
Czech Technical University in Prague

Faculty of Information Technology

Department of Computer Systems

Master’s thesis

Analysis and simulation of data prefetching

algorithms for last-level cache memory

Bc. Carlos Escúın Blasco

Supervisor: prof. Ing. Pavel Tvrd́ık, CSc.
Co-supervisor: Assoc. Prof. Teresa Monreal Arnal (Universitat Politècnica de
Catalunya)

June 25, 2018

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on June 25, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 Carlos Escúın Blasco. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Escúın Blasco, Carlos. Analysis and simulation of data prefetching algorithms
for last-level cache memory. Master’s thesis. Czech Technical University in
Prague, Faculty of Information Technology, 2018.

Abstract

Memory latency is a major factor in limiting CPU performance and prefetch-
ing is a well-known mechanism to hide memory latency. Prefetchers operate
trying to predict the memory accesses that are going to be requested in the
future. It consists of fetching cachelines that have not been requested by the
program yet.

The main objective of this thesis is to evaluate one of the latest hardware
prefetching proposals, the Best Offset Prefetcher. Its author, Michaud [1],
only evaluated the mechanism on a trace-driven simulator. Therefore, in this
thesis we are going to evaluate the mechanism on a more detailed simulator,
the Gem5 simulator from the University of Michigan [2].

Unfortunately, the Gem5 simulator, which is continuously under develop-
ment, does not provide an infrastructure to simulate the impact of prefetchers
in detail. Consequently, this infrastructure needed to be implemented. A
work developed during the Ph.D of Mart́ı et al. in the Universitat Politècnica
de Catalunya [3] consisted of creating a prefetch framework able to handle
prefetches in all cache levels over a MOESI directory-based protocol. There-
fore, this framework is going to be integrated over the latest Gem5 release
version in order to be able to implement the Best-Offset prefetcher upon it.

As a result of the different simulation environment we will observe that
our results are not as optimistic as Michaud ones. We wanted to evaluate this
prefetching mechanism on an environment as realisticly as possible. Conse-
quently, our benchmarking results present less number of cache misses than
the ones Michaud used, so the prefetcher activity is not so noticeable.

Keywords Prefetching, cache memory, memory hierarchy, data prefetching,
computer architecture.

vii

Contents

Introduction 1

Motivation and objectives . 1

Methodology . 2

Developed tasks . 2

Thesis contents . 3

1 State of the Art 5

1.1 Prefetching terminology . 6

1.2 Prefetching background . 7

1.3 Best Offset Prefetcher . 10

2 Implementation 15

2.1 Gem5 introduction . 15

2.2 Prefetch Framework Adaptation 18

2.3 Best Offset Implementation . 22

2.4 Tagged Prefetcher . 25

3 Methodology 27

3.1 Verification . 27

3.2 System parameters . 28

3.3 Workloads . 29

3.4 Evaluated Models . 30

4 Evaluation 31

4.1 Metrics used . 31

4.2 Monocore evaluation . 32

4.3 Multicore evaluation . 37

Conclusions 41

Future work . 42

ix

Personal Assessment . 42

Bibliography 45

x

List of Figures

1.1 A block diagram of one microprocessor following Skylake microar-
chitecture. Image from https://www.anandtech.com/show/10602/
memory-frequency-scaling-on-skull-canyon 6

1.2 Schematic view of a BOP. 11

2.1 Schematic view of the Gem5 simulator. Image from [3] 16
2.2 Schematic view of the memory hierarchy in Ruby. Image from

http://gem5.org/Ruby . 17
2.3 Schematic representation of the framework modules (green) and

the existing Ruby infrastructure (blue). Image from [3] 19
2.4 Changes in the MOESI protocol state machine due to prefetching.

Image from [3]. 21
2.5 Schematic view of the optimized BOP. The changes are in red. . . 24

4.1 IPC Speedup (left) and BASE MPKI (right) in monocore simulations. 33
4.2 Mean LLC access time reduction in monocore simulations. 34
4.3 Network utilization ratio in monocore simulations. 35
4.4 Prefetching coverage and accuracy for the monocore simulations . 36
4.5 MPKI reduction. 37
4.6 IPC Speedup in quad-core multicore simulations. 38
4.7 Mean LLC access time reduction in quad-core multicore simulations. 39
4.8 MPKI and network utilization ratio for quad-cores multicore sim-

ulations. 40
4.9 Prefetching coverage and accuracy for the four-cores multicore sim-

ulation. 40

xi

https://www.anandtech.com/show/10602/memory-frequency-scaling-on-skull-canyon
https://www.anandtech.com/show/10602/memory-frequency-scaling-on-skull-canyon
http://gem5.org/Ruby

List of Tables

2.1 Values of the parameters for the first approach. See BOP1 in Chap-
ter 4. 23

2.2 Values of the parameters for the second approach. BOP2 in Chap-
ter 4. 25

3.1 Values of the simulated system parameters. 29
3.2 Simulation benchmarks and workloads parameters. 30

xiii

Introduction

An imbalance in technological improvements in the last years has led to an
increasing gap between processor and memory performance. One way to miti-
gate this problem is to hide memory latency with techniques such as prefetch-
ing. This mechanism tries to predict the data the processor is going to request
in the future with the aim of bring them to a closer cache hierarchy level.

Motivation and objectives

With the progress of the semiconductor process technology, the processor clock
cycle time was significantly reduced [4]. However, the reduction of off-chip
memory access time has been much less than that in the processor clock cycle
time because the improvement in off-chip memory technology has primarily
resulted in a large memory capacity. As a result, the off-chip main memory
latency of modern processor chips has become more than hundred of processor
clock cycles, and so is the pipeline stall time due to misses.

In addition, the constant increase in the amount of data used by the ex-
ecution of new applications implies the need of more advanced content man-
agement policies. The bottleneck that the memory system generates is really
crucial to be solved. Therefore, some aggressive techniques to hide the mem-
ory latency, as prefetching, which use the memory bandwidth that is not being
used to increase the performance, have become more important.

The main objective of this thesis is to evaluate one of the latest hardware
prefetching proposals, the Best Offset Prefetcher. Its author, Michaud [1],
only evaluated the mechanism on a trace-driven simulator. Therefore, in this
thesis we are going to evaluate the mechanism on a more detailed simulator.

1

Introduction

Methodology

In order to validate new hypothesis and to quantify the improvements of new
models in terms of cost and/or performance, it is necessary to use more com-
plex simulators.

To properly evaluate a hardware prefetcher, besides of the program exe-
cution flow, it is specially important to know in detail how it interacts with
the rest of the processor microarchitecture including the memory subsystem.

As far as we know, the Best-Offset Prefetcher has been evaluated on very
specific trace-driven simulators as on the one provided in the DPC-2 contest1,
or on an in-house simulator based on the program instrumentation tool Pin
[5]. In this thesis, we will use a cycle-accurate, execution-driven simulation
platform based on the well known Gem5 full-system simulator [2] from the
University of Michigan that allows to simulate real workloads cycle-by-cycle.

In addition, in order to conform the monocore and multicore simulation
workloads this work will use the SPEC CPU 2006 benchmark suite [6]. It
contains a set of benchmarks in order to measure the CPU, memory subsystem,
and compiler performance.

Developed tasks

During the development of this thesis, some tasks have been carried out. Some
of these tasks are the following ones:

1. In-depth study of the Gem5 simulator and the different alternatives for
prefetching.

2. In-depth study of the literature about prefetching as well as the Best
Offset prefetching mechanism.

3. Setting up the SPEC CPU 2006 environment. In addition, the different
benchmarks were built and compiled for the x86 ISA.

4. Prefetch framework adaptation to provide the Gem5 simulator the in-
frastructure to be able to implement a prefetching mechanism.

5. Implementation of the Best Offset Prefetcher and the different optimiza-
tions.

6. Writing the thesis text.

12nd Data Prefetching Championship, 2015. http://comparchconf.gatech.edu/dpc2/

2

http://comparchconf.gatech.edu/dpc2/

Thesis contents

Thesis contents

This thesis is organized as follows: In Chapter 1, some prefetching background
is introduced and the Best Offset prefetcher is explained. In Chapter 2, the
changes to turn Gem5 into a prefetching-aware simulator are described in
addition to the Best Offset prefetcher implementation. In Chapter 3, the
environment parameters and the workloads used for evaluation are discussed.
Finally, in Chapter 4 the results obtained from the simulator are analyzed and
the Conclusion Chapter brings to an end the thesis.

3

Chapter 1

State of the Art

In this thesis we are going to focus on general-purpose microprocessor ar-
chitecture. This architecture is usually composed by tens of cores that have
associated one to two levels of private cache. Besides, there is a shared level
of cache or the last level cache (LLC), main memory, and an interconnection
network between the core units, the LLC, main memory, and the peripherals.
For instance, the memory hierarchy diagram of one Skylake2 microprocessor
is provided in Fig. 1.1. In this figure we can see two cores, each one with two
levels of private caches L1 and L2, L1 subdivided in instructions and data. A
third level, L3, is shared between both cores, named in Fig. 1.1 as the shared
LLC.

Cache memories are used to reduce the average memory access time. There
is a trade-off between cache memory size and latency: The closer is the cache
level to the core the lower is the access time. However, these cache levels
cannot be as large as the upper levels ones because, in order to keep this low
access time, the size has to remain low as well.

