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Abstract  
The diamond bird-beak is a joint configuration for RHS construction and is achieved by 

rotating the chord and the brace of a traditional joint through 45º along their 

longitudinal axes. The main objective of the current thesis is to study diamond bird-beak 

X-type (DBBX) joints of stainless steel material under compression loading as well as 

tensile loading by means of a parametric analysis.  

Variation of two dimensionless parameters are considered within the parametric study: 

β =b1/b0 (relation between brace width and chord width) and 2γ=b0/t0 (relation 

between chord width and chord thickness), which leads to a total amount of 32 models 

i. e. 16 models subjected to compression loading as well as same 16 models subjected 

to tensile loading.  

Results are analysed in terms of design resistance dependance of both parameters i.e. 

Fu-β and Fu-2γ; as well as load-displacement curves. Comparisons are also made with 

actual European Normative formulation EN 1993-1-8 [3] as well as J.S. Owen et. al. 

(2001) formulation achieved in their article [6]. Finally, results of a stainless steel DBB 

X-type joint obtained in this thesis are compared to results of a carbon steel DBB X-type 

joint of same geometrical dimensions. 

 

Keywords: rectangular hollow sections, diamond bird-beak joint, stainless steel, 

tensile loading, compression loading, design resistance, failure mode  
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List of abbreviations and symbols 
In the present thesis, SI-units are used. Unless stated otherwise in the equations, 

dimensions are given in mm, cross sections in mm2, section modulus in mm3, moment 

of inertia in mm4 and stresses, strengths and moduli of elasticity in N/mm2. For the 

sake of simplicity, loads are given in kN. 

Symbol  Description  Units 

a Throat weld thickness mm 

A0 Cross-sectional area mm2 

b0 Width of chord member mm 

b1 Width of brace member mm 

DBB Diamond bird-beak joint - 

E Young's modulus N/mm2 

fu Ultimate tensile strength N/mm2 

fy Yield strength N/mm2 

G Shear modulus N/mm2 

L0 Length of chord member mm 

t0 Thickness of chord member mm 

t1 Thickness of brace member mm 

α Dimensionless parameter 2L0/b0 - 

β Dimensionless parameter b1/b0 - 

2γ Dimensionless parameter b0/t0 - 

εmax Maximum elongation - 

εu Fracture elongation - 

ν Poisson's ratio - 
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1. INTRODUCTION 
Design is an interactive process between the functional and architectural 

requirements and the strength and fabrication aspects. Although the manufacturing 

costs of hollow sections are higher than those for other sections, leading to higher unit 

material cost, economical applications are achieved in many fields. 

One of the constraints initially hampering the application of hollow sections was the 

design of the joints. However, nowadays design recommendations exist for all basic 

types of joints, and further research evidence is available for many special types of 

joints. 

Three different designations for structural applications of tubular shaped profiles are 

circular hollow sections (CHS), rectangular hollow sections (RHS) and square hollow 

sections (SHS). Hollow sections may be produced either seamless or welded. 

In the particular case of this thesis, diamond bird-beak X-type joints are analysed, 

which are a joint configuration for RHS construction and is achieved by rotating the 

chord and the brace of a traditional joint through 45º along their longitudinal axes.  

1.1 SCOPE OF WORK AND BACKGROUND 

Much attention has been focused recently on the relative cost, aesthetic appeal, 

strength and stiffness of various types of connection used in both open-section and 

tubular shaped profiles. Rectangular and square hollow sections (RHS and SHS, 

respectively) represent nowadays a vast source of structural alternatives for several 

structural purposes. 

Bird-beak joint is an innovative type of tubular constructions composed of square 

hollow sections. The main difference between this type of joint in comparison to the 

conventional SHS-to-SHS welded joints where the chord walls are parallel or 

perpendicular to the brace walls is the angles between chord and brace walls of a bird-

beak joint are oblique. In fact, diamond bird-beak joint is generated by simply rotating 

the members of a conventional SHS joint at 45º about their longitudinal axes. 

Although the literature background is not as wide as in the case of conventional 

tubular joints, efforts have been carried out in order to acknowledge performance of 

beak-bird joints. Thus, several studies and articles have been devoted to the ultimate 

resistance of carbon steel bird-beak square hollow section X-joints including J.S. Owen 

et. al. [6] and A. Pen a and R. Chaco n [7] studying these joints subjected to compressive 
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and tensile forces; and Yu Chen et. al. studying in-plane and out-of-plane bending[8,9]. 

T-joint configurations under tensile and compressive loading are studied as well in 

both articles by Yu Chen et. al. [13] and by L. Tong et. al. [10]. 

Moreover, further literature studies bird-beak SHS joints as T configuration by means 

of numerical and finite element analysis in order to approach stress concentration 

factors of these joints such as B. Cheng et. al.[12] and L. Tong et. al. [11]. 

This thesis is based on European Normatives: EN 1993 Design of steel structures. The 

most important parts of the normative that are used in this thesis are “EN 1993-1-1: 

General rules and rules for buildings” [1], “EN 1993-1-4: General rules–

Supplementary rules for stainless steel” [2], “EN 1993-1-8: Design of joints” [3] and 

“EN 1993-1-9: Fatigue” [4]. 

Among the literature mentioned, “The influence of member orientation on the 

resistance of cross joints in square RHS construction” by J.S. Owen et. al. [6] is of high 

importance for the current thesis, thus validation of the numerical analysis within 

ABAQUS will be compared to experimental joint studied in this article. Furthermore, 

parametric analysis results modelled by finite element method of a stainless steel joint 

is compared to formulation of design resistances achieved by J.S. Owen as well as EN-

1993-1-8 [3] formulation.  

Finally, stainless steel results are compared to identical geometrical joints of carbon 

steel by A. Pen a and R. Chaco n, which their results are published in the article 

“Structural analysis of diamond bird-beak joints subjected to compressive and tensile 

forces” [7]. 

Since most of the existing literature regarding diamond bird-beak joints are focused 

on structural carbon steel, present thesis is an attempt to approach these joints but 

considering stainless steel instead, thus slightly differences to mentioned bibliography 

are expected. 

1.2 GENERAL OBJECTIVES 

The main objective of the present thesis is to analyse a stainless steel diamond bird-

beak joint in X configuration by means of the finite element method using ABAQUS 

software.  

The analysis will be carried out as a parametric study, where variation of 

dimensionless geometric parameters β =b1/b0 (relation between brace width and 

chord width) and 2γ=b0/t0 (relation between chord width and chord thickness) will 

be of high importance. Thus, a total amount of 16 models will be modelled and studied 

in order to analyse variations in terms of ultimate design resistance of the joint. Those 
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16 models will be studied under tensile loading as well as compression loading, 

therefore a total amount of 32 models are analysed.  

1.3 SPECIFIC OBJECTIVES OF THE PRESENT THESIS 

Specific objectives of the current thesis are listed below: 

 Study of stainless steel diamond bird-beak X-type joints subjected to 

compressive loading by means of a parametric study that consists of a 

variation of dimensionless parameters β and 2γ. Results of desin resistances 

will be compared to EN 1993-1-8 [3] and J.S. Owen formulations [6] and widely 

discussed. 

 Study of stainless steel diamond bird-beak X-type joints subjected to tensile 

loading by means of a parametric study conducted by a variation of the same 

parameters β and 2γ. As in the compressive loading case, design resistances 

results will be compared with mentioned bibliography and widely discussed. 

 Load-displacement curves for both tensile and compression results are 

analysed for all 32 models in order to explain and discuss failures modes 

dependance on geometrical characteristics. 

 Comparison of the obtained results in terms of load-displacement curves to 

similar models studied in carbon steel by A. Pen a and R. Chaco n [7]. It is 

expected to achieve higher ultimate resistances in stainless steel models due 

to their higher ductility. 

Since this thesis is a study of a stainless steel joint, results may not be as close as 

expected to J.S. Owen results. Furthermore, European Normative formulation is set for 

a traditional RHS joint, thus diamond bird-beak configuration might lead to slightly 

differences as well. However, it is expected to find realistic and consistent results and 

a similar performance of the stainless steel joint in comparison to conventional 

structural steel joint results, but with higher ultimate resistance.  
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2. STATE OF THE ART 
This thesis is based on two main topics: stainless steel and diamond bird-beak joints. 

On the one hand, stainless steel is excellent due to its high ductility properties and, on 

the other hand, diamond bird-beak joints have better resistance properties than the 

traditional rectangular and square hollow sections (i.e. RHS and SHS, respectively) 

Rectangular and square hollow sections represent nowadays a vast source of 

structural alternatives due to their wide advantages against traditional open profiles. 

Specifically, diamond bird-beak RHS X-joints are deemed as being a type of welded X-

joint between steel rectangular hollow sections in which both the chord as well as the 

brace are rotated 45º around their longitudinal axes, as it is represented in Figure 1. 

The most relevant structural advantages are clear for elements under torsion as well 

as buckling due to compression. However, RHS and SHS profiles are not considered the 

best option to resist flexural behaviour. 

The applications of structural hollow sections nearly cover all fields. Hollow sections 

may be used because of the beauty of their shape or to express lightness, while in other 

cases their geometrical properties determine their application. For instance, in 

buildings and halls, hollow sections are mainly used for column and lattice girders or 

space frames for roofs. Several applications may be considered as well for bridges 

construction. Also, there are a few aspects which make hollow sections increasingly 

suitable for hydraulic structures, such as barriers. 

Combination of both stainless steel and diamond bird-beak joints shall result in a join 

with good performance under axial loading. This paragraph will focus on the main 

characteristics of both main topics of this thesis i.e. stainless steel and diamond bird-

beak configuration joint, and state the most important theoretical aspects in order to 

be able to analise results in an appropriate and accurate way. 

Theoretical aspects of both topics are mainly based on European Normative 

framework and, in particular, “EN 1993-1-4: General rules–Supplementary rules for 

stainless steel” [2], which gives a detailed normative on stainless steel, and “EN 1993-

1-8: Design of joints” [3], which details normatives and formulations for a vast source 

of joints. Since this thesis is focused on hollow section joints, paragraph 7 of EN 1993-

1-8 is of high importance for this thesis.  

Finally, a paragraph of the timeline of articles analysing diamond bird-beak joints is 

described in order to place the present thesis in the overall history of these types of 
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joints. For the high importance for this thesis, J. S. Owen’s article [6] is described and 

most relevant conclusions are explained in order to set limiting values of 

dimensionless parameters β and 2γ. 

 

Figure 1 Diamond bird-beak X-type joint representation 
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2.1 CROSS SECTION CLASSIFICATION  

Sections are classified depending on their moment-rotation characteristics. The role 

of cross section classification is to identify the extent to which the resistance and 

rotation capacity of cross sections is limited by its local buckling resistance.  

Four classes of steel cross-sections are defined as follows, according to EN1993-1-1 

[1]: 

Class 1: Plastic Class 1 cross-sections are those which can form a plastic 

hinge with the rotation capacity required from plastic 

analysis without reduction of the resistance 

Class 2: Compact Class 2 cross-sections are those which can develop their 

plastic moment resistance, but have limited rotation 

capacity because of local buckling 

Class 3: Semi-compact Class 3 cross-sections are those in which the stress in 

the extreme compression fibre of the steel member 

assuming an elastic distribution of stresses can reach 

the yield strength, but local buckling is liable to prevent 

development of the plastic moment resistance 

Class 4: Slender Class 4 cross-sections are those in which local buckling 

will occur before the attainment of yield stress in one or 

more parts of the cross-section 

 

 

Figure 2 Theoretical moment-curvature curves for different classes of steel cross-sections1 

                                                           
1 Font: https://www.researchgate.net/figure/Cross-section-classification-according-to-Eurocode-

3_fig3_265167619 
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The classification of a cross-section depends on the width to thickness ratio of parts 

subject to compression. It should be noted that Class 4 joints would not be realistic, so 

yield strength would not be reached and therefore limiting the elastic capacity of the 

joint. Moment-rotation characteristics are displayed in Figure 2. In the particular case 

of tubular cross-sections, Table 1 will be used in order to classify stainless steel cross-

sections in each case. 

