
Receive Antenna Selection and Hybrid Precoding
for Receive Spatial Modulation in Massive MIMO

Systems
Ahmed Raafat, Adrian Agustin and Josep Vidal

Dept. of Signal Theory and Communications, Universitat Politecnica de Catalunya (UPC), Barcelona, Spain.
Email: {ahmed.raafat, adrian.agustin, josep.vidal}@upc.edu

Abstract—Recently, a receive spatial modulation (RSM) for
massive multiple-input-multiple-output operating in millimeter
wave (mmWave) was introduced with the purpose of simplifying
user terminal circuit by employing only one radio-frequency
chain and attaining high spectral efficiency by exploiting the
receive spatial dimension. However, when RSM is applied in
a mmWave channel, it demands a challenging receive antenna
selection (RAS) procedure. On the other hand, the power
consumption at the transmitter side is high when a full digital
(FD) precoder is envisioned. We consider the joint problem
of RAS and precoder designs based low complexity hybrid
architecture. For the sake of simplicity, we divide this problem
into two subproblems. First, we design the RAS assuming FD
precoder, and then, we design the hybrid precoder. We propose
two novel and efficient RAS methods. First, we formulate the
RAS as non-convex optimization problem. Then, we convert
it into a convex optimization problem by introducing novel
lower bounds and relaxing non-convex constraints. Second, we
provide sequential algorithms that approach the optimal selection
where we (add/remove) one (good/poor) antenna per iteration.
We propose novel zero forcing hybrid precoder based convex
optimization that maximizes the received power. We prove that
the proposed precoder is optimal when the channel is highly
spatially sparse. The proposed designs have been compared with
the best known methods in terms of average mutual information
and energy efficiency showing significant improvements.

I. INTRODUCTION

The vast available spectrum of millimeter wave (mmWave)
frequency band can significantly enhance the achievable rates
of future cellular systems [1]. However, propagation losses in
these bands are huge, an effect that can be compensated by
the beamforming gains obtained if packing a large number
of antennas at the transceivers. Cost and power consumption
of fully digital (FD) multiple-input-multiple-output (MIMO)
transceiver highly increase at mmWave band [1]. Hence, FD
massive MIMO transceiver design becomes challenging.

Spatial transmission is a powerful tool that can be exploited
to simplify MIMO transceiver and attain high data rates. Re-
ceive spatial modulation (RSM) schemes have been developed
with the aim of improving MIMO spectral efficiency by ex-
ploiting the receive spatial dimension as an extra information
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source [2]-[3]-[4]. These schemes have been introduced for
sub-6 GHz considering rich multipath environment and FD
MIMO transceiver and suffer from performance degradation
and high complexity transceiver when applied to mmWave
communications. Low complexity RSM MIMO transceiver
has been reported in [5] for indoor line-of-sight mmWave
communication. Recently, simple RSM MIMO transceiver
and novel detection method have been introduced in [6] for
outdoor narrowband mmWave communication. Nevertheless,
the system in [6] relies on computationally complex receive
antenna subset selection (RAS) algorithm and power hungry
FD base station (BS) as illustrated in Fig. 1.

Inspired by fast algorithms [7] and by convex optimization
[8], several RAS techniques have been studied to maximize
MIMO channel spectral efficiency. However, these methods
are not alleviating the problems associated to zero forcing (ZF)
precoding in [6]. ZF hybrid precoding has been studied in [9]
to simplify MIMO BS, whereby signal processing is divided
among digital processing at baseband and analog processing at
passband. In [10], the authors developed ZF hybrid precoder
that can achieve data rates higher to those in [9]. However, the
design in [10] is computationally complex and suboptimal.

Considering the RSM system in Fig. 1, we study the
RAS problem and ZF hybrid precoder design. The major
contributions of this paper are as follows:

• We develop novel, fast and efficient RAS methods.
• We derive closed form expression for mutual information

of RSM system in Fig. 1.
• We determine the optimal number of active receive anten-

nas (ARA) by maximizing the mutual information using
fast algorithm.

