. The results ob-
tained from the experiments are not sufficient to determine precisely the level
of our agent, but it gives us an estimation of how it will preform in play against
humans.

The 60k agent as shown in Table 5.2 appears to preform better than the
120k agent and has a shorter runtime. Though this study will need to extend
in order to prove this trend to hold in larger cases, and then evaluate why more
simulations would show the result to be.

The future work should take into account the improvement in the heuristic,
to decide a better quality movement and consider more features of the game
such as a number of fences of each player. After applying GA in this game
using the features described in the thesis work [28], it gives an idea of which
kind of features are relevant for improving our agent. More research on features
should be done. This will build a solid strategy for an agent. Moreover, as
used in AlphaGo, deep learning can also be used [8]. Finally, it is the goal of
the authors to show that this system is competitive against the ranked human
play. There are a number of human play strategies which are used commonly in
competitive play, much along the same lines as chess openings, and perhaps it
would be best to add an evaluated game tree as an initialization step to ensure
competitive play.

Bibliography

[1] Quoridor Strats, “Notation,” September 2014,
https://quoridorstrats.wordpress.com/notation/.

[2] L. Li, H. Liu, H. Wang, T. Liu, and W. Li, “A parallel algorithm for game
tree search using gpgpu,” vol. 26, 07 2014.

[3] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing, vol. 4,
no. 2, pp. 65–85, 1994.

[4] I. Millington and J. Funge, Artificial intelligence for games. CRC Press,
2016.

[5] M. Campbell, A. J. Hoane, and F.-h. Hsu, “Deep blue,” Artificial intelli-
gence, vol. 134, no. 1-2, pp. 57–83, 2002.

[6] F.-H. Hsu, Behind Deep Blue: Building the computer that defeated the world
chess champion. Princeton University Press, 2004.

[7] A. Newell, J. C. Shaw, and H. A. Simon, “Chess-playing programs and the
problem of complexity,” IBM Journal of Research and Development, vol. 2,
no. 4, pp. 320–335, 1958.

[8] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot,
S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of go with deep neural networks and tree
search,” Nature, vol. 529, pp. 484–503, 2016. [Online]. Available: http:
//www.nature.com/nature/journal/v529/n7587/full/nature16961.html

[9] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al.,
“Mastering the game of go with deep neural networks and tree search,”
nature, vol. 529, no. 7587, pp. 484–489, 2016.

[10] M. Müller, “Computer go,” Artificial Intelligence, vol. 134, no. 1-2, pp.
145–179, 2002.

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

BIBLIOGRAPHY 31

[11] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta pruning,” Ar-
tificial intelligence, vol. 6, no. 4, pp. 293–326, 1975.

[12] J. Schaeffer, “The history heuristic and alpha-beta search enhancements in
practice,” IEEE transactions on pattern analysis and machine intelligence,
vol. 11, no. 11, pp. 1203–1212, 1989.

[13] R. Coulom, “Efficient selectivity and backup operators in monte-carlo tree
search,” in International conference on computers and games. Springer,
2006, pp. 72–83.

[14] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in Eu-
ropean conference on machine learning. Springer, 2006, pp. 282–293.

[15] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
survey of monte carlo tree search methods,” IEEE Transactions on Com-
putational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43, 2012.

[16] S. Gelly, Y. Wang, O. Teytaud, M. U. Patterns, and P. Tao, “Modification
of uct with patterns in monte-carlo go,” 2006.

[17] G. Tesauro and G. R. Galperin, “On-line policy improvement using monte-
carlo search,” in Advances in Neural Information Processing Systems, 1997,
pp. 1068–1074.

[18] B. Sheppard, “World-championship-caliber scrabble,” Artificial Intelli-
gence, vol. 134, no. 1-2, pp. 241–275, 2002.

[19] M. Marchesi, Quoridor. Family Games, Inc., 1997.

[20] L. V. Allis et al., Searching for solutions in games and artificial intelligence.
Rijksuniversiteit Limburg, 1994.

[21] P. J. Mertens, “A quoridor-playing agent,” Bachelor Thesis, Department
of Knowledge Engineering, Maastricht University, 2006.

[22] V. Allis, Searching for solutions in games and artificial intelligence. Ponsen
& Looijen, 1994.

[23] J. M. Robson, “N by n checkers is exptime complete.” SIAM J.
Comput., vol. 13, no. 2, pp. 252–267, 1984. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/siamcomp/siamcomp13.html#Robson84

[24] J. Tromp, “John’s connect four playground,” 2010.