Therefore, first steps and calculations of the current thesis will be focused to 

determine which class is considered to be each model taking into account Table 1 

formulation according to EN 1993-1-8. 

 

Table 1 Maximum width-to-thickness ratios for compression parts for stainless steel (EN 1993-1-4 

Table 5.2 [2]) 
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2.2 INTRODUCTION TO STAINLESS STEEL  

Stainless steel was invented by Harry Brearley at the beginning of 20 th century. It is a 

steel alloy with a minimum of 10.5% chromium content by mass. Some stainless steel 

types contain other elements, which nickel is the most common among them. It is 

notable for its corrosion resistance, which increases with increasing chromium 

content, and it does not readily corrode, rust or stain with water as ordinary steel does. 

Those properties make it an ideal material for many applications where both strength 

of steel and corrosion resistance is required. 

However, it is not fully stain-proof in low-oxigen, high-salinity or poor air-circulation 

environments. Basically, quemical composition of stainless steel differs from carbon 

steel by the amount of chromium present. There are various grades and surface 

finishes of stainless steel to suit the environment the alloy must resist. Thus, there are 

over 150 grades of stainless steel of which 15 are most commonly used. 

Furthermore, stainless steel are classified into four main families: ferritic, austenitic, 

martensitic and duplex. Among them, austenitic and duplex stainless steel are the 

most commonly used in structural design. 

Ferritic stainless steel Only chromium is present. They have a ferrite 

microstructure and are magnetic, similar to carbon 

steel. 

Austenitic stainless steel The largest family of stainless steels. They possess an 

austenitic microstructure, which is achieved by alloying 

with sufficient nickel, which allows the austenite 

structure of iron to be stabilized. This crystal structure 

makes such steels virtually non-magnetic and less 

brittle at low temperatures 

Martensitic stainless steel More carbon is added in order to achieve greater 

hardness and strength. They are hardened by heat 

treatment. 

Duplex stainless steel Also called ausenitic-ferritic stainless steel due to their 

mixed microstructure of austenite and ferrite. It 

provides improved resistance to chloride stress 

corrosion cracking in comparison to austenitic stainless 

steels 

Stress-strain behaviour is also slightly different between carbon steel and stainless 

steel. The most important difference is visible in stress-strain curve, theoretically 

displayed in Figure 3. On the one hand, carbon steel has a linear behaviour until yiled 

stress is achieved followed by an almost constant and planar line before strain 

hardening occurs. On the other hand, stainless steel has a more rounded curve and 

yield stress is not well-defined. Furthermore, it shall be noted that stainless steel can 
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absorb considerable impacts before fracture occurs thanks to excellent ductility, 

specially austenitic stainless steel, and its hardening properties by deformation. 

 

Figure 3 Theoretical constitutive equations of carbon steel and stainless steel 

2.3 MATERIAL PROPERTIES 

2.3.1 Mechanical properties of stainless steel 

The most important mechanical properties for steel material, and in particular for 

stainless steel, are shown in the stress-strain curve.  

Theoretical stress-strain curve for stainless steel material is displayed in Figure 4. It is 

visible that, in the case of stainless steel, yield stress is not achieved within the elastic 

phase. 

 

 

Figure 4 Theoretical stress-strain curve for structural stainless steel2 

                                                           
2 Font: I. ARRAYAGO, E. REAL, L. GARDENER. “Description of stress-strain curves for stainless steel alloys” 

[17] 
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Table 2 shows nominal values of the yield strength fy and the ultimate tensile strength 

fu for structural stainless steels according to EN 1993-1-4 [2]. 

Following values of the material coefficients may be assumed for the global analysis 

and in determining the resistance of members and cross-sections: 

 Modulus of elasticity E: 

𝐸 = 200000 𝑁/𝑚𝑚2 For the austenitic and austenitic-ferritic grades in Table 

2 excluding grades 1.4539, 1.4529 and 1.4547 

𝐸 = 195000 𝑁/𝑚𝑚2 For the austenitic grades 1.4539, 1.4529 and 1.4547 

𝐸 = 220000 𝑁/𝑚𝑚2 For the ferritic grades in Table 2 

 Shear modulus G, where: 

𝐺 =
𝐸

2(1 + 𝜈)
 Eq. 1 

 Poisson’s ratio in elastic stage, ν=0.3. 

 

Table 2 Nominal values of the yield strength fy and the ultimate tensile strength fu for structural 

stainless steels (EN 1993-1-4 Table 2.1 [2]) 
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2.3.2 Fracture toughness 

The austenitic and austenitic-ferritic stainless steels in Table 2 may be assumed to be 

adequately tough and not susceptible to brittle fracture for service temperatures down 

to -40º. 

2.3.3 Ductility 

Ductility is a measure of material’s ability to undergo significant plastic deformation 

before rupture, which may be expressed as percent elongation from a tensile test. 

In the particular case of steel, minimum ductility is required that should be expressed 

in terms of limits for: 

- Ratio fu/fy 

- The elongation at failure on a gauge length of 5.65 √𝐴0 (where A0 is the 

original cross-sectional area) 

- Ultimate strain 

According to EN 1993-1-1 [1], following limiting values are recommended: 

𝑓𝑢 𝑓𝑦⁄ ≥ 1.10 휀𝑢 ≥ 0.15 휀𝑢 ≥ 15휀𝑦 

In accordance to EN 1993-1-4 [2], the ductility requirements also apply to stainless 

steel. Steels conforming with one of the steel grades listed in Table 2 should be 

accepted as satisfying these requirements. 

2.3.4 Durability 

Durability is the ability of a product to perform its required function over a lengthy 

period under normal conditions of use without excessive expenditure or maintenance. 

Durability for carbon steel is widely explained in EN 1993-1-1 [1], so current 

paragraph will focus in the main differences between using stainless steels and using 

carbon steels. 

The principal difference between these types of steel is that for carbon steels, 

protection from environmental effects, and hence life expectancy, can be dealt 

separately from structural design. On the other hand, for stainless steel, life 

expectancy is not determined by subsequent protective treatments, but by the initial 

selection of materials, the design process and the fabrication procedures, and by their 

suitability for the environmental conditions. 

Stainless steels are generally very resistant to corrosion and they will perform 

satisfactorily in most environments. The limit of corrosion resistance for a given 
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stainless steel depends on its alloying elements, which means that each grade has a 

slightly different response when exposed to a corrosive environment.  

2.3.5 Fatigue 

Structural members shall be designed for fatigue such that there is an acceptable level 

of probability that their performance will be satisfactory throughout their design life. 

Fatigue assessments should be undertaken using either damage tolerant method or 

safe life method.  

On the one hand, the damage tolerant method should provide an acceptable reliability 

that a structure will perform satisfactorily for its design life, provided that a prescribed 

inspection and maintenance regime for detecting and correcting fatigue damage is 

implemented throughout the design life of the structure.  

On the other hand, the safe life method should provide an acceptable level of reliability 

that a structure will perform satisfactorily for its design life without the need for 

regular in-service inspection for fatigue damage.  

The assessment methods given in EN 1993-1-9 [4] are applicable to all grades of 

structural steels and stainless steels.  

2.3.6 Properties of the materials for the present thesis 

Stainless steel used in the current thesis is an austenitic elasto-plastic material with 

the stress-strain curve displayed in Figure 5 obtained by means of the CodeSkulptor 

web site (www.codeskulptor.org). Refer to “Appendix F. STAINLESS STEEL CODE” to 

check the overall code for stainless steel. 

 

 

Figure 5 Austenitic stainless steel stress-strain curve 

  

http://www.codeskulptor.org/
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2.4 JOINTS AND STRUCTURAL ELEMENTS 

2.4.1 Basis of design 

All joints shall have a design resistance such that the structure is capable of satisfying 

all the basic design requirements (EN 1993-1-1 [1] and EN 1993-1-8 [3]). 

The partial safety factors γM for joints are given EN 1993-1-8 [3] and listed in Table 3: 

 

Table 3 Partial safety factors for joints (EN 1993-1-8 Table 2.1 [3]) 

Recommended values given in EN 1993-1-1 [1] are as follows: 

𝛾𝑀0 = 1.0 

𝛾𝑀1 = 1.0 

𝛾𝑀2 = 1.25 

Recommended values given in EN 1993-1-8 [3] for joints are as follows: 

𝛾𝑀3 = 1.25 𝛾𝑀5 = 1.0 

𝛾𝑀3,𝑠𝑒𝑟 = 1.1 𝛾𝑀6,𝑠𝑒𝑟 = 1.0 

𝛾𝑀4 = 1.0 𝛾𝑀7 = 1.1 
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2.4.2 Introduction to joints and structural elements 

Every joint should be designed in order to resist forecasted loads; level of safety should 

be adequate; have a good behaviour in terms of serviceability and ultimate states, and 

should be ease and safety in terms of fabrication and execution.  

Several joints as a whole set should be considered as a structural truss. Trusses may 

be either planar (axes of the joints are within the same geometrical plan) or spatial 

(axes of the joints are not within the same geometrical plan). The main elements of a 

structural truss are: 

Chord  It is the main beam of the truss, which has continuity along the joint 

into consideration. 

Diagonal Secondary element, which starts and/or ends at the joint node and has 

an angle with the chord member different to 90º. 

Brace  Secondary beam, which starts and/or ends at the joint node. The main 

difference with a diagonal member is that it is set at 90º with the chord 

member. 

There are basically two types of joints or connections: bolted joints and welded joints. 

Since the current thesis is focused on welded joints between RHS brace member and 

RHS chord member, those will be explained in the following paragraph. Refer to EN 

1993-1-8 [3] for further information about bolted joints. 

2.4.3 General aspects for welded joints 

The explanation of welded joints described in this paragraph apply to weldable 

structural steels conforming to EN 1993-1-1 [1] and to material thickness of 4 mm and 

over. 

The most common weld types are fillet welds, fillet weld all round, butt welds and flare 

groove welds. Butt welds may either be full penetration or partial penetration. Also, 

both fillet welds all round and plug welds may either be in circular holes or in elongated 

holes. 
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FILLED WELDS Filled welds may be used for connecting parts where the 

fusion faces form an angle between 60º and 120º. Angles 

smaller than 60º are also permitted, but in such cases the 

weld should be considered to be a partial penetriation 

butt weld. 

Fillet welds finishing at the ends or sides of parts should 

be returned coninuously, full size, around the corner for 

a distance of at least twice the leg length of the weld. 

FILLET WELDS ALL ROUND Fillet welds all round, comprising fillet welds in circular 

or elongated holes, may be used only to transmit shear or 

to prevent the buckling or separation of lapped parts.  

BUTT WELDS Butt welds can be either full penetration or partial 

penetration welds. On the one hand, a full penetration 

butt weld is defined as a weld that has complete 

penetration and fusion of weld and parent metal 

throughout the thickness of the joint. On the other hand, 

a partial penetration butt weld is defined as a weld that 

has joint penetration which is less than the full thickness 

of the parent material. 

PLUG WELDS Plug welds may be used to transmit shear, to prevent the 

buckling or separation of lapped parts and to inter-

connect the components of built-up members. However, 

they should not be used to resist externally applied 

tension. 