With the progress of the semiconductor process technology, the processor
clock cycle time has been significantly reduced [4]. However, the decrease in
off-chip memory access time has been much less than that in the processor
clock cycle time because the improvement in off-chip memory technology has
primarily resulted in a large memory capacity. As a result, the off-chip main
memory latency of modern processor chips has become more than hundred of
processor clock cycles, and so the pipeline stall time due to misses.

Memory latency is a major factor in limiting CPU performance and prefetch-
ing is a well-known mechanism to hide memory latency. Prefetchers operate
trying to predict the memory accesses that are going to be requested in the
future. It consists of fetching cachelines that have not been requested by the
program yet.

2Name that receives a well known Intel microarchitecture. https://www.intel.com/
content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-

optimization-manual.pdf

5

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

1. State of the Art

Figure 1.1: A block diagram of one microprocessor following Skylake microar-
chitecture. Image from https://www.anandtech.com/show/10602/memory-
frequency-scaling-on-skull-canyon

1.1 Prefetching terminology

A few concepts are worthwhile to be introduced before talking about prefetch-
ing. Some of these are the following:

• A prefetch hit : A cacheline has been brought to the cache module by
a previous prefetch request. An issued request from a core hits on this
cacheline.

• Prefetch distance: It is the number of cacheline addresses that are be-
tween the prefetched cacheline address and the cacheline address that
has generated the prefetch request of the core.

• The prefetcher coverage is the ratio between the number of misses with-
out prefetching and the number of misses with the prefetching mecha-
nism.

• Accurate or useful prefetches are the ones that eliminate original misses.

• Harmful are the prefetches that induce misses by replacing useful data.

• A timely prefetch is the one whose request is completed before the core
ask for the data. However, a late prefetch is the one that is not issued
because the cacheline has been already requested by the core.

• A completed prefetch is a prefetch request that has been successfully
issued and completed.

• A unuseful prefetch is a completed prefetch that is evicted without being
hit by a load operation.

6

https://www.anandtech.com/show/10602/memory-frequency-scaling-on-skull-canyon
https://www.anandtech.com/show/10602/memory-frequency-scaling-on-skull-canyon

1.2. Prefetching background

• Pollution is a measure of the disturbance caused by prefetched data to
the cache module.

• Aggressiveness sums up the number of prefetch requests that are issued
by a prefetching mechanism at the same time.

1.2 Prefetching background

Prefetching can be approached in two main ways: software and hardware
prefetching [7]. Software prefetching relies on the programmer or the com-
piler that are the ones in charge to fill the code with prefetching intrinsics. All
the logic of the prefetching mechanism remains either in the application or the
compiler. Hardware prefetching consists of having a dedicated hardware
mechanism that watches the data access patterns of the memory requests and
tries to predict the ones that are going to be accessed in the future. In this
thesis we will focus on hardware prefetching.

Compared to instruction access patterns, data access patterns show less
regularity, which makes data prefetching more challenging [8]. Instruction
prefetching mechanisms might make sense for commercial workloads that pro-
duce misses in the L1 and L2 caches due to the large instruction working set
size of these applications. However, for applications with a negligible I-cache
miss rate (e.g., scientific), instruction prefetching is not required [8].

Depending on where the prefetching engine resides, we can classify the
prefetching mechanisms as core-side or memory-side. In core-side prefetch-
ing the prefetching logic remains in the cache hierarchy and the prefetch re-
quests are issued from there while in memory-side prefetching the prefetch-
ing engine resides in the main memory subsystem. Memory side prefetching
can save precious chip space by storing metadata off-chip and can also perform
optimizations at main memory side [9]. By comparison, core-side prefetching
can avail more accurate knowledge of memory reference patterns and can per-
form cache level optimizations, such as avoiding cache pollution [10].

These memory access patterns might be regular or irregular. In order
to be able to record irregular access patterns complex data structures would
be needed but they cannot be afforded in hardware. Therefore, hardware
prefetchers are intended for regular data access patterns and can be classified
in two broad categories: immediate prefetches (agressives) and confirmation-
based prefetchers (conservatives) [11].

Immediate prefetchers are the ones that issue a prefetch request as
soon as they have an input address upon which the prefetch request can be
built. The most common and simple example of this kind of prefetchers is the
Next-line prefetcher [12]. Every time there is an access to the address X the
prefetch request for the address X + 1 is issued.

Confirmation-based prefetchers are the ones that only issue a prefetch
request if the prefetcher has built up previously some kind of confidence that

7

1. State of the Art

the prefetcher is going to be useful. A stride prefetcher [13] is a good example.
For instance, for a stride D, when cacheline X is observed by the prefetcher
mechanism for the first time, no prefetches are issued. However, the prefetch-
ing engine starts to record and wait for the access to cacheline X + D. Even
when X+D is accessed, still no prefetches are issued, only when X+2D is ac-
cessed the pattern will be confirmed and the prefetcher will issue the prefetch
request for address X + 3D.

Immediate prefetchers have the disadvantage that they have a higher prob-
ability of issuing inaccurate prefetches. On the contrary, they can prefetch over
some memory access patterns that the confirmation-based prefetchers cannot
[11]. For example, consider a linked list of data structures that are exactly the
size of two cachelines. A confirmation-based mechanism would consider the
first cacheline as the beginning of a new pattern. However, the third cacheline
access will never arrive because the linked list will jump somewhere else in
memory. On the contrary, an immediate prefetcher as the Next-line one, will
perfectly prefetch the second cacheline after the first access.

Hardware prefetching can be done at any cache level, in the private lev-
els of cache or in the LLC. Prefetching at different levels leads to different
possibilities and trade-offs. On the one hand, a L1 prefetcher can use some
information that would be costly to propagate to the LLC. Besides, the L1
prefetcher is aware of the complete trace of the processor (loads and stores)
while the LLC prefetcher is not. Another trade-off to take into account is the
inaccurate prefetches, that is, the unuseful prefetches, the ones that are never
requested by the application. Due to the limited capacity of the private levels
of cache, the tolerance of these levels of cache to inaccurate prefetches is much
less, while LLCs due to their greater capacity, tolerate it to a certain extent.

Finally, with the aim of achieving a greater coverage, that is, making the
prefetch requests to include a greater number of future memory accesses, re-
sults in a greater number of total prefetch requests. Consequently, the on-chip
interconnection network traffic increases, this may carry a network congestion
as well as performance detriment [14].

1.2.1 Tagged Prefetcher

The offset prefetching is a generalization of the next-line prefetching. When
a cacheline X is requested, the prefetcher issues the prefetch X + O where O
is the prefetch offset. In the case of the next-line prefetching O = 1.

One example of an offset prefetcher is the Tagged Prefetcher [12]. It is a
hardware, data, core-side, and immediate prefetcher. The main idea of this
prefetcher is that it requests the neighbouring cachelines from one cacheline
when it is accessed. The Tagged prefetcher adds a prefetch bit to each cache-
line to indicate if the cacheline has been prefetched. Whenever there is a miss
or a prefetch hit a new prefetch request is issued. Prefetch requests are issued
with a certain distance and aggressiveness. A certain distance to the original

8

1.2. Prefetching background

cacheline is needed in order to avoid the request latency and a certain aggres-
siveness in order to gain more coverage. See Section 2.4 for more details of
the implementation.

Algorithm Tagged algorithm is
Data:
Aggressiveness: Number of prefetches that are issued on every
miss or prefetch hit on line X.
Distance: Number of cachelines between the cacheline that suffers
the miss or the prefetch hit and the first one to be prefetched.

Function LLC Read Request (LineAddress X, bool cache hit, bool
prefetch hit) is

if not cache hit or prefetch hit then
for i = Distance to Distance+Aggressiveness-1 do

issuePrefetchRequest(X + i);
end

end

end
Algorithm 1: Pseudocode of the Tagged prefetching algorithm

1.2.2 Sandbox

Recently, Pugsley et al. introduced Sandbox Prefetching [11]. It represents
another class of prefetchers. It combines ideas of global confirmation-based
prefetchers and immediate ones in order to perform prefetches aggressively
and safely. It enables the use of aggressive and immediate offset prefetchers
in a safe and sandboxed environment in order to avoid their limitations, that
is, neither the cache nor the memory bandwith are disturbed [11].

Sandbox prefetching tracks different offsets at run-time by adding the pos-
sibles prefetch addresses to a Bloom filter3, rather than actually fetching the
data into the cache. Subsequent cache accesses are tested against the contents
of the Bloom filter to see whether the prefetcher under evaluation could have
accurately prefetched data. Real prefetches are issued when the prefetcher
under evaluation exceeds a threshold [11].

This is not a stream prefetcher, but what Pugsley et al. call an offset
prefetcher. The main difference between an offset and a stream prefetcher is
that offset prefetchers do not try to detect streams. Pugsley et al. showed
that the Sandbox prefetcher matches or even outperforms the more complex
AMPM prefetcher [15] that won the DPC-1 contest4.

However, the Sandbox prefetcher does not take into account prefetch
timeliness [1]. The Best Offset Prefetcher proposed by Michaud is an off-

3It is a probabilistic data structure used to test whether an element is a member of a
set.

41st Data Prefetching Championship, 2009. https://www.jilp.org/dpc/

9

https://www.jilp.org/dpc/

1. State of the Art

set prefetcher that takes timeliness into account and will be explained below,
since it is the object of this thesis.

