
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Treball realitzat per: 
Sergio Jiménez Reyes 
 
 
 
Dirigit per: 
Lucia Gratiela Barbu 
Sergio Horacio Oller Martínez 
 
Màster en:  
Enginyeria de Camins Canals i Ports 
 
 
 
 
Barcelona, 14/06/2018 
 
 
Departament d’Enginyeria Civil i Ambiental (DECA) 
  T
RE

BA
LL

 F
IN

AL
 D

E 
M

ÀS
TE

R 

Analysis of Post-Tensioned Structures 
by Means of a Constitutive Serial-
Parallel Rule of Mixtures 



  

 



Analysis of Post-Tensioned Structures

by Means of a Constitutive Serial-Parallel

Rule of Mixtures

Sergio Jiménez Reyes
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Resumen

El objeto de la presente tesina es el de presentar una metodoloǵıa novedosa
para el cálculo de estructuras de hormigón posteso, basada en las posibilidades
que brinda el uso de la teoŕıa Serie Paralelo para la modelización de materiales
compuestos. Se exponen, aśı mismo, las ventajas de esta metodoloǵıa frente a
los mecanismos actuales de cálculo que aparecen en los estándares de diseño
de estructuras y aquellos otros basados en la simulación numérica a través del
método de elementos finitos (MEF).

La teoŕıa Serie Paralelo permite la modelización individualizada de los materiales
componentes, actuando como una gestora de modelos constitutivos con el objetivo
de simular el comportamiento del material compuesto en cuestión. Se modela el
hormigón pretensado como un material compuesto de fibras largas en que la
orientación de la fibra la marca el tendón de acero.

Aśı pues, se puede usar el modelo constitutivo que más convenga para la mat-
riz - hormigón (modelo de daño isótropo) y para la fibra - acero (modelo de
viscoelasticidad) logrando gran nivel de detalle en la micro-escala. El ánalisis
se fundamenta en el MEF, que combinado con la teoŕıa Serie Paralelo permite
abordar estructuras de gran envergadura y adaptándose a los requerimientos
geométricos espećıficos en cada caso.

Se incluyen tres ejemplos de aplicación de la metodoloǵıa presentada, los cuales
pretenden servir de validación y demostrar el potencial de cálculo de la misma.
En los dos primeros casos se analizan dos vigas isoestáticas que permiten la
comparativa con los resultados que se obtienen del ánalisis mediante métodos
anaĺıticos y, en el tercer caso se presentan los resultados de un Benchmark en el
cual se ha trabajado en los últimos meses en que se estudia el comportamiento
de un modelo a escala de un edificio de contención de una central nuclear.
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Abstract

The main objective of this thesis is to present a novel methodology for the ana-
lysis of post-tensioned concrete structures, based on the potential offered by the
use of the Serial-Parallel Rule of Mixtures when modelling composite materials.
The advantages of this methodology are studied in comparison to the available
approaches, i.e. the formulation proposed by the standards used in the design of
structures and the mechanism used in numerical simulation based on the finite
element method (FEM).

The Serial-Parallel Rule of Mixtures allows the modelization of each component
material in depth, working as a constitutive model manager in order to simulate
the composite material being studied. The prestressed concrete is modelled as a
composite material with long fibres where the fibre orientation is defined by the
steel tendon direction.

Therefore, the most suitable constitutive model can be used in each case. In the
present thesis this is: for the matrix - concrete an isotropic damage model and
for the fibre - steel a viscoelasticity model, achieving an extraordinary accuracy
in the micro-scale. The analysis is based on the FEM, which combined with the
Serial-Parallel Rule of Mixtures theory allows the study of large-scale structures,
taking into account the specific geometric requirements of the construction.

Three application examples are included which are used for validating the meth-
odology and the potential of this approach. The first two cases are two isostatic
beams that allow the comparison with the results obtained through the study
using analytical methods. Finally, the third case shows the results obtained re-
cently for the analysis of a Benchmark, in which the behaviour of a mock-up of
a reactor containment building has been studied.
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Chapter 1

Introduction: motivation
and objectives

In the last decades engineering researchers have bet on the use of numerical
modelling as a recurring tool for their work. Computational calculation improve-
ments have set the suitable scenario for a prompt development, achieving a wide
range of useful techniques which can be applied in many fields, from structures
to agriculture engineering or soil mechanics.

The Finite Element Method (FEM) [29] is one of the most well known computa-
tional techniques and it will be of interest for the purpose of the thesis. However,
there are other methodologies such as the Finite Difference Method (FDM), the
Discrete Element Method (DEM) [16, 30], the Particle Finite Element Method
(PFEM) [19] or the Multiscale Analysis [35] that are also widely extended.

Thanks to the application of FEM in the structural analysis scope, a deeper
assessment of the structure can be driven compared to those obtained using con-
ventional techniques, which include notorious geometric and constitutive simpli-
fications. Despite this, the results obtained from numerical modelling strongly
depend on the model quality and on the veracity of the implemented attributes,
i.e. boundary conditions, applied loads and material properties..

According to this, complex structures with singular areas, material heterogen-
eities, non-linear behaviours, etc. require more sophisticated models that could
bring suitable results.

Post-tensioned reinforced concrete elements are an example of this. Their beha-
viour is controlled by the three materials that conform the structure, i.e. concrete,
reinforcing steel and prestressing steel. Codes and standards [17] provide suffi-
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2 CHAPTER 1. INTRODUCTION: MOTIVATION AND OBJECTIVES

cient guidance to carry out the design and validation of a multiple number of
cases, but the applicability of the proposed formulation becomes questionable
when the studied element has not a simple geometry. Numerical modelling is
then used.

The present thesis aims to introduce a new approach that increases the range
of structures that can be analysed and solves many of the problems that other
techniques have (see Section 2). This is the study of post-tensioned structures by
means of a serial-parallel rule of mixtures (SP RoM) [26, 36, 39].

The document is divided in two main sections. In the first one, the theoretical
bases are introduced in order to fully comprehend the mechanisms that govern
the proposed method. Thus, a brief presentation of the FEM is done, paying spe-
cial attention to the 3-D formulation and then the SP RoM bases are introduced.
The second part is centred on verifying the robustness and accuracy of the ap-
proach through several cases. The complexity of these examples progressively
increases from a straight rectangular beam to a real structure. Thus, the ini-
tial cases will be useful to compare those results that could be calculated using
analytical techniques and the ones obtained with the computational mechanisms
introduced in the thesis. And the last examples will be useful to exemplify the
full potential of the technique using a real structure.



Chapter 2

State of the art

Prestressed concrete appeared at the beginning of the twentieth century when
high resistance concrete and steel were available. The function of that new ma-
terial was to solve the cracking problems that the reinforced concrete structures
had [27].

Eugène Fryssinet is considered the father of this material which quickly became
popular in France and Germany. It was after Second World War when its uses
expands all around the world and started competing with great magnitude steel
structures. Nowadays prestressed concrete is used in a wide range of structures
like braces, railway sleepers, bridges, slabs, runways, reactor containment build-
ings, etc. This generalised use accentuates the priority of having the correct tools
to evaluate these structures.

2.1 Codes approach

National and international standards such as EHE-08 [17], EC2 [5] or BPEL [18]
propose their own procedure that helps the engineer at the design and/or at the
analysis stage of the prestressed concrete structure. The methodology presented
is similar in all of them and works through the analysis of the structure critical
sections at Ultimate Limit State (ULS) (Figure 2.1). The prestressing steel effect
is included in the section equilibrium equations (Equation 2.1 and 2.2) as a force
applied at the tendon position and a bending moment, if needed, that accounts
for hyperstatic effects [21].

3



4 CHAPTER 2. STATE OF THE ART

Figure 2.1: Section analysis

P = C −∆T −Asfyd

y =
Apfpyd +Asfyd

fcdb
=
Up + Us
fcdb

(2.1)

Md + P (ds − dp) = C(ds −
y

2
)−∆T (ds − dp)

Up + Us = fcdbds

(
1−

√
1− 2 (Md + Up (ds − dp))

fcdbd2
s

)
(2.2)

The rectangular section represented in Figure 2.1 and analysed in Equations 2.1
and 2.2 corresponds to the mid-span of a simple supported beam. Only prestress-
ing steel and tensile reinforcing steel has been considered and the final equation
has been written in the format that EHE-08 proposes for reinforced concrete rect-
angular sections subjected to flexure (EHE-08, Anejo 7. Cálculo simplicado de
secciones en Estado Lḿite de Agotamiento frente a solicitaciones normales [17])
where P and Md are acting forces on the beam section, i.e. the prestressing force
and the bending moment due to external forces, respectively, C, Asfyd and ∆P
are the resulting efforts due to external action, i.e. the compression in concrete
due to Md and the resulting tension in reinforcing and prestressing steel respect-
ively, fcd, fyd and fpd are the strengths of concrete in compression, reinforcing
steel and prestressing steel, respectively, Up and Us are notation parameters used
in the same way that EHE-08 and the other variables are geometric parameters
defined in Figure 2.1. The analysis would be complete when all the efforts have
been studied, i.e. bending, shear and axial analysis.

Alternatively, codes provide stress limits at section level that must be respect for
the design. These limits are grouped at Magnel equations (Equations 2.3, 2.4, 2.5
and 2.6) [12] which create the space of feasible solutions for a specified tendon
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geometry on elastic analysis. This theory has been already extended to non-linear
behaviour needed when studying partially prestressed concrete sections [8].

Stress at transfer

σtrac, top =
γpP

Ac, net
+
γpPenetvnet

Ic, net
+
Mswvnet
Ic, net

≥
{
−fctmj

0
(2.3)

σtrac, bot. =
γpP

Ac, net
+
γpPenetv

′
net

Ic, net
+
Mswv

′
net

Ic, net
≤ 0.6fckj (2.4)

Stress at service

σserc, top =
γpP

Ac, hom
+
γpPehomvhom

Ic, hom
+
MSLS
charvhom
Ic, hom

≤ 0.6fckj (2.5)

σserc, bot =
γpP

Ac, hom
+
γpPehomv

′
hom

Ic, hom
+
MSLS
charv

′
hom

Ic, hom
≥
{
−fctmj

0
(2.6)

In these equations, the stress is computed at the top and the bottom of the
studied concrete section (i) and at transfer or service (j), i.e. σjc, i generated
by the prestressing force P factorized using γp and the corresponding bending
moment M and it is compared with the specific concrete strength fc, i in each
case. The other parameters are geometric variables: the section inertia (I), the
section area (A) and the distance between the studied extreme of the section (top
or bottom) and the neutral axis, i.e. v and v′. And all them considering the net
area or the full concrete.

In addition to the section equilibrium done at ULS, Service Limit State (SLS) is
also checked at the codes approach. In fact, post-tensioned concrete structures
are usually designed according to a limit in the maximum crack width (wmax) as
shown in Table 2.1 obtained from EHE-08 and EC2.

In all the cases, the parameter that governs the design of a structure is the
prestressing force value at the studied section. Codes provide the needed formu-
lation that transforms the initial force applied at the anchorage area into the
one transmitted along the studied element, i.e. prestressing losses calculation of
post-tensioned elements [5, 17, 18].
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Table 2.1: Maximum crack width from EHE-08 and EC2

EHE 08

wmax [mm]

Exposure Class
Reinforced members

(quasi-permanent load combination)
Prestressed members (frequent load

combination)

I 0.4 0.2
IIa, IIb, H 0.3 0.2
IIIa, IIIb, IV, F, Qa 0.2

Decompression
IIIc, Qb, Qc 0.1

EC2

wmax [mm]

Exposure Class

Reinforced members and prestressed
members with unbounded tendons

(quasi-permanent load combination)

Prestressed members with bounded
tendons (frequent load combination)

X0, XC1 0.4 0.2
XC2, XC3, XC4

0.3
0.2

XD1, XD2, XD3,
XS1, XS2, XS3

Decompression

Immediate losses

Immediate losses are those generated during the application of the prestressing
force and at the wedge blocking operation. These losses have different origin and
are studied independently, differentiating between:

- Friction losses, ∆Pµ. The contact between tendons and ducts prevent the
force transmission from the active end, where tendons are being tensioned.
The expression proposed at codes that calculates these losses from the
applied force (P0) is:

∆Pµ = P0

(
1− e−(µα+kx)

)
(2.7)

The variables that control force losses in Equation 2.7 are µ and k. This
evidences the existence of two kind of friction that have different nature.
µ is related to the contact produced at curve zones of the tendon path
and therefore it appears next to α, that is the total angular displacement.
On the other hand, k is related to a friction produced by an unintentional
angular displacement at straight areas of the tendon path and so it is
proportional to the length x (Figure 2.2).

Values for these two parameters are obtained experimentally. Standards
provide their own proposal depending on the type of steel that is used, the
kind of bounding that is used, the duct diameter, etc. (Figure 2.3).
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Figure 2.2: Graphical description for k coefficient [27]

Figure 2.3: µ and k values from the American Concrete Institue (ACI 318-05) [6]

Equation 2.7 is usually applied discreetly at sections with curvature changes
and then these values are linearly interpolated for the whole structure. A
visual example that helps to fully comprehend the result that could be
obtained using the previous expression is shown at Figure 2.4, where the
prestressing force distribution after friction losses is drawn for a three-span
continuous beam.
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Figure 2.4: Prestressing force distribution after friction losses [27]

- Losses due to wedge draw-in of the anchorage devices, ∆Pa. When post-
tensioned tendons are anchored, some of the force applied during the post-
tensioning operation is lost. It is important to minimize the amount of
stress lost and the affected length by this phenomenon. Expression 2.8 [25]
point out the variables involved in the problem:

a =

∫ L

0

∆Pa(x)

EpAp
dx (2.8)

Where Ap and Ep are the prestressing steel total area and longitudinal
elastic modulus, a is the pull-in at wedge blocking and L is the tendon
length. Considering that the function that describes the force loss due to
wedge blocking behaves in the same way than the one used for friction
losses (Figure 2.5), then Equation 2.8 can be rewritten as:

a =
S

ApEp
=

∆Palp
2EpAp

=
PA
[
1− e−(µα+klp)

]
lp

ApEp
(2.9)

Where PA is the applied force at the active end of the tendon and lp is the
affected length due to anchorage operation.
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Figure 2.5: Prestressing force redistribution after wedge blocking [25]

- Losses due to concrete instantaneous deformation, ∆Pel. The stress trans-
mission from tendons to concrete during anchorage operations generates
a deformation in concrete that reduces the prestressing force at tendon.
This is only a problem when several tendons are tensioned and the opera-
tion cannot be done simultaneously. The consecutive concrete deformations
generate force losses at tendons that have been previously anchored.