FLARE GROOVE WELDS This type is used for hollow section joints and will be 

explained in the hollow section paragraph “2.5 HOLLOW 

SECTION JOINTS”, thus they are used in this thesis for 

DBB X-type joints. 
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2.5 HOLLOW SECTION JOINTS 

2.5.1 Scope and field of application of hollow section joints 

Several assumptions should be taken into account in order to analyse hollow section 

joints within the European Normative framework. The most important and relevant 

assumptions are listed below. Each assumption is taken into account in the present 

thesis. 

 For hot finished hollow sections and cold-formed hollow sections, the 

nominal yield strength of the final product should not exceed 460 

N/mm2. For products with a nominal yield strength higher than 355 

N/mm2, the static design resistances should be reduced by a factor of 

0.9. Since this thesis analyses a stainless steel with a yield stress of 280 

N/mm2, this assumption is achieved. 

 The nominal wall thickness of hollow sections should not be less than 

2.5 mm. For this thesis, minimum nominal wall thickness of any 

element is 5 mm. 

 The nominal wall thickness of a hollow section chord should not be 

greater than 25 mm unless special measures have been taken to ensure 

that the through thickness properties of the material will be adequate. 

For this thesis, maximum nominal wall thickness of the chord is 15 mm. 

 The compression elements of the members should satisfy the 

requirements for Class 1 or Class 2 for the condition of pure bending. 

As it is stated in paragraph “3.4.3 Classification of cross-sections”, all 

models of the current thesis are Class 1. 

2.5.2 Truss and joint configurations 

Various types of trusses are used in practice. Trusses made of hollow sections should 

be designed in such a way that the number of joints and, thus, fabrication is minimised. 

Depending on the type of truss, various types of joints are used i.e. X, T, Y, N, K or KT.  

The types of joints in hollow section joints are shown in Figure 6. 
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Figure 6 Types of joints in hollow section lattice girders (EN 1993-1-8 Figure 7.1 [3]) 

Dimensions of a hollow section joint with sigle brace member are displayed in Figure 

7. For the current thesis, a diamond bird-beak X (DBBX) joint will be analysed, which 

is a type of welded X-joints between SHS in which both the chord as well as the brace 

are rotated 45º around their longitudinal axes. Furthermore, θ angle between brace 

and chord is 90º.  
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Figure 7 Dimensions and other parameters at aa hollow section lattice girder joint (EN 1993-1-8 

Figure 1.4 [3]) 

2.5.3 Mechanical properties of hollow sections 

Hollow sections are made of similar steel as used for other steel sections, thus there is 

no difference when considering mechanical properties. Current thesis will take into 

account mechanical properties of stainless steel mentioned in paragraph “2.3.1 

Mechanical properties of stainless steel”.  

2.5.4 Geometric properties of hollow sections 

Geometric properties may be considered taking into account load conditions acting in 

the hollow section. For instance, geometric properties may be different for members 

under tensile loading, compression loading, bending, shear, internal pressure and/or a 

combination of previous loadings.  

Since current thesis will be focused on the results of a diamond bird-beak X-type joint 

under tension loading as well as compression, those will be explained afterwards. 

TENSION 

The design capacity Nt,Rd of a member under tensile loading depends on the cross 

sectional area and the design yield strength, and is independent of the sectional shape. 

Thus, there is no advantage nor disadvantage in using hollow sections from the point of 

view of the amount of material requiered. The design capacity is given by: 

𝑁𝑡,𝑅𝑑 = 𝐴 · 𝑓𝑦𝑑 Eq. 2 

In the case of a cross sections weakened by bolt holes or slots, the net cross sections 

should be reduced as follows: 
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𝑁𝑡,𝑅𝑑 =
𝐴 · 𝑓𝑢

𝛾𝑀2
· 0.9 Eq. 3 

COMPRESSION 

For centrally loaded members in compression, the critical buckling load depends on 

the slenderness λ and the section shape. The slenderness λ is given by the ratio of the 

buckling length and the radius of gyration: 

𝜆 =
𝑙𝑏

𝑖
 Eq. 4 

It should be noted that gyration’s radius of a hollow section is generally much higher 

than for the weak axis of an open section. For a given length, this difference results in a 

lower slenderness for hollow sections and thus a lower mass when compared with open 

sections.  

2.5.5 Failure modes for hollow section joints 

On the one hand, behaviour for tubular joints under loading conditions is controlled 

by geometry of the joint and, on the other hand, by loading structural conditions of the 

overall structure.  

The design joint resistances of connections between hollow sections and of 

connections between hollow sections and open sections, should be based on the 

following failure modes as applicable: 

Mode (a) Chord face failure (plastic failure of the chord face) or chord 

plastification (plastic failure of the chord cross-section) 

Mode (b) Chord side wall failure (or chord web failure) by yielding, crushing or 

instability (crippling or buckling of the chord side wall or chord web) 

under the compression brace member 

Mode (c) Chord shear failure 

Mode (d) Punching shear failure of a hollow section chord wall (crack initiation 

leading to rupture of the brace members from the chord member) 

Mode (e) Brace failure with reduced effective width (cracking in the welds or in 

the brace members) 

Mode (f) Local buckling failure of a brace member or of a hollow section chord 

member at the joint location 

Figure 8 shows failure modes for RHS joints. Although the resistance of a joint with 

properly formed welds is generally higher under tension than under compression, the 
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design resistance of a joint is generally based on the resistance of the brace in 

compression to avoid the possible excessive local deformation or reduced rotation 

capacity or deformation capacity with which might otherwise occur. 

 

Figure 8 Failure modes for joints between RHS brace members and RHS chord members (EN 1993-

1-8 Figure 7.3 [3]) 
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2.5.6 Welded joints for hollow section joints 

The welds connecting the brace members to the chords shall be designed to have 

sufficient resistance to allow for non-uniform stress-distributions and sufficient 

deformation capacity to allow for redistribution of bending moments. 

In welded joints, the connection should normally be formed around the entire 

perimeter of the hollow section by means of a butt weld, a fillet weld, or a combination 

of the two.  

The design resistance of the weld, per unit length of perimeter of a brace member, 

should not normally be less than the design resistance of the cross-section of that 

member per unit length of perimeter. 

For rectangular structural hollow sections, as they are those used in the current thesis, 

the design throat thickness of flare groove welds is defined according to Figure 9: 

 

Figure 9 Design throat thickness of flare groove welds in rectangular structural hollow sections (EN 

1993-1-8 Fig 7.5 [3]) 

To avoid weld failure it is recommended to design the welds to be stronger than the 

connected brace members. 

This thesis will take into consideration that fillet weld connection is stronger enough 

to avoid weld failure among the joint. Thus, weld will not be modelled within ABAQUS. 

2.5.7 Range of validity of joints 

The range of validity for the geometry of the joints is given in the table below. On the 

one hand, for joints within the range of validity, only the design criteria covered in this 

table need to be considered and the design resistance of a connection should be taken 

as the minimum value for all applicable criteria. On the other hand, for joints outside 

the range of validity, all the criteria for uniplanar joints should be considered. In 

addition, the secondary moments in the joints caused by their rotational stiffness 

should be taken into account. 
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Table 4 Range of validity for welded joints between RHS brace members and RHS chord members (EN 

1993-1-8 Table 7.8 [3]) 

 

Table 5 Additional conditions for welded joints between RHS brace members and RHS chord members 

(EN 1993-1-8 Table 7.9 [3]) 



 

Numerical analysis on stainless steel 

diamond bird-beak joints subjected to 

compressive and tensile forces 

Chapter 2: State of the art 

 

  23 

2.5.8 Design resistances 

Considering uniplanar joints between RHS brace members and RHS chords, two 

different types of joints may be considered: unreinforced joints and reinforced joints. 

Design axial resistances of welded T, X and Y joints between RHS braces and RHS 

chords as well as design resistance moments of welded joints between RHS brace 

members and RHS chords accordinng to EN 1993-1-8 [3] are displayed in Table 6 and 

Table 7, respectively. Note that current thesis will only be focused on the unreinforced 

joints. 

Brace member connections subjected to combined bending and axial force should 

satisfy the following requirement: 

𝑁𝑖,𝐸𝑑

𝑁𝑖,𝑅𝑑
+

𝑀𝑖𝑝,𝑖,𝐸𝑑

𝑀𝑖𝑝,𝑖,𝑅𝑑
+

𝑀𝑜𝑝,𝑖,𝐸𝑑

𝑀𝑜𝑝,𝑖,𝑅𝑑
≤ 1 Eq. 5 

Where: 

Mip,i,Rd is the design in-plane moment resistance 

Mip,i,Ed is the design in plane internal moment 

Mop,i,Rd is the design out-of-plane moment resistance 

Mop,i,Ed is the design out-of-plane internal moment 

Since analysis of the models of this thesis is only for joints subjected to axial loads, 

desgn resistance moments in Table 7 are not taken into account.  
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Table 6 Design axial resistances of welded T, X and Y joints between RHS braces and RHS chords 

(EN 1993-1-8 Table 7.11 [3]) 
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Table 7 Design resistance moments of welded joints between RHS brace members and RHS chords 

(EN 1993-1-8 Table 7.14 [3]) 
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2.6 DIAMOND BIRD-BEAK JOINT: TIMELINE AND BRIEF 

HISTORY 

This paragraph is focused in placing this thesis within the overall history of studies of 

diamond bird-beak joints. For instance, diamond bird-beak history is short and not 

many articles have been carried out to study this particular joint.  

In 2001, J.S. Owen et. al. were pioneers on the topic of diamond bird-beak joints with 

their article titled “The influence of member orientation on the resistance of cross joints 

in square RHS construction” [6]. The main conclusion of their study was achieving an 

analytical formulation for a diamond bird-beak joint which was really accurate in 

comparison to normative formulations for a traditional square hollow section joints. 

Since formulation obtained by J.S. Owen is of high importance fort his thesis, conclusions 

of their article are explained in “2.7 DBB JOINT IN LITERATURE: J.S. OWEN’S ANALYTICAL 

FORMULATION”.  

Few years later, in 2007, A. D. Christitsas et. al. conducted a study to analyse 

conventional and square bird-beak joints subjected to in-plane bending by means of the 

finite element method. Conclusions were written in an article titled “FEM analysis of 

conventional and square bird-beak SHS joint subject to in-plane bending moment—

experimental study” [18]. 

In 2014, A. PEÑA and R. CHACÓN conducted a parametric analysis varying parameters 

β and 2γ of a carbon steel diamond bird-beak joint and sumarised their conclusions in 

an article titled “Structural analysis of diamond bird-beak joints subjected to compressive 

and tensile forces” [7] in order to verify J.S. Owen’s formulations. 

It was not until 2014 that diamond bird-beak joints were widely studied, specially by 

chinese researchers. L. TONG, Y. FU, Y. LIU, D. YAN and X. L. ZHAO studied stress 

concentration factors in their article “Stress concentration factors of diamond bird-beak 

SHS T-joints under brace loading” [19]. For instance, stress concentration factors were 

largely studied in several articles in 2015 such as “Finite element analysis and formulae 

for stress concentration factors of diamond bird-beak SHS T-joints” by L. TONG et. al. 

[11], “Numerical investigation on stress concentration factors of square bird-beak SHS 

T-joints subject to axial forces” by B. CHENG et. al. [12], “Stress concentration factors of 

negative large eccentricity tubular N-joints under axial compressive loading in vertical 

brace” by J. YANG [15]. In 2018, stress concentration factors are still a subject of 

discussion in “SCF of bird-beak SHS X-joints under asymmetrical brace axial forces” by B. 