1.3 Best Offset Prefetcher

Taking into account the previous assessments and classifications, the Best Off-
set prefetcher (BOP) [1], which is the target of this thesis, is a hardware, core-
side, immediate prefetcher and it is intended to work as an LLC prefetcher.
It is an offset prefetcher, it outperforms the Sandbox prefetcher with equal
hardware [1].

The main idea of the mechanism is to continually adapting the prefetching
offset to the needs of the application. It has a learning mechanism that decides
which offset, among several candidates, that fits with the current application
behavior. In the solution proposed by Michaud [1], a recent request (RR) table
is built in order to keep track of the previous accesses that have generated
completed prefetches. In addition, the BOP offers an offset list (OL) that is
the set of predefined offsets that are being evaluated. Besides, there is a score
list (SL) where each score is associated to each offset. Each score is a counter
of hits in the RR table for the given offset, that is, how good is the current
offset regarding to previous prefetches.

A schematic view of a BOP is shown in Figure 1.2. The symbol BO
represents the current prefetch offset that is being used for prefetching. BO
is a global variable and it is continuously being updated at the end of every
learning phase. When a read request to the cacheline X arrives to the LLC
cache, if it is a miss or a prefetch hit, a prefetch request to the cacheline
X + BO is issued.

1.3.1 Best offset learning

The current prefetch offset is set dynamically trying to be adapted to the
application behavior. There is an algorithm, called ”learning phase” that
tries to find the best prefetch offset by evaluating some different offsets. The
main idea is the following: an offset OLi might be a good offset if there has
been an access for the cacheline X − OLi when a cacheline X is accessed.
This temporal locality has two main constraints. The first one is that the
time between both accesses cannot be too long because the prefetch requested
after the first one may be evicted before the second one is accessed. The
second one is that the period of time between both accesses cannot be less
than the latency of a prefetch to be completed (late prefetch).

The algorithm, see Algorithm 2, can be divided in two main functions,
that is, the BOP logic is triggered when either one of the following events
occurs: 1) The LLC is filled with a cacheline (P) and 2) the LLC receives a
read request to a cacheline (X).

10

1.3. Best Offset Prefetcher

Figure 1.2: Schematic view of a BOP.

1. Every time a cacheline P is going to be inserted to the LLC, if it is a
prefetch request being completed and arriving to the LLC, the address
that generated that prefetch (P −BO) is inserted into the RR table.

2. Every time there is a request to the LLC cache, if it is a miss or a
prefetch hit, an offset OLi is tested by looking up in the RR table. If
the cacheline X−OLi is in the RR table, i. e., a prefetch for the cacheline
X−OLi +BO has been completely prefetched. Besides, this also means
that if the prefetch had been issued with OLi instead of BO, it would
have been a prefetch for the cacheline X.

11

1. State of the Art

Algorithm BOP algorithm is
Data:
BO: Golbal variable. It is the Best Offset, used to issue prefetches.
It is updated every learning phase.
RRTable: Recent Request table.
OL: Set of offsets to be evaluated every learning phase.
i: Index of the OL that indicates the offset being tested at the
moment.
SL: Set of scores associated to the offsets.
prefetching: Boolean indicating whether the algorithm is issuing
prefetch requests.
round: Counter of the learning phase rounds.

Function LLC Cache Fill (LineAddress P, bool prefetched) is
if prefetched then RRTable.insert(P −BO) ;
if not prefetching then RRTable.insert(P) ;

end

Function LLC Read Request (LineAddress X, bool cache hit, bool
prefetch hit) is

if not cache hit or prefetch hit then
if RRTable.isPresent(X - OLi) then SLi + + ;
i← (i + 1)%NUMOFFSETS;
if i = 0 then round + + ;

//End of learning phase?
if SLi = SCOREMAX or round = ROUNDMAX then

best score← SLi;
BO ← OLi;
for j = 0 to NUMOFFSETS do

if SLj > best score then
best score← SLj ;
BO ← OLj ;

end
SL.reset();
prefetching ← True;
if best score ≤ BADSCORE then
prefetching ← False ;

round← 0;

if prefetching then issuePrefetchRequest(X + BO) ;

end

end
Algorithm 2: Pseudocode of the BOP algorithm

The BO, i. e., the offset that is currently being used for issuing the prefetch
requests is updated every learning phase. A learning phase consists of several

12

1.3. Best Offset Prefetcher

rounds, in each round all the offsets are tested once, each one in different
read requests to the LLC. At the start of each learning phase, all the scores
are reset to 0. On every LLC access (miss or prefetch hit) one offset OLi is
tested; if X − OLi hits the RR table, the score SLi associated to the tested
offset (OLi) is incremented. The current learning phase ends when either one
of the following events happens first: one of the scores reaches the maximum
value SCOREMAX or the number of rounds reaches ROUNDMAX. When
the learning phase finishes, the offset whose associated score is the greatest
becomes the new BO that is going to be used for issuing prefetches.

1.3.2 Prefetch throttling

According to the previously described behavior, one prefetch request is issued
every time there is a LLC miss or prefetch hit. Hence, the BOP is a degree-
one prefetcher. Generalizing this definition, we could say a degree-two BOP
would be the one that issues two prefetches every time an access happens;
for instance, one with the best offset and another with the second best offset.
This might bring some extra performance for applications with irregular access
patterns [1]. However, this would increase the number of prefetch requests, so
that putting more pressure on memory bandwith.

However, BOP is still more agressive compared to other algorithms such
as the confirmation-based ones, for instance, stream prefetching. Useless
prefetches issued on irregular access patterns waste energy and memory band-
with. Consequently, we can observe that the best score at the end of each
learning phase gives some information about prefetching accuracy. If this
score is too low, this means that the prefetches with that offset will probably
fail. Therefore, we will define a fixed threshold, BADSCORE ; when the best
score is not greater than this BADSCORE, the prefetcher is turned off. It
is important to note that the best-offset learning will never cease. However,
when the prefetcher is turned off, the insertion in the RR table changes: when
a cacheline X is fetched it is inserted in the RR table instead of inserting
X −BO if it was a prefetch.

There are many implementation details that may differ between distinct
approaches of the BOP. This first approach of the BOP algorithm, see Section
2.3.1, will be the first version implemented in this thesis, corresponding to
the BOP1 we will evaluate in Chapter 4. The implementation details will be
described in Section 2.3.

13

Chapter 2

Implementation

As far as we know, the Best-Offset Prefetcher has been evaluated on very
specific trace-driven simulators as on the one provided in the DPC-2 contest5,
or on an in-house simulator that is based on the program instrumentation tool
Pin [5]. Consequently, this thesis will use a cycle-accurate, execution-driven
simulation platform based on the well known Gem5 full-system simulator [2]
from the University of Michigan that allows to simulate real workloads cycle-
by-cycle.

To work over a simulator like Gem5, some previous study is needed to
understand its infrastructure. Therefore, the first task has been to deeply
study the Gem5 infrastructure and to understand the Ruby memory system
and its support for prefetching.

2.1 Gem5 introduction

Gem5 [2] is a modular discret event driven computer system simulator plat-
form. This means that the components of Gem5 can be rearranged, parame-
terized, extended, or replaced easily to suit your needs.

Gem5 is written primarly in C++ and Python. It can simulate a complete
system with devices and an operating system in full system mode (FS mode),
or user space only programs where system services are provided directly by
the simulator in syscall emulation mode (SE mode).

Gem5 is mainly constituted of two components: the CPU and the memory
subsystem. Each of them can be subdivided in many other blocks. This
modelling, see Figure 2.1, allows the researcher to choose between different
modules. These modules are basically ruled by a trade-off between simulation
time and accuracy of the model. As we can see in Figure 2.1, on the top side,
there is the CPU model divided in the ISA and the CPU. The CPU module,
at the same time, is divided in submodules whose main difference remains in

52nd Data Prefetching Championship, 2015. http://comparchconf.gatech.edu/dpc2/

15

http://comparchconf.gatech.edu/dpc2/

2. Implementation

Figure 2.1: Schematic view of the Gem5 simulator. Image from [3]

the simulation time - accuracy trade-off. In the bottom, there is the memory
model subdivided in the classic and the Ruby one.

One of the most important things about the simulator is that it is relatively
new and it is continuously under development. Some of the features are not
implemented yet and the documentation is very scarce.

2.1.1 Memory subsystem

The Gem5 simulator includes two different memory system models, Classic
and Ruby. The Classic model provides a fast and easily configurable memory
system, while the Ruby model provides a flexible infrastructure capable of
accurately simulating a wide variety of cache coherent memory protocols.

Although the Ruby memory system takes more time to simulate, it has
more detail and versatility. The classic memory system already has their own
prefetch engines but can neither simulate the network on-chip (NoC) nor the
coherent memory protocols. These two features are really important if we
want to know the real implications of the prefetcher. Consequently, our thesis
will use Ruby as the memory subsystem, because it provides more versatility
and flexibility at the expense of an increase in the simulation time.

In addition, the last versions of the Gem5 Ruby subsystems, see Figure 2.2,
include GARNET [16]. It is a detailed interconnection model inside Ruby and

16

2.1. Gem5 introduction

Figure 2.2: Schematic view of the memory hierarchy in Ruby. Image from
http://gem5.org/Ruby

Gem5 that allows to simulate the NoC more in detail. Besides, it brings back
important network utilization statistics really interesting in order to realize
the prefetcher implications for the NoC congestion.