• We develop novel ZF hybrid precoder that has the same
performance as the FD precoder when channel is highly
spatially sparse and outperforms the design in [10] in
achievable rates, energy efficiency and complexity.

We use the following notation through this paper: (.)T

and (.)H are transpose and conjugate transpose, respectively.
‖X‖F and Tr {X} denote Frobenius norm and trace of matrix
X, respectively. |x| and Arg(x) are magnitude and phase of x,
respectively. X (k, :) and Xk denote kth row and kth diagonal
entry of matrix X, respectively. X (n,m) is entry in the nth

row and the mth column of matrix X. VN{X} denotes the
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Fig. 1. RSM Massive MIMO transceiver architecture introduced in [6], downlink (black) and uplink (red).

matrix contains the largest N eigenvectors of matrix X.

II. SYSTEM AND CHANNEL MODELS

We consider the downlink (DL) of single user massive
MIMO systems operating in mmWave outdoor narrowband
propagation environment where the BS and the user terminal
(UT) are equipped with Nt and Nr antennas respectively.
Although we consider narrowband signals, the proposed al-
gorithms can be extended to the wideband transmission by
applying orthogonal frequency-division multiplexing and this
is a future work topic. Since outdoor mmWave propagation
suffers from acute path loss, the corresponding channel is
limited by few scattering clusters and becomes spatially sparse.
Therefore, we adopt the widely used outdoor narrowband
channel model in [11] to design and evaluate the proposed
system. The channel matrix in this model can be expressed as

H =

√
NtNr
L

L∑
i=1

givr (θi)vt (φi)
H (1)

where H ∈ CNr×Nt , L is number of scattering paths,
gi ∈ CN

(
0, σ2

g

)
is independent and identically distributed

(i.i.d.) ith path complex gain,
(
φi ∈ [−π6 ,

π
6 ], θi ∈ [0, 2π]

)
are

uniformly distributed azimuth and elevation angles of depar-
tures and arrivals, E

[
Tr{HHH}

]
= NtNr, vt (φi) ,vr (θi) are

the transmit and receive array response vectors. We consider
an N-element uniform linear array that can be expressed as

v(φ) =
1√
N

[
1, ejkd sin(φ), ..., ej(N−1)kd sin(φ)

]T
(2)

where k = 2π
λ and d is the inter-element spacing.

III. RSM FOR MASSIVE MIMO SYSTEMS

In [6], a low complexity RSM massive MIMO transceiver
architecture has been developed based on a FD transmitter
and energy efficient receiver circuitry. To the best of our
knowledge, architecture in Fig. 1 is the first that combines
low complexity RSM massive MIMO transceiver with RAS

for spatially sparse channels [6]. In the following subsections,
we summarize how the RSM displayed in Fig. 1 is working,
its benefits, challenges and the proposed improvements.

A. UT circuit energy efficiency

The UT circuit is designed based on the use of energy
efficient devices (amplitude detector (AD) [12], 1-bit analog-
to-digital-converter (ADC) and phase shifter [1]) and only one
of any power hungry device (high resolution ADC and radio-
frequency (RF) chain [1]). The AD can measure amplitude
of mmWave RF signal with high sensitivity, negligible power
consumption and very high input impedance [12].

B. Transmission protocol

In [6], the authors considered time-division-duplex (TDD)
protocol based on DL and uplink (UL) reciprocal environment.
The UT does not need the CSI and the BS can acquire the
channel knowledge with a low training overhead [6]. At first,
the BS acquires the CSI during UL training. Next, the UT
estimates the detection threshold γ̂ (shown in Fig. 1) during
DL training using just one pilot symbol [6].