CHENG [20]. 

https://www.sciencedirect.com/science/article/pii/S0143974X07000041
https://www.sciencedirect.com/science/article/pii/S0143974X07000041
https://www.sciencedirect.com/science/article/pii/S0143974X07000041
https://www.sciencedirect.com/science/article/pii/S0263823113002644
https://www.sciencedirect.com/science/article/pii/S0263823113002644
https://www.sciencedirect.com/science/article/pii/S026382311400295X
https://www.sciencedirect.com/science/article/pii/S026382311400295X
https://www.sciencedirect.com/science/article/pii/S0263823115001640
https://www.sciencedirect.com/science/article/pii/S0263823115001640
https://www.sciencedirect.com/science/article/pii/S026382311530080X
https://www.sciencedirect.com/science/article/pii/S026382311530080X
https://www.sciencedirect.com/science/article/pii/S026382311530080X
https://www.sciencedirect.com/science/article/pii/S0263823117308455
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Figure 10 Diamond bird-beak joints timeline 

Among all the chinese researchers, Y. CHEN stands out for focusing in acknowledging 

the behaviour of diamond bird-beak joints uner in-plane bending and out-of-plane 

bending in articles titled “Behaviour of bird-beak square hollow section X-joints under in-

plane bending” [9] and “Behaviour of bird-beak square hollow section X-joints under out-

of-plane bending” [8], respectively. Furthermore, J. CHEN et. al. conducted a numerical 

study titled “Numerical study and design equations of square and diamond bird-beak SHS 

T-joints under axial compression” [13] and an article “Tests of SHS brace-H-shpaed chord 

X-joints under in-plane bending” [16]. 

https://www.sciencedirect.com/science/article/pii/S0263823114002948
https://www.sciencedirect.com/science/article/pii/S0263823114002948
https://www.sciencedirect.com/science/article/pii/S0143974X1400340X
https://www.sciencedirect.com/science/article/pii/S0143974X1400340X
https://www.sciencedirect.com/science/article/pii/S0263823115301038
https://www.sciencedirect.com/science/article/pii/S0263823115301038
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Y. CHEN was also interested in stress concentration factors. For instance, they studied 

stress concentration factors for positive large eccentricity of circular hollow sections 

and published their conclusions in an article titled “Parametric study and formulae of 

SCFs for positive large eccentricity CHS N-joints” [14] and was part of the team of “Stress 

concentration factors of negative large eccentricity tubular N-joints under axial 

compressive loading in vertical brace” by J. YANG [15], mentioned before. 

Mentioned articles are all the literature that discusses and analyses diamond bird-beak 

joints since J.S. Owen introduces this topic in 2001. It shall be noted that all of them have 

in common that they have analysed diamond bird-beak joints in carbon steel. Therefore 

stainless steel diamond bird-beak joints, which are the central topic of this thesis, are 

yet to be discussed. 

2.7 DBB JOINT IN LITERATURE: J.S. OWEN’S ANALYTICAL 

FORMULATION 

The analytical solution achieved by J.S. Owen et al. (2001) in the article titled “The 

influence of member orientation on the resistance of cross joints in square RHS 

construction” [6] is based on a diamond bird-beak (DBB) joint under compression load 

by means of the variation of the following dimensionless geometric parameters: 

𝛼 = 2
𝐿0

𝑏0
 𝛽 =

𝑏1

𝑏0
 2𝛾 =

𝑏0

𝑡0
 

The most relevant geometric parameters are shown in Figure 11. 

 

Figure 11 Geometric parameters for a hollow section DDB X joint  

https://www.sciencedirect.com/science/article/pii/S0143974X16300116
https://www.sciencedirect.com/science/article/pii/S0143974X16300116
https://www.sciencedirect.com/science/article/pii/S026382311530080X
https://www.sciencedirect.com/science/article/pii/S026382311530080X
https://www.sciencedirect.com/science/article/pii/S026382311530080X
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In accordance to J.S. Owen et al., previous parameters are limited within the following 

values: 

5.3 < 𝛼 < 80 0.2 < 𝛽 < 0.9 9.4 < 2𝛾 < 35 

The parameter α refers to the releation between chord length and half of its width. 

Four cases were considered for the chord end boundary conditions in order to find 

joint capacity dependance on chord length ratio (α): 

 Case 1: All nodes at the end of the chord are restrained in all degrees of 

freedom (incluiding londitudinal) 

 Case 2: All nodes at the end of the chord are restrained, in all but the 

longitudinal degree of freedom 

 Case 3: All nodes at the end of the chord are free to move longitudinally 

and to rotate about the three axes but are not allowed to displace 

transversely. 

 Case 4: Free ends (no restraint applied) 

The study carried out by J.S. Owen et al. concluded that for α≥40, joint capacity results 

for DDB joints are effectively constant with chord length and is independent of the 

restraints at the end of the chord, as it is visible in Figure 12. 

 

 Figure 12 Effect of length and end restraint on joint capacity (β=0.6, b0=150 mm, t0=6.3 mm, fy=275 

N/mm2) extracted of the study of J.S. Owen et al.[6] 



 

Numerical analysis on stainless steel 

diamond bird-beak joints subjected to 

compressive and tensile forces 

Chapter 2: State of the art 

 

  30 

Diamond bird-beak X joint used in J.S. Owen et. al. study has following geometric 

parameters: 

𝐿0 = 520 𝑚𝑚 𝑏0 = 150 𝑚𝑚 𝑡0 = 6.2 𝑚𝑚 

𝐿1 = 3 · 𝑏1 𝑏1 = 90 𝑚𝑚 𝑡1 = 6.25 𝑚𝑚 

𝛼 = 6.933 𝛽 = 0.6 2𝛾 = 23.8 

As well as following material properties: 

𝐸 = 206000 𝑁/𝑚𝑚2 

𝜐 = 0.3 

𝛾 = 78.5 𝑘𝑁/𝑚3 

Taking into account those parameters, J.S. Owen et. al. displayed load-displacement 

graph curves for a diamond bird-beak joint (Figure 13). 

 

Figure 13 Load-displacement curve for a diamond bird-beak joint by J.S. Owen et. al. [6] 

Assuming α=40 and fy=275 N/mm2, the conclusion of the study derives to the 

following analytical formulation: 

𝐹𝑢1 =
𝑓𝑦0

1000
(

𝑓𝑦0

275
)

0.8
(6.06 − 5.6𝛽 + 11.4𝛽2)(0.6 + 1.97√𝛽)𝑡0

2

𝑡0
𝑏0

(6.06 − 5.6𝛽 + 11.4𝛽2) +
1
3 (0.6 + 1.97√𝛽)

 Eq. 6 

Previous formulation is only dependent of dimensionless parameters β and 2γ, as well 

as chord thickness (t0), chord width (b0) and yield strength fy. 
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2.8 ASSUMPTIONS FOR THE PRESENT THESIS 

Once state of the art has been set as the most important tools for the present thesis, 

some assumptions might be taken into account in order to carry out this thesis and 

analyse results as accurate as possible. 

1) Material used in this thesis is a stainless steel with fy=280 N/mm2 and E=200000 

N/mm2. Since comparisons of modelled results are made for formulations of 

carbon steel joints, several differences might be expected, specially by means of 

ductility performance of the joint. 

2) Joint studied in this thesis is a Diamond Bird-beak X-type joint, which as stated 

before both the chord as well as the brace are rotated 45º around their 

longitudinal axes. Therefore, formulation for traditional SHS and RHS from 

European Normative might not be enough accurate for the specific purpose of 

this thesis. It might be expected some differences from obtained results to 

European Normative as well, but results should be at the safety side. 

3) Different design resistances are described in EN 1993-1-8 for the particular case 

of β≥0,85, which leads to different failure modes of the joint. For the present 

thesis, design resistance for β≥0,9 is considered as the minimum of different 

failure modes i.e. minimum value between chord face failure, chord side wall 

buckling, brace failure and punching shear. However, minimum value of the 

design resistance might not be the actual failure mode of the modelled joint. 

4) Loading is applied as boundary conditions in order to set an axial displacement 

in the top brace of -20 mm in the case of compression analysis and 20 mm in the 

case of tensile analysis, whereas bottom end brace is fixed. Therefore, 

eccentricity is not studied because axial load is applied trhoughout the 

longitudinal axes of the brace and, thus, in-plane moment as well as out-of-plane 

moment are not taken into account in this analysis. 

5) Chord length is considered to be 3000 mm, whereas chord width is set as a fixed 

value of 150 mm. Therefore, dimensionless parameter α is 40 and, as J.S. Owen 

concluded in The influence of member orientation on the resistance of cross 

joints in square RHS construction” [6], for α≥40 joint capacity results for DDB 

joints are effectively constant with chord length and is independent of the 

restraints at the end of the chord. Thus, parametric analysis is only dependent 

on the variation of parameters β and 2γ. 
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3. THE FINITE ELEMENT 
METHOD 

3.1 INTRODUCTION TO STRUCTURAL ANALYSIS AND FEM 

The structural analysis is the determination of the effects of loads on physical 

structures and their components. It employs the fields of applied mechanics, materials 

science and applied mathematics to compute a structure’s deformations, internal 

forces, stresses, support reactions, accelerations and stability. 

To perform an accurate analysis, the results of such an analysis typically include 

support reactions, stresses and displacements. This information is then compared to 

criteria that indicate the conditions of failure. There are three approaches to the 

analysis: the mechanics of materials approach, the elasticity theory approach and the 

finite element approach. The first two make use of analytical formulations, whereas 

the finite element approach is actually a numerical method for solving differential 

equations generated by theories of mechanics such as elasticity theory and strength 

of materials. 

For the current thesis, finite element method (FEM) will be used by means of ABAQUS 

software, which is explained in the following paragraph. 

3.2 ABAQUS SOFTWARE 

3.2.1 Introduction 

Abaqus/CAE is a complete Abaqus environment that provides a simple, consistent 

interface for creating, submitting, monitoring and evaluating results from 

Abaqus/Standard and Abaqus/Explicit simulations, which will we further described 

below. Abaqus/CAE is divided into modules, where each module defines a logical 

aspect of the modelling process such asdefining the geometry, defining the material 

properties, generating the mesh, among other aspects.  

Basically, Abaqus is a software based on the finite element method (FEM) which main 

goal is to solve science and engineering problems of a wide range of disciplines. This 
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software allows obtaining a complete solution of virtual tests by means of a realistic 

simulation, which largely reduces computational cost as well as time.  

Abaqus is composed off of four different softwares, where every each is specifically 

and suitable for different types of problems: ABAQUS/CAE, ABAQUS/Standard, 

ABAQUS/Explicit and ABAQUS/CFD. 

Abaqus/CAE and Abaqus/Standard have been used for the analytical study of the 

current thesis, thus they are the suitable option to model and visualize results for 

plastic behaviour of the diamond bird-beak joint. 

3.2.2 Software modules 

Abaqus/CAE is divided into functional units called modules. Each module contains 

only those tools that are relevant to a specific portion of the modelling task. The 

following list of the modules available within Abaqus/CAE briefly describes the 

modelling tasks one can perform in each module. Refer to “Abaqus/CAE User’s Manual 

version 6.12” for further information about each module. 

Part module Create individual parts by sketching or importing their 

geometry. 

Property module Create section and material definitions and assign them 

to regions of parts. 

Assembly module Create and assemble part instances. 

Step module Create and define the analysis steps and associated 

output requests. 

Interaction module Specify the interactions, such as contact, between 

regions of a model. 

Load module Specify loads, boundary conditions, and fields. 

Mesh module Create finite element mesh. 