2.1.1.1 MOESI Protocol

The MOESI coherence protocol needs to be changed, so it is worthwhile to in-
troduce the MOESI base protocol provided by Gem5. First of all, the MOESI
protocol used by the framework is a two-level (L1 and LLC) and non-inclusive
MOESI protocol. This means that the data that is present in the L1 caches
cannot be present in the LLC.

It is important to note that the microarchitecture introduced in Figure 1.1
had two private levels of cache (L1 and L2) and a third shared one, that is the
LLC. However, due to the fact that the MOESI protocol implemented only
has one level of private cache, only one level of private cache is used. The first
level is split in data and instructions and the second one corresponds to the
shared LLC.

These protocols have well defined stable states which are the states with
no on-going transitions, that is, the states where any request can be satisfied.
Apart from these stable states, there are the transient states, the ones where
the cache controller is waiting to receive an external event. For example, if
a L1 cache with a cacheline in an Invalid stable state receives a read request
from the processor, it will ask for the cacheline to the upper level. Besides, it
will change the state to a transient one and will return back to a stable state
when it receives the data requested for the processor.

The L1 stable states of cachelines in Gem5 are the following:

17

http://gem5.org/Ruby

2. Implementation

• MM: The cacheline is held exclusively by this node and is potentially
modified.

• O: The cacheline is owned by this node. It has not been modified by
this node. No other node holds this cacheline in exclusive mode, but
sharers potentially exist.

• M: The cacheline is held in exclusive mode, but not written. No other
node holds a copy of this cacheline. Stores will change the state to MM.

• S: The cacheline is held in shared state by 1 or more nodes. Stores will
change the state to MM & I (for the others sharers).

• I: The cacheline is invalid.

2.2 Prefetch Framework Adaptation

Due to the fact that the BOP proposal is intended to work in the LLC, the
coherence protocol relative to that level should have some kind of support to
allow issuing prefetches. Unfortunately, the Gem5 coherence protocol imple-
mentations do not have this support. Consequently, this coherence protocol
infrastructure had to be implemented. A work developed during the Ph.D
of Mart́ı et al. in the Universitat Politècnica de Catalunya [3] consisted of
creating a prefetch framework that handles prefetches in all cache levels over
a MOESI directory-based protocol.

This framework was developed over an out-of-date version of the Gem5
simulator, so the code was deprecated regarding to the latest one. There
exists a big interest in the Gem5 community to have this framework included
in the Gem5 official release. In this Section, all the changes done to the
Gem5 simulator are explained, the Ruby memory subsystem and the coherence
protocol in order to fully adapt the prefetch engine to the latest Gem5 version.
One of the first tasks in this thesis consisted of turning the deprecated code
into a useful framework inside the latest Gem5 official release version.

In order to convert Gem5 to a prefetching-aware simulator, some new
modules must be added to the simulator, besides making some changes to the
current code [3]. Fig. 2.3 gives a schematic representation of the modified
(blue) and new (green) modules added to Ruby.

The prefetching module is included as a protocol-independent component.
Therefore, a new simulation object (SimObject regarding to the Gem5 termi-
nology) is added to act as a wrapper between the cache controller and the
prefetcher. One of its main functions is to communicate the prefetch engine
the main events that occur in the cache: read, write, and eviction. When one
of these events happens, the wrapper must communicate the prefetch engine
the corresponding information.

18

2.2. Prefetch Framework Adaptation

Figure 2.3: Schematic representation of the framework modules (green) and
the existing Ruby infrastructure (blue). Image from [3]

In addition, we can see in Fig. 2.3 that the prefetch queue is allocated
in this wrapper. This queue holds the prefetching requests generated by the
prefetch engine before the coherence protocol checks if the requests make sense
regarding the coherence information and issues them into the network on
chip. It works as a simulation structure but it can also emulate real hardware
constraints the prefetch engine may suffer. Whenever the prefetch engine
generates a new prefetch request, it is stored in the prefetch queue and the
cache controller is the responsible for picking up the requests and issuing them
into the memory system.

Due to the fact that the objective is to make an adaptive prefetching
module where any prefetch algorithm can be attached, an abstract class (Ab-
stractPrefetcher) has been created in order to hold the prefetch engine activ-
ity. The custom prefetch engine should inherit this abstract class where all
the functions the custom class must define are declared.

2.2.1 Official release version implications

In order to successfully turn the deprecated code into the official release ver-
sion I had to carefully study the dependencies between the C++ classes in
addition to identify them and the basic types. Moreover, it was also necessary
to identify and modify some framework functionalities that were differently
implemented in the new Gem5 version. Coming up next, some of the differ-
ences between both codes will be enumerated:

• The memory addresses were represented by a C++ class in the out-
of-date version of the simulator. However, in the official release, they
are defined as a basic type. Consequently, everything related the use of
memory addresses had to be changed because they were implemented
as an object instead as a predefined long integer.

19

2. Implementation

• The cache controller was implemented in a different way. In the official
release some of the functions are implemented in the AbstractController
while this functionality was implemented in other different classes. This
made the prefetch wrapper to interact in a different way with the cache
controller.

• The statistics was implemented more in a hard-coded way in the old
version. In the new one, a functionality called RegStats is included to
ease the final print of them. The prefetch framework statistics were
changed using the RegStats functionality.

• Some of the classes dependencies changed. Therefore, it has been neces-
sary to study the inheritance and polymorphism of the different classes
as well as the directory tree in order to adapt the framework classes to
the up to date version.

2.2.2 Changes to the cache controller

The cache controller is responsible for checking if there are pending prefetch
requests in the queue. Besides, if necessary, it will arbitrate between these
pending requests and the regular cache requests arriving to the current cache
level. When there is no request from the processor pending to be processed,
the controller will check if there are ready requests in the prefetch queue. If
so, the oldest one will be issued unless the coherence state for that cacheline is
valid. If this is the case, it will be discarded because it means that it is present
in the current cache level, so there is no need to be prefetched. The request
previously issued will trigger a Prefetch event in the coherence protocol and
will bring the data from upper levels of cache or from another L1 private
cache.

There is another important issue to take into account. Due to the fact that
the LLC is shared among different cores, it could happen that the prefetch
engine allocated in one core issues a prefetch whose owner is another one.
Therefore, before issuing the request to main memory, it should be checked
who is its owner. If it is a different one, the request should be forwarded to it
before issuing it to main memory.

2.2.3 Changes to the MOESI protocol

Mart́ı’s framework was intended to provide prefetching support to the LLC
as well as to the L1 cache. Therefore, the changes done to the used coherence
protocol can be divided in two parts: 1) The changes related to the L1 cache
coherence protocol due to prefetching that are illustrated in Fig. 2.4a and
2) the changes related to the LLC coherence protocol due to prefetching also
exemplified in Fig. 2.4b.

20

2.2. Prefetch Framework Adaptation

(a) L1 coherence protocol with
prefetching.

(b) LLC cocherence protocol with prefetching.

Figure 2.4: Changes in the MOESI protocol state machine due to prefetching.
Image from [3].

For the L1 cache, when a load arrives, the controller will check if the target
cacheline state is valid. If not, the request will be forwarded to the LLC and
the state will be changed to a transient one until the data is received. When the
data arrives, the state associated to the cacheline will be changed depending
on if it is exclusive data or not and the core will be notified. As we can see in
Fig. 2.4a, when a Prefetch event is triggered a new transient state (Prefetch,
P) is reached waiting for the data. When it arrives, a stable state is also
reached with the difference that the core is not notified this time.

Due to the fact that the LLC in the MOESI protocol implemented in
Gem5 is shared and split among the different cores, every LLC fragment is
only responsible for just a part of the memory space. Besides, it only stores the
coherence information of the cachelines it is responsible for and the cachelines
in the private caches below it. Therefore, as we can see in Fig 2.4b, when
a load operation reaches the LLC and the state of the cacheline requested is
invalid in the LLC and in the L1s, the request is propagated to main memory
and the state is changed to a transient one. Since the MOESI protocol is non-
inclusive, when the data arrives from main memory the data is not stored in
the LLC but sent to the L1 that has requested it. The distinction between the
LLC coherence protocol with prefetching and without prefetching is greater
than the distinction between the L1 coherence protocol with prefetching and
without prefetching.

21

2. Implementation

2.2.4 Prefetching statistics

In order to pick up the statistics related to the prefetcher activity, the aim is
to use the wrapper as a central point to collect the statistics. Any SimObject,
as the wrapper is, may have one Profiler class associated. In order to run-
time collect the statistics, the class PrefetchProfiler, see Fig. 2.3, is directly
attached to the wrapper. The statistics allow to classify the prefetches in terms
of their successes, as well as measuring the time the prefetch requests take in
the memory hierarchy [3]. The initial set of statistics that are implemented in
the prefetch framework can be found below:

• Total prefetches: The number of prefetch operations generated by the
prefetching engine.

• Completed prefetches: The number of generated prefetch operations
successfully issued and completed.

• Useful prefetches: The number of completed prefetches that were hit
by a load operation before eviction.

• Unuseful prefetches: The number of completed prefetches that were
evicted without being hit by a load operation.

• Late prefetches: The number of prefetch requests that are not issued
because the cacheline is already requested by another load operation.

• Canceled prefetches: The number of prefetch requests canceled by
the coherence protocol.

• Overflowed prefetches: The number of prefetch requests discarded
because of overflow in the prefetch queue, see Figure 2.3.