[25] C. E. Shannon, Programming a Computer for Playing Chess. New
York, NY: Springer New York, 1988, pp. 2–13. [Online]. Available:
https://doi.org/10.1007/978-1-4757-1968-0 1

http://dblp.uni-trier.de/db/journals/siamcomp/siamcomp13.html#Robson84
http://dblp.uni-trier.de/db/journals/siamcomp/siamcomp13.html#Robson84
https://doi.org/10.1007/978-1-4757-1968-0_1

32 BIBLIOGRAPHY

[26] C.-M. Xu, Z. M. Ma, J.-J. Tao, and X.-H. Xu, “Enhancements of
proof number search in connect6,” in Proceedings of the 21st Annual
International Conference on Chinese Control and Decision Conference,
ser. CCDC’09. Piscataway, NJ, USA: IEEE Press, 2009, pp. 4561–4565.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1714810.1715001

[27] G. Tesauro, “Practical issues in temporal difference learning,” Machine
Learning, vol. 8, no. 3, pp. 257–277, May 1992. [Online]. Available:
https://doi.org/10.1007/BF00992697

[28] L. Glendenning et al., “Mastering quoridor,” Bachelor Thesis, Department
of Computer Science, The University of New Mexico, 2005.

[29] C. Heyden, “Implementing a computer player for carcassonne,” Master’s
thesis, Department of Knowledge Engineering, Maastricht University, 2009.

[30] J. Tromp and G. Farnebäck, “Combinatorics of go,” in International Con-
ference on Computers and Games. Springer, 2006, pp. 84–99.

[31] J. Tromp, “The number of legal go positions,” in International Conference
on Computers and Games. Springer, 2016, pp. 183–190.

[32] C. Heyden, “Implementing a computer player for carcassonne,” Master’s
thesis, Department of Knowledge Engineering, Maastricht University, 2009.

[33] M. S. Campbell and T. A. Marsland, “A comparison of minimax tree search
algorithms,” Artificial Intelligence, vol. 20, no. 4, pp. 347–367, 1983.

[34] J. Pearl, “The solution for the branching factor of the alpha-beta pruning
algorithm and its optimality,” Communications of the ACM, vol. 25, no. 8,
pp. 559–564, 1982.

[35] J. Schaeffer, N. Burch, Y. Björnsson, A. Kishimoto, M. Müller, R. Lake,
P. Lu, and S. Sutphen, “Checkers is solved,” Science, vol. 317, no. 5844,
pp. 1518–1522, 2007.

[36] F. Van Lishout, G. Chaslot, and J. W. Uiterwijk, “Monte-carlo tree search
in backgammon,” 2007.

[37] N. Metropolis and S. Ulam, “The monte carlo method,” Journal of the
American statistical association, vol. 44, no. 247, pp. 335–341, 1949.

[38] K. Jebari and M. Madiafi, “Selection methods for genetic algorithms,” In-
ternational Journal of Emerging Sciences, vol. 3, no. 4, pp. 333–344, 2013.

[39] A. Lipowski and D. Lipowska, “Roulette-wheel selection via stochastic ac-
ceptance,” Physica A: Statistical Mechanics and its Applications, vol. 391,
no. 6, pp. 2193–2196, 2012.

http://dl.acm.org/citation.cfm?id=1714810.1715001
https://doi.org/10.1007/BF00992697

BIBLIOGRAPHY 33

[40] R. J. Collins and D. R. Jefferson, Selection in massively parallel genetic
algorithms. University of California (Los Angeles). Computer Science De-
partment, 1991.

[41] B. L. Miller, D. E. Goldberg et al., “Genetic algorithms, tournament selec-
tion, and the effects of noise,” Complex systems, vol. 9, no. 3, pp. 193–212,
1995.

[42] M. van Steenbergen, “Quoridor,” online, 2006,
http://martijn.van.steenbergen.nl/projects/quoridor/.

[43] G. C. Stockman, “A minimax algorithm better than alpha-beta?” Artificial
Intelligence, vol. 12, no. 2, pp. 179–196, 1979.

[44] N. J. Nilsson, “Artificial intelligence: A modern approach: Stuart russell
and peter norvig,(prentice hall, englewood cliffs, nj, 1995); xxviii+ 932
pages,” 1996.

[45] L. Davis, “Handbook of genetic algorithms,” 1991.

[46] C. M. Anderson-Cook, “Practical genetic algorithms,” 2005.

	Introduction
	Literature Review
	Quoridor
	Rules of the game
	Notation
	Game complexity

	Agents in different board games
	Chess
	Carcassonne
	Checkers

	Agents using MCTS
	Go
	Backgammon
	Scrabble

	Previous agents for Quoridor
	Game tree
	Monte Carlo Tree Search
	Genetic Algorithm

	Methodology
	Implementation
	Evaluation and Discussion
	Experimental Settings
	120k Simulations Agent
	60k Simulations Agent
	Alternative Agent
	Genetic Algorithm Agent

	Results

	Conclusion