Optimization module Create and configure an optimization task. 

Job module Submit a job for analysis and monitor its progress. 

Visualization module View analysis results and selected model data. 

Sketch module Create two-dimensional sketches. 
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3.3 SCOPE OF THE PROBLEM 

In order to approach the study of the stainless steel joint as accurate as possible, 

several models will be analysed, which every each of them will be slightly different in 

terms of geometry. 

For the current thesis, 16 different models will be analysed which their geometrical 

parameters are different. They will be named as shown below for the sake of 

simplicity, where DBB stands for Diamond Bird-Beak, X stands for welded X-type joint 

and SS stands for Stainless Steel: 

𝐷𝐵𝐵𝑋_𝑖_𝑆𝑆;  𝑖 = {01, … ,16} 

Previous models will be analysed under compression as well as under tension, which 

results in 32 models in total. 

First of all, it is needed to calibrate the numerical model in order to verify that Abaqus 

software is used accurately. Thus, first step will be modelling a DDB X-type joint taking 

into account J.S. Owen et al. study and compare the numerical finite element approach 

obtained with their results. It is expected to obtain close results in comparison with 

those of J.S. Owen et al. 

Assuming that the calibration of the model is correct, following steps will be focused 

in repeating and analysing systematically the different models described before.  

Finally, once all the calculations have been obtained, results will be displayed in three 

different graphs: design resistance dependence on β parameter, design resistance 

dependence on 2γ parameter and load-displacement curves. 

𝐹𝑢 − 𝛽 𝐹𝑢 − 2𝛾 𝑃 − 𝛿 

3.4 NUMERICAL METHOD RELEVANT ASPECTS 

3.4.1 Geometrical models to study 

As mentioned in the previous paragraph, parametric analysis is carried out for a total 

amount of 32 models. 

Figure 14 displays the most important geometric parameters that define all the 

models. 

Taking into account the limiting values for parameters β and 2γ stated by J.S. Owen, 

geometric parameters for each model are defined in Table 8. 

0.2 < 𝛽 < 0.9 9.4 < 2𝛾 < 35 
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Figure 14 Geometric parameters for a hollow section DDB X joint  

JOINT fy 

Geometric parameters 

2γ β Chord Brace 

L0 b0 t0 b1 t1 

DBBX_01_SS 280 3000 150 15 30 15 10 0.2 

DBBX_02_SS 280 3000 150 15 60 15 10 0.4 

DBBX_03_SS 280 3000 150 15 90 15 10 0.6 

DBBX_04_SS 280 3000 150 15 135 15 10 0.9 

DBBX_05_SS 280 3000 150 10 30 10 15 0.2 

DBBX_06_SS 280 3000 150 10 60 10 15 0.4 

DBBX_07_SS 280 3000 150 10 90 10 15 0.6 

DBBX_08_SS 280 3000 150 10 135 10 15 0.9 

DBBX_09_SS 280 3000 150 6 30 6 25 0.2 

DBBX_10_SS 280 3000 150 6 60 6 25 0.4 

DBBX_11_SS 280 3000 150 6 90 6 25 0.6 

DBBX_12_SS 280 3000 150 6 135 6 25 0.9 

DBBX_13_SS 280 3000 150 5 30 5 30 0.2 

DBBX_14_SS 280 3000 150 5 60 5 30 0.4 

DBBX_15_SS 280 3000 150 5 90 5 30 0.6 

DBBX_16_SS 280 3000 150 5 135 5 30 0.9 

Table 8 Geometric parameters for each DBB X joint model 
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3.4.2 Loads and boundary conditions 

The loads applied to the DBB joint are compression and tension, which are set to the 

cross-section of the braces.  

Previous loads are set as boundary conditions by means of an imposed displacement 

of the top brace end, whereas bottom brace end is fixed. Throughout of the 

displacement calculation, software calculates structure reactions on the bottom brace 

end. 

Compression 

 

Tension 

 

Figure 15 Schematic representation of boundary conditions for analysis of the models  

The main reason to submit the displacement calculation is that it allows achieving 

better convergence results as well as load-deformation complete curve. 

In conclusion, boundary conditions at the ends of the braces are restrained in any 

direction with the exception of the longitudinal direction of the top brace, which is 

allowed to move freely. 

3.4.3 Classification of cross-sections 

Local effects of instability are checked by the cross-section classification, explained in 

Table 1. Taking into account this classification, chord and bracings may be classified in 

order to foresee possible local instability during analysis.  

All the chords and bracings for the different models are Class 1, which should not lead 

to local instability effects.  

It should be noted that Class 4 joints would not be realistic, so yield strength would 

not be reached and therefore limiting the elastic capacity of the joint.  
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JOINT 
Class 

Chord Brace 

DBBX_01_SS Class 1 Class 1 

DBBX_02_SS Class 1 Class 1 

DBBX_03_SS Class 1 Class 1 

DBBX_04_SS Class 1 Class 1 

DBBX_05_SS Class 1 Class 1 

DBBX_06_SS Class 1 Class 1 

DBBX_07_SS Class 1 Class 1 

DBBX_08_SS Class 1 Class 1 

DBBX_09_SS Class 1 Class 1 

DBBX_10_SS Class 1 Class 1 

DBBX_11_SS Class 1 Class 1 

DBBX_12_SS Class 1 Class 1 

DBBX_13_SS Class 1 Class 1 

DBBX_14_SS Class 1 Class 1 

DBBX_15_SS Class 1 Class 1 

DBBX_16_SS Class 1 Class 1 

Table 9 Classification of chord and bracings for DDB X joint of the different models according to EN 

1993-1-4 

3.4.4 Classification of FEM types 

The finite element type used in order to model the DBB X-joint is the shell type, which 

thickness is largely smaller than other two dimensions and normal tensions along 

thickness direction are negligible.  

There are two different types of shell elements.  

 Thick shell elements, which are based on Reissner-Mindlin theory. This theory 

stated that those elements are needed in cases where cross-sectional flexibility 

is significant, so second order interpolation is required. 

 Thin shell elements, which are based on Kirchhoff theory. This theory stated 

that those elements are used when cross-sectional flexibility is negligible.  

Number of nodes of the element determines interpolation order needed to stablish 

section shell behaviour. On the one hand, elements that have all the nodes at the 

vertices of the element uses linear interpolation, thus they are called linear elements 

or first order elements. On the other hand, elements that have intermediate nodes uses 

quadratic interpolation and they are called quadratic elements or second order 

elements. Triangular elements as well as tetrahedral uses second order interpolation  
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ABAQUS may use several numerical techniques in order to solve integration in each 

element. However, Gauss integration is the most commonly used. The software 

evaluates the material for each integration point for each element. Furthermore, the 

integration may either be complete or reduced. The main difference between both 

integration methods is that the reduced integration reduces computational cost. 

For the current thesis, S4R shell elements has been used, which are square elements 

with 4 nodes of reduced integration and linear interpolation. These elements are used 

because they has better convergence in comparison with triangular as well as 

tetrahedron elements. Refer to “Abaqus/CAE User’s Manual version 6.12” for further 

information about different types of FEM analysis. 

 

Figure 16 Representation of square element with 4 nodes of reduced integration (S4R) 

Cross-section behaviour of a shell may be studied either by Simpson integration or 

Gauss quadrature. Despite the fact that Gauss quadrature is more accurate that 

Simpson integration method, Simpson has been the choice, so it allows to analyse 

results in the surface of the shell. Furthermore, five points of integration has been used 

throughout the thickness of the shell. 

 

Figure 17 Representation of the five integration points throughout shell thickness in order to carry out 

Simpson integration method 

3.4.5 Convergence analysis 

It is important to carry out a convergence analysis before the analytical parametric 

study in order to find the best mesh size that allows finding an accurate solution as 

close as possible to reality with a minimum computational cost. 
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3.5 STUDY TO CALIBRATE THE NUMERICAL MODEL 

3.5.1 Characteristics of the joint to validate 

Before the parametric study of the stainless steel joint is carried out, it would be of 

high importance to validate the model in order to assure the results. This validation 

will be carried out considering the geometric and material properties of a known joint 

i.e. Owen et. al.’s DBBX-joint will be analysed, thus the results are reliable. This model 

joint will be used to test several mesh sizes in order to achieve the convergence 

analysis. 

3.5.2 Joint model procedure 

Current paragraph will be focused on widely explaining the joint model procedure 

using the finite elements method within the Abaqus software. This explanation and all 

the procedure steps should be considered as guidelines for the parametric study of the 

stainless steel joint. Repeating sistematically the procedure that is explained in this 

paragraph will lead to modelling the total amount of 32 models. 

Diamond bird-beak X joint used in Owen et. al. study has following geometric 

parameters: 

𝐿0 = 520 𝑚𝑚 𝑏0 = 150 𝑚𝑚 𝑡0 = 6.2 𝑚𝑚 

𝐿1 = 3 · 𝑏1 𝑏1 = 90 𝑚𝑚 𝑡1 = 6.25 𝑚𝑚 

𝛼 = 6.933 2𝛾 = 23.8 𝛽 = 0.6 

As well as following material properties for carbon steel: 

𝐸 = 206000 𝑁/𝑚𝑚2 

𝜐 = 0.3 

𝛾 = 78.5 𝑘𝑁/𝑚3 

3.5.2.1 Creation of different parts (Part module) 

First of all, parts should be defined within “Part module”. It should be created a part 

for the chord as well as a part for the brace with dimensions displayed in Figure 18. 

Since each brace is composed off of four faces with the same geometry, only one face 

will be created within the part module, thus they will be copied within Assembly 

module. The same procedure is applied to the chord. 
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Figure 18 Geometry of the chord and brace parts 

Each part is defined as 3D modelling space, deformable type and shell planar shape. 

 

Figure 19 “Create part” dropdown window 

3.5.2.2 Material properties assignment (Property module) 

Defining material properties should be carried out within “Property module”. The 

material properties are defined in Owen et. al.’s experimental study. 
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Figure 20 Material properties for carbon steel (J. S. Owen et. al.)  

In order to define material properties within Abaqus, density, elasticity and plasticity 

should be introduced in Property module dropdown window for both chord part 

(Figure 21) and brace part (Figure 22). 

 

Figure 21 “Material properties” dropdown window for chord  

 

Figure 22 “Material properties” dropdown window for brace 
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Once the material properties have been defined, it is time to create and define the 

different sections. Section thickness is equal to 6.2 mm for chord member and 6.25 for 

brace member. 

Section would be a continuum and homogeneous shell. Simpson’s method with 5 points 

of integration through thickness will be used. 

 

Figure 23 “Section edition” dropdown window within Abaqus for chord part 

 

Figure 24 “Section edition” dropdown window within Abaqus for brace part 

Sections should be assigned to each part that have been created previously. 

3.5.2.3 Part assembly procedure (Assembly module) 

Next step within the modelling procedure is to assembly and merge the parts created 

previously. Assembly is carried out throughout displacement and rotation of the parts 

within a global coordinate system.  

Assembly of joint model is shown in Figure 25. 
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Figure 25 Assembly and merge procedure of the joint (Assembly module) 

3.5.2.4 Step definition (Step module) 

Step module is used to set the different steps of the model calculation.  

First of all, a new “Static, Riks” step is created, which allows to apply loading under arc-

length control. 

On the one hand, “Nlgeom” option is set as on in order to set the analysis as a second 

order calculation. On the other hand, incrementation is set as automatic with a 

maximum number of 300 increments. Initial, minimum and maximum arc length 

increment sizes are 0,05, 1E-05 and 1, respectively.  