Standards provide formulas with similar format to Equation 2.10, which
consider that concrete deformations remain in the elastic domain.

∆Pel = ApEp
∑[

j∆σc(t)

Ecm(t)

]
(2.10)

Where Ap and Ep are again the prestressing steel total area and the lon-
gitudinal elastic modulus, Ecm(t) is the concrete elastic modulus at the
age that tension operations take place, ∆σc(t) is the variation of concrete
stress at the centre of gravity of the tendons applied at time t and j is

a coefficient equal to
n− 1

2n
as shown by Aguado, Mirambell, Murcia and

Maŕı (1983) [7] that can be approximated to j = 0.5 when the number of
tendons, n, is high.

According to Murcia, Aguado and Maŕı (1993) [27] and the EHE-08 [17],
∆σc(t) value can be computed as P0−∆Pµ−∆Pa and should be checked
the transfer state where only prestressing force and self weight are applied
because this situation could be more restrictive [27].

The formulas introduced in this section are valid only for post-tensioned concrete
structures, which are the object of study of this thesis. Pre-tensioned concrete
structures are treated in a different way.
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Time dependent losses

Once the prestressing operations have taken place, rheological mechanisms start
to develop which lead to a generalised stress loss in the prestressing system. These
procedures are known as time dependent losses, which are originated by creep
and shrinkage at concrete and relaxation at the prestressing system.

The incorporation of these mechanisms into the structure analysis is complex
due to the existing interdependence between them, e.g. shrinkage generates stress
losses that affect creep and steel relaxation procedures. In practice standards try
to simplify these calculations by uncoupling the mechanisms and study them
independently [18] or by using specific formulation depending on the structure
conditions [31]. EC2 and EHE-08, for example, propose a simplified method based
on the ageing coefficient (χ):

∆Pc+s+r = Ap

εcs + Ep + 0.8∆σpr +
Ep
Ecm

ϕ(t, t0)σc,QP

1 +
Ep
Ecm

Ap
Ac

(
1 +

Ac
Ic
z2
cp

)
[1 + χϕ(t, t0)]

(2.11)

Where:

∆Pc+s+r is the force loss due to creep, shrinkage and steel relaxation at
location x, at time t

εcs shrinkage strain

Ep Young modulus for the prestressing steel

Ecm Young modulus for the concrete

∆σpr stress loss due to steel relaxation

ϕ(t, t0) is the creep coefficient at a time t and load application at time t0

σc,QP concrete stress due to the prestressing effect, the self-weight and
the dead loads. This stress is measured at the centre of gravity of
the prestressing steel area (Ap).

Ap is tendons total area at the location x

Ac is concrete total area at the location x

Ic is the moment of inertia of the concrete section

zcp is the distance between the centre of gravity of the tendons and
the concrete section

χ is the ageing coefficient that can be approximated as χ = 0.8 when
time tends to infinity
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2.2 FEM approach

The use of numerical techniques in the structural analysis field has provided
researchers a powerful tool that permits a global study of the structure. The
accuracy level that these methodologies can achieve and the potential for solving
complex cases make them attractive for many research lines.

Despite this, these computational techniques have also drawbacks. Therefore, it
is important to know when to use them and which is the best type of analysis to
be performed. For example, regions with discontinuities in geometry or actions,
also known as D-regions [5, 17], not necessarily have to be designed using a finite
element (FE) model, strud-and-tie method [28] can be used instead. Another ex-
ample is the case of bridges. For these structures it is not always needed a 3-D
FEM design, many bridge decks have been designed using simplified methodolo-
gies such as the Grillage method [41].

Prestressed concrete structures can be studied using the FEM and the interest on
its use increases as the structure becomes more complex. There is no standardised
procedure for the analysis of these structures, research papers can show the wide
range of options that exist [38, 40, 43, 48]. The difficulties that arise from their
analysis are originated by the coexistence of three different materials: concrete,
reinforcing steel and prestressing steel.

While the concrete modelization is similar in all cases, the way that strands and
tendons are included in the FE analysis make the difference between the existing
approaches. Some of these are:

3-D solid elements

The use of 3-D elements for the prestressing steel modelization (see Figure 2.6)
is used mainly in pre-tensioned beams [48] where one of the main stress transfer
mechanisms between strands and concrete (Hoyer effect [10]) is also of 3-D nature.
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Figure 2.6: Tendon modelization using 3-D solid elements [48]

Modelling through 3-D elements introduces the need for using rectangular equi-
valent cross section for the prestressing steel but this allows an easy optimization
of the contact between concrete and steel elements.

The use of this modelization scheme restricts the range of structures that can
be studied. In fact, only construction with straight tendons are valid for this
approach, i.e. only pre-tensioned structures or simple post-tensioned ones.

Truss discrete elements

This is probably the most extended option when using FEMs. In this case, ten-
dons are simulated using trusses, which are linked somehow to the 3D FE mesh
of the structure and the prestressing effect is considered as an imposed strain to
the bar elements.

At the beginning, this methodology was only used in small structures because it
had a big restriction: the FE mesh depended on the trusses path. This was because
the methodology took into account the tendons effect by coupling the strengths
of the prestressing steel and the concrete at the FE mesh nodes [38, 40, 43].

Building a mesh adjusted to the tendons path is only possible in those cases where
there are few tendons or when their geometry is simple, therefore this technique
could not be used in most of the real life scenarios.

Despite this, it exists an approach introduced by the commercial code Abaqus
[1] that solves this big restriction. It is currently used in most of the prestressed
concrete simulations and it is based on the so called embedded elements [42].



2.2. FEM APPROACH 13

Figure 2.7: Abaqus example of an embedded element [42]

Figure 2.7 shows an example of two embedded elements. This approach constrains
the degrees of freedom of the embedded element to the closest nodes of the hosting
element using weight factors, which are determined based on their geometric
location. This technique is not limited to truss elements. It can be used for
membranes for example.

In spite of this improvement, the procedure has limitations. This is, in fact, an
interpolation technique, where the results obtained in the analysis for the 3D FE
mesh are used to compute results for the embedded elements. In the scenario of
prestressed concrete structures, where the non-linear behaviour of concrete and
the time dependent mechanisms of prestressing steel have to be considered, the
use of this approach only solves partially the problem and there are still things
to improve.

Figure 2.8a shows an example of a structure solved using Abaqus embedded
elements.

Truss smeared elements

This last approach is usually applied for big structures where using the other
techniques is not feasible. In these cases, tendons are introduced in the analysis
as embedded reinforcement, i.e. the prestressing steel only appears in the analysis
as an increment of the strength of the concrete FE. Therefore, this methodology
introduces big simplifications in the analysis and has to be used carefully.

In fact, this approach is commonly used in current analysis to account for the
reinforcing steel effect. In real prestressed concrete structures, this material is
distributed more or less uniformly in specific directions (longitudinal rebars and
shear reinforcement), which constitutes the perfect scenario to apply this ap-
proach.
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This is the strategy followed by Tavakkoli, Kianoush et al. (2017) [43] for the
analysis of the reactor containment building shown in Figure 2.8b.

(a) FE mesh of a containment building ana-
lysed using Abaqus [40]

(b) Containment building model where truss
smeared elements are used for rebars [43]

Figure 2.8: Examples where tendons and reinforcement have been modelled using truss
elements



Chapter 3

Modelization through the
FEM

This section intends to introduce the FEM, which is used as a base for the applic-
ation of the SP RoM. In particular, the text will be focused on the development
of the three-dimensional formulation using an elastic constitutive model.

3.1 Introduction to FEM

The FEM is a numerical method used in the analysis of structures to give an
approximate solution to the differential equations that govern the problem. The
use of this technique allows obtaining a continuum solution and therefore, getting
a global vision of the structural behaviour. This is very attractive for studying
the response of complex areas, e.g. D-regions or full structures with non-intuitive
behaviour.

This methodology is build around the concept of FEs. These should be under-
stood as each division in which the structure is split and analysed. Depending on
the analysis nature, FEs can be 1-D (truss elements), 2-D (triangular or quad-
rilateral elements) or 3-D (tetrahedral or hexahedral elements) (Figure 3.1). For
the development of the approach introduced at this thesis, hexahedral elements
are needed, therefore the formulation presented in this section is the one used for
3-D problems.

15
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(a) Bridge modelled using truss elements

(b) Dam mesh using triangle elements (c) Dam mesh using tetrahedral elements

Figure 3.1: Examples of the type of mesh that can be build using the FEM

In the end, the FEM solves the whole structure working through many simple
element equations over many small domains, i.e. the FEs. The procedure followed
while performing a simulation using the FEM can be summed up in the following
steps [20, 14]:

1. Generate an appropriate model. The first thing to be done is a correct
modelization of the problem. This includes:

- Build a geometrical model that represents the studied structure, pay-
ing attention to the possibility of including simplifications that could
lighten the simulation, e.g. symmetries, plane stress case, plane strain
case [29], etc.

- Consider how the real constraints and the applied forces should be
included in the model and so define the boundary conditions.
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- Apply the correct material properties to the model.

- Define the scope of the analysis, e.g. small or large displacements,
static or dynamic analysis, etc.

2. Generate the mesh of FEs. The model is discretized in sub-domains in
which the problem is solved locally. This mesh can be structured, unstruc-
tured or semi-structured [4] and coarse or fine as needed.

3. Define the equilibrium condition through the Principle of Virtual Work
(PVW). The PVW is a necessary and sufficient condition for the equilib-
rium of the whole analysed structure or any of its sub-domains [29].

4. Compute the stiffness matrix Ke and load vector fe for each element.
These are obtained from the PVW expression in terms of the nodal dis-
placement of the FE mesh, i.e. Ke ae − fe = ∆fe. This expression will be
analysed later on.

5. Obtain the global stiffness matrix (K) and the global load vector (f).
These are obtained assembling all the Ke’s and fe’s that come from the
FE’s analysis.

6. Solve the system of equations K a = f . The unknown displacement a is
obtained.

7. Result assessment. Once the system of equations has been solved and the
displacement vector a has been found out, strains and stresses can be eval-
uated at each element. Also reactions at the restraint nodes can be com-
puted. These results can be load into the model and presented graphically
to their assessment. This is known as post-processing step.

8. Possible modifications. The last step of the FEM consists in considering
possible changes that could improve the analysis performed. For example,
consider a finer FE mesh or changing the FE typology.

Once the general procedure has been introduced, it is important to go in depth
with the 3-D formulation and introduce the main concepts that are relevant for
the thesis.
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3.2 FEM three dimensional formulation

The use of a 3-D analysis using the FEM is usually related to the impossibility of
using less costly procedures. This is the case of structures with irregular shapes
and situations where the load patterns are arbitrary or the material properties are
heterogeneous (Figure 3.2). In general, this is the case of post-tensioned concrete
structures. Thus, the understanding of the subsequent formulation is essential for
the progress of this dissertation.

Figure 3.2: Structures which require a 3-D analysis [29]

Isotropic elasticity theory is used at this stage in order to facilitate introducing
the 3-D formulation although any other constitutive model could have been used
instead.

Before dealing with the equations derived from the FEM, the formulas that con-
trol the 3-D elasticity problem must be introduced.

3.2.1 Displacement, strain and stress field

In a 3-D solid, the movement description of any point that belongs to that solid
is done through the three components of the displacement vector:

u = [u, v, w]
T

(3.1)

Where u, v and w are the displacement components of vector u in the directions
of a cartesian reference system x, y and z, respectively.
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The strain field is then defined through the six strain components of the 3-D
elasticity:

ε = [εx, εy, εz, γxy, γxz, γyz]
T

=

[
∂u

∂x
,
∂v

∂y
,
∂w

∂z
,
∂u

∂y
+
∂v

∂x
,
∂u

∂z
+
∂w

∂x
,
∂v

∂z
+
∂w

∂y

]T (3.2)

Where εx, εy and εz are the normal strains and γxy, γxz and γyz are the tangential
strains. These can be written in terms of the displacement vector components as
shown in Equation 3.2.

Likewise, stress field can be defined through the six stress components as:

σ = [σx, σy, σz, τxy, τxz, τyz]
T

(3.3)

Where σx, σy and σz are the normal stresses and τxy, τxz and τyz are the tan-
gential stresses defined according to the sign criterion shown in Figure 3.3.

Figure 3.3: Sign criterion for the stresses in a 3-D solid [29]

Finally, the relation between the strain and stress fields is expressed through
a constitutive equation. In terms of isotropic elasticity this relationship can be
written as:

σ = C
(
ε− ε0

)
+ σ0 (3.4)

Where the isotropic constitutive matrix (C) depends only on two material para-
meters, i.e. the Young modulus (E) and the Poisson’s ratio (ν). Therefore, the
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symmetric tensor C is given by:

C =
E (1− ν)

(1 + ν) (1− 2ν)



1
ν

1− ν
ν

1− ν
0 0 0

1
ν

1− ν
0 0 0

1 0 0 0
1− 2ν

2 (1− ν)
0 0

Sym.
1− 2ν

2 (1− ν)
0

1− 2ν

2 (1− ν)


(3.5)

And the initial strain vector (ε0) due to thermal strains is:

ε0 = α (∆T ) [1, 1, 1, 0, 0, 0]
T

(3.6)

3.2.2 Equilibrium equation in 3-D (PVW)

Equilibrium is guaranteed through the PVW [29] expression that for 3-D solids
is: ∫∫∫

V

δεTσ dV =

∫∫∫
V

δuTb dV +

∫∫
A

δuT t dA+
∑
i

δaTi pi (3.7)

Where δε and δu are respectively the virtual strains and virtual displacements,
V and A are respectively the volume and the surface in which the body forces
(b = [bx, by, bz]

T
) and the surface tractions (t = [tx, ty, tz]

T
) are applied and

pi = [Pxi
, byi , bzi ]

T
are the point loads acting at node i. It is important to notice

that C0 continuity is required for the finite element approximation because only
first derivatives of the displacement are involved in Equation 3.7.