C. Precoding and detection

The sparse nature of mmWave propagation leads to corre-
lation among receive antennas. Therefore, the BS selects the
best (Na ≤ Nr) receive antennas to be active and informs the
UT about those antennas over a control channel. The received
signal vector in Fig. 1 can be expressed as

y =
√
αPHaBsixj + n (3)

where xj ∼ CN (0, 1) is the modulation symbol, si ∈ RNa×1

is a binary spatial symbol conveying Na data bits, Ha ∈
CNa×Nt is the channel between the BS and ARA of the UT,
P is average transmit power, α ≈

(
.5× Tr

{
BHB

})−1
is

a normalization factor that fixes the average transmit power,
n ∈ CNa×1 noise vector whose entries are i.i.d. CN

(
0, σ2

)
and B ∈ CNt×Na is the ZF precoder that can be expressed as

B = HH
a

(
HaH

H
a

)−1
(4)



Fig. 2. Fully connected hybrid base station [13].

The received signal at the kth antenna can be expressed as

yk =
√
αPsikxj + nk (5)

where sik is the kth element of si.
RAS is necessary to perform ZF precoding in correlated

mmWave massive MIMO channels. For a given Na, ARA are
selected to maximize per antenna received power as

(P1) min
Ha⊆H

Tr
{(
HaH

H
a

)−1}
(6)

The detection of spatial and modulation symbols can be
recapitulated as follows [6]
• First, the output of the kth AD is compared to γ̂ to detect
kth spatial bit ŝik ∈ {0, 1} [6].

• Then, the combined signal yc passes through RF chain
to enable detection of the modulation symbol xj where

yc =

Na∑
k=1

√
αP ŝiksikxj + ŝiknk (7)

D. Challenges and proposed solutions

Problem (P1) is solved by exhaustive search in [6] but
this method entails considerable computational complexity
especially in large MIMO systems. Besides, FD BS shown
in Fig. 1 is expensive and power consuming particularly in
mmWave massive MIMO systems.

In the sequel, we formulate the joint problem of designing
low complexity ZF hybrid precoder and RAS. We divide
this problem into two subproblems. First, we select the ARA
assuming FD BS by using convex optimization and efficient
algorithms to solve (P1). Then, in section VIII we consider
those selected antennas in designing novel ZF hybrid precoder.
We compare all the proposed designs with the best known.

IV. JOINT ZF HYBRID PRECODER DESIGN AND RAS

At mmWave band, the cost and power consumption of
RF chains and high resolution digital-to-analog-converters
(DACs) are significant. In this section, we motivate the benefit
of the hybrid architecture (Fig. 2) by comparing its power
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Fig. 3. Hardware power consumption at BS versus Nt at Pref = 20mW.

consumption with the FD (Fig. 1) and then we propose a joint
problem of ZF hybrid precoder design and RAS.
A. Power consumption

With the goal of justifying the use of hybrid architectures,
equation (8) shows the power consumption of power amplifier
(PPA), phase shifter (PPS), DAC (PDAC) and RF chain (PRF)
in terms of reference power (Pref) [13] as

PPA = Pref, PPS = 1.5Pref, PRF = 2Pref, PDAC = 10Pref (8)

The hardware power consumption of FD BS (Pd) in Fig. 1
and hybrid BS (Ph) in Fig. 2 can be expressed as

Ph = NfNt (PPA + PPS) +Nf (PRF + PDAC) + PBB

Pd = Nt (PPA + PRF + PDAC) + PBB (9)

where Nf is the number of RF chains and PBB = 10Pref is
the baseband processing power consumption [13].

Fig. 3 shows hardware power consumption of FD BS and
hybrid BS at different values of Nf . At low values of Nf , the
hybrid architecture consumes much lower power than FD and
the same power as FD at Nf = 5. Therefore, hybrid architec-
ture is primness for highly spatially sparse mmWave massive
MIMO channels that limited by few scattering clusters.

B. Joint design
The hybrid precoder can be expressed as

Bh =
√
PgBRFBBB =

1

‖ BRFBBB ‖F
BRFBBB (10)

where BRF ∈ CNt×Nf is the RF precoder that implemented by
using phase shifters, BBB ∈ CNf×Na is the baseband precoder
and Pg is the precoder gain.