  

Figure 26 “Step definition” dropdown list within Abaqus 
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Note that for some models of the parametric analysis (DBBX_04_SS, DBBX_07_SS, 

DBBX_08_SS and DBBX_12_SS subjected to compression loading), minimum arc length 

have been reduced to 1E-08 in order to avoid convergence errors. 

3.5.2.5 Loads and boundary conditions (Load module) 

Loading is applied as boundary conditions in order to set an axial displacement in the 

top brace whereas bottom brace is fixed. Thus, two boundary conditions should be 

created i.e. one boundary condition for top brace and one boundary condition for 

bottom brace. 

 

Figure 27 “Create boundary condition” dropdown list within Abaqus 

Top boundary condition (BC-1) is set as a vertical displacement to -20 mm in order to 

model compression loading. Bottom boundary condition (BC-2) is set as a fixed support.  

 

Figure 28 “Edit boundary condition” dropdown list for BC-1 within Abaqus 

Note that for parametric analysis, vertical displacement is set to 20 mm instead of -20 

mm in order to model tensile loading. 



 

Numerical analysis on stainless steel 

diamond bird-beak joints subjected to 

compressive and tensile forces 

Chapter 3: The finite element method  

 

  45 

 

Figure 29 “Edit boundary condition” dropdown list for BC-2 within Abaqus 

Boundary conditions are displayed in Figure 30: 

 

Figure 30 Graphical representation of boundary conditions 

3.5.2.6 Mesh creation (mesh module) 

Last step of modelling procedure is to define the mesh and seed the part. As an example, 

mesh size of 5 mm is displayed in Figure 32. A convergence analysis will be conducted 

in order to define and optimize the best mesh size for the purpose of the current thesis. 
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Figure 31 “Global seeds” dropdown list to set mesh size within Abaqus 

For the current thesis, S4R shell elements has been used, which are square elements 

with 4 nodes of reduced integration and linear interpolation. These elements are used 

because they has better convergence in comparison with triangular as well as 

tetrahedron elements.  

Graphical representation of the meshed part is displayed in Figure 32: 

 

Figure 32 Graphical representation of a mesh size of 5 mm 

It is of high importance to define which nodes or elements are those of results will be 

obtained and analysed (Model > Assembly > Sets). Reactions are obtained as the sum of 

forces from all the nodes of the bottom brace fixed end, whereas displacements are 

obtained from a node in the top brace end and from a node within the plane of symmetry 

of the chord. 

3.5.2.7 Calculation (job module) 

Job module is used in order to create and submit the job for calculation, which default 

options are set. 
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Figure 33 “Edit job” dropdown list 

3.5.2.8 Results  

Finally, after calculation of the model has been completed, results should be exported 

from Abaqus by means of (X,Y) data. On the one hand, reactions at bottom brace are 

exported and, on the other hand, displacements of top brace are obtained as well. Those 

values should be processed within MS Excel in order to obtain Load-Displacement 

curves. Overall reaction load will be the sum of the loads in each node. 

3.5.3 Convergence analysis 

Convergence analysis has been carried out in the joint explained previously in order to 

define the optime mesh size in terms of calculation time as well as number of elements. 

This analysis is of high importance in order to obtain as close to reality as possible 

results with the minimum computational cost. 

Mesh density has been set as structured and homogeneous along the joint. Mesh sizes 

rangs from 2 mm to 20 mm: 

Mesh size =20 mm Mesh size =15 mm Mesh size =10 mm 

Mesh size =5 mm Mesh size =3 mm Mesh size =2 mm 

Results for the convergence analysis are shown in Figure 34, where displacement 

results have been considered at a node in the top brace. 
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Figure 34 Load-deformation curves for different mesh sizes 

As it is visible in Figure 34, elastic behaviour is independent of mesh size, whereas 

plastic behaviour is strongly linked to mesh size.  

In order to choose the optimum mesh size to carry out calculation of all the models, 

mesh size of 2 mm is considered to be equal to reality. Calculation time and reaction 

load for 7 mm of displacement are compared for the different meshes.  

Table 10 summarises calculation CPU time within ABAQUS, reaction load at 7 mm for 

each mesh size and relative error with respect to mesh size of 2 mm. 

Mesh size 
(mm) 

Number of 
elements 

Time CPU 
(s) 

Load (kN) 
(at 7 mm) 

Difference 
(kN) 

Relative 
difference 

(%) 

2 176683 70887 120.8014 - 0.00% 

3 77617 23256 121.2852 0.4838 0.40% 

5 27990 3098.8 123.0032 2.2018 1.82% 

10 7192 2134 124.5703 3.7689 3.12% 

15 2936 846.88 127.5204 6.719 5.56% 

20 1881 552.11 130.7149 9.9135 8.21% 

Table 10 Summary of convergence analysis 

Convergence analysis is displayed in Figure 35, which is visible that solution converges 

as mesh size decreases.  
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Figure 35 Graphical representation of relative error of reaction load to calculation CPU time in 

logaritmic scale 

For the purpose of the present thesis, a mesh size of 5 mm would be appriopriate. 

Thus, its relative error is less than 2%, which shall be assumed to be adequate for the 

calculations and purpose of this thesis. 

3.5.4 Validation of the numerical model in comparison to the analytical 

formulation 

Loading-deformation curves shows that as deformation increases, load increases as 

well. Figure 36 displays a graph that compares results obtained in ABAQUS to those of 

the study of J.S. Owen. Validation has been conducted for a carbon steel diamond bird-

beak joint because literature results were reliable.  

Displacement results have been considered in a node within the plane of symmetry of 

the chord. 
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Figure 36 Loading-deformation curves obtained from ABAQUS in comparison to J.S. Owen study 

As expected, obtained results are almost identical as those obtained by Owen. Thus, 

finite element procedure to study diamond bird-beak joints should be considered as 

appropriate. 

This validation has been carried out for a carbon steel diamond bird-beak joint, whereas 

this thesis is based on analysing stainless steel joints. The only procedure step that will 

differ from the validation explained in this paragraph is “3.5.2.2 Material properties 

assignment (Property module)”, where stainless steel material properties should be 

introduced. 
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4. PARAMETRIC STUDY OF DBB-
X JOINTS 

4.1 INTRODUCTION 

Present  paragraph develops a parametric study in order to compare 16 models of a 

planar diamond bird-beak joint with sligthly different geometric parameters under 

compression as well as the same 16 models under tensile loading. 

4.2 GEOMETRIC PARAMETER VARIATION 

As said before, variation of the geometric dimensions will be carried out. Those 

dimensions are related as follows: 

𝛼 = 2
𝐿0

𝑏0
 𝛽 =

𝑏1

𝑏0
 2𝛾 =

𝑏0

𝑡0
 

 

Figure 37 Geometric parameters for a hollow section DDB X joint  
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As stated in J.S. Owen article, for α≥40, joint capacity results for DDB joints are 

effectively constant with chord length and is independent of the restraints at the end 

of the chord. Since for the present thesis α=40, parametric analysis is carried out with 

the variation of parameters β and 2γ. 

This thesis is an attempt to cover as many models as possible with the variation of those 

parameters. 

4.2.1 PARAMETER β 

The relationship between chord width and brace width is defined as β.  

𝛽 =
𝑏1

𝑏0
 Eq. 7 

As stated in Owen et. al., parameter β ranges from 0.2 to 0.9.  

In the particular case of this thesis, β is taken as 0.2, 0.4, 0.6 and 0.9, which have been 

obtained from mantaining constant chord width and varying brace width for the values 

30 mm, 60 mm, 90mm and 135 mm, respectively. 

4.2.2 PARAMETER 2γ 

The relationship between chord width and chord thickness is defined as the parameter 

2γ.  

2𝛾 =
𝑏0

𝑡0
 Eq. 8 

As before, in the Owen et. al.’s Article it is ranged between 9.4 to 35.3.  

In this thesis, 2γ values are: 10, 15, 25 and 30, which are obtained from varying 

thickness for values 15 mm, 10 mm, 6 mm and 5 mm, respectively. 

4.2.3 SUMMARY 

Table 11 summarises all the models: 

  

β 

0,2 0,4 0,6 0,9 

2γ 

10 DBBX_01_SS DBBX_02_SS DBBX_03_SS DBBX_04_SS 

15 DBBX_05_SS DBBX_06_SS DBBX_07_SS DBBX_08_SS 

25 DBBX_09_SS DBBX_10_SS DBBX_11_SS DBBX_12_SS 

30 DBBX_13_SS DBBX_14_SS DBBX_15_SS DBBX_16_SS 

Table 11 Geometric parameters assigned to each model 
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4.3 RESULTS 

Parameteric analysis derives to a large amount of data wich shall be treated 

appropriately and accurately within MS Excel in order to obtain Load-Displacement 

curves. Overall reaction load will be the sum of the loads in each node. Design ultimate 

resistance for each model are listed in Table 12. Refer to “Appendix C. VON MISES” for 

images of Von Mises stresses for each model for both compression and tensile and refer 

to “Appendix D. PARAMETRIC RESULTS” for the overall Load-displacement data for each 

model as well as their graphical curves. 

JOINT Compression (kN) Tension (kN) 

DBBX_01_SS 706,12 1162,76 

DBBX_02_SS 829,57 1157,29 

DBBX_03_SS 2484,84 3486,48 

DBBX_04_SS 1854,58 4001,41 

DBBX_05_SS 380,17 775,18 

DBBX_06_SS 406,93 1547,74 

DBBX_07_SS 1562,32 2324,73 

DBBX_08_SS 854,18 2682,92 

DBBX_09_SS 146,11 465,31 

DBBX_10_SS 163,95 929,17 

DBBX_11_SS 747,25 1394,78 

DBBX_12_SS 786,52 1742,20 

DBBX_13_SS 105,65 387,74 

DBBX_14_SS 118,02 774,99 

DBBX_15_SS 544,64 1162,10 

DBBX_16_SS 564,18 1408,86 

Table 12 Design resistance for each model subjected to compression loading and tensile loading 

Results obtained throughout this thesis will be deeply and largely analysed in the 

following paragraph “5. ANALYSIS OF RESULTS”. 
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5. ANALYSIS OF RESULTS 
Results obtained after parametric analysis of all the models is concluded are compared 

and discussed from different perspectives. On the one hand, they are compared to EN 

1993-1-8 [3] formulation as well as J.S. Owen [6] formulation for both compression and 

tensile loading. This comparison is done in terms of design resistance dependance on 

parameter β, design resistance dependance on parameter 2γ and in terms of load-

displacement curves. On the other hand, stainless steel geometric models are compared 

to carbon steel identical models, which were studied by A. Peña and R. Chacón [7] in 

order to discuss advantages of stainless steel against carbon steel. 

5.1 DESIGN RESISTANCES 

As mentioned before, once the parametric study is completed, obtained results are 

compared to those obtained thorughout European Normative EN 1993-1-8 [3] as well 

as J.S. Owen et. al. [6] formulations.  

On the one hand, European Normative gives a formulation for axial resistance for a 

traditional welded X joint between RHS brace and RHS chord. Since the thesis is based 

on an analysis of a diamond bird-beak joint, several differences are expected from 

ABAQUS results. On the other hand, J.S. Owen analysed a diamond bird-beak joint of 

carbon steel subjected to compression loading. Thus, differences are expected for 

tensile analysis. Furthermore, slightly differences may be obtained for compression 

analysis due to material studied in this thesis is stainless steel, which is more ductile 

than carbon steel joint analysed by J.S. Owen. 

Comparison procedure will be carried out by means of design value of the resistance of 

the joint dependance on the parameters β and 2γ. 