3.2.3 Finite element formulation. The 8-noded hexahedra

Once the equilibrium expression has been defined and all the involved variables
have been introduced analytically, the FEM can be applied. For the purpose of
this thesis, hexahedral elements are used and so it is interesting to present the
finite element formulation using these elements.

There are several type of hexahedral elements but the current code used to run
the methodology presented in this thesis is prepared to work using 8-noded linear
hexahedras (Figure 3.4).
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Figure 3.4: Example of a 8-noded hexahedra with linear shape function [29]

Shape functions

Shape functions (N
(e)
i ) are polinomial interpolating functions defined over the

domain of each element in the FE mesh that take the value one at node i and
zero at all other nodes. Therefore, Equation 3.11 satisfies u (xi) = u

(e)
i .

For 8-noded linear hexahedra, the nodal shape function can be written as:

Ni (ξ, η, ζ) =
1

8
(1 + ξiξ) (1 + ηiη) (1 + ζiζ) (3.8)

Where ξ, η, ζ are the natural coordinates as shown in Figure 3.5. This expression
satisfies the two necessary conditions of a shape function: condition of nodal
compatibility (Equation 3.9) and rigid body condition (Equation 3.10).

Ni (ξj , ηj , ζj) =

{
1 if i = j

0 if i 6= j
(3.9)

n∑
i=1

Ni (ξ, η, ζ) = 1 (3.10)

Further details about the procedure to be followed when obtaining shape func-
tions can be found in specialised bibliography [20, 29].
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Figure 3.5: Example of a generic hexahedra FE and its normalized geometry [29]

Discretization of the displacement field

Considering a 3-D solid discretized into 8-noded hexahedras, the displacement
field within each element can be expressed as:

u =

uv
w

 =

8∑
i=1

Nia
(e)
i = Na(e) (3.11)

Where

N = [N1,N2, . . . ,N8] Ni =

Ni 0 0
0 Ni 0
0 0 Ni

 (3.12)

and

a(e) =


a

(e)
1

a
(e)
2
...

a
(e)
8

 a
(e)
i =

uivi
wi

 (3.13)

are the shape function matrix and the displacement vector for each element and
a node i.
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Discretization of the strain field

The new expression for representing the strain field in terms of the FEM is
obtained combining Equation 3.2 and Equation 3.11. The result is:

ε =

8∑
i=1



∂Ni
∂x

ui

∂Ni
∂y

vi

∂Ni
∂z

wi

∂Ni
∂y

ui +
∂Ni
∂x

vi

∂Ni
∂z

ui +
∂Ni
∂x

wi

∂Ni
∂z

vi +
∂Ni
∂y

wi



=

8∑
i=1

Bia
(e)
i =

8∑
i=1

Ba(e) (3.14)

Where B is the element strain matrix that can be written as:

B = [B1,B2, . . . ,B8] (3.15)

and Bi is the strain matrix of the node i:

Bi =



∂Ni
∂x

0 0

0
∂Ni
∂y

0

0 0
∂Ni
∂z

∂Ni
∂y

∂Ni
∂x

0

∂Ni
∂z

0
∂Ni
∂x

0
∂Ni
∂z

∂Ni
∂y



(3.16)

Obtaining the shape function derivatives with respect to cartesian coordinates
requires the use of the chain rule because they are expressed in normalized co-
ordinates.
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Equilibrium equation in terms of the FEM

Finally, the PVW expression (Equation 3.7) can be written using the described
formulas (Equations 3.8 to 3.16). Therefore:∫∫∫

V

BTσ dV =

∫∫∫
V

NTb dV +

∫∫
A

NT t dA+ ∆f(e) (3.17)

Where it has been taken into account that virtual strain and virtual displacement
are:

δε = Bδa δu = Nδa (3.18)

Equation 3.17 sets the equilibrium of internal and external forces at each element.∫∫∫
V
BTσ dV is the internal nodal force vector for the element f

(e)
int and the

term
∫∫∫

V
NTb dV +

∫∫
A
NT t dA is the external load vector, which gives the

information of the forces applied in each element f
(e)
ext. Thus, this expression is

equivalent to f
(e)
int−f

(e)
ext = ∆f(e). Finally, ∆f(e) is the vector of equilibrating nodal

forces, i.e. it has the information that guarantees the equilibrium of each element.
Therefore, when the assembling is done it only contains the information related
with the reaction forces.

Equation 3.17 can be rewritten as a system of equations considering the relation
between strain and stress given by Equation 3.4:∫∫∫

V

BTCB dV a(e) −
∫∫∫

V

BTCε0 dV+

+

∫∫∫
V

BTCσ0 dV −
∫∫∫

V

NTb dV −
∫∫

A

NT t dA = ∆f(e)
(3.19)

Using the stiffness matrix (K(e)) and the equivalent force vector (f(e)) concepts,
this equation is equivalent to:

K(e)a(e) − f(e) = ∆f(e) (3.20)

Where:

Stiffness matrix : K(e) =

∫∫∫
V

BTCB dV

Equivalent force vector : f(e) =

∫∫∫
V

BTCε0 dV −
∫∫∫

V

BTCσ0 dV+

+

∫∫∫
V

NTb dV +

∫∫
A

NT t dA

Equation 3.20 sets the problem to be solved element by element and the global
linear system of equation:

Ka = f (3.21)

can be obtained assembling the K(e) and f(e) contributions.
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3.3 Solving the system of equations

At this stage of the analysis, the system of equations must be solved in order to
finally obtain the strain values, the stress values, etc. at the studied structure.
The procedure to be followed now depends on the type of analysis performed:
linear or non-linear.

Prestressed concrete structures are a clear example of non-linear behaviour. The
main procedures that can drive the structure in this range are related with the
material degradation (damage in concrete, plasticity in steel, etc.) and the un-
avoidable changes that take place with time (creep, stress relaxation in prestress-
ing steel, etc.). Therefore, for the purpose of this thesis, a strategy to solve non-
linear systems of equations must be followed.

In these problems, the existence and uniqueness of the solution is not guaranteed.
This makes it necessary to use an approach that follows the equilibrium path by
using incrementation or continuity, which gives more information on the mechan-
ical behaviour of the system and it also helps tracing the equilibrium path near
critical points and facilitates convergence.

There are several techniques that can be used in order to solve a non-linear system
of equations, which can be classified in explicit or implicit methods. For the
purpose of this thesis an implicit approach has been used due to the robustness
and the stability of these mechanisms: the Newton-Raphson technique [33].

This iterative method assumes that, in a static analysis, the equilibrium equation
has the general form:

∆f =
[
fint (u)

]t+∆t −
[
fext
]t+∆t

= 0 (3.22)

Where fint and fext are the internal and external force vectors that have already
been introduced.

Equation 3.22 is the objective function and thus, the algorithm will iterate un-
til this condition is reached. This expression can be written using the Taylor
approximation series truncated at the second term:

0 = i+1 [∆f]
t+∆t ' i [∆f]

t+∆t
+ i

[
∂∆f

∂u

]t+∆t
i+1 [∆u]

n+1
=

= i [∆f]
t+∆t

+ i [J]
t+∆t i+1 [∆u]

t+∆t

(3.23)

Where i represents the iteration counter and t is the current time. This is solved
inverting the Jacobian operator:

i+1 [∆u]
t+∆t

= −
(
i [J]

t+∆t
)−1

i [∆f]
t+∆t

(3.24)
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The Jacobian matrix is the tangent stiffness matrix if the problem is static, which
is linear, i.e. J = Ktang.

Finally, the displacement at the end of each iteration is written as:

i+1 [u]
t+∆t

= i [u]
t+∆t

+ i+1 [∆u]
t+∆t

(3.25)

Figure 3.6 shows an overview of what the Newton-Raphson is doing at each step
of the calculation.

Figure 3.6: Newton-Raphson technique scheme [33]

This method has quadratic convergence which is really helpful for the calculation
but it also has some drawbacks that must be considered:

- Jacobian operator cost. This approach computes the Jacobian matrix at
each iteration which is usually costly. There are alternatives that can be
used instead (modified Newton-Raphson) but then the speed of convergence
is lost. Thus, it is important to know which situation is better.

- Antisymmetric Jacobian operators. There are scenarios where the Jacobian
matrix is not symmetric and so its inversion is difficult.

- The proximity of the studied point. The speed of convergence depends on
whether the point being studied is close or far away from the previous one.
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Thus, quadratic convergence is only achieved when the solution point is
close to the previous one.

- The presence of local extrema. When local extrema are found, the al-
gorithm can lose information and has problems in leaving them after-
wards. This can be solved using auxiliary techniques, such as displacement-
controlled methods (arc-length).
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Chapter 4

Serial-Parallel Rule of
Mixtures

Now that the algorithm applied at the analysis of the prestressed concrete struc-
ture, the FEM, has been introduced, it is important to establish how the structure
is considered within the study. This is done through the Serial-Parallel Rule of
Mixtures (SP RoM). While the origin of this technique dates back to the end of
the nineteenth century, its use in the assessment of prestressed concrete structures
is novel.

In this section, the bases of the methodology will be introduced in order to fully
comprehend the procedure followed during the structural modelization. Further-
more, this will show the potential of the algorithm in comparison with the pro-
cedures introduced in Chapter 2.

4.1 Modelling composites - RoM evolution

Nowadays, there are several techniques that allow the modelization of composite
materials. These differ among them in terms of the scale used, giving rise to
micro-mechanic, macro-mechanic or homogenization methods [36].

The SP RoM can be included in the category of Micro-Mechanic Methods, spe-
cifically it can be catalogued as a Mean Field Method (MFM). It is the result
of a century of evolution of the original idea but the bases have the essence of
these methodologies. Micro-Mechanic Models study the strain and stress fields
at a micro-scale level in order to build the constitutive laws and MFMs add to
this conception the fact that:

29
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- Mean stresses and strains at each component of the composite material
are representative of the constituent behaviour.

- Stresses and strains at the composite material are related with the stresses
and strains at each constituent.

The origin of the RoM theory is attributed to Voigt [46] and Reuss [37] who
developed a methodology for computing the elastic properties of a composite
material. The procedure was quickly extended to the calculation in the non-linear
domain [9, 44]. At that stage, the RoM depended only on one micro-mechanical
property, the volumetric contribution of each component in relation to the whole
composite material. This was the only variable when computing global properties
from the ones calculated for the material constituents.

This approach evolved in 1960 towards a new version of the RoM known as Clas-
sical Mixing Theory (CMT). This new approach allowed the analysis of compos-
ite structures at the non-linear domain. Despite this, it had a big limitation: the
isostrain hypothesis, i.e. all the coexisting materials in a point of the composite
were subjected to the same strain field (pure parallel behaviour).

This limitation could be overcome by using a mixture of the isostrain condi-
tion (pure parallel behaviour) and the isostress condition (pure serial behaviour),
which would had allowed the simulation of the real behaviour of the composite
material. This change was not made effective until the end of 90’s, leading to the
SP RoM. The version of the methodology used in this thesis is the consequence
of twenty years of evolution of the theory [34, 36].

4.2 SP RoM formulation

The formulation presented in this section will be of assistance in order to under-
stand how composite properties can be obtained from the components properties.
Despite this, these equations are only valid for the case of small strains.

Notice that the SP RoM is a MFM and therefore, the strain and stress values
calculated here are always mean values of these fields:

ε̄ :=

∫
Ω
ε dV∫

Ω
dV

σ̄ :=

∫
Ω
σ dV∫

Ω
dV

(4.1)

Where Ω ⊂ R is the reference frame of the composite material. Despite this,
the subsequent formulation takes for granted this fact and omits the use of •̄ to
indicate the mean value condition of the variable.
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Compatibility conditions

The compatibility conditions [26] are the starting point for the development of the
SP RoM theory. These are derived from the compatibility conditions demanded in
the CMT and defined by Trusdell and Toupin [45]. These are needed to build the
formulation that allows coupling the constitutive behaviour of N simple materials
modelled with any constitutive law. The compatibility conditions are:

1 Each infinitesimal volume of composite material contains a finite number
of component materials.

2 The contribution of each component to the composite global behaviour is
proportional to their volumetric participation in the infinitesimal volume
being studied.

3 Each component volume is significantly lower than the composite volume.

4 All the component materials are perfectly bonded. Therefore, there is no
relative displacement between them.

5 All the component materials are subjected to the same strain field in a
specific direction (parallel direction).

6 All the component materials are subjected to the same stress field in a
specific direction (serial direction).

These conditions show something that has been introduced before, that the com-
posite material behaviour depends on the direction.

Serial and parallel problem description

When defining the serial and parallel directions that control the composite be-
haviour, it is important to know which composite material is being modelled.
Depending on their topology, composite materials can be classified as [34]:

- Materials with composite matrix. This is the case of cermet (ceramic and
metal) and concrete.

- Materials with composite matrix and short fibres. This is the case of fibre-
reinforced concrete and some aeronautical materials.

- Materials with composite matrix and long fibres. This is the case of rein-
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forced concrete and some aeronautical materials.

- Laminar materials. This is the case of some aeronautical materials and
materials used in the automotive industry.

Therefore, prestressed concrete can be studied as a composite material with long
fibres, where the fibres are the prestressing steel and the matrix is the concrete.
In these cases, the direction that determines the parallel behaviour corresponds
to the one set by the fibres. In a real structure modelled using the FEM, this
is imposed element by element. Mathematically, the parallel direction is defined
using the e1 vector that is oriented along the material fibre:

NP = e1 ⊗ e1 (4.2)

Where e1 is the base vector that defines locally the parallel behaviour at the
studied element and NP is the second order parallel projector tensor, which is
used when obtaining the projection in the fibre direction of a vector v:

vP = NPv (4.3)

The reference frame is completed with the base vectors e2 and e3 that define the
serial behaviour. It is important to notice that for this case the parallel behaviour
is imposed just in one direction, i.e. e1. This only happens in composite materials
with long fibres, but can be extended to two dimensions (laminar materials) or
to the three dimensions (full parallel behaviour, i.e. CMT approach) or changed
to a full serial behaviour.