By considering the equivalent channel (Heq = HaBRF),
the baseband precoder is designed to zero force the equivalent
channel

(
BBB = HH

eq

(
HeqH

H
eq

)−1
, Nf ≥ Na

)
. Hence, the

ZF hybrid precoder can be expressed as

Bh =
BRFBBB√

Tr
{(

HaBRFBH
RFH

H
a

)−2
Ha

(
BRFBH

RF

)2
HH
a

} (11)



At large Nt, we can assume that
(
BH

RFBRF = INf

)
and

hence, Bh in equation (11) can be expressed as

Bh =
BRFBBB√

Tr
{(

HaBRFBH
RFH

H
a

)−1} (12)

In order to maximize the received signal power, we jointly
formulate the RF precoder design and the RAS problems to
maximize the precoder gain such as

(P2)

 min
BRF,Ha⊆H

Tr
{(
HaBRFB

H
RFH

H
a

)−1}
s.t. BRF (n,m) = ejθn,m , ∀n,m.

(13)

where j =
√
−1. The first step to solve (P2) is to derive

a closed form solution to BRF assuming Ha is given. This
is difficult because the objective function of (P2) is non-
convex, moreover, the constant amplitude of BRF is non-
convex constraint. We propose to solve (P2) by selecting the
ARA at first assuming FD precoder and then we consider those
antennas to design the RF precoder.

V. RAS BASED CONVEX OPTIMIZATION

Problem (P1) can be reformulated in terms of eigenvalues
of
(
HaH

H
a

)
as

(P3)

 min
Ha⊆H

Na∑
i=1

1

λi

s.t. λi ∈ λ
{
HaH

H
a

}
, i = 1, · · · , Na.

(14)

where λ
{
HaH

H
a

}
is a vector that includes eigenvalues of(

HaH
H
a

)
. Since (P3) is non-convex, we propose two different

designs in which we minimize lower bounds on the objective
function of (P3). In both cases, we obtain a non-convex
problem; however, we relax non-convex constraint to convert
into convex program and achieve suboptimal solution.

A. Max-min eigenvalue

The objective function of (P3) is lower bounded by 1
λNa

where λNa
is the smallest eigenvalue of

(
HaH

H
a

)
. We propose

to minimize this lower bound that implies maximizing λNa .
The resulting optimization problem can be expressed as

(P4)


max
Ha⊆H

λNa

s.t. λi ∈ λ
{
HaH

H
a

}
,

λ1 ≥ λ2 ≥ · · · ≥ λNa
.

(15)

Let us define X ∈ RNr×Nr as a diagonal matrix and Xi is
the ith diagonal element that follows

Xi =

{
1 if ith receive antenna is active
0 if ith receive antenna is silent

(16)

Let us assume that matrices X and Ha share the same
Na ARA. Thus, the largest Na eigenvalues of

(
HHXH

)
are

same as the eigenvalues of HaH
H
a . Moreover, the smallest

(Nt −Na) eigenvalues of
(
HHXH

)
are zeros. Therefore,

without loss of optimality, problem (P4) can be expressed as

(P5)



max
X

Nt∑
i=Na

λi

s.t. λi ∈ λ
{
HHXH

}
,

λ1 ≥ λ2 ≥ · · · > λNt
.

X ∈ diagonal, Xi ∈ {0, 1}.
Tr {X} = Na.

(17)

Although the objective function of (P5) is concave
in X, (P5) is non-convex optimization problem because
(Xi ∈ {0, 1}) is non-convex constraint. We do relaxation to
convert (P5) into convex optimization problem where replace
the non-convex constraint with linear one (0 ≤ Xi ≤ 1).

Solution X? of the relaxed problem does not follow equa-
tion (16). Therefore, we generate another solution

¯
X? such

that has ones in positions of maximum Na diagonal elements
of X? and zeros in the other locations.