2.3 Best Offset Implementation

The first step in order to add one prefetch engine is to create a new class
that defines the behaviour of this new engine. This class must inherit the
AbstractPrefetcher one and it must redefine the constructor and destructor
methods according to the requirements of the Best Offset engine. Once the
BestOffsetEngine class is defined, it is needed to be added to the Sconscript6

file like this:
Source(’BestOffsetEngine.cc’);

The last step is to link the constructor of the new prefetch engine to
the SimObject. If we would like to use this new prefetch engine in the ex-
ecutions we had to set the following execution flags in the command line:
--l2 prefetcher=BESTOFFSET

6The Gem5 compiler uses these files to recognize all the C++ classes used in the imple-
mentation

22

2.3. Best Offset Implementation

2.3.1 The first approach. BOP1

The first approach tries to take one of the simplest implementations. This
implementation corresponds to the one explained in Section 1.3. A quick
summary of the values taken by the algorithmic parameters can be found in
Table 2.1.

We are going to consider 4KB page boundaries and cacheline sizes of 64B.
Therefore, it makes no sense to consider offsets greater than 64. The OL is
hardcoded in the code and corresponds to the one submitted for the 2nd Data
Prefetching Championsip by Michaud [17]. The offsets considered follow the
form 2i × 3j × 5k with i, j, k ≥ 0.

The RR table is built as a direct-mapped 256-entry table indexed by a
hash function. The impact of the number of entries from 32 to 512 has been
studied by Michaud [1]. He claims that the performance gap can be noticed
with the 256 entries. The hash function is a xor-based one. To obtain the
index it xors the 8 least significant bits in the cacheline address with the next
8 ones.

In addition, Michaud studied the effect of the BADSCORE parameter.
This parameter is a kind of threshold that indicates that the prefetcher is
not going to issue accurate prefetch requests. Michaud concluded that this
parameter must be less than 10 % of the ROUNDMAX parameter. Besides,
he studied the effect of some values in this parameters. For a 4 KB page size,
there is no effect in the majority of the SPEC CPU 2006 benchmarks and
for the benchmarks he could see the effect, he claims that greater values hurt
performance. Consequently, as a first approach, we are going to consider the
value Michaud concluded for the rest of his simulations.

Number of offsets 46

OL {1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, -6, 8, -8, 9, -9,
10, -10, 12, -12, 15, -15, 16, -16, 18, -18, 20, -20,
24, -24, 25, -25, 27, -27, 30, -30, 32, -32, 36, -36,
40, -40, 45, -45, 48, -48}

RR table entries 256

SCOREMAX 31

ROUNDMAX 100

BADSCORE 1

Table 2.1: Values of the parameters for the first approach. See BOP1 in
Chapter 4.

2.3.2 The second approach. BOP2

The second approach tries to take one of the ideas implemented and submitted
for the 2nd Data Prefetching Championship [17] but not included in [1]. In
Fig. 2.5 we can see the schematic view of the BOP with the main changes

23

2. Implementation

Figure 2.5: Schematic view of the optimized BOP. The changes are in red.

regarding the previous version highlighted in red. This is the BOP2 we will
also evaluate in Chapter 4.

The RR table is built as a 2-skewed table, both tables indexed by differ-
ent hash functions. Before, the RR table was only updated at the time a
prefetched cacheline arrives to the LLC. In this second version, we will con-
tinue updating the right RR table every time a prefetched cacheline arrives to
the LLC and we will update the left RR table at the time there is a request
(miss or prefetch hit).

The rationale for updating the RR table at LLC fill time is to find an offset
that yields timely prefetches whenever possible. However, Michaud later found
that striving for timeliness is not always optimal [17]. There are cases where a
small offset gives late prefetches but greater coverage and accuracy. Therefore,
a simple solution is proposed: the delay queue. When there is a request to the
LLC to the address X, this address will be inserted in the delay queue which
will hold the address for some fixed time and then, it will be inserted into the
left RR table.

The RR table activity of the first approach, BOP1, has been monitored
and we could see that it was always full and being updated regularly. For this
reason, and due to the fact that the update of the RR table is more aggressive
in this second approach because of the delay queue, we have decided not to
divide the RR table into left and right making each one of 128 entries but
making each one of 256 entries.

24

2.4. Tagged Prefetcher

Regarding the delay cycles, Michaud claims that the value of the delay in
cycles should take value between the latency of a LLC hit and a LLC miss.
In order to take a value according to our environment, we have monitored
the access delay time to the LLC. We have observed that for a LLC hit, the
L1 cache is served the data in less than 30 cycles while the LLC misses take
more than 150 cycles in getting the data cacheline. Therefore, a value around
[50, 100] should be suitable, so we have taken 60 cycles since Michaud chose
that value for it.

A quick summary of the values taken by the parameters can be found in
Table 2.2.

Number of offsets 46

OL {1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, -6, 8, -8, 9, -9,
10, -10, 12, -12, 15, -15, 16, -16, 18, -18, 20, -20,
24, -24, 25, -25, 27, -27, 30, -30, 32, -32, 36, -36,
40, -40, 45, -45, 48, -48}

Right RR table entries 256

Left RR table entries 256

Delay Queue entries 15

SCOREMAX 31

ROUNDMAX 100

BADSCORE 1

Delay Queue delay 60 cycles

Table 2.2: Values of the parameters for the second approach. BOP2 in Chapter
4.

2.4 Tagged Prefetcher

When the framework described in Section 2.2 was developed by Mart́ı et al.,
they wanted to implement some simple prefetch mechanisms to verify the
correctness of the simulator. Therefore, the Tagged prefetcher implemented
by them has been turned into useful code for the latest version of the Gem5
simulator. There are two main reasons to do so: 1) The importance to compare
the BOP results with the original and simplest Tagged one and 2) Verify that
the framework adaptation has been successful comparing the results obtained
in the old version and in this thesis.

Mart́ı et al. studied the effect of the aggressiveness parameter on this
prefetcher [3]. They recorded the number of prefetch requests issued per kilo
instructions and concluded that the Tagged prefetcher works in a simplistic
way. The Tagged prefetcher with medium or high aggressiveness issues a lot of
prefetch operations and the accuracy is low. Consequently, the cache becomes
filled with a lot of useless data which evicts useful data (cache pollution).

25

2. Implementation

This effect leads to an increase in the number of misses for this cache level.
Therefore, in this thesis we are going to use a low aggressiveness since it
seemed to work best in Mart́ı’s simulations [3].

More specifically, we are going to use value 1 for aggressiveness, that is,
we are going to issue one prefetch request for each miss or prefetch hit. For
the distance parameter, we are going to use value 2, that is, every time there
is a miss or prefetch hit on cacheline X, we will issue one prefetch request for
cacheline X + 2.

26

Chapter 3

Methodology

In order to validate new hypotheses and to quantify the improvements of
new models in terms of cost and/or performance, it is necessary to use com-
plex simulators. In addition, it is also needed to use a variety of workloads
that are representative and return meaningful statistics about the proposal.
Consequently, this work will use a cycle-accurate, execution-driven simulation
platform based on the well known Gem5 full-system simulator [2], see Section
2.1 from the University of Michigan that allows to simulate real workloads
cycle-by-cycle.

In addition, another task of this thesis has been setting up the SPEC CPU
2006 environment in order to build the benchmarks that are going to be used
to get the results and to evaluate the Best Offset proposal.

3.1 Verification

One of the main problems of research and of the implementation of new mod-
els in simulators is the final ignorance about the correctness of the model
implemented. Said otherwise, it is usually difficult to formally prove that the
model implemented corresponds correctly to the conceptual model presented
by the authors.

Some testing has been developed in order to prove that the implementation
is correct and fits the conceptual model previously described. One extended
technique is the use of hints, they consist of checking at run-time that inco-
herent events or situations regarding the conceptual model are not produced.
Some of this checking techniques are going to be described and exemplified
below:

• In-depth analysis of the code and the coherence protocol state diagram
generated by the compiler.

– Problem statement: When one prefetch request is issued in the
LLC, the coherent state is changed to a transient one where the

27

3. Methodology

LLC is waiting for the data. If a request arrives to the LLC at this
moment, it is not a hit because the prefetch has not finished yet.
However, in the implementation of the framework it is not counted
as a miss nor as a late prefetch. This event should be called partial
miss and should be accounted in the LLC misses.

– Solution: I propose to identify this event and create a counter that
is incremented every time it occurs. Therefore, at the end of the
execution we will be able to adjust the statistics including this
happenings in the LLC misses.

• Run-time checking that no prefetches are issued for cachelines that are
valid in the cache hierarchy. An assert is used to finish the execution if
this event occurs.

• Use of the statistics to check the coherence of the outcomes. Some of
the checks we can do are the following ones:

– It is a requirement that the number of useful prefetches is not
greater than the number of completed prefetches.

– It is a requirement that the number of total prefetches is the greater
value and it can be decomposed in completed and cancelled.

– Notice that the number of useful prefetches has correlation with
the number of decreased LLC misses.

– Notice that the network utilization is greater for multicore simula-
tions than for monocore ones.

3.2 System parameters

We are going to perform both monocore and multicore simulations. The tar-
get Instruction Set Architecture (ISA) will be the x86. The memory model
used is Ruby, see Subsection 2.1.1. It models inclusive/exclusive cache hierar-
chies with various replacement policies, coherence protocol implementations,
interconnection networks, DMA and memory controllers, various sequencers
that initiate memory requests and handle responses [2]. The parameters of
the simulation can be seen in Table 3.1.