Using the NP tensor, the parallel and serial components of the strain and stress
fields can be calculated. This is done defining the fourth order parallel projector
Pp:

PP = NP ⊗NP (4.4)

and the fourth order serial projector PS :

PS = I− PP (4.5)

Now the parallel and serial components of the strain (Equation 4.6) and stress
(Equation 4.7) fields are defined as:

εP = PP : ε εS = PS : ε (4.6)

σP = PP : σ σS = PS : σ (4.7)

These decompositions of the stress and the strain fields drive to a serial and
parallel description of the constitutive fourth order tensor, C:[

σP
σS

]
=

[
CPP CPS
CSP CSS

]
:

[
εP
εS

]
(4.8)
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Where:

CPP = PP : C : PP =
∂σP
∂εP

CPS = PP : C : PS =
∂σP
∂εS

CSP = PS : C : PP =
∂σS
∂εP

CSS = PS : C : PS =
∂σS
∂εS

(4.9)

Finally, Equation 4.5 shows that the parallel and serial decompositions are com-
plementary. This can be extrapolated to strain and stress field as:

ε = εP + εS (4.10)

σ = σP + σS (4.11)

Composite material, matrix and fibre relations

The general expressions presented before are needed in the SP RoM to describe
the behaviour at all scales, i.e. they are used to describe the behaviour of the
whole composite material (c), but also the matrix (m) and the fibre (f) compon-
ents.

Using the compatibility conditions written above, the following expressions can
be derived for a composite material with only two components: fibre and matrix.

ε = fk fε+ mkmε σ = fk fσ + mkmσ (4.12)

Parallel direction :

{
cεP = fεP = mεP
cσP = fk fσP + mkmσP

(4.13)

Serial direction :

{
cεS = fk fεS + mkmεS
cσS = fσS = mσS

(4.14)

Equation 4.12 expresses mathematically what is set in compatibility condition
2. fk and mk are coefficients that reflect the volumetric contribution of each
component and therefore, verify the condition fk + mk = 1. On the other hand,
equations 4.13 and 4.14 represent the compatibility conditions 5 and 6, respect-
ively. Furthermore, it is important to keep in mind that the condition 2 is still
prevailing. Thus:

cεP = fk fεP + mkmεP =
Eq.4.13

cεP
(
fk + mk

)
= cεP (4.15)

cσS = fk fσS + mkmσS =
Eq.4.14

cσS
(
fk + mk

)
= cσS (4.16)
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Composite constitutive model. Closure equations

The SP RoM formulation is strain driven [36, 39], this means that the prob-
lem is controlled by the strain field, which is the independent driving variable.
Therefore, the current state at a point xi in any of the component materials that
constitute a two-phased composite (fibre and matrix) is completely defined just
with:

- The strain field at the studied point, i.e. fε (x1) and mε (x2), where x1 ⊂
Ωf , x2 ⊂ Ωm and Ω = Ωf ∪ Ωm.

- A finite set of internal variables denoted by the vector fβ for the fibre
and mβ for the matrix. These internal variables are correlated with the
constitutive model used when modelling the component materials.

This can be expressed as:

fS =
{
fε, fβ

}
mS = {mε,mβ} (4.17)

Thus, for the composite material the problem is governed by the cartesian product
of the two sets fS and mS:

I = fS × mS =
{
fε,mε, fβ,mβ

}
(4.18)

And the composite mean strain (cε).

At this stage, the SP RoM has allowed the description of the existing relations
between the components and the composite material. Despite this, the set of
equations described at this point are insufficient to build the system of equations
that allows the study of the composite element, which is controlled by the set
of variables described in Equation 4.18 and cε. The equations missing are those
that capture the interaction between the component materials, i.e. the closure
equations:

fi =
(
fε,mε, fβ,mβ, fσ,mσ

)
= 0, i = 1, . . . , 6 (4.19)

The closure equations are specific for each problem and are used to simulate
phenomenons like the debounding or the fibre pull-out [36, 39].

An example of appropriate closure equation for long fibre composites (LFC) is
the one used in the Serial-Parallel Basic model (SPB model) [36]. This equation
is independent of the internal variables of each component fβ and mβ and can
be written as:

fεP = mεP
fσS = mσS (4.20)

There are other closure equations that can be used instead but, the simplicity of
this one has generalised its use for the composite materials analysis. Despite this,
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it is important to be aware of the limitations of this approach, produced by the
iso-stress condition in the serial direction which leads to inaccurate predictions
of the transversal stiffness.

Now the system of equations that controls the composite behaviour is completed
[36, 39]: 

f σ̇ = fg
(
fε, fβ, f ε̇

)
f β̇ = fh

(
fε, fβ, f ε̇

)
mσ̇ = mg (mε,mβ,mε̇)

mβ̇ = mh (mε,mβ,mε̇)

ε = fk fε+ mkmε

σ = fk fσ + mkmσ
fεP = mεP
fσS = mσS

(4.21)

Where the first four expressions correspond to the constitutive models of the
component materials. These reflect the stress and the internal variables evolution
in terms of the independent variables (Equation 4.17).

Algorithm for the solution of the SP RoM problem

Now that the driving variables that define the problem (Equation 4.18) and the
set of equations that govern it (Equation 4.21) are known, the problem statement
can be formulated [36] as follows: ’Knowing the driving variables at time t:

t
[
fε
]
, t [mε] , t

[
fβ
]
, t [mβ] , t [ε] (4.22)

and the composite material strain at time t+ ∆t:

t+∆t [ε] , (4.23)

find out the updated state for composite at time t+ ∆t, defined by the variables:

t+∆t
[
fε
]
, t+∆t [mε] , t+∆t

[
fβ
]
, t+∆t [mβ] , t+∆t

[
fσ
]
, t+∆t [mσ] , t+∆t [σ]

(4.24)
that satisfy the equations that control the composite behaviour (Equation 4.21)
at the time slot [t, t+ ∆t]’.

The strategy followed to solve the system of equations depends on the constitutive
model used at each component. For the case of prestressed concrete structures, a
non-linear approach must be considered and therefore, the system will be solved
by an iterative procedure, as shown in Section 3.3.



36 CHAPTER 4. SERIAL-PARALLEL RULE OF MIXTURES

The independent variable chosen for the Newton-Raphson algorithm is the serial
component of the strain matrix (mεS) and the residual to be minimized is the
serial stress imbalance (∆σS), defined as:

∆σS = mσS − fσS (4.25)

Only one independent variable is needed for the approach, the other variables
of the problem, for both component materials, can be calculated from an initial
approximation of the mεS .

The following organigram (Figure 4.1) summarizes the steps to be followed in
order to give an answer to the problem stated previously. If these steps are
included in a FE code as the composite constitutive model [26, 36], the code
will be suitable for the modelization of LFC problems.

Figure 4.1: Flow chart with the strategy followed to solve the system of equations

Step 1 - Initial approximation. An initial value for the variable mεS is needed.
The accuracy of this initial approximation will influence the number of
iterations required for the problem convergence. Thus, it is important to
provide a good attempt for the first iteration, [mεS ]k=0. This is usually
achieved considering a linear behaviour for all the component materials. If
the hypothesis is true, the obtained value will be correct and no iterations
will be needed. This is expressed as:

[m∆σ]0 = t [mC] : [m∆ε]0 (4.26)



4.2. SP ROM FORMULATION 37

[
f∆σ

]
0

= t
[
fC
]

:
[
f∆ε

]
0

(4.27)

Where
[
i∆•

]
0

= t+∆t
[
i•
]
0
− t
[
i•
]

with i = f or m, is the increment of the

variable
[
i•
]

from one step to the next (do not confuse with the residual to
be minimized introduced in Equation 4.25), the subscript 0 indicates the
first iteration of the new step t+ ∆t and t

[
iC
]

is the tangent constitutive
tensor of each component material i = f or m, computed using the set of
known variables shown in Equation 4.22.

Considering now only the serial terms of the previous expressions, as set
in Equation 4.8:

[m∆σS ]0 = t [mCSS ] : [m∆εS ]0 + t [mCSP ] : [m∆εP ]0 (4.28)[
f∆σS

]
0

= t
[
fCSS

]
:
[
f∆εS

]
0

+ t
[
fCSP

]
:
[
f∆εP

]
0

(4.29)

Using these two expressions and the relations set by the Closure Equation
4.20:

=0︷ ︸︸ ︷
[m∆σS ]0 −

[
f∆σS

]
0

= t [mCSS ] : [m∆εS ]0 + t [mCSP ] :

=[∆εP ]0︷ ︸︸ ︷
[m∆εP ]0−

− t
[
fCSS

]
:
[
f∆εS

]
0

+ t
[
fCSP

]
:

=[∆εP ]0︷ ︸︸ ︷[
f∆εP

]
0

=⇒

=⇒ 0 = t [mCSS ] : [m∆εS ]0 −
t
[
fCSS

]
:
[
f∆εS

]
0

+

+
(
t [mCSP ]− t

[
fCSP

])
: [∆εP ]0

(4.30)

This equation can be simplified using the Compatibility Conditions (Equa-
tion 4.14):

0 = t [mCSS ] : [m∆εS ]0 −
t
[
fCSS

]
:

(
1
fk

[∆εS ]0 −
mk
fk

[m∆εS ]0

)
+

+
(
t [mCSP ]− t

[
fCSP

])
: [∆εP ]0 =⇒

=⇒
(
t [mCSS ] +

mk
fk

t
[
fCSS

])
: [m∆εS ]0 =

=
1
fk

t
[
fCSS

]
: [∆εS ]0 +

(
t [mCSP ]− t

[
fCSP

])
: [∆εP ]0

(4.31)

And finally, setting: A =
(
fkt [mCSS ] + mkt

[
fCSS

])−1
, Equation 4.31 is

rewritten as:

[m∆εS ]0 = A :
[
t
[
fCSS

]
: [∆εS ]0 + fk

(
t [mCSP ]− t

[
fCSP

])
: [∆εP ]0

]
(4.32)

From this equation, t+∆t [mεS ]k=0 is computed (t+∆t [mεS ]k=0 = t [mεS ]+
[m∆εS ]0) and the algorithm moves to step 2.



38 CHAPTER 4. SERIAL-PARALLEL RULE OF MIXTURES

Step 2 - Evaluation of the residual. Once the independent variable t+∆t [mεS ]k
has been obtained, it is necessary to determine its reliability by means
of the residual. It is computed as shown in Equation 4.25, using the
serial stress values at t+ ∆t of each component material. Thus, obtaining
t+∆t [mσ] and t+∆t

[
fσ
]

is the main objective of this step because Equa-
tion 4.7 allows the computation of the serial component of these variables.

The first thing to do before the serial stress imbalance could be estimated,
is to determine the total strains for each component:

[mε]k = [mεP ] + [mεS ]k , where: [mεP ] =
[
fεP

]
= [εP ][

fε
]
k

=
[
fεP

]
+
[
fεS

]
k
, where:

[
fεS

]
k

=
1
fk

[εS ]−
mk
fk

[mεS ]k
(4.33)

These equations are based on the complementarity property of the serial
and parallel parts of the strain and stress fields (equations 4.10 and 4.11)
and are valid for all the iterations of the problem, therefore, k is not ne-
cessary equal to 0.

Finally, the stresses and the internal variables are computed based on the
real constitutive model of each component material (the elastic hypothesis
used at step 1 is no longer valid) and the residual ∆σS = mσS − fσS is
evaluated.

Step 3 - Equilibrium reached?. At this stage, the algorithm decides whether the
obtained solution for the set of variables at step t+∆t is valid or not. This
decision is made according to a given tolerance. Its value is imposed as a
function of the serial stresses for each component at the previous step t,
i.e. tol ∼ f

(
t
[
iσS

])
, where i = f,m [36]. This function is defined as:

f1

(
t [mσS ] , t

[
fσS

])
= min

{
||t [mσS ] ||, ||t

[
fσS

]
||
}

f2

(
t [mσS ] , t

[
fσS

])
= min

{
||t [mCSS ] : [εS ] ||, ||t

[
fCSS

]
: [εS ] ||

}
tol = 10−4 ·

{
f1

(
t [mσS ] , t

[
fσS

])
, if f1

(
t [mσS ] , t

[
fσS

])
> 0

f2

(
t [mσS ] , t

[
fσS

])
, if f1

(
t [mσS ] , t

[
fσS

])
= 0

(4.34)

Therefore:

If || [∆σS ]k || ≤ tol then go to Step 5.

If || [∆σS ]k || > tol then go to Step 4.
(4.35)

Step 4 - Independent variable update. This step is used when the t+∆t [mεS ]k
value is not good enough according to the tolerance computed at step 3.
In this case, t+∆t [mεS ]k should be recalculated as follows:
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a) Compute the tangent constitutive tensor for each component ma-
terial t+∆t

[
iC
]
k

using the results of the current iteration step k, i.e.
t+∆t

[
iε
]
k

and t+∆t
[
iβ
]
k
.

b) Jacobian matrix computation [36, 26].

t+∆t [J]k = t+∆t [mCSS ]k +
mk
fk

t+∆t
[
fCSS

]
k

(4.36)

Where [mCSS ] and
[
fCSS

]
are computed as shown in Equation 4.9

from the tangent constitutive tensors [mC] and
[
fC
]
. This expres-

sion is obtained from the general Jacobian definition introduced in
Section 3.3 and using its notation: ∆f = ∆σS and u = mεS . There-
fore:

[J]k =
∂ [∆σS ]

∂ mεS

∣∣∣∣
mεS=[mεS ]k

=
∂ [mσS ]k
∂ mεS

−
∂
[
fσS

]
k

∂ fεS
:
∂ fεS
∂ mεS

=

= [mCSS ]k −
[
fCSS

]
k

:

(
−
mk
fk

I
)

=

= [mCSS ]k +
mk
fk

[
fCSS

]
k︸ ︷︷ ︸

Eq.4.36

(4.37)

c) Unknown t+∆t [mεS ]k update. Once more, this is done as previously
introduced in Section 3.3:

t+∆t [mεS ]k+1 = t+∆t [mεS ]k −
t+∆t [J]

−1
k : [∆σS ]k (4.38)

Once this has been done, the algorithm moves back to step 2 and starts a
new iteration k + 1.

Step 5 - Unknown variables update. Once the problem has converged, it is time
to prepare the data for the next time step. The results of the variables
stated at Equation 4.24 are now the known variables of the new time step.