B. Min sum of convex fractions

We propose an alternative formulation of the problem us-
ing a tighter bound. The proposed lower bound satisfy the
following inequality

1

λNa

≤
Na∑
i=1

1∑Na

j=Na−i+1 λj
≤

Na∑
i=1

1

λi
(18)

where λi ∈ λ
{
HaH

H
a

}
, λ1 ≥ λ2 ≥ · · · ≥ λNa . Conse-

quently, the problem can be expressed as

(P6)


min

Ha⊆H

Na∑
i=1

1∑Na

j=Na−i+1 λj

s.t. λi ∈ λ
{
HaH

H
a

}
,

λ1 ≥ λ2 ≥ · · · ≥ λNa
.

(19)

The fractional nature of (P6) can be exploited to solve this
problem. In optimization theory, fractional programming (FP)
[14] provides low computational complexity algorithms such
as Dinkelbach algorithm [15] to minimize sum of fractional
functions of convex numerator and concave denominator (con-
vex fraction). Problem (P6) can be expressed as sum of convex
fractions

(P7)



min
X

Na∑
i=1

1∑Na

j=Na−i+1 λj

s.t. λi ∈ λ
{
HHXH

}
,

λ1 ≥ λ2 ≥ · · · ≥ λNt
.

X ∈ diagonal, 0 ≤ Xi ≤ 1.

Tr {X} = Na.

(20)

where each fraction in the objective function of (P7) is convex
fraction that has constant numerator and concave denominator.
In Algorithm 1, we convert the non-convex (P7) into sequence
of convex problems. Moreover, Algorithm 1 converges in few
iterations.



Algorithm 1 RAS via Dinkelbach algorithm [15]
1: Input : ε < 0, ρi = 1 , for all i = 1, · · ·Na.
2: Output :

¯
X?

3: repeat

4:
¯
X? =



min
X

Na −
Na∑
i=1

ρi

Nt∑
j=Na−i+1

λj

s.t. λi ∈ λ
{
HHXH

}
,

λ1 ≥ λ2 ≥ · · · ≥ λNt
.

X ∈ diagonal, 0 ≤ Xi ≤ 1.

Tr {X} = Na.

5: F (
¯
X?) = Na −

∑Na

i=1 ρi
∑Nt

j=Na−i+1 λi

6: ρi = 1∑Nt
j=Na−i+1 λi

, i = 1, · · · , Na.

7: until F (
¯
X?) > ε

VI. SEQUENTIAL ADD/REMOVE ALGORITHMS

The introduced lower bounds in (P5)-(P7) and the relaxation
lead to suboptimal solutions. In this section, we propose
RAS designs that approach the optimal selection by using
efficient sequential methods to solve (P3). In Algorithms 2
and 3, we (activate/deactivate) one antenna per iteration that
has major (positive/negative) effect on (P3). In Algorithms
4 and 5, we reduce the complexity of Algorithms 2 and 3
by replacing eigenvalues computation with simple projection
methods. Finally, we compare all proposed algorithms with
optimal selection (exhaustive search) in terms of performance
and complexity.

A. Best empty initialization

In Algorithm 2, we propose efficient iterative method to
solve (P3) where we select one good receive antenna per
iteration. Initially, (X = 0Nr

) and during the ith iteration
the specific diagonal entry in X is set to one to minimize(

1
λ1

+ · · ·+ 1
λi

)
where (λ1, · · · , λi) are the largest i eigen-

values of HHXH.

B. Best full initialization

Algorithm 3 shows efficient sequential technique to solve
(P3) where we deactivate one bad receive antenna per iter-
ation. Initially, (X = INr

) and during the ith iteration spe-
cific diagonal entry in X be equal to zero to minimize(

1
λ1

+ · · ·+ 1
λNa

)
where (λ1, · · · , λNa

) are the largest Na
eigenvalues of HHXH.