For both, monocore and multicore simulations we use two levels of cache,
the L1 one split into data and instructions, 32 kB both. The LLC is shared
between the different cores so 2 MB are allocated for each core. Therefore, we
will use 2MB for the monocore simulations and 8 MB for the quad-core ones.

28

3.3. Workloads

System Parameters

Target ISA x86

Coherence protocol Two levels MOESI-Directory

L1d size 32kB

L1d associativity 8

L1i size 32kB

L1i associativity 8

LLC size 2MB/core

LLC associativity 16

Cache line size 64B

Page size 4kB

On-chip network Crossbar

Table 3.1: Values of the simulated system parameters.

3.3 Workloads

The BOP has been evaluated with the SPEC CPU 2006 benchmark suite [6],
these benchmarks are mainly programmed in C, C++, and Fortran. Another
task developed in parallel with the implementation of the BOP has been to
set up the SPEC environment. The final goal has been to build and compile
all the SPEC CPU 2006 benchmarks under the x86 ISA in order to be able
to be executed by the Gem5 simulator. In Table 3.2, the benchmark used for
monocore and multicore simulations can be seen.

In order to face the representative part of every benchmark, fast forward-
ing is going to be used. It consists of executing the first instructions of each
benchmark in a non-detailed way because it is assumed that the first bunch
of instructions of every benchmark are intended for the initialization of the
application. The non-detailed execution implies that the CPU is in the Atom-
icSimple mode and the memory subsystem is in the general one so the Ruby
memory subsystem is not taking any statistics.

After that, warm-up of caches are applied during some instructions in order
not to start the detailed simulation with an empty memory hierarchy. The
simulation flow can be summed up to: 100 millions fast forward instructions,
50 millions warm-up instructions, and 500 millions of detailed simulation.

For the monocore simulations, we selected workloads that exhibit a non-
trivial rate of LLC misses per instruction such as lbm, soplex, or libquantum
[18]. These benchmarks are also amenable to regular prefetching. Some of
these workloads do not work well with prefetching, such as omnetpp or sjeng,
and are included in order to show that BOP does not hurt the performance
of applications that are not prefetch-friendly.

Nonetheless, during this task of building the SPEC CPU we have found
several problems. The main reason to discard some of the SPEC CPU bench-

29

3. Methodology

marks was that some of the machine instructions resulting from compilation
were not supported by the Gem5 x86 ISA. This is because Gem5 is not fully
implemented, it is a simulator with some functionalities in development. In
addition, some benchmarks presented Fortran runtime errors. Therefore, the
simulations were done with the benchmarks that can be seen in Table 3.2.

Once the monocore simulations were launched, we could observe which
benchmarks in our environment were generating the greatest network utiliza-
tion. For the multicore simulations in four cores, each benchmark is being
executed on each core. Therefore, the network traffic generated by the bench-
marks are interacting with each other. Consequently, it would be interesting
to choose four benchmarks to conform the mixes to be executed whose network
utilization in the monocore simulations took importance.

Monocore benchmarks

401.bzip2, 435.gromacs, 444.namd, 450.soplex,
454.calculix, 456.hmmer, 458.sjeng, 462.libquantum,
464.h264ref, 470.lbm, 471.omnetpp

Quad-core mixes

Mix 1 lbm, soplex, libquantum, gromacs
Mix 2 lbm, soplex, bzip2, hmmer
Mix 3 libquantum, gromacs, bzip2, hmmer

Simulation parameters

Fast-forward instructions 100 M instructions
Warm-up instructions 50 M instructions
Simulated Instructions 500 M instructions

Table 3.2: Simulation benchmarks and workloads parameters.

3.4 Evaluated Models

The simulated, evaluated and compared models are the following ones:

• Base: Base system with no prefetching.

• BOP1: The first approach of the BOP mechanism, see Section 2.3.1.

• Tagged: Original and simplest Tagged prefetcher, see Section 2.4.

• BOP2: The optimizations of the BOP mechanism, see Section 2.3.2.

30

Chapter 4

Evaluation

In order to be able to quantify the improvements and benefits of new propos-
als, the statistics outcomes given by the Gem5 simulator can be used to get
some performance, and behaviour metrics about the proposals. First of all,
the metrics studied and evaluated are going to be introduced and then the
monocore and multicore simulation results will be analyzed.

4.1 Metrics used

We need several metrics to help understand the results given by the simulator.
These metrics will try to sum up the overall performance of the workloads, the
impact of the prefetcher on the LLC demand misses and the network traffic
and some prefetching metrics such as coverage and accuracy. The following
metrics will be calculated and analyzed in all the executions:

• Instructions per cycle (IPC): It is a well known metric in order to
measure the performance improvement caused by a modification.

IPC =
of Simulated Instructions

of Simulated Cycles

• IPC speedup: Ratio between the IPC of a pretching mechanism and
the BASE system without prefetching.

IPC speedup =
IPCPF

IPCBASE

• LLC misses per kilo instructions (MPKI): It measures the number
of LLC misses per every one thousand instructions.

MPKI =
of LLC Misses× 1000

of Simulated Instructions

31

4. Evaluation

• MPKI reduction: Ratio between the MPKI of a pretching mechanism
and the BASE system without prefetching.

MPKI Reduction =
MPKIBASE

MPKIPF

• LLC mean access time: It measures the mean access time, in cycles,
that a L1 miss takes to be fulfilled.

LLC Access T ime =
of L1 Miss Cycles

of L1 Misses

• LLC mean access time reduction: Ratio between the mean access
time of a prefetching mechanism and the BASE system without prefetch-
ing.

LLC Access T ime Reduction =
LLC Access T imeBASE

LLC Access T imePF

• Network utilization: This metric is given by GARNET [16] trying to
sum up the links and routers average utilization. The GARNET frame-
work calculate this metric having some counters that are incremented
every time any router or link is used. After that, they divide this accu-
mulated value by the number of executed cycles. This metric is directly
related with the MPKI one because when a miss on the LLC is produced,
the demand has to be issued to main memory, which generates network
traffic.

• Coverage: Fraction of original misses saved by prefetched cachelines.

Coverage =
of Original misses−# of Misses with prefetching

of Original misses

• Accuracy: Fraction of all launched prefetching operations that have
proved to be useful, that is, that have eliminated some original misses.

Accuracy =
of Useful prefetches

of Total prefetches

4.2 Monocore evaluation

Figure 4.1 represents the IPC speedup of the three prefetching versions related
to the BASE, with no prefetching. The names of the benchmarks are on
the X-axis and the speedup on the left Y-axis. In addition, in order to see
the relationship with the MPKI metric, it is printed in the right Y-axis and
represented with a line.

32

4.2. Monocore evaluation

Figure 4.1: IPC Speedup (left) and BASE MPKI (right) in monocore simula-
tions.

We can see that the IPC speedup is not noticeable in most of the bench-
marks except for four of them (bzip2, gromacs, soplex, and lbm). For exam-
ple, lbm benchmark is the one that provides the greatest speedup: 17,9 % for
BOP1, 14,4 % for TAGGED, and 15,8 % for BOP2. Besides, we can notice
that most of the benchmarks have a very low miss rate in LLC. For this rea-
son, the prefetching activity related to them is very low so that they get no
speedup. However, we cannot say that all the benchmarks that have a high
miss rate in LLC are going to be improved in terms of performance by the
prefetchers. For example, the libquantum benchmark has a high miss rate but
it does not get any speedup from any of the prefetching mechanisms. Possibly,
this is due to an irregularity in the libquantum memory access patterns.

If we look at the average values, we can see that the prefetching mechanism
that brings at least some speedup is BOP1.

Figure 4.2 represents the mean LLC access time reduction of the three
prefetching versions related to the BASE, with no prefetching. The names of
the benchmarks are on the X-axis and the mean LLC access time reduction
in the Y-axis.

The main observation we can do is that the mean access time to LLC gets
reduced in the benchmarks that provide a certain speedup. Both metrics are
strongly related because the performance speedup is taking advantage of the
time reduction in the LLC accesses.

In addition, looking at the average values, the BOP1 gets the maximum

33

4. Evaluation

Figure 4.2: Mean LLC access time reduction in monocore simulations.

LLC access time reduction (7%) and the greatest speedup (2,1%) followed by
the BOP2, 6,5% and 2%, respectively.

The network utilization is given in Figure 4.3. The names of the bench-
marks are on the X-axis and the network utilization ratio can be seen in the
Y-axis.

A correlation between the network utilization and the MPKI can be seen
in the BASE version. The benchmarks that generate a greater MPKI also gen-
erate a greater network utilization. In addition, the prefetching mechanisms
are not perfect, that is, not all the prefetch requests they issue are going to
be useful. Therefore, we can see an increment in the network utilization due
to these unuseful requests that were not issued in the BASE version.

As we have seen in the IPC analysis, the IPC was not noticeable for the
benchmarks that have low MPKI. This relation is also visible in the network
utilization increment. The increment is negligible for the benchmarks that
present a low MPKI due to the low activity of the prefetcher. Moreover,
the BOP1 overall network utilization, see AVERAGE in Fig. 4.3, is slightly
greater than the BOP2 one.

The prefetching coverage and accuracy is given in Figure 4.4. The names
of the benchmarks are on the X-axis and the coverage and accuracy ratios are
on the Y-axis of figures 4.4a and 4.4b, respectively.