Step 6 - Composite stress evaluation. At this last step the composite total stress
(t+∆t [σ]) is computed. This is done using the Equation 4.12:

t+∆t [σ] = fk t+∆t
[
fσ
]

+ mk t+∆t [mσ] (4.39)

This algorithm is used to obtain the unknowns at all the composite elements
of the FE mesh used in the simulation. This provides the local solution of the
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problem, but the global behaviour is still unknown. The global solution for the
structure is obtained through the Equation 3.21, where the global stiffness matrix
is made up of all the composite tangent constitutive tensors C from each element
of the FE mesh. Two approaches can be followed in order to obtain these tensors:

- Calculation using numerical perturbations [34]. At this stage, the stress
and strain fields of the composite material are known, therefore the com-
posite C tensor can be obtained activating small strains and analysing the
results obtained, i.e. C = σ : ε−1.

- Calculation through the component tangent constitutive tensors [36, 39].
The composite tangent constitutive tensor has been defined in Equations
4.8 and 4.9. These expressions can be written in terms of the components
tangent constitutive tensors as:

CPP = mkfk
(
fCPS − mCPS

)
: A :

(
fCSP − mCSP

)
+

+
(
fkfCPP + mkmCPP

)
CPS =

(
fkfCPS : A : mCSS + mkmCPS : A : fCSS

)
CSP =

(
mkfCSS : A : mCSP + fkmCSS : A : fCSP

)
CSS =

1

2

[(
mCSS : A : fCSS

)
+
(
fCSS : A : mCSS

)]
(4.40)

By doing this, it is possible now to solve the global system of equations and move
to the next time step.

4.3 Prestressed concrete structures singularities

At this stage, the general algorithm used for the SP RoM and all the properties
of the LFCs are known. Despite this, as the present thesis is focused on the
analysis of prestressed concrete structures, some of the introduced generalities
can be particularized.

Constitutive models

The main advantage of the SP RoM is the chance to use whatever constitutive
model is desired for the component materials. This allows to capture perfectly the
behaviour of simple materials and then the algorithm will automatically compute
the complex response of the composite material. Thus, it is interesting to know
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which are the constitutive models selected for the prestressed concrete analysis
driven in this project.

Concrete modelization - Isotropic continuous damage model

The Continuum Damage Mechanics is a branch of the Continuum Mechanics that
provides the needed framework for characterizing, representing and modelling
the effects of distributed defects on the material behaviour. The propagation and
coalescence of these defects generates a progressive and irreversible degradation of
the elastic properties of the material, characterized by a stiffness loss [14, 23, 33].

The Continuous Damage theory was first introduced by Kachanov [22] in 1958 but
it has evolved from then and now there are several approaches that can be used in
the damage field. For the purpose of this thesis, the isotropic continuous damage
model has been chosen for the concrete modelization. During the last years the
use of this constitutive model has been widely accepted for the simulation of many
materials used in engineering [32, 47] due to its simplicity in the implementation,
versatility and coherence.

The isotropic damage model is completely characterized by one variable (d) that
takes into account the presence and growth of small fractures and micro voids in
the material structure. Thus, this damage variable measures the level of deteri-
oration in the material and works affecting the stress field by transforming the
stress real tensor into an effective stress tensor. In general terms, this is expressed
as:

σ0 = M−1 : σ (4.41)

Where M is the fourth-order tensor of the anisotropic damage model. Neverthe-
less, for the isotropic damage model that has been used for concrete, the tensor
only depends on one scalar variable d and Equation 4.41 can be rewritten as:

σ0 = [(1− d) I]−1
: σ =

σ

1− d
, d ∈ [0, 1] (4.42)

Where σ is the Cauchy stress tensor, σ0 is the effective stress tensor and d is
the internal variable of damage such that d = 0 indicates that the material is not
damaged and d = 1 indicates that the material is completely damaged, i.e. there
is a local fracture.

The effective stress σ0 concept was first introduced by Kachanov (1958) to carry
out fracture simulations. This tensor must be understood as the stress state in
a non-damaged element, which generates the same strain that σ produces in a
damaged element. Figure 4.2 represents this idea.
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(a) Damaged real element (b) Non-damaged equivalent element

Figure 4.2: Graphic representation of the effective stress definition [33]

Consequently, the relation between σ0 and the induced strain (ε) can be formu-
lated in elastic terms as:

σ0 = C ε (4.43)

Where C is the elastic constitutive matrix. Considering now the formulation in
terms of the real stress tensor σ by using Equation 4.42, the constitutive law for
the isotropic damage model can be written as:

σ = (1− d)C ε (4.44)

Now, only one question remains: How is the internal variable of damage d con-
trolled? Of course d is not constant. It is defined by two properties:

- Damage threshold criterion. This makes the distinction between an elastic
behaviour of the material and another in which the degradation process
of the material’s properties takes place. This criterion is specific to the
material that is being modelled but can be defined in general terms as:

F (σ0;q) = f (σ0)− c (d) ≤ 0, with q ≡ {d} (4.45)

Where f (σ0) is a function of the stress tensor σ0 = C0 : ε and c (d) is the
scalar function defining the damage threshold position. The initial value of
this damage threshold c

(
d0
)

= cmax = σmax is a property of the material
and is related to its compressive strength.

Concrete is the material that is being simulated using the damage model,
therefore a yield criteria appropriate for frictional materials is needed. The
FE code used during the analysis performed for this thesis uses the Mohr-
Coulomb modified function [33]. This yield criteria is specific for concrete,
which has an internal friction angle of φ = 32o and a compression - tension
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strength ratio R0
Mohr = ‖σ0

C/σ
0
T ‖ ' 10.0. These characteristics cannot be

achieved with the original Mohr-Coulomb function and so this alternative
is used. In this scenario, Equation 4.45 is rewritten as:

F (σ, c, φ) = f (σ, φ)− c (d) = 0
or

F̄ (σ, c, φ) = G [f (σ, φ)]−G [c (d)] = 0
(4.46)

Both expressions are equivalent. G [χ] is a scalar monotonically increasing
function, positive invertible, with positive derivative, f (σ, φ) is the stress
function that control the Mohr-Coulomb function, which can be expressed
as:

f (σ, φ) =
1

cos (φ)

{
I1
3
K3 +

√
J2

[
K1 cos (θ)−K2

sin (θ) sin (φ)√
3

]}
(4.47)

I1 is the first invariant of the stress tensor, J2 is the second invariant
of the deviatoric stress tensor and θ is the Lode’s similarity angle θ =

arcsin
[(

3
√

3J3

)
/
(

2J
3/2
2

)]
. Ki are the factors that allow the generalisa-

tion of the Mohr-Coulomb yield function and thus, depend on the friction
angle φ and on the compression - tension ratio.

Figure 4.3: Graphical representation of the Mohr-Coulomb modified function [33]

- Evolution law of the damage variable, d. The general equation that de-
termines the evolution of this variable is:

ḋ = µ̇
∂F̄ (σ0;q)

∂ [f (σ0)]
≡ µ̇∂G [f (σ0)]

∂ [f (σ0)]
(4.48)
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Where µ is a non-negative scalar called damage consistency parameter,
which is used to define loading, unloading and reloading conditions [33].

Therefore, the damage criterion can change depending on the definition of the
G [χ] functions, which control the threshold and the evolution of the damage law.

The damage model used for the concrete modelization in this thesis is based on
an exponential approach, which leads to the following expression for the damage
internal variable:

d = 1−

f0 (σ0)

τ
e
A

(
1−

τ

f0 (σ0)

) (4.49)

Where f0 (σ0) = cmax is the initial value of the damage threshold, A is a para-
meter that depends on the fracture energy and τ is the damage threshold con-
dition, which sets the beginning of the damage procedure for τ = G [f (σ0)] >
τmax = G [c (d)].

Finally, the effect of the damage in the material is, of course, a progressive de-
gradation of the material properties. This means that the constitutive matrix C is
not constant and so it is necessary to define it in terms of the damage parameters
and compute it at each iteration and time step. This is the tangent constitutive
tensor of damage:

CT = (1− d)C0 −
∂G [f (σ0)]

∂ [f (σ0)]
[C0 : ε]⊗ ∂f (C0 : ε)

∂ε
(4.50)

Using all this information, the constitutive model used for the concrete is com-
pletely defined.

Prestressing steel modelization - Viscoelasticity model

Prestressing steel is characterized by a high compressive/tensile strength com-
pared to the other component materials of the prestressed concrete. This allows
considering an elastic constitutive model for its numerical modelization. Despite
this, the use of a constitutive model constant in time does not reproduce the real
behaviour of this material. A time-dependent model is needed instead.

There are two types of time-dependent elasticity models [33]:

- Delayed elasticity or creep model. In these models, the stress is the free
variable of the problem and so the strains change in time depending on
the free variable value. The Kelvin viscoelastic model is a good example.
This idea is shown in Figure 4.4a.
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- Relaxation model. In these models the strain is the free variable of the
problem and so the stresses change in time depending on the free variable
value. The Maxwell viscoelastic model is a good example. This idea is
shown in Figure 4.4b.

(a) Response of the generalized Kelvin model under a constant stress

(b) Response of the generalized Maxwell model under a constant deformation

Figure 4.4: Time-dependent elasticity models [33]

The prestressing steel behaviour in time consists of a progressive stress loss and
thus, the Maxwell model is the one chosen for the material modelization. In fact,
a generalization of this model is used: the generalized Maxwell model.

Before moving to the multiaxial generalization of this model, it is better to in-
troduce it using an uniaxial representation based on a spring-damping analogy
(Figure 4.5).
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Figure 4.5: The Generalized Maxwell model [33]

In this model, the stress state at any time is expressed in terms of the free variable
ε as:

σ (t) = σi (t) + σ∞ (t) , where :

{
σi (t) = C1

(
ε (t)− εi (t)

)
= ξ1ε̇

i (t)

σ∞ (t) = C∞ε (t)
(4.51)

This equation expresses mathematically what is shown in Figure 4.5: the model
is governed by an elastic component and an inelastic component. The inelastic
component progressively disappears with time until the elastic component fully
controls the material behaviour.

Adding both terms in Equation 4.51 the equilibrium condition is written:

σ (t) = σi (t)+σ∞ (t) = C1

(
ε (t)− εi (t)

)
+C∞ε (t) = ξ1ε̇

i (t)+C∞ε (t) (4.52)

This can also be expressed as:

σ (t) = C0ε (t)− C1ε
i (4.53)

Where C0 = C∞ + C1.

These equations fully define the Maxwell model, they are the constitutive equa-
tion. Despite this, it is interesting to eliminate the inelastic strain variable from
the equation. This can be achieved by solving the differential equation:

ε (t)

r1
=
εi (t)

r1
+ ε̇i (t) (4.54)
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Where r1 =
ξ1
C1

. This equation is obtained from the definition of the inelastic

stress component written in Equation 4.51.

The solution of this differential equation is:
εi (t) = 0 ∀ τ < τ0

εi (t) =

∫ t

−∞

1

r1
e−(t−s)/r1ε (s) ds ∀ τ ≥ τ0

(4.55)

Where τ0 is the time at which a strain ε (t) is applied. Substituting this equation
into Equation 4.53:

σ (t) = 0 ∀ τ < τ0

σ (t) = C0ε (t)− C0

r1

∫ t

−∞
e−(t−s)/r1ε (s) ds ∀ τ ≥ τ0

(4.56)

Figure 4.4b shows the particular case where the imposed strain at time t = τ0 is:{
ε (t) = 0 ∀ t < τ0 = 0

ε (t) = ε0 ∀ t ≥ τ0 = 0
(4.57)

And thus, the stress expression obtained from Equation 4.56:σ (t) = 0 ∀ τ < τ0

σ (t) =
(
C∞ + C1e

−t/r1
)
ε0 ∀ τ ≥ τ0

(4.58)

Now that the uniaxial approach has been introduced, it is easier to describe
the multiaxial approach of the generalized Maxwell model. Equation 4.56 is now
written at a time t+ ∆t, as follows:

σij (t+ ∆t) = Cijkl

[
εij (t+ ∆t)− C1

C0ξ

∫ t+∆t

−∞
e−(t+∆t−s)/r1εkl (s) ds

]
=

= Cijklεij (t+ ∆t)−
[
Cijkl

C1

C0ξ

∫ t

−∞
e−(t−s)/r1εkl (s)

]
−

− Cijkl
C1

C0ξ

∫ t+∆t

t

e−(t+∆t−s)/r1εkl (s) =

= σij (t+ ∆t) = σij (t) e−(∆t)/r1 − Cijklεkl (t) e−(∆t)/r1

[
1 +

C1

C0ξ

∆t

2

]
+

+ Cijklεkl (t+ ∆t)

[
1− C1

C0ξ

∆t

2

]
(4.59)

Where the integral has been solved using the trapezoidal rule as proposed by
Oller (2014) [33].
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Effect of the prestressing over the SP RoM formulation

Having a look at the compatibility conditions written in Section 4.2, it can be
observed that the current definition of the SP RoM is not valid for the modeliz-
ation of prestressing steel. Condition 4 imposes that there is no possible relative
displacement between component materials, but the prestressing effect imposes
an initial relative displacement between the matrix and the fibre. Therefore, it is
necessary to modify the original formulation.

A new compatibility condition is included:

7 Relative movement between the component materials is allowed if and only
if an imposed strain condition exists over one of them.

Therefore, loss of adherence is allowed only in the presence of the prestressing
effect, included as an imposed strain.

Equation 4.13 must be modified to take into account the imposition of an initial
strain for the fibre in order to represent the prestressing effect. The new equation
is piecewise function:

- In the first iteration of the S-P RoM algorithm, the parallel component of
the strain tensor of the prestressing steel is fixed to the imposed prestress-
ing value εimp and the parallel component of the matrix component re-
mains equal to the parallel component of the composite strain.

incr. = 1 and iter. = 1 ⇒ mεP = cεP ∧ fεP = εimp (4.60)

- For the rest of the steps of the analysis, the parallel component of the strain
tensor of the active steel is computed through the current prestressing value
εimp,t and the parallel component of the composite strain. On the other
hand, the parallel component of the matrix component is still equal to the
parallel component of the composite strain.

incr. ≥ 1 and iter. > 1 ⇒ mεP = cεP ∧ fεP = cεP + εimp,t
(4.61)

Pre/Post tensioned structures and bonding effect

The present thesis is focused on the analysis of post-tensioned concrete structures.
Despite this, there are another type of prestressed concrete structures that can
be analysed through the SP RoM, i.e. the pre-tensioned concrete structures.
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The analysis of these structures do not add any difference to the approach, al-
though the construction procedures and the uses of this typology are different to
the ones of post-tensioned structure.