With the aim of avoiding the complexity resulting from
eigenvalues computation in Algorithms 2 and 3, Algorithms 4
and 5 show iterative designs to select the ARA based simple
projection methods.

C. Low complexity empty initialization

In Algorithm 4, X = 0Nr
at initial. Then, we select the

receive antenna that has channel vector with the highest norm.
Next, at the ith iteration we select one receive antenna where its
channel vector H (i, :)

H has minimum projection on HHXH.

Algorithm 2 Best RAS via empty initialization
1: Input : (H, Nr, Na)
2: Output : Ha

3: X = 0Nr
,Y = 0Nr

4: V = {1, · · · , Nr},J = {1, · · · , Nr},K = Empty set
5: for i = 1 : Na
6: for j ∈ V
7: X (j, j) = 1
8: λ1, · · · , λi are largest i eigenvalues of HHXH

9: lj =
∑i
k=1

1
λk

10: X = Y
11: end for
12: K = K + arg min

∀j
lj

13: X (K) = 1,Y (K) = 1,V = J −K
14: end for
15: return Ha = H(K, :)

Algorithm 3 Best RAS via full initialization
1: Input : (H, Nr, Na)
2: Output : Ha

3: X = INr
,Y = INr

4: V = {1, · · · , Nr},J = {1, · · · , Nr},K = Empty set
5: for i = 1 : Nr −Na
6: for j ∈ V
7: X (j, j) = 0
8: λ1, · · · , λNa are largest Na eigenvalues of HHXH

9: lj =
∑Na

k=1
1
λk

10: X = Y
11: end for
12: K = K + arg min

∀j
lj

13: X (K) = 0,Y (K) = 0,V = J −K
14: end for
15: return Ha = H(V, :)

D. Low complexity full initialization

In Algorithm 5, we start with X = INr
. Then, at the ith

iteration we deactivate one receive antenna where its channel
vector has maximum projection on HHXH.

In Fig. 4, we compare all proposed RAS designs with
optimal selection in terms of objective function of (P1). RAS
designs based convex optimization have lower performance
than those based sequential algorithms because the relaxation
of the non-convex constraint (Xi ∈ {0, 1}). The lower bound
in (P6) is tighter than the lower bound in (P4). Therefore,
Algorithm 1 outperforms the design in (P5). Algorithms 2 and
3 approach optimal selection with much lower computational
complexity. Algorithms 4 and 5 avoid the complexity resulting
from eigenvalues computation in exchange for less perfor-
mance than Algorithms 2 and 3. Maximum and minimum
initialization are approaching in performance. However, each
is computationally efficient at certain range of Na.



Algorithm 4 Low complexity RAS via empty initialization
1: Input : (H, Nr, Na)
2: Output : Ha

3: X = 0Nr
,J = {1, · · · , Nr},K = Empty set

4: k = arg max
∀j

diag
(
HHH

)
5: X (k, k) = 1,K = K + k,V = J −K
6: for i = 2 : Na
7: for j ∈ V
8: z = H (j, :)

H

9: lj = ‖HHXHz‖2
10: end for
11: K = K + arg min

∀j
lj

12: X (K) = 1,V = J −K
13: end for
14: return Ha = H(K, :)
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in (1), L = 16 and (average over 100 channel realizations).

E. Computational complexity analysis

The number of singular-value-decomposition (SVD) needed
for optimal selection (So), empty initialization of Algorithm
2 (Se) and full initialization of Algorithm 3 (Sf ) can be
expressed as

So =

(
Nr
Na

)
Se =

Na−1∑
i=0

Nr − i = Na

(
Nr −

1

2
(Na − 1)

)

Sf =

Nr−Na−1∑
i=0

Nr − i

= (Nr −Na)

(
Nr −

1

2
(Nr −Na − 1)

)
(21)

In terms of computational complexity, equation (21) shows
that empty initialization is the best when Na < Nr