The coverage metric is directly correlated with the MPKI one because
the coverage measures the fraction of the original misses, that is, the fraction
of the misses of the BASE version, that are eliminated by the prefetching

34

4.2. Monocore evaluation

Figure 4.3: Network utilization ratio in monocore simulations.

mechanisms. As it is visible in the mean, the BOP1 and the TAGGED are
the ones whose coverage is the greatest.

The accuracy metric analysis combined with the coverage one can be used
to understand the behavior of the prefetching mechanism in each benchmark.
For example, when the prefetcher has both high coverage and accuracy it
means that the prefetching algorithm is recognizing the memory access pat-
terns and is not issuing prefetch requests in excess. This can be noticed in
benchmarks as gromacs, namd, calculix, hmmer, libquantum and lbm. Looking
at the means we can see that BOP2 is the one that brings the greatest accu-
racy. Nevertheless, if the coverage ratio was high but the accuracy one was
low that would mean that the prefetching algorithm is too aggressive because
it is achieving coverage at the expense of issuing unuseful prefetch requests
that may result in an increase of the network traffic.

Trying to compare the prefetching algorithms between them, we can see
that the BOP2 one is on average the best in terms of accuracy and BOP1 in
terms of coverage. This makes sense because the TAGGED prefetcher is much
simpler.

Another thing to be highlighted is the sjeng low accuracy (2%), and neg-
ative coverage (-1,8%) for the TAGGED prefetcher. That means that the
prefetcher algorithm is not issuing useful prefetch requests and it is polluting
the LLC because the miss ratio is being increased.

As we have seen in Fig. 4.3, the BOP1 overall network utilization (0,1371)
is slightly greater than the BOP2 one (0,1359). This can be explained with
the coverage and accuracy. We can see that BOP2 accuracy (79,5%) is greater
than the BOP1 one (76,7%) but the opposite happens with the coverage

35

4. Evaluation

(a) Coverage

(b) Accuracy

Figure 4.4: Prefetching coverage and accuracy for the monocore simulations

(72,3% and 75,2%, respectively). This is because the BOP1 eliminates more
misses (coverage) at the expense of issuing a greater number of prefetch request
(less accurate), this is translated in an increase of the network utilization.

Figure 4.5 represents the MPKI reduction of the three prefetching versions
related to the BASE, with no prefetching. The names of the benchmarks are
on the X-axis and MPKI reduction in the Y-axis.

One thing that is important to note is that the benchmarks that experience
a greater MPKI reduction do not have to be the ones with the greatest MPKI
ratio. This can be seen in contrast to the yellow line in Figure 4.1.

The first observation in this figure is that the MPKI reduction is related
to the coverage because both metrics sum up the the LLC misses that are
removed by the prefetching mechanism. As we can see, the benchmarks with
the greatest MPKI reduction are among the ones with the greatest coverage.

36

4.3. Multicore evaluation

Figure 4.5: MPKI reduction.

Trying to compare the different prefetching mechnisms, looking at the
average values, we can see that BOP1 gets the greatest MPKI reduction (14,1
times), followed by TAGGED (10,1 times) and BOP2 in the last position (7
times).

4.3 Multicore evaluation

Figure 4.6 represents the IPC speedup for the multicore execution in four
cores. The names of the benchmarks and the mixes are on the X-axis and the
speedup on the left Y-axis. The information is organized as follows: the first
four groups of bars correspond to the mix1, the next four groups to the mix2,
and the last four groups to the mix3.

One observation is that sometimes one prefetcher is better for one bench-
mark but it is sometimes another one depending on the mix where they are
being executed. The reason for this is that the benchmarks memory access
patterns to the LLC are interleaved in a different way depending the mix
since different workloads are involved. For example, in the lbm benchmark,
first group of bars for mix1 and fifth group of bars for mix2. In mix1, we can
see that the TAGGED and BOP2 prefetchers have the greatest IPC speedup
(12,6% and 12,5%, respectively) while, in mix2, the BOP1 is the one with the
greatest IPC speedup (13,7%).

In addition, some benchmarks get more penalized in terms of performance
in the multicore simulations than in the monocore ones. For example, see
hmmer IPC speedup in mix2 : -2,2% for BOP1, -2,09% for TAGGED, and
-2,1% for BOP2. The reason for this is that the memory access to the LLC

37

4. Evaluation

Figure 4.6: IPC Speedup in quad-core multicore simulations.

are interleaved within the mix so the prefetcher may choose one offset that is
suitable for some benchmark but not for the others. Another reason for this
is that the memory requests from all benchmarks are flowing together in the
network. Therefore, some requests may be delayed and the mean LLC access
time for some benchmarks might be increased.

Figure 4.7 represents the mean LLC access time for the multicore execution
in four cores. The name of the benchmark and the mix can be observed in
the X-axis and the reduction of time in the LLC accesses is plotted in the left
Y-axis. The information is organized as follows: the first four groups of bars
correspond to the mix1 speedup, the next four groups to the mix2 and the
last four groups to the mix3.

As for the monocore execution, a direct link between the mean LLC access
time reduction and the IPC speedup can be observed. We can see that lbm is
the benchmark that gets the most LLC access time reduction. For example, as
we can see in Figure 4.7, the LLC access time reduction for lbm is in mix2 is
73,5% for BOP1, 66,2% for TAGGED and 73% for for BOP2. Said otherwise,
without prefetching, lbm in mix2 provides 143,5 LLC mean access time and it
gets reduced to 82,7, 86,3, and 82,9 cycles for BOP1, TAGGED, and BOP2,
respectively.

The MPKI and the network utilization for the multicore simulations is
visible in Figure 4.8. The names of the benchmarks are on the X-axis and
the MPKI and the network utilization ratio on the Y-axis of Figures 4.8a and
4.8b, respectively.

The first observation that must be noticed is the correlation with the
monocore results, that is, in the case of MPKI, the mix with the greatest
MPKI (mix1) is the one that is conformed with the benchmarks that present
the greatest MPKI in monocore executions. The same phenomenom is visible

38

4.3. Multicore evaluation

Figure 4.7: Mean LLC access time reduction in quad-core multicore simula-
tions.

for the network utilization, mix1 and mix2 are the ones that are formed by
the most network intensive benchmarks.

Another observation is the reduction of MPKI the prefetcher mechanisms
achieve related to the non-prefetching version (yellow bar). We can see a
significant MPKI reduction while the network utilization increase is not as
remarkable.

Trying to compare the different mechanisms, we can see that BOP1 and
BOP2 generate the lowest MPKI for mix2 (1,44 and 1,41, respectively) and
mix3 (0,28 and 0,28, respectively) while the TAGGED prefetcher does it for
mix1 (1,16). Different mixes mean different memory access patterns to the
LLC despite the fact that some mixes share some benchmarks. Therefore,
some prefetchers can identify better some memory access patterns while other
prefetchers can do it with another memory access patterns.

Due to the fact that in the multicore executions all the LLC requests
from all the benchmarks flow together in the on-chip network, a significant
increase in the network utilization can be noticed with respect to the monocore
executions. In the monocore simulations, the greatest network utilization ratio
is 0,45 for the lbm benchmark, see Fig. 4.3, while all network utilization factors
in the multicore simulations for the same benchmarks are greater than 0,5.

The prefetching coverage and accuracy is given in Figure 4.9. The names
of the benchmarks are on the X-axis and the coverage and accuracy ratio on
the Y-axis of Figures 4.9a and 4.9b, respectively.

Due to the fact that in the multicore executions all the LLC requests from
all the benchmarks flow together in the on-chip network, it can be seen a

39

4. Evaluation

(a) MPKI (b) Network Utilization

Figure 4.8: MPKI and network utilization ratio for quad-cores multicore sim-
ulations.

(a) Coverage (b) Accuracy

Figure 4.9: Prefetching coverage and accuracy for the four-cores multicore
simulation.

decrease in the coverage and accuracy of the prefetching mechanisms. This
decrease must be compared with the coverage and accuracy of the benchmarks
that conform each mix in the monocore executions. The reason for this is that
the prefetching mechanism is observing the memory access patterns from all
benchmarks at the same time. Therefore, it is very difficult, in the case of the
BOP, that the learning algorithm can find an offset so that all the benchmarks
take advantage of it.

On the contrary, we can see that BOP2 provides the best accuracy for
all the mixes and the best coverage for mix2 and mix3. Therefore, we could
say that it seems to be more scalable. However, we know that for BOP2 is
more complex in terms of hardware. It includes the delay queue and the RR
table is doubled. Therefore, we should take into account whether this added
complexity is worthwhile.

40

Conclusions

One of the conclusions that we can bring out from this thesis is that the hard-
ware prefetching mechanisms interact with all the memory hierarchy compo-
nents in a very complex way. In addition, it is sometimes really difficult to
identify the advantages and the drawbacks of these mechanisms. The frame-
work developed by Marti et al. [3] has shown its importance because it pro-
vides some features and metrics in order to ease the way to pick up prefetching
statistics.

One of the main contributions of this thesis is the upgrade of the pre-
viously described prefetching framework. Due to the lack of support of the
Ruby memory subsystem to prefetching, this framework is a really powerful
alternative to model and to evaluate different prefetching mechanisms. Fur-
thermore, it is prepared to easily implement additional prefetching policies so
that Gem5 users can test their own prefetching proposals.