5.1.1 Design resistances according to EN 1993-1-8 

Following formulations are taken into account from Eurocode EN 1993-1-8 [3] in order 

to set the design value of the resistance of the hollow section joint. Minimum design 

resistance among the following will be taken into account as the most restrictive design 

resistance.  

Although the resistance of a joint with properly formed welds is generally higher 

under tension than under compression, it should be noted that the design resistance 
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of a joint is generally based on the resistance of the brace in compression to avoid the 

possible excessive local deformation or reduced rotation capacity or deformation 

capacity with which might otherwise occur. Therefore, design resistance of the 

modelled joint subjected to tensile loading might lead to different failure mode than 

the theoretical failure mode of the normative. 

 Chord face failure  β ≤ 0.85 

𝑁1,𝑅𝑑 =

𝑘𝑛𝑓𝑦0𝑡0
2

(1 − 𝛽) sin 𝜃1
(

2𝜂
sin 𝜃1

+ 4√1 − 𝛽)

𝛾𝑀5
 

Eq. 9 

 Chord side wall buckling β = 1.0 

𝑁1,𝑅𝑑 =

𝑓𝑏𝑡0
sin 𝜃1

(
2ℎ𝑖

sin 𝜃1
+ 10𝑡0)

𝛾𝑀5
 Eq. 10 

 Brace failure   β ≥ 0.85 

𝑁1,𝑅𝑑 =
𝑓𝑦1𝑡1(2ℎ1 − 4𝑡1 + 2𝑏𝑒𝑓𝑓)

𝛾𝑀5
 Eq. 11 

 Punching shear  0.85 ≤β ≤ (1-1/γ) 

𝑁1,𝑅𝑑 =

𝑓𝑦0𝑡0

√3 sin 𝜃1

(
2ℎ1

sin 𝜃1
+ 2𝑏𝑒,𝑝)

𝛾𝑀5
 

Eq. 12 

Since chord face failure is only allowed for β≤0.85, linear interpolation between the 

value for chord face failure at β=0.85 and the governing value for chord side wall 

buckling failure at β=1.0 should be considered for higher values of β, as it is stated in EN 

1993-1-8 [3]. Table 13 displays linear interpolation to find chord face failure for β=0.9. 

 DBBX_04_SS DBBX_08_SS DBBX_12_SS DBBX_16_SS 

β 
Ni,Rd,TENS 

(kN) 
Ni,Rd,COMP 

(kN) 
Ni,Rd,TENS 

(kN) 
Ni,Rd,COMP 

(kN) 
Ni,Rd,TENS 

(kN) 
Ni,Rd,COMP 

(kN) 
Ni,Rd,TENS 

(kN) 
Ni,Rd,COMP 

(kN) 

0,2 376,24 376,24 167,22 167,22 301,00 60,20 459,85 41,80 

0,4 577,33 577,33 256,59 256,59 554,24 92,37 769,77 64,15 

0,6 965,45 965,45 429,09 429,09 1081,30 154,47 1394,53 107,27 

0,85 4325,32 2162,66 2594,37 1297,18 3735,89 466,99 4540,14 324,30 

0,9 3471,55 1865,13 2074,91 1071,99 2675,39 385,24 3176,09 263,98 

1 1764,00 1270,08 1036,00 621,60 554,40 221,76 448,00 143,36 

Table 13 Linear interpolation to find chord face failure for β higher than 0.85 

Several assumptions shall be taken into account in order to calculate design resistance. 
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- Node joint is only subjected to axial load i.e. tensile loading and compression 

loading depending each case. Thus, bending moment influence shall be excluded 

from calculations. 

- θ1 angle of the braces is 90º, thus sin(θ1)=1. 

- Resistance of joints in hollow section lattice girder is γM5=1 

- Since no axial load is trasmitted throughout the chord, n value is 0. Thus, kn is 1. 

Design resistance for each model is considered to be the minimum design axial resitance 

among all of the failure modes. Table 14 displays design axial resistance in accordance 

to En 1993-1-8 [3] formulation. All the values for the different failures modes are 

attached in “Appendix B. DESIGN RESISTANCES”.  

JOINT 

Design of axial resistances 

Tension (kN) Compression (kN) 

Ni,Rd,TENS Failure mode Ni,Rd,COMP Failure mode 

DBBX_01_SS 376.24 Chord face failure 376.24 Chord face failure 

DBBX_02_SS 577.33 Chord face failure 577.33 Chord face failure 

DBBX_03_SS 965.45 Chord face failure 965.45 Chord face failure 

DBBX_04_SS 1309.43 Punching shear 1270.08 Chord side wall buckling 

DBBX_05_SS 167.22 Chord face failure 167.22 Chord face failure 

DBBX_06_SS 256.59 Chord face failure 256.59 Chord face failure 

DBBX_07_SS 429.09 Chord face failure 429.09 Chord face failure 

DBBX_08_SS 727.46 Punching shear 621.60 Chord side wall buckling 

DBBX_09_SS 60.20 Chord face failure 60.20 Chord face failure 

DBBX_10_SS 92.37 Chord face failure 92.37 Chord face failure 

DBBX_11_SS 154.47 Chord face failure 154.47 Chord face failure 

DBBX_12_SS 366.64 Punching shear 221.76 Chord side wall buckling 

DBBX_13_SS 41.80 Chord face failure 41.80 Chord face failure 

DBBX_14_SS 64.15 Chord face failure 64.15 Chord face failure 

DBBX_15_SS 107.27 Chord face failure 107.27 Chord face failure 

DBBX_16_SS 290.98 Punching shear 143.36 Chord side wall buckling 

Table 14 Design resistance values for each model taking into account EN 1993-1-8 

5.1.2 Design resistances according to J.S. Owen 

Design resistances according to J.S. Owen are obtained from following formulation: 

𝐹𝑢1 =
𝑓𝑦0

1000
(

𝑓𝑦0

275
)

0.8
(6.06 − 5.6𝛽 + 11.4𝛽2)(0.6 + 1.97√𝛽)𝑡0

2

𝑡0
𝑏0

(6.06 − 5.6𝛽 + 11.4𝛽2) +
1
3 (0.6 + 1.97√𝛽)

 Eq. 13 

Table 15 displays design axial resistance in accordance to J.S. Owen formulation.  
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JOINT Fu1 (kN)  JOINT Fu1 (kN) 

DBBX_01_SS 494.33  DBBX_09_SS 115.184 

DBBX_02_SS 564.45  DBBX_10_SS 126.675 

DBBX_03_SS 665.58  DBBX_11_SS 150.818 

DBBX_04_SS 875.41  DBBX_12_SS 209.947 

DBBX_05_SS 266.01  DBBX_13_SS 84.261 

DBBX_06_SS 298.47  DBBX_14_SS 92.089 

DBBX_07_SS 353.54  DBBX_15_SS 109.813 

DBBX_08_SS 477.34  DBBX_16_SS 154.354 

Table 15 Design resistance values for each model taking into account J.S. Owen formulation 

5.1.3 Comparison of design resistances 

It shall be of high importance to study the relative difference between different 

formulations in terms of percentages. Those percentages are calculated as follows: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (%)𝐸𝑁 =
𝐴𝐵𝐴𝑄𝑈𝑆 − 𝐸𝑁

𝐸𝑁
· 100 Eq. 14 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (%)𝑂𝑤𝑒𝑛 =
𝐴𝐵𝐴𝑄𝑈𝑆 − 𝐽. 𝑆. 𝑂𝑤𝑒𝑛

𝐽. 𝑆. 𝑂𝑤𝑒𝑛
· 100 Eq. 15 

If design resistance obtained from ABAQUS modelization is larger than those of 

formulations previously mentioned, relative difference is positive and safety side is met. 

Otherwise, if design resistance from ABAQUS is lower than those values of formulations 

previously mentioned, relative difference is negative and insafety side is met. It is 

expected that most of the models are at the safety side.  

Results for design resistances for ABAQUS, EN 1993-1-8 formulation and J.S. Owen et. 

al. Formulation for each model subjected to compression loading are listed in Table 16, 

whereas design resistances for each models subjected to axial tensile loading are listed 

in Table 17. 

Results for models under compression loading will be discussed and analysed in “5.3 

ANALYSIS OF RESULTS: COMPRESSION LOADING”, whereas results for models subjected 

to tensile loading will be discussed in “5.4 ANALYSIS OF RESULTS: TENSIILE LOADING”.
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JOINT 

Compression (kN) 

ABAQUS EN 1993-1-8 J.S. Owen 

DBBX_01_SS 706,12 376,24 494,33 

DBBX_02_SS 829,57 577,33 564,45 

DBBX_03_SS 2484,84 965,45 665,58 

DBBX_04_SS 1854,58 1270,08 875,41 

DBBX_05_SS 380,17 167,22 266,01 

DBBX_06_SS 406,93 256,59 298,47 

DBBX_07_SS 1562,32 429,09 353,54 

DBBX_08_SS 854,18 621,60 477,34 

DBBX_09_SS 146,11 60,20 115,18 

DBBX_10_SS 163,95 92,37 126,68 

DBBX_11_SS 747,25 154,47 150,82 

DBBX_12_SS 786,52 221,76 209,95 

DBBX_13_SS 105,65 41,80 84,26 

DBBX_14_SS 118,02 64,15 92,09 

DBBX_15_SS 544,64 107,27 109,81 

DBBX_16_SS 564,18 143,36 154,35 

Table 16 Comparison of design axial resistances under compression loading 

 

 

JOINT 

Tension (kN) 

ABAQUS EN 1993-1-8 J.S. Owen 

DBBX_01_SS 1162.76 376.24 494.33 

DBBX_02_SS 1157.29 577.33 564.45 

DBBX_03_SS 3486.48 965.45 665.58 

DBBX_04_SS 4001.41 1309.43 875.41 

DBBX_05_SS 775.18 167.22 266.01 

DBBX_06_SS 1547.74 256.59 298.47 

DBBX_07_SS 2324.73 429.09 353.54 

DBBX_08_SS 2682.92 727.46 477.34 

DBBX_09_SS 465.31 60.20 115.18 

DBBX_10_SS 929.17 92.37 126.68 

DBBX_11_SS 1394.78 154.47 150.82 

DBBX_12_SS 1742.20 366.64 209.95 

DBBX_13_SS 387.74 41.80 84.26 

DBBX_14_SS 774.99 64.15 92.09 

DBBX_15_SS 1162.10 107.27 109.81 

DBBX_16_SS 1408.86 290.98 154.35 

Table 17 Comparison of design axial resistances under tensile loading 
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5.2 ANALYSIS OF RESULTS: COMPRESSION LOADING 

As stated in previous paragraphs, compression results will be analysed form different 

points of view: 

1) Overview analysis and summary of obtained results under compression loading 

2) Analysis of Fu-β curves of obtained results in the current thesis and comparison 

to EN 1993-1-8 [3] formulation as well as J.S. Owen empirically formulation in 

terms of the overall performance and relative error between different 

formulations with respect to ABAQUS results  

3) Idem as previous point for Fu-2γ curve. 

4) Analysis of Load-displacement curves of obtained results in this thesis for both 

β dependance as well as 2γ dependance and failure modes under compression 

loading 

5.2.1 Design resistance dependance on β and 2γ under compression 

loading  

Design resistance dependance on β and 2γ is displayed in Table 18. On the one hand, 

dependance on β parameter shall be read along rows i.e. for a fixed value of parameter 

2γ. On the other hand, dependance on 2γ parameter shall be read along columns i.e. for 

a fixed value of parameter β. 