2 while full
initialization is better when Na > Nr

2 .
As an illustrative example, Table I shows numerical values

Algorithm 5 Low complexity RAS via full initialization
1: Input : (H, Nr, Na)
2: Output : Ha

3: X = INr
,Y = INr

4: V = {1, · · · , Nr},J = {1, · · · , Nr},K = Empty set
5: for i = 1 : Nr −Na
6: for j ∈ V
7: X (j, j) = 0
8: z = H (j, :)

H

9: lj = ‖HHXHz‖2
10: end for
11: K = K + arg max

∀j
lj

12: X (K) = 0,Y (K) = 0,V = J −K
13: end for
14: return Ha = H(V, :)

TABLE I
SVD OPERATIONS NEEDED AT Nr = 16

Na So Se Sf

6 8008 81 115

8 12870 100 100

10 8008 115 81

of So, Se and Sf at Nr = 16 and different numbers of ARA.
Therefore, the proposed algorithms are computationally sim-
pler than optimal selection and closely approach the optimal
performance.

VII. MUTUAL INFORMATION AND OPTIMAL Na

In this section, we derive the mutual information of the
discrete channel implemented in the RSM system in Fig. 1.
Then, we show that the mutual information as a function of
Na has one global maximum. Subsequently, we propose fast
algorithm to find the optimal value of Na that maximizes the
mutual information.

According to equations (3)-(5)-(7), the mutual information
between the transmitted and the received symbols can be
expressed by applying the chain rule in [16] as

I (s, x; ŝ, y) = I (s, x; ŝ) + I (s, x; y|ŝ)
I (s, x; ŝ) = I (s; ŝ) + I (x; ŝ|s)

I (s, x; y|ŝ) = I (s; y|ŝ) + I (x; y|ŝ, s) (22)

Since ŝ is used only for spatial symbol detection and y for
modulation symbol detection, (I (x; ŝ|s) = 0, I (s; y|ŝ) = 0).
Hence, the mutual information can be expressed as

I (s, x; ŝ, y) = I (s; ŝ) + I (x; y|ŝ, s) , Is + Im (23)

According to equation (5), the AD connected to each ARA
can receive one of two amplitudes |n| or |

√
αP+n|. Then, the

measured amplitude is compared with γ̂ to detect one spatial
bit per antenna. Therefore, spatial mutual information (Is) can
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be computed using the binary asymmetric channel [17] as

Is = Na

(
H
(
P1 + 1− P0

2

)
− H (P1) +H (1− P0)

2

)
P1 = Pr

(
|
√
αP + n|> γ̂

)
= Q1

(
1

σ

√
2αP ,

1

σ

√
2γ̂

)
P0 = Pr (|n|< γ̂) = 1−Q1

(
0,

1

σ

√
2γ̂

)
, γ̂ ≈ 1

2

√
αP (24)

whereH (P ) = −P log2 P−(1− P ) log2 (1− P ) and Q1 (x)
is first order marcum Q function [18].

Since the BS also transmits one modulation symbol(assume
Gaussian), the modulation mutual information (Im) can be
characterized by multiple-input-single-output channel as

Im =

2Na∑
i=1

Pr (si)

2Na∑
j=1

Pr (ŝj |si) log2

(
1 + SNR|si,ŝj

)
(25)

SNR|si,ŝj =

(∑Na

k=1 sikŝjk

)2
max

(∑Na

k=1 ŝjk, 1
) αP
σ2

(26)

Pr (ŝj |si) =

Na∏
k=1

Pr

(
|yik|

ŝjk=1

≷
ŝjk=0

γ̂

)
,Pr (si) =

1

2Na
(27)

Fig. 5 shows that average mutual information achieved by
proposed fast algorithms approach the one obtained by optimal
selection. The mutual information increases with Na until it
reaches the maximum then it decreases. Therefore, we can
find the optimal Na by fast iterative algorithm that starts with
Na = 1 and stops when mutual information decreases.