Despite this, there is a specific case in which some modifications must be con-
sidered: unbonded post-tensioned concrete structures. In this case, the post-
tensioning of steel is modelled by considering the three transversal modulus of
the steel close to 0 and therefore allowing the steel to glide without friction
inside the concrete. In order to fully allow deformation of the steel in a de-
coupled way from the concrete, its Poisson coefficients are set to 0, which allows
the complete description of the post-tensioning process. Pre-tensioning and bon-
ded post-tensioning, on the other hand, are reproduced by considering both, the
transversal modulus and the Poisson coefficients for steel at their common value.

Reinforcing steel

The SP RoM is a useful technique but it has to be used appropriately. The
formulation introduced in Section 4.2 is valid for composite materials with only
two phases. Therefore, in those cases where a FE contains concrete, prestressing
steel and reinforcement steel, the formulation is no longer valid.

The possibility of generalising the SP RoM theory for n materials exists but it
has a big computational cost. A different approach is considered instead.

In general, reinforcing steel has either a clear directional contribution when only
longitudinal or transversal reinforcement is used or a uniform effect when it is
organized as a dense grid. This allows accounting for it by using an approach
introduced in Section 2.2: smeared elements.

Therefore, what is done is that the rebars effect is included in the computation
as an increment in the concrete strength. This approach allows the inclusion of
different reinforcing contributions in each direction and in each FE.

Finally, by using this methodology the SP RoM formulation is valid again. The
two component materials are now: the prestressing steel (= fibre) and the concrete
including the rebars contribution (= matrix).
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Chapter 5

Application examples

Once the fundamentals that support the SP RoM theory and the FEM have
been introduced, it is time to show how these bases are applied to the analysis
of post-tensioned structures.

In this section three cases are presented which are intended to validate the meth-
odology and demonstrate its potential. Two isostatic beams have been selected
in order to compare the results obtained with the SP RoM approach and those
obtained from an analytical approach.

The last example is the result of the recent work developed at the International
Centre for Numerical Method in Engineering (CIMNE). It is the study of a mock-
up of a reactor containment building as part of the VeRCoRs Project [24]. This
analysis allows to demonstrate the potential of the proposed methodology.

5.1 Required software

The analysis performed has been possible thanks to GiDR© [2, 4] and PLastic
Crack dynamic (PLCd) [3].

GiD is a pre and post processor for numerical simulations in science and engin-
eering developed by CIMNE. Gid version 13.1.7 has been used for building the
models and for the results display. Therefore, the images presented in this section
have been obtained with this software.

On the other hand, PLCd is an implicit finite element code for the numerical
simulation of nonlinear dynamic behaviour of structures of complex constitution.

51



52 CHAPTER 5. APPLICATION EXAMPLES

It was created in 1989 and it has been continuously evolving since then. The SP
RoM is implemented in this code, thus it has been used for the calculation of the
structures tested here.

Next section will show how these software are used in the calculation procedure.

(a) GiD logo (b) PLCd logo

Figure 5.1: Software used during the analysis

5.2 Procedure description

The steps followed during the analysis performed are quite standardized, regard-
less of what structure is being studied. Thus, it is possible to describe the general
procedure and it will remain valid for any case:

Step 1 - Model generation. The procedure starts creating a 3-D model that rep-
resents adequately the structure that is being analysed. It can be generated
using GiD preprocessing tools but other software can be used instead and
then load it into GiD, which accepts many formats, e.g. IGES, STEP,
DXF, ACIS, VDA, Rhinoceros, etc.

The model is complete when all the elements are defined, i.e. lines, surfaces
and volumes. Prestressing steel is not included as a 3-D element, curvilinear
lines are used with this purpose and, when the SP RoM is performed, the
tendon area is taken into account.

Step 2 - Attributes allocation. Once the model has been created, it is time to
define the boundary conditions, the material properties and the load cases
and apply them properly to the model entities.

The prestressing force is not assigned at this step. In fact it is defined as
an imposed strain and not as a force.

Step 3 - FE mesh generation. Two FE meshes are generated for the calculations.
The first one is built using 8-noded linear hexahedral elements with GiD.
It can be structured, unstructured or semistructured depending on the
geometry requirements. The second mesh is generated using the tendons.
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Thus, the other elements are disabled and only the lines that constitute
the tendons are used.

Step 4 - Intersections. This step is used to define the relation between the
two meshes, i.e. identify the path that the tendons describe through the
hexaedra.

By doing this, besides finding out the hexaedras that are crossed by a ten-
don, the points where the intersection is produced are found and stored.
This operation is essential for the composite material description because
these coordinates describe the fibre orientation for each composite mater-
ial.

Step 5 - Composite generation. Each composite material is characterized by the
matrix and fibre material properties defined and assigned at step 2 and
the fibre orientation defined at step 4. With this information, the program
compiles all the information and generates a file with all the casuistic and
the FEs associated to each one. Thus, this file contains the information that
characterize a composite material, i.e. e1 vector and fk and mk coefficients
(see Section 4).

Step 6 - Description of the loading sequence. The output obtained at the last
step is the file required for the PLCd calculation. Despite this, the file is
incomplete at this stage. The information missing is the one that describes
the load sequences that take place at the structure, the so called stages. At
least two stages are usually included: the self-weight and the prestressing
operation. These sections include not only the load values and the elements
affected by them, but also the increments in which loads are applied or
the tolerance admitted at each iteration.

At this moment, the code allows imposing only a constant strain value
for each tendon that accounts for the prestressing effect. This means that
immediate prestressing losses are not being considered by the software.
Therefore, a previous calculation that takes into consideration these losses
is necessary and then a mean strain can be used as the initial prestressing
value. The procedure followed is explained in detail in Section 5.4.

Step 7 - Structure computation. PLCd is used now for the computation. The SP
RoM approach is applied and the analysis is performed.

Step 8 - Display of results. The results obtained with PLCd can now be dis-
played using GiD. The calculation software computes stresses, strains, dis-
placements and reactions, which can be loaded on the structure model and
visualized in the post-process.
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5.3 Validation examples

Two beams are analysed in this section and two approaches are used in each
case: the SP RoM and the analytic formulation used in the Strength of Materials
theory [11]. This allows the comparison of the results and the validation of the
proposed methodology before moving to a real scenario.

These examples have been faced assuming several simplifications, which allow
delimiting the scope of the problem and orient it towards the desired direction:

- Prestressed cantilever with a linear centred tendon. This case has been
generated to measure the deformation that a tendon induces in a structural
element due to the prestressing effect when it is introduced by one end.
The pure longitudinal response can only be achieved when the self weight
is not considered and the tendon is linear and is centred in the beam
section. Furthermore, as PLCd only admits constant stress distribution
at the tendon, the analytic approach must be formulated under the same
conditions.

- Prestressed simple supported beam with a parabolic tendon. This example
is used to compute the vertical deformation induced by the prestressing
force. Again, the self-weight is not considered because it would interfere in
the calculations. In addition, a constant stress distribution at the tendon
is considered once more.

In both cases elastic materials have been used because the analytic formula-
tion used for comparison works in the elastic domain. Therefore, these are not
realistic structures and the results obtained here are not translatable to a real
situation, but this is not the purpose of them. They are only used for validating
the methodology.

Prestressed cantilever with a linear centred tendon

A cantilever beam has been modelled using GiD (Figure 5.2). It has a square
section with sides b = h = 1.1m and length L = 7m. The boundary condition
has been imposed on one face by blocking displacements in the three directions
(Figure 5.3).
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Figure 5.2: GiD model with the main geometry dimensions

Figure 5.3: Fixed end of the cantilever beam at GiD model

The properties of the materials used for the beam simulation are summarized in
Table 5.1. These values are frequent for materials used in prestressed structures.

Table 5.1: Concrete and prestressing steel properties

Material Properties

Concrete
Young modulus, Ec [GPa] 35.00
Area, Ac [m2] 1.205

Prestressing steel
Young modulus, Ep [GPa] 190.00
Area, Ap [m2] 0.005
Prestressing tension [MPa] 1500.00
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The material strengths have not been included in the table, this is because, as
stated before, the materials are assumed to have an elastic behaviour and so,
these parameters are not needed for the current analysis.

Figure 5.4 shows the FE mesh generated with GiD and needed for the numerical
analysis with PLCd. It is composed of 8470 8-nodded hexahedra.

Figure 5.4: FE mesh created with GiD

The results of the PLCd calculation by means of the SP RoM are shown in
Figure 5.5. The maximum displacement is produced near the free end and is
−1.59×10−3m. It is located near the end of tendon, but not at the beam surface
where the maximum displacement value is −1.36× 10−3m.

Figure 5.5: Displacements in z direction [m]
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For the beam analysis using the Strength of Materials theory, the prestressing
effect is transformed into an axial distributed compression load along the whole
beam, N(z) (Figure 5.6):

N(z) = σ ·Ap = 1500MPa · 0.005m2 = −7500kN (5.1)

Figure 5.6: Scheme for the analysis through the Strength of Materials theory

Therefore, the beam total deformation can be written as [11]:

δlong =

∫ L

0

N(z)

EcompAcomp
dz =

NL

EcAc + EpAp
=

= − 7500kN · 7m
35GPa · 1.205m2 + 190GPa · 0.005m2

= −1.22× 10−3m

(5.2)

Where Ecomp and Acomp are the equivalent Young modulus for the composite
material and the section area of the beam. The decomposition into the component
variables Ec, Ep, Ac and Ap only is valid for a full parallel behaviour.

The results obtained with both approaches are similar but the numerical sim-
ulation predicts a higher deformation. This happens because, in the analytical
calculation, the whole section is supposed to deform equally. This is equivalent
to the use of one FE in the whole section and solving the problem through the
SP RoM. Nevertheless, this behaviour is not real and what happens in fact is
that the area surrounding the tendon deforms more than the external regions,
which is the behaviour obtained with the numerical simulation. Thus, the only
way to obtain the same results with both approaches would be increasing the
prestressing steel area by incrementing the tendon diameter or by adding more
tendons.

Figure 5.7 shows the results of a beam with the same properties as the studied
one but with the prestressing effect distributed in more tendons. This test has
been performed to demonstrate that the difference between the numerical and
the analytical approaches are those stated previously. It can be observed that the
obtained deformation for this case with four tendons is almost the same as the
one obtained in Equation 5.2.
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Figure 5.7: Beam with four prestressed tendons. Model (top) and displacement field in
z direction [m] (bottom). Prestressing tension: 375MPa

Prestressed simple supported beam with a parabolic tendon

In this case, a simple supported beam with an embedded parabolic steel tendon
has been analysed (Figure 5.8). It has a square section with sides b = h = 1m
and the span between the supports is L = 10m. One end of the beam is fully
constrained in the three directions, but the other one allows deformations in the
horizontal direction. The tendon describes a perfect parabola with eccentricities
e1 = e2 = 0.3m with respect to the beam neutral axis (Figure 5.12).
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Figure 5.8: GiD model with the main geometry dimensions

The properties of the materials used for the beam simulation are summarized in
Table 5.2. Both tendon ends are active and the prestressing tension is equivalent
to a force P = 5000kN, that is assumed to be distributed uniformly in the whole
length of the tendon.

Table 5.2: Concrete and prestressing steel properties

Material Properties

Concrete
Young modulus, Ec [GPa] 35.00
Area, Ac [m2] 0.995

Prestressing steel
Young modulus, Ep [GPa] 210.00
Area, As [m2] 0.005
Prestressing tension [MPa] 1000.00

Figure 5.9 shows the FE mesh created using GiD, which has 1250 8-nodded
hexahedra. In addition, the elements intersected by the tendon are coloured.
These elements are composite materials (concrete + steel) and are modelled
through the SP RoM in PLCd.

Figure 5.9: FE mesh and composite material generated
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The results of the PLCd analysis are shown in Figures 5.10 and 5.11. The first
image shows the beam displacements generated by the prestressing force in the
vertical direction y. It can be observed that the symmetry of the problem is
preserved and that the maximum displacement takes place at the mid-span area,
with a value of 4.41× 10−3m. The second image shows the horizontal shortening
that the prestressing steel generates in the beam. The maximum displacement is
located at the end where the longitudinal movement is allowed and its value is
−2.34× 10−3m.

Figure 5.10: Displacement in y direction [m] due to the prestressing effect

Figure 5.11: Displacement in x direction [m] due to the prestressing effect

For the analytical approach, the prestressing steel effect has been introduced as
a set of forces. Figure 5.12 shows the problem to be solved.
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Figure 5.12: Scheme of the problem to be solved analytically

In this scenario, the vertical displacement is generated by the vertical uniform
distributed load (η) and the bending moments at the edges (M = Pe1 cos(α)),
i.e. δ(x) = f(η) + f(M). The maximum deflection will be located at the beam
mid span due to the symmetry conditions and can be calculated as [11]:

δmax = δ(x = L/2) =
5ηL4

384EI
− Pe1 cos(α)L2

8EI
(5.3)

Where P is the prestressing force of 5000kN, e1 is the tendon eccentricity at the
supports (e1 = 0.3m), L is the beam span (L = 10m), α is the tendon angle
at the supports sections, which can be computed through the derivative at the
support section of the parabolic function that describes the tendon path (y(x)):

y(x) =
8e1

L2

(
x2 − Lx

)
+ e1 ⇒ y′(0) = tan(α) = −8e1

L
⇒ α = 13.50o (5.4)

η is the vertical distributed load equivalent to the prestressing effect that can be

computed as η = Py′′(x) =
16Pe1

L2
= 240kN/m [27]. Finally, I is the section iner-

tia in z direction according to the model reference system, that can be computed

as I =
1

12
bh3 = 8.33 · 10−2m4 and E is the Young Modulus of the composite

section, which can be computed following the procedure used in Equation 5.2,

i.e. E =
Ac
A
Ec +

Ap
A
Ep = 35.88GPa.

Therefore, the maximum deflection is equal to δmax = 4.36 × 10−3m, which is
really close to the one computed through the numerical simulation (er ' 1.2%).
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5.4 Mock-up of a reactor containment building

The VeRCoRs Project is an initiative promoted by the company Électricité de
France (eDF) in which a mock-up of a reactor containment building at 1/3 scale
is built and tested.

The construction finished in 2015 and from then several experiments have been
conducted. The main objectives of this project are to study [24]:

- The behaviour at early age and the ageing of the structure.