Regarding the performance results, we have observed that the improve-
ments in terms of performance of the BOP are not as optimistic as Michaud
results [1]. Michaud experiments are done on a trace-driven simulator, based
on Pin [5]. Every workload Michaud used to feed this simulator is conformed
with twenty samples of the same benchmarks stitched together. Each sample
is got from different regions of the benchmark where there is a great LLC
miss rate. The result of this stitched samples is a workload with a high LLC
miss rate so that the activity of the prefetcher and its improvements can be
noticed. However, we think that these traces are not realistic at all because
real workloads will never present these kind of execution flow. Therefore, the
improvements of the prefetching mechanisms could not have been observed in
such a optimistic way.

The difference between BOP1 and BOP2 approaches is the the delay queue
and the split RR table. We cannot say that the BOP2 improves the BOP1
to justify all the hardware complexity the BOP2 includes. However, we can
notice that the BOP2 seems to work better in the multicore simulations than
in the monocore ones. Therefore, we could think that the BOP2 is more

41

Conclusions

scalable and it could be interesting to simulate in an environment with 8 - 16
cores. We think that this second approach, the one that Michaud presented
in the DPC-2 contest7 [17], is taking the advantage of the concrete simulator
of the contest. Therefore, Michaud decided not to include these optimizations
in the Best Offset Prefetching paper because he did not find the advantages
in a more generic environment.

Future work

One of the main limitations of this work is the short time we had for its
development. A master thesis could be divided in three stages: the state of
the art study, the implementation of the idea and the obtaining of results.
For this last one, it could be useful to have more time to be able to simulate
the effect of the different implementation parameters in the results outcomes.
However, the time is limited and due to the size of the simulator, it has been
impossible to be sure about the correctness of the parameters values for this
environment. As Michaud did with its implementation and his simulator, a
smaller and less detailed one than Gem5, one of the future work lines could
be the study of the effect of the parameters values in different environments.

The Gem5 community had a lot of interest to have this framework working
for the official release version of the simulator. Therefore, one of the possible
lines of future work could be to work together with Mart́ı et al. and the Gem5
community to include this framework in the official release version.

As we have seen in the BOP multicore behaviour, all the accesses from
different cores to the LLC are interleaved in the network. Besides, the BOP
learning phase makes no distinction on which core has generated each access.
Therefore, we think that it could be interesting to identify the different execu-
tion flows and distinguish between them at the learning phase. The reason for
that is trying to adapt the offset used for prefetching to each execution flow
and study the possibility to have different offsets for each core or execution
flow.

Personal Assessment

In order to conclude this report, I am going to exhibit a personal opinion
about the project.

First of all, I feel satisfied with the knowledge obtained because of the
development of this Master Thesis. It has allowed me to widen my knowledge
about cache memories, coherence protocols, on-chip networks more than what
I learned in my Bacherlor and Master subjects. Moreover, the use of the Gem5
simulator and the methodology explained will be very useful for me if I decide
to continue my research career in the computer architecture field.

72nd Data Prefetching Championship, 2015. http://comparchconf.gatech.edu/dpc2/

42

http://comparchconf.gatech.edu/dpc2/

Personal Assessment

During the development of this thesis we have encountered several set-
backs. One of the main limitations has been that the Gem5 simulator is a
relatively new simulator and it is continuously under development. There-
fore, there are some features that are not as far implemented as we previously
thought, for instance the Gem5 prefetching support. Another thing to be en-
hanced would be to enlarge the workloads, that is, to make more SPEC CPU
2006 benchmarks work under the Gem5 environment.

43

Bibliography

[1] Michaud, P. Best-offset hardware prefetching. In 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
March 2016, pp. 469–480, doi:10.1109/HPCA.2016.7446087.

[2] Binkert, N.; Beckmann, B.; Black, G.; et al. The Gem5 Simulator.
SIGARCH Comput. Archit. News, volume 39, no. 2, Aug. 2011: pp. 1–
7, ISSN 0163-5964, doi:10.1145/2024716.2024718. Available from: http:
//doi.acm.org/10.1145/2024716.2024718

[3] Mart́ı Torrents, R. M.; Molina, C. Network aware performance evalu-
ation of prefetching techniques in CMPs. Simulation Modelling Prac-
tice and Theory, volume 45, 2014: pp. 1 – 17, ISSN 1569-190X, doi:
https://doi.org/10.1016/j.simpat.2014.03.005. Available from: http://

www.sciencedirect.com/science/article/pii/S1569190X14000434

[4] Ishii, Y.; Inaba, M.; Hiraki, K. Access map pattern matching for high per-
formance data cache prefetch. Journal of Instruction-Level Parallelism,
volume 13, 2011: pp. 1–24.

[5] Luk, C.-K.; Cohn, R.; Muth, R.; et al. Pin: Building Customized Pro-
gram Analysis Tools with Dynamic Instrumentation. In Proceedings of the
2005 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’05, New York, NY, USA: ACM, 2005, ISBN 1-
59593-056-6, pp. 190–200, doi:10.1145/1065010.1065034. Available from:
http://doi.acm.org/10.1145/1065010.1065034

[6] Henning, J. L. SPEC CPU2006 Benchmark Descriptions. SIGARCH
Comput. Archit. News, volume 34, no. 4, Sept. 2006: pp. 1–17,
ISSN 0163-5964, doi:10.1145/1186736.1186737. Available from: http:

//doi.acm.org/10.1145/1186736.1186737

[7] Solihin, Y. Fundamentals of Parallel Multicore Architecture. CRC Press,
2015.

45

http://doi.acm.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718
http://www.sciencedirect.com/science/article/pii/S1569190X14000434
http://www.sciencedirect.com/science/article/pii/S1569190X14000434
http://doi.acm.org/10.1145/1065010.1065034
http://doi.acm.org/10.1145/1186736.1186737
http://doi.acm.org/10.1145/1186736.1186737

Bibliography

[8] Mittal, S. A survey of recent prefetching techniques for processor caches.
ACM Computing Surveys (CSUR), volume 49, no. 2, 2016: p. 35.

[9] Yedlapalli, P.; Kotra, J.; Kultursay, E.; et al. Meeting midway: Improving
CMP performance with memory-side prefetching. In Proceedings of the
22nd international conference on Parallel architectures and compilation
techniques, IEEE Press, 2013, pp. 289–298.

[10] Srinath, S.; Mutlu, O.; Kim, H.; et al. Feedback directed prefetching: Im-
proving the performance and bandwidth-efficiency of hardware prefetch-
ers. In High Performance Computer Architecture, 2007. HPCA 2007.
IEEE 13th International Symposium on, IEEE, 2007, pp. 63–74.

[11] Pugsley, S. H.; Chishti, Z.; Wilkerson, C.; et al. Sandbox Prefetch-
ing: Safe run-time evaluation of aggressive prefetchers. In 2014 IEEE
20th International Symposium on High Performance Computer Archi-
tecture (HPCA), Feb 2014, ISSN 1530-0897, pp. 626–637, doi:10.1109/
HPCA.2014.6835971.

[12] Smith, A. J. Cache Memories. ACM Comput. Surv., volume 14, no. 3,
Sept. 1982: pp. 473–530, ISSN 0360-0300, doi:10.1145/356887.356892.
Available from: http://doi.acm.org/10.1145/356887.356892

[13] Chen, T.-F.; Baer, J.-L. Effective hardware-based data prefetching for
high-performance processors. IEEE Transactions on Computers, vol-
ume 44, no. 5, May 1995: pp. 609–623, ISSN 0018-9340, doi:10.1109/
12.381947.

[14] Wong, W. A.; Baer, J.-L. The Impact of timeliness for hardware-based
prefetching from main memory. 2002.

[15] Ishii, Y.; Inaba, M.; Hiraki, K. Access Map Pattern Matching for Data
Cache Prefetch. In Proceedings of the 23rd International Conference on
Supercomputing, ICS ’09, New York, NY, USA: ACM, 2009, ISBN 978-1-
60558-498-0, pp. 499–500, doi:10.1145/1542275.1542349. Available from:
http://doi.acm.org/10.1145/1542275.1542349

[16] Agarwal, N.; Krishna, T.; Peh, L.-S.; et al. GARNET: A detailed on-chip
network model inside a full-system simulator. In Performance Analysis
of Systems and Software, 2009. ISPASS 2009. IEEE International Sym-
posium on, IEEE, 2009, pp. 33–42.

[17] Michaud, P. A Best-Offset Prefetcher. 2nd Data Prefetching Champi-
onship., 06 2015. Available from: http://comparchconf.gatech.edu/
dpc2/

[18] Jaleel, A. Memory characterization of workloads using instrumentation-
driven simulation.

46

http://doi.acm.org/10.1145/356887.356892
http://doi.acm.org/10.1145/1542275.1542349
http://comparchconf.gatech.edu/dpc2/
http://comparchconf.gatech.edu/dpc2/

	Introduction
	Motivation and objectives
	Methodology
	Developed tasks
	Thesis contents

	State of the Art
	Prefetching terminology
	Prefetching background
	Best Offset Prefetcher

	Implementation
	Gem5 introduction
	Prefetch Framework Adaptation
	Best Offset Implementation
	Tagged Prefetcher

	Methodology
	Verification
	System parameters
	Workloads
	Evaluated Models

	Evaluation
	Metrics used
	Monocore evaluation
	Multicore evaluation

	Conclusions
	Future work
	Personal Assessment

	Bibliography