  

β 

0,2 0,4 0,6 0,9 

2γ 

10 
DBBX_01_SS DBBX_02_SS DBBX_03_SS DBBX_04_SS 

706.12 kN 829.57 kN 2484.84 kN 1854,58 kN 

15 
DBBX_05_SS DBBX_06_SS DBBX_07_SS DBBX_08_SS 

380.17 kN 406.93 kN 1562.32 kN 854,18 kN 

25 
DBBX_09_SS DBBX_10_SS DBBX_11_SS DBBX_12_SS 

146.11 kN 163.95 kN 747.25 kN 786,52 

30 
DBBX_13_SS DBBX_14_SS DBBX_15_SS DBBX_16_SS 

105.65 kN 118.02 kN 544.64 kN 564.18 kN 

Table 18 Summary of the combined analysis for parameters β and 2γ under compression loading 

As it is visible in Table 18, if β increases, which means brace width increases as well, 

design resistance of the joint is higher. On the contrary, if 2γ increases, which means 

thickness of the brace decreases, design resistance of the joint is lower. Results are 

almost consistent for all the models. However, for the particular cases of {β=0,9; 2γ=10} 

and {β=0,9;2γ=15} results are not consistent with the overall analysis, thus design 

resistances are lower than results for β=0,6. A summary of perfomance variation of 

parameter β is visible in Figure 38, whereas performance of parameter 2γ for all models 

is displayed in Figure 39.  
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Figure 38 Performance of β variation for all models under compression loading  
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Figure 39 Performance of 2γ variation for all models under compression loading 
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As it is visible in Figure 38 and Figure 39, results fo DBBX_04_SS and DBBX_08_SS which 

corresponds to {β=0,9;2γ=10} and {β=0,9;2γ=15} subjected to compression loading are 

not consistent with the overall analysis. Expected theoretical performance of the 

analysis for all the models is displayed in Figure 40 (β dependence) and Figure 41 (2γ 

dependence), where dashed line is the expected trend of the joint. 

 

Figure 40 Expected performance of β variation for all models under compression loading 

 

Figure 41 Expected performance of 2γ variation for all models under compression loading 
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5.2.2 Analysis of Fu-β under compression loading 

This paragraph analyses design resistances dependence on β parameter for a fixed value 

of 2γ. 

2γ=10 

For a fixed 2γ=10, DBBX_01_SS, DBBX_02_SS, DBBX_03_SS and DBBX_04_SS are 

analysed. As it is displayed in Figure 46, for β=0,2 (b1=30mm) and β=0,4 (b1=60mm), 

design resistances obtained are close to both EN 1993-1-8 [3] as well as J.S. Owen et. al 

formulations and they are at the safety side. However, for β=0,6 (b1=90mm) obtained 

results for design resistances are much higher than those of EN 1993-1-8 [3] as well as 

J.S. Owen et. al formulations, which might be explained because theoretical failure mode 

is different from the failure mode of the modelled joint. Thus, lower values of β are 

suitable to bibliography formulations.  

As stated in “5.2.1 Design resistance dependance on β and 2γ under compression loading” 

results for DBBX_04_SS {β=0,9; 2γ=10} are not consistent with overall analysis, thus its 

design resistance should be higher than design resistance for DBBX_03_SS {β=0,6; 

2γ=10}. Relative difference for those models is displayed in Figure 42. 

2γ=15 

Similar performance is obtained for a fixed value of 2γ=15 and results are displayed in 

Figure 47. Low values of parameter β derives to suitable results in comparison to 

bibliography formulation, whereas β=0,6 results in much higher design resistance than 

those of EN 1993-1-8 [3] as well as J.S. Owen et. al formulations, which might be 

explained because theoretical failure mode is different from the failure mode of the 

modelled joint. 

As stated in “5.2.1 Design resistance dependance on β and 2γ under compression loading” 

results for DBBX_08_SS {β=0,9; 2γ=15} are not consistent with overall analysis, thus its 

design resistance should be higher than design resistance for DBBX_07_SS {β=0,6; 

2γ=15}. Relative difference for those models is displayed in Figure 43. 

2γ=25 

For a constant value of 2γ=25, DBBX_09_SS, DBBX_10_SS, DBBX_11_SS and DBBX_12_SS 

are analysed. As it is displayed in Figure 48, for β=0,2 (b1=30mm) and β=0,4 (b1=60mm), 

design resistances obtained are close to both EN 1993-1-8 [3] as well as J.S. Owen et. al 

formulations and they are at the safety side. However, for β=0,6 (b1=90mm) and β=0,9 

(b1=135mm), obtained results for design resistances are much higher than those of EN 

1993-1-8 [3] as well as J.S. Owen et. al formulations, which might be explained because 

theoretical failure mode is different from the failure mode of the modelled joint. Thus, 

lower values of β are suitable to bibliography formulations. 
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Relative difference for those models is displayed in Figure 44. 

2γ=30 

Finally, DBBX_13_SS, DBBX_14_SS, DBBX_15_SS and DBBX_16_SS are analysed. As it is 

displayed in Figure 49, for β=0,2 (b1=30mm) and β=0,4 (b1=60mm), design resistances 

obtained are close to both EN 1993-1-8 [3] as well as J.S. Owen et. al formulations and 

they are at the safety side. However, for β=0,6 (b1=90mm) and β=0,9 (b1=135mm), 

obtained results for design resistances are much higher than those of EN 1993-1-8 [3] 

as well as J.S. Owen et. al formulations, which might be explained because theoretical 

failure mode is different from the failure mode of the modelled joint. Thus, lower values 

of β are suitable to bibliography formulations.  

Relative difference for those models is displayed in Figure 45. 

RELATIVE DIFFERENCES BETWEEN FORMULATIONS 

 

Figure 42 Relative error design resistance in 

dependance on parameter β and constant 

parameter 2γ=10 under compression load 

 

Figure 43 Relative error design resistance in 

dependance on parameter β and constant 

parameter 2γ=15 under compression load 

 

 

Figure 44 Relative error design resistance in 

dependance on parameter β and constant 

parameter 2γ=25 under compression load 

 

Figure 45 Relative error design resistance in 

dependance on parameter β and constant 

parameter 2γ=30 under compression load 
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Figure 46 Comparison of design resistances dependance on parameter β for 2γ=10  under compression loading  

β=0,2 
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β=0,6 β=0,9 
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Figure 47 Comparison of design resistances dependance on parameter β for 2γ=15  under compression loading  
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Figure 48 Comparison of design resistances dependance on parameter β for 2γ=25  under compression loading  
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Figure 49 Comparison of design resistances dependance on parameter β for 2γ=30 under compression loading 
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5.2.3 Analysis of Fu-2γ under compression loading 

This paragraph analyses design resistances dependance on 2γ parameter for a fixed 

value of β.  

β=0,2 

Design resistances for a constant parameter β=0,2, which corresponds to DBBX_01_SS, 

DBBX_05_SS_ DBBX_09_SS and DBBX_13_SS models, is displayed in Figure 54. As it is 

visible, curve trend is similar to curves obtained from EN 1993-1-8 [3] as well as owen 

formulations. Furthermore, relative difference between formulations concludes that 2γ 

dependance for β=0,2 of obtained results are set as being on the safety side.  

Relative difference is displayed in Figure 50. 

β=0,4 

Design resistance for the particular case of β=0,4, which corresponds to DBBX_02_SS, 

DBBX_06_SS_ DBBX_10_SS and DBBX_14_SS models, is displayed in Figure 55. Similar 

performance results are achieved, thus not only curve trend is similar to curves 

obtained from EN 1993-1-8 [3] as well as owen formulations, but also safety side is met.  

Relative difference is displayed in Figure 51. 

β=0,6 

For the particular case of β=0,6, models DBBX_03_SS, DBBX_07_SS, DBBX_11_SS and 

DBBX_15_SS are analysed and displayed in Figure 56. Results are consistent and trend 

is similar to bibliography formulations. Thus, design resistances are higher as expected 

and, therefore, safety side is met. 

Relative difference is displayed in Figure 52. 

β=0,9 

Design resistances for a fixed value of β=0,9 are displayed in Figure 57, which 

corresponds to models DBBX_04_SS, DBBX_08_SS, DBBX_12_SS and DBBX_16_SS. As 

stated in previous paragraphs, results for DBBX_04_SS and DBBX_08_SS are not 

consistent with the overall analysis. 

Relative difference is displayed in Figure 53. 
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RELATIVE DIFFERENCES BETWEEN FORMULATIONS 

 

Figure 50 Relative error design resistance in 

dependance on parameter 2γ and constant 

parameter β=0,2 under compression load 

 

Figure 51 Relative error design resistance in 

dependance on parameter 2γ and constant 

parameter β=0,4 under compression load 

 

 

Figure 52 Relative error design resistance in 

dependance on parameter 2γ and constant 

parameter β=0,6 under compression load 

 

Figure 53 Relative error design resistance in 

dependance on parameter 2γ and constant 

parameter β=0,9 under compression load 
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Figure 54 Comparison of design resistances dependance on parameter 2γ for β=0,2 under compression loading 

2γ=10 

2γ=15 

2γ=25 2γ=30 
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Figure 55 Comparison of design resistances dependance on parameter 2γ for β=0,4 under compression loading 

2γ=10 

2γ=15 

2γ=25 2γ=30 
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Figure 56 Comparison of design resistances dependance on parameter 2γ for β=0,6 under compression loading  

2γ=10 

2γ=15 

2γ=25 2γ=30 
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Figure 57 Comparison of design resistances dependance on parameter 2γ for β=0,9 under compression loading 

2γ=10 

2γ=15 

2γ=25 2γ=30 
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5.2.4 Analysis of load-displacement curves under compression loading 

One aspect that is equally important and is not visible in Fu-β and Fu-2γ curves is load-

displacement performance of the joints. 

5.2.4.1 Load-displacement dependance on β 

As β increases (brace width increases), joint is able to resist higher loads, thus ultimate 

resistance is higher. If β increases, ultimate strength is achieved at higer values of 

displacement, thus increasing brace width implies achieving a more ductile joint. After 

ultimate resistance is achieved, load-displacement curves decreases slowly, almost 

constant.  

Figure 58 displays load-displacement curves dependance on parameter β for a constant 

value of 2γ=10 as a representative performance of the joint. Load-displacement curves 

for all models are displayed in “Appendix D. PARAMETRIC RESULTS”. 

 

Figure 58 Load-displacement curves for variation of parameter β for 2γ=10 under compression 

loading 

5.2.4.2 Load-displacement dependance on 2γ 

As 2γ increseas, thickness of the chord decrease and, therefore, ultimate resistance 

decreases. On the one hand, for models with low values of 2γ i.e. DBBX_01_SS (2γ=10) 

and DBBX_05_SS (2γ=15); load decreases gradually after achieving ultimate resistance. 
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On the other hand, for models with high values of 2γ i.e. DBBX_09_SS (2γ=25) and 

DBBX_13_SS (2γ=30); load is almost constant after reaching ultimate strength. If 2γ 

increases, ultimate strength is achieved at lower values of displacement, thus 

decreasing thickness implies achieving a more brittle joint under compression loading.  

Figure 59 shows load-displacement curves dependance on parameter 2γ for a constant 

value of β=0,2 as a representative performance. Load-displacement curves for all 

models are displayed in “Appendix D. PARAMETRIC RESULTS”.  

 

Figure 59 Load-displacement curves for variation of parameter 2γ for β=0,2 under compression 

loading 

5.2.4.3 Failure modes 

Compression in the brace derives to punching of the chord, which leads to the ultimate 

failure mode of the chord. Theoretical punching of the chord is explained in paragraph 

“2.5.5 Failure modes for hollow section joints” and is displayed in Figure 60, whereas 

Figure 61 displays failure of a modelled diamond bird-beak joint under