- The evolution of the leak tightness under the effect of aging.

- The behaviour under severe accident conditions for which the thermo-
mechanical loading is maintained for several days.

(a) View during construction (March 2015) (b) External dome lifting (November 2015)

(c) Image taken during the first Benchmark
(March 2016)

(d) Image taken before the 5th pressure test
(March 2018)

Figure 5.13: Reactor containment building during and after its construction [24]

The project is divided in three phases that have the format of a benchmark.



5.4. MOCK-UP OF A REACTOR CONTAINMENT BUILDING 63

The first one took place in 2015 and it was dedicated to early age, mechanical
and leaktightness behaviours. In 2017 the second benchmark started and it has
finished in April of 2018. The results presented in this thesis have been obtained
from the analysis performed by CIMNE team (A. Barbat, S. Oller, L. Barbu,
A. Cornejo and S. Jiménez) at this benchmark, which was oriented towards the
study of the mechanical behaviour of the containment during pressurization tests.
The last benchmark is planned to take place in 2021 and it will be focused on
the behaviour prediction under severe accident conditions.

Problem statement

The mock-up of the reactor containment was built between 2014 and 2015. After
finishing the construction and after the prestressing stage, the containment has
been subjected to several pressure tests. Table 5.3 summarizes all the operations
done from its construction.

Table 5.3: Operation sequence at the mock-up reactor containment building

Operation Sequence

Raft concreting 24 July, 2014
End of construction 06 May, 2015
End of prestressing 17 August, 2015
1st Pressure test (’Pre-op’) 04 November, 2015
2nd Pressure test (’VC1’) 25 January, 2016
3rd Pressure test (’VD1’) 14 March, 2017
4th Pressure test (’VD1 bis’) 21 March, 2017
5th Pressure test (’VD2’) 02 April, 2018

All the pressure tests follow a similar pattern (Figure 5.14). First the pressure
is increased inside the containment up to 4.2 bar, it remains constant for a few
hours and then it is reduced again to 0 bar.
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Figure 5.14: General description of a pressure test

The goal of this benchmark is to predict stresses and strains distribution during
the pressure tests.

For the purpose of this thesis, the benchmark format has not been followed ex-
actly. Therefore, not all the results shown here have been included on the bench-
mark final template and not all the results presented for the benchmark have
been included here. Despite this, the main objective is still the same: reproduce
the whole procedure and analyse what happens during this time.

Geometry and GiD model

The real structure is composed of two containments, one internal and the other
one external (Figure 5.15). The external one does not have any structural purpose,
it is used to provide thermal and humidity protection, and to recreate an annular
space for leakage rates measurements (Figure 5.16). Therefore, for the purpose
of this thesis, only the internal structure has been modelled.
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(a) The two containments during construc-
tion

(b) Internal corridor with the view of the
internal and external walls

Figure 5.15: Reactor containment building during and after its construction [24]

Figure 5.16: Images taken during the leakage tests [24]

The internal structure has the shape of a typical reactor containment but scaled
1/3 (Figure 5.17). The main dimensions of this structure are summarized in Table
5.4 and can be compared with the dimensions of a regular containment structure.

Table 5.4: Geometric characteristics of the inner containment model

VeRCoRs model Regular containment

Height from gusset to the top [m] 20.79 62.38
Internal radius of cylinder [m] 7.30 21.90
Thickness of cylinder [m] 0.40 1.20
Internal radius of the dome (tore) [m] 2.67 8.00
Internal radius of the dome (centre) [m] 10.67 32.00
Thickness of the dome [m] 0.30 0.90
Free volume inside containment [m3] 3160.00 85350.00
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Figure 5.17: General view of the VeRCoRs mock-up [13]

In addition to this, the containment is placed on a two meters thick foundation
and it has two vertical prestressing buttresses that are also scaled. There are only
two significant openings: one equipment hatch (Φ = 2.71m) and one personal
airlock (Φ = 1.21m)

The prestressing steel system is organised in four families.

- Horizontal tendons (spacing 133mm in typical area). These tendons go
from one buttress to the other one, overcoming the equipment and personal
hatches. There are 122 tendons in total and both ends are active.

- Vertical tendons (spacing 290mm in typical area). These tendons go from
the top (ring beam) to the mock-up foundation. There are 57 tendons in
total and only one end is active, the lower extreme.

- Dome tendons (spacing 205mm in the dome). These tendons cross the
dome from one side to the other creating a sort of grid. There are 18
tendons in total and both ends are active.
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- Gamma tendons (spacing 205mm in the dome). These tendons are the
result of the combination of vertical and dome tendons. Thus, the path
that these tendons follow is similar to a Γ. There are 98 tendons in total
and both ends are active.

The layout is exactly scaled, including any deviations around penetrations and
all of them have been cement grouted as in regular structures in France.

Finally, the reinforcing steel is distributed in the whole structure. Rebars spacing
and diameters are scaled to keep the same ratios ρ (%) as in full-size structures.
In typical areas of the cylinder, reinforcement principles are alternatively HB 6/8
at 6.7cm in horizontal direction at both inner and outer face, and HB 8/10 at 0.7o

in vertical direction. In the dome, reinforcement principles are also alternatively
HB 8/10 at 9.8cm at both faces. The stirrups in the whole containment are made
with HB 5.

Using this information and the mock-up plans provided by the company in charge,
the GiD model has been built. Figures 5.18 to 5.21a show the containment model
and the tendons layout for each family.

(a) Containment view with normal render
from GiD

(b) Containment view with flat render from
GiD

Figure 5.18: GiD geometry of the reactor containment building
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(a) Plan view of the dome tendons

(b) Elevation view of the dome tendons

Figure 5.19: GiD model with the dome tendons

(a) GiD model with the vertical tendons (b) GiD model with the gamma tendons

Figure 5.20: GiD model with the vertical tendons and gamma tendons
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(a) GiD model with the horizontal tendons (b) GiD model with the prestressing system

Figure 5.21: GiD model of the horizontal tendons and whole the prestressing system

The reinforcement has not been drawn in the model. The big density of this
material within the structure allows including it as an increment in the concrete
strength and stiffness.

Material properties, loads and boundary conditions

The company in charge of the mock-up has provided to participants all the mater-
ial properties referred to concrete, reinforcing steel and prestressing steel. Tables
5.5, 5.6 and 5.7 summarize these values, which have been used in the performed
analysis. Figure 5.22 shows a general view of the containment model and has
been selected to facilitate the understanding of Table 5.5
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Table 5.5: Concrete properties

CONCRETE

Young modulus
[GPa]

Compressive strength
(28 days) [MPa]

Tensile strength
(28 days) [MPa]

Density [kg/m3]

Cylinder 34.26 48.68 4.36 2395
Equipment hatch 34.26 48.68 4.36 2395
Personal hatch 34.26 48.68 4.36 2395
Buttresses 39.20 48.68 4.36 2395
Dome 32.51 40.90 4.20 2350
Ring beam 34.26 56.90 4.50 2430
Foundation 33.26 38.50 3.60 2360

Figure 5.22: Concrete materials identified at the numerical model

Table 5.6: Reinforcing steel properties

REINFORCING STEEL

Yield strength [Mpa] 500
Young modulus [Mpa] 200000
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Table 5.7: Prestressing steel properties

PRESTRESSING STEEL

Prestressing system
System C (4C15) (Fryssinet) ETA-06/0226
Bonded prestressing
Pull-in at wedge blocking [mm] 8

Strands
Strand section (T15) [mm2] 139
Tensile stregth [MPa] 1860

Tendons
Tendon 4T15
Tendon maximal prestressing stress (at anchor, before
wedge blocking) [Mpa]

1860

Tendon Young modulus [Mpa] 190000
Friction

Vertical tendons Friction coefficient 0.16
Wobble coefficient 0.0008

Horizontal tendons Friction coefficient 0.17
Wobble coefficient 0.0015

Gamma tendons (Vertical part) Friction coefficient 0.16
(Vertical part) Wobble coefficient 0.0008

(Dome part) Friction coefficient 0.16
(Dome part) Wobble coefficient 0.0015

Dome tendons Friction coefficient 0.16
Wobble coefficient 0.0015

As shown in Table 5.5, it has been necessary to define seven different concrete
materials for the containment. There is no inconvenient in PLCd to define as
many materials as the user desires, but the assignation of these properties to the
FEs must be done carefully.

Table 5.6 shows the reinforcing steel properties. As mentioned before, this ma-
terial has been included in the analysis as indicated in Section 4.3 and thus, its
effect is considered as an increment in the concrete strength and stiffness. The
magnitude of this effect has been defined per areas depending on the volumetric
participation of the reinforcement in each of them. Six regions have been selec-
ted: the cylinder, the buttresses, the ring beam, the dome, the hatches and the
foundation.

Table 5.7 contains the information relative to the tensile stress of each tendon
and also the parameters required when computing the immediate losses using a
standard code (Section 2.1). As mention previously, PLCd cannot compute the
immediate loses. In fact it computes the losses due to concrete instantaneous
deformation but friction losses and losses due to tendon anchorage are not taken
into account.

Therefore, it has been necessary to compute these losses beforehand and use



72 CHAPTER 5. APPLICATION EXAMPLES

for PLCd the prestressing values after deducting immediate losses. For this un-
coupled calculation, a code written in Visual Basic for Applications (VBA) has
been developed. It calculates the stress distribution in all the tendons of the
mock-up. This is done subtracting the friction losses and the losses due to ten-
don anchorage from the initial prestressing stress value (1860MPa).

The full code is attached in Appendix A. It has been created using the formulas
proposed at the EHE-08, which have been already presented in Section 2.1. The
code main inputs can be obtained from Table 5.7 and from the model geometry.
An example of the final output of this code is displayed at Figures 5.23 and 5.24.

Figure 5.23: Real and mean stress distribution in a horizontal tendon (H46)

Figure 5.24: Real and mean stress distribution in a gamma tendon (G155)
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It is interesting to see how the RealStressDistribution lines change from one family
to the other. Figure 5.23 has been taken from a horizontal tendon, where the
friction losses are significant and the stress distribution is quite symmetric due
to the path that these tendons trace. On the other hand, Figure 5.24 shows the
behaviour of a gamma tendon. In this family the stress distribution is asymmetric
due to the two different zones that the tendons cross. In fact, the shape of the
curve is similar to the addition of the vertical tendons curve (left branch of the
graph) and the dome tendons curve (right branch of the graph).

MeanStressDistribution lines are obtained from the RealStressDistribution lines
by equalling the areas under the curve. These constant values are the ones that
PLCd reads. Although PLCd is prepared to read different prestressing values
for each tendon i.e. the MeanStressDistribution values, only one stress value per
family has been used for the evaluation of the containment structure. This stress
value is obtained as the average of all the MeanStressDistribution values for each
family. Table 5.8 summarizes the result of these operations.

Table 5.8: Average stress and strain value per family due to prestressing effect

Stress [MPa] Strain

Horizontal tendons 1087.533 5.72×10−3

Vertical tendons 1352.632 7.12×10−3

Dome tendons 1115.099 5.87×10−3

Gamma tendons 1269.843 6.68×10−3

In addition to the prestressing effect, the other loads considered for the contain-
ment analysis are the self weight and the internal pressure that appears during
the five pressure tests. This pressure is applied normal to the model internal
surface in GiD considering the containment wall and the hatches (Figure 5.25a).

Only one boundary condition has been considered for the analysis: the structure
is fixed at the base (Figure 5.25b). This hypothesis is presumably valid as the
base slab is anchored in a very thick concrete block that connects the internal
and the external structures.
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(a) Surface where the pressure is applied (b) Fixed base of the structure

Figure 5.25: Loads and boundary conditions at the containment

Finite element mesh

Once the model is complete, the next step is to generate the FE mesh used in the
analysis. Figure 5.26a shows the final layout which consists of 199600 8-noded
hexahedras with linear shape functions. All the FEs have more or less the same
dimensions, Figure 5.26b shows how the elements are distributed in the thick-
ness. This rule is respected everywhere except on the base slab (Figure 5.26e),
where the FEs are bigger. This is because the interest on the slab behaviour
during the simulation is reduced and having bigger elements helps to reduce the
computational time.

Figures 5.26c and 5.26d show a detail of the FE mesh at the dome. It can be
seen that there are three volumes there and that the mesh changes from one to
another. What is happening is that, while the external ring is meshed following
the pattern established in the cylinder, there are two internal crowns that have
been meshed using a semi-structured mesh. The use of this strategy allows the
generation of an efficient mesh without using too small elements.
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(a) Full structure view (b) View inside the cylinder and view of the
wall thickness

(c) Dome detail (d) Dome internal region

(e) Foundation detail

Figure 5.26: FE mesh of the containment model
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Results of the analysis

Once the analysis has been performed, there are two kind of results that can
be of interest: the global behaviour of the structure and the prestressing steel
behaviour. The validation of the results is complex due to the type of structure
that is being analysed but there are some aspects that can be predicted:

- The overall behaviour should be:

• Nearly symmetric. The structure is almost symmetrical, therefore,
the stress and strain distribution should be also symmetric. The only
areas that introduce clear asymmetries to the containment are the
hatches in the cylinder wall.

• Invariant in time. The only material with an associated time depend-
ency is the prestressing steel, through the Generalized Maxwell model
(see Section 4.3). Therefore, when the global behaviour is analysed,
no significant changes will be observed from one pressure test to the
next one. Although this is the expected behaviour from the simulation
performed, other time dependent effects take place in reality: creep
and shrinkage in concrete. The damage model used for concrete mod-
elization does not consider these effects, thus the only way to account
for them is using an uncoupled calculation, e.g. using a Generalized
Kelvin model [33].

- The prestressing system behaviour is characterized by:

• A progressive decrease in the prestressing tension. The prestressing
steel behaviour is reproduced using a Generalised Maxwell model for
each tendon family. The company in charge of the benchmark did not
give any information that helps to calibrate these models, thus previ-
ous experience has been used to build them. CIMNE has analysed the
Ascó and Vandellós containments recently1 and the model paramet-
ers used there have been considered here. Table 5.9 summarizes the
Maxwell model parameters for each tendon family and Figure 5.27
shows the aspect of these curves starting at the anchorage operation
moment (t = 0 years).