VIII. ZF HYBRID PRECODER

After selecting the ARA, we propose novel ZF RF precoder
design and we prove that the ZF hybrid precoder is the same
as ZF FD precoder at channels with high spatial sparsity. We
show that the proposed precoder outperforms the best known
in the literature in performance and complexity.
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Fig. 6. Zero forcing precoder gain versus Na at 16× 32 mmWave channel
in (1), L = 16, Nf = Na + 1 and (average over 100 channel realizations).

We solve (P2) assuming Ha is known. We drop the constant
amplitude constraint of problem (P2) and replace the quadratic
term BRFB

H
RF by the linear term Y to relax (P2) into a convex

problem that can be expressed as

(P9)


min
Y

Tr
{(
HaYHH

a

)−1}
s.t. Tr {Y} = NtNf .

Y � 0

(28)

Solution Y has arbitrary rank profile so the RF precoder is
designed based the largest Nf eigenvectors of Y as

BRF = Arg
(
VNf

{Y}
)

(29)

A. High spatial sparsity (L ≤ Nf )

The channel matrix in equation (1) can be expressed as

H = ArDAH
t (30)

where D ∈ CL×L is the path gain diagonal matrix, Ar ∈
CNr×L and At ∈ CNt×L are matrices containing receive and
transmit response vectors, respectively. After RAS, the channel
matrix Ha can be expressed as

Ha = Ar (S, :)DAH
t = AraDAH

t (31)

where S is set contains indices of ARA.
If L ≤ Nf , ZF hybrid precoder Bh becomes exactly the

same as ZF digital precoder Bd because there is a unique RF
chain for each scattering path as illustrated in equation (32).

Bd = HH
a

(
HaH

H
a

)−1
= (At)

(
DAH

ra

(
HaH

H
a

)−1)
= (BRF) (BBB) = Bh, Na ≤ L (32)

B. Best known ZF RF precoder

In Algorithm 3 in [10], the authors proposed iterative
method to solve (P2) assuming Ha is known. In this algorithm;
at first, BRF is any feasible matrix. Then, one element of
BRF is updated per iteration. The algorithm stops when BRF
converges. However, this design is computationally complex
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Fig. 7. Mutual information versus L at 16 × 32 mmWave channel in (1),
P
σ2 = 10dB and (average over 100 channel realizations).

because it needs at least NtNf iterations to reconstruct BRF.
Moreover, it needs Nf ≥ Na + 1; on contrary, the proposed
design in (29) needs Nf ≥ Na. The proposed precoder not
only simpler than the design in [10] but also it achieves higher
precoding gain as illustrated in Fig. 6.

Fig. 7 shows the average mutual information of RSM system
considering several precoders. For all precoding schemes, Na
is selected to maximize the mutual information. The proposed
hybrid precoder is not only superior to that based the design in
[10] but also equal to that based FD precoder when (L ≤ Nf ).
The standard deviations of the mutual information over the 100
realizations are close to one for all precoders.

In Fig. 8, energy efficiency (EE) is defined as mutual
information per BS power consumption. The proposed hybrid
precoding scheme is the most energy efficient architecture
when the channel is highly spatially sparse. On the other hand,
FD precoding architecture becomes more energy efficient
when sparsity level decreases.

IX. CONCLUSION

The proposed RAS based convex optimization are subop-
timal due to relaxing non-convex constraints. Therefore, per-
formance of proposed RAS sequential algorithms are superior
to that based convex optimization. For low computational
complexity, its useful to start with empty initialization when(
Na <

Nr

2

)
and full initialization at

(
Na ≥ Nr

2

)
. We also

developed fast algorithm to determine the optimal number of
ARA that maximizes the mutual information. The proposed
ZF hybrid precoder outperforms the best known design and
becomes optimal when the channel is very spatially sparse.
Hybrid precoder is the most energy efficient when the channel
is limited by few number of scattering paths; otherwise, FD
is better. Optimizing (P2) and designing low complexity sub-
connected hybrid precoders are future work topics.
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