1Cálculo de la vida remanente del sistema de postensado de las centrales nucleares de Ascó
y Vandellós y acciones derivadas - CIMNE - Ref.: 16BCX1000154
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Table 5.9: Generalized Maxwell model parameters for each tendon family

Horizontal
tendons

Vertical
tendons

Dome
tendons

Gamma
tendons

Young modulus [MPa] 190000 190000 190000 190000
Initial stress [MPa] 1087.53 1352.63 1115.10 1269.84
Kvisco 0.15 0.15 0.15 0.15

Figure 5.27: Maxwell model for each family of tendons

• A similar response from one pressure test to another. The prestressing
steel has been modelled as a viscoelastic material and therefore, the
effect that the pressure will induce in the steel should remain more
or less constant in time.

And now, paying attention to this background, results can be explored. Figures
5.28 to 5.39 show the stress distribution and the displacement field in the mock-
up reactor containment at several points of the analysis: just after introducing
the prestressing effect, at the maximum of the first pressure test, at the beginning
of the fifth pressure test and at the maximum of the fifth pressure test.
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Figure 5.28: Beginning of the Pre-op test. Displacements [m]

Figure 5.29: Beginning of the Pre-op test. Maximum principal stress - tension stress
distribution [Pa]
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Figure 5.30: Beginning of the Pre-op test. Minimum principal stress - compression stress
distribution [Pa]

Figure 5.31: Maximum pressure at the Pre-op test. Displacements [m]
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Figure 5.32: Maximum pressure at the Pre-op test. Maximum principal stress - tension
stress distribution [Pa]

Figure 5.33: Maximum pressure at the Pre-op test. Minimum principal stress - com-
pression stress distribution [Pa]
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Figure 5.34: Beginning of the VD2 test. Displacements [m]

Figure 5.35: Beginning of the VD2 test.Maximum principal stress - tension stress dis-
tribution [Pa]
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Figure 5.36: Beginning of the VD2 test. Minimum principal stress - compression stress
distribution [Pa]

Figure 5.37: Maximum pressure at the VD2 test. Displacements [m]
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Figure 5.38: Maximum pressure at the VD2 test. Maximum principal stress - tension
stress distribution [Pa]

Figure 5.39: Maximum pressure at the VD2 test. Minimum principal stress - compres-
sion stress distribution [Pa]
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It can be observed that the predictions made for the overall structure behaviour
are satisfied. The images show a clear symmetric behaviour in both scenarios:
with and without internal pressure (Figures 5.28 and 5.31).

Furthermore, comparing the images taken from the first pressure test and those
from the fifth pressure test, it can be seen that the structure behaves more or
less constant in time. Minimum changes can be produced by the damage of the
concrete or the prestressing loss, but the overall behaviour remains immutable.
The critical areas of the containment are the equipment hatch and the dome
where the maximum tensions and compressions are located. The level of stress
recorded suggests that damage probably has been activated as will be shown
afterwards.

From the previous images it can be conclude that the prestressing system seems
to be correctly designed because the overall behaviour remains in compression
even when the internal pressure is applied, which is essential in this type of
structures.

Finally, Figures 5.40, 5.41, 5.42 and 5.43 ratify the expected behaviour in the
prestressing force evolution. The first chart for all the families shows the pro-
gressive decrease of the initial prestressing tension. The other two graphics in
each family show a detail of the second, third and fourth pressure tests. Between
the second and the third tests there is a time gap of one year in which the Gener-
alized Maxwell model is working, but it can be observed that the effects of each
pressure test are nearly the same, only displaced in the Stress-axis.

An interesting effect can be seen that was not considered at the beginning: there
are differential behaviours between tendons that belong to the same family. This
happens in horizontal tendons (Figure 5.40) and in dome tendons (Figure 5.42).
Red lines in those graphs are used to point out this phenomena, which can be
explained as follows:

- In horizontal tendons, red lines, that are those that show the highest
prestressing level, correspond to those tendons located near the contain-
ment rigid areas, i.e. the foundation and the ring beam. Therefore, during
the pressure tests, these tendons remain more stable.

- In dome tendons, red lines, that are those that show the highest prestress-
ing level, correspond to those tendons that do not go through or near
the dome peak. Therefore, during the pressure tests, these tendons remain
more stable.
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(a) Stress evolution for the whole analysis period

(b) Stress evolution during the second pressurization test

(c) Stress evolution during the third and the fourth pressurization test

Figure 5.40: Stress evolution at the horizontal tendons
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(a) Stress evolution for the whole analysis period

(b) Stress evolution during the second pressurization test

(c) Stress evolution during the third and the fourth pressurization test

Figure 5.41: Stress evolution at the vertical tendons
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(a) Stress evolution for the whole analysis period

(b) Stress evolution during the second pressurization test

(c) Stress evolution during the third and the fourth pressurization test

Figure 5.42: Stress evolution at the dome tendons
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(a) Stress evolution for the whole analysis period

(b) Stress evolution during the second pressurization test

(c) Stress evolution during the third and the fourth pressurization test

Figure 5.43: Stress evolution at the gamma tendons
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In addition to these stress and displacement results of the containment building,
PLCd prints the evolution of the damage internal variable d for each FE. This
variable quantifies the damaged volumetric percentage of the finite element but
this type of result is not so intuitive.

Therefore, it has been decided to transform this parameter into another one: the
crack opening displacement ucrack. This new variable is computed inside the FE
code at each integration point as:

ucrack = (d · εeq) · lf (5.5)

Where lf is the characteristic length of the element and εeq is the equivalent
strain of the integration point, which is computed as:

εeq =
σ : ε

f (σ)
(5.6)

Where f (σ) is the uniaxial equivalent stress.

This new parameter is an estimation of the maximum crack width that could
appear in each FE. Therefore, this is not a function that gives the real crack
distribution, but an overview of the problem.

The definition used for this ucrack allows obtaining the crack evolution in the con-
tainment building. The presence of cracks depends on the stress state as stated in
Equations 5.5 and 5.6 and so it can be observed that ucrack values increase while
the pressure tests are being performed but, when there is no internal pressure,
these values decrease, i.e. the cracks close. Although this is a realistic behaviour,
it is important to keep in mind that the involved materials do not reduce their
damage level (d does not decrease) and thus, they do not recover their initial
properties.

Figures 5.44 to 5.47 show the evolution through the first pressure test of the
damage internal variable d and the crack opening displacement ucrack. It is in-
teresting to see that the prestressing operation induces damage to the concrete
(Figure 5.44) and furthermore, it can be seen that the damaged areas match with
those with the highest stress state, i.e. the equipment hatch and the dome.

Finally, the evolution in time of these parameters show that the damage effect is
accentuated by the rise of the internal pressure, which also leads to an increment
in the crack opening displacement.
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Figure 5.44: Beginning of the Pre-op test. Damage internal variable d ∈ [0, 1]

Figure 5.45: Beginning of the Pre-op test. Crack opening displacement ucrack [m]
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Figure 5.46: Maximum pressure at the Pre-op test. Damage internal variable d ∈ [0, 1]

Figure 5.47: Maximum pressure at the Pre-op test. Crack opening displacement ucrack

[m]
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Conclusions

The analysis of the mock-up reactor containment building helps to visualize the
potential of the proposed technique. In this scenario, with a FE mesh of nearly
200000 hexahedras and performing a non-linear analysis with damage in concrete
and viscoelasticity in prestressing steel, the computational analysis ran in 10h
and 15min, using the CIMNE computational resources (32-threads and 250GB
of RAM).

The main advantage of the SP RoM lies in the fact that it works as a manager of
constitutive models. Therefore, the user only has to be focused on the accurate
definition of the constitutive model of each composite material. The use of the
isotropic damage model for the concrete modelization and the viscoelasticity
model for prestressing simulation accounts for many of the phenomena that take
place in prestressed concrete structures and so are considered appropriate.

The results obtained from the performed analysis match with the ones that were
expected. Now its time to see which is the real behaviour of the structure and
compare the results obtained through the numerical simulation with those meas-
ured in situ during the pressure tests. These results will be provided soon by the
company in charge of the benchmark.

It is important to keep in mind the simplifications, the hypothesis considered in
this analysis and the possible points to be improved:

- The prestressing sequence has not been considered in the simulation. Thus,
all the tendons have been tensioned at the same time. Despite this, the code
allows the introduction of the prestressing stage in as many phases as the
user desires and take into account this effect in the analysis. Despite this,
considering that the simulation lasts for three years while the maximum
gap between prestressing operations is of few hours, the inclusion of the
prestressing sequence in the analysis has been discarded.

This accuracy level has been used in other cases where the time gaps during
the prestressing stage were bigger.

- The FE mesh used in the analysis could be improved. Performing a sensib-
ility analysis changing the model mesh for this structure is quite complex.
The algorithm used for the calculation has some restrictions that affect
notoriously in the final mesh layout.

The formulation that controls the SP RoM has been written for composite
materials with only two component materials: a matrix and a fibre ma-
terial. The tendon orientation controls the parallel and series behaviour
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of each element. Therefore, if a FE contains more than one tendon PLCd
gives an error message. In general, this can be avoided using a fine FE
mesh. Therefore, the maximum FE size is limited.

On the other hand, prestressing steel is included in the model as a truss ele-
ment with no area information and it is used to compute the intersections
needed for the composite elements definition. When the composite genera-
tion step (Section 5.2) takes place, the area information is then loaded in
order to compute the volumetric participations (fk and mk). If the FE is
smaller than the fibre, then incoherent volumetric participation values are
obtained. This happens because the element that is being analysed can-
not be simulated as a composite material, it is in fact composed by only
prestressing steel. This situation must be avoided and thus, the minimum
FE size is controlled by this situation [15].

- Not all the phenomena are predicted. The constitutive models have been
chosen in order to reproduce the real behaviour of the structure. Despite
this, there are some phenomena that cannot be predicted. This is the case
of the time dependent procedures that take place in concrete (creep and
shrinkage).

- The prestressing steel effect has been included using a uniform strain value
per family. PLCd allows the use of different strain values per tendon but
this does not introduce a significant difference in the results that would
be obtained because there are no significant differences between the mean
stress values of the tendons that belong to the same family.

In addition to this simplification, the numerical simulation cannot compute
the instantaneous losses due to friction and wedge blocking. Therefore, this
calculation is done uncoupled to the simulation.

- The rheological behaviour of the prestressing steel should be revised. The
Maxwell models used for the prediction of the prestressing tension evolu-
tion have been defined without any possible calibration. These are based
on previous experience in this type of structures, but should be calibrated
with the real response of the structure.

Despite this, these drawbacks can be solved and thus, the SP RoM is an inter-
esting technique for the analysis of prestressed concrete structures.
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Chapter 6

Conclusions and future
research lines

At this stage, once the bases that support the SP RoM are clear and the applic-
ability of this technique in the analysis of prestressed concrete elements has been
shown, some conclusions can be drawn.

The use of this methodology applied to the assessment of this type of structure
is quite new. This means that there are still many things that can be improved
in order to finally obtain an approach that fully predicts the real behaviour of
the prestressed concrete structures. Despite this, the application examples give
an accurate idea of the current potential of the methodology and show that it is
already a competitive tool.

In fact, compared with the existing alternatives reviewed in Section 2, the SP
RoM approach introduces several improvements. The main one is that this tech-
nique takes into account the fact that prestressed concrete is a composite ma-
terial. Therefore, the methodology allows considering concrete and prestressing
steel properly in the simulation, i.e. the SP RoM includes physically the tendons
into the analysis as the fibre of a LFC. In addition, different constitutive models
can be used to predict the behaviour of each component material, which not only
allows obtaining the global response, but also the results at each component ma-
terial. This is really interesting compared to the alternative of using homogenized
material properties and interpolation techniques for the analysis of the structure.

On the other hand, in addition to those issues that should be improved in the
methodology, there is an important issue related to the accessibility of this FE
code that could be considered as a drawback. PLCd is the FE code used for
the analysis by means of the SP RoM. It is an extraordinary code which allows
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performing many type of studies. Despite this, it is not a commercial code and
therefore it is difficult to widely distribute the methodology. Thus, the only way
to use this approach without using PLCd is by reproducing the code in another
FE code.

Some of the issues that should be improved for the proposed methodology are
common to other approaches. Therefore, there is a real need to work in those
directions and develop feasible solutions. This is the case of the automatic com-
putation of instantaneous prestressing losses or the possibility of considering the
prestressing effect with the real stress distribution and not an equivalent constant
stress distribution.

Other aspects are specific of the SP RoM. For example, it is convenient to keep
working on the correct modelization of the component materials. In this regard,
it can be interesting to change from a viscoelsticity model to a viscoplasticity
one for the prestressing steel simulation or modify the isotropic damage model
to include time-dependent phenomena like creep or shrinkage.

Finally, it would be interesting to improve the methodology and then take part
in the last VeRCoRs benchmark. Analysing a structure of this magnitude is an
unique opportunity.
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parcialmente pretensado. Master’s thesis, ETSECCPB - UPC, 2016. [Cited
in pages 11 and 12]

[39] R. Serpieri. A novel constitutive model of composite materials with unidirec-
tional long fibers: theoretical aspects and computational issues, November
2005. [Cited in pages 2, 34, 35, and 40]

[40] A. Shokoohfar and A. Rahai. Nonlinear analysis of pre-stressed concrete
containment vessel (PCCV) using the damage plasticity model. Nuclear
Engineering and Design, 2016. [Cited in pages 11, 12, and 14]

[41] R. Shreedhar and R. Kharde. Comparative study of Grillage method and
Finite Element Method of RCC bridge deck. International Journal of Sci-
entific and Engineering Research, February 2013. [Cited in page 11]

[42] 3DS Simulia. ABAQUS 6.14. Analysis user’s guide. Volume V: prescribed
conditions, constraints and interactions, 35.4.1-1 to 35.4.1-6. [Cited in pages

VII, 12, and 13]
[43] I. Tavakkoli, M.R. Kianoush, et al. Finite element moelling of a nuclear

containment structure subjected to high internal pressure. International
Journal of Pressure Vessels and Piping, 2017. [Cited in pages 11, 12, and 14]

[44] G. I. Taylor. Plastic strain in metals. Journal of the Institute of Metals,
1938. [Cited in page 30]

[45] C. Truesdell and R. Toupin. The classical field theories. 1960. [Cited in

page 31]
[46] W. Voigt. Ueber die beziehung zwischen den beiden elasticitätsconstanten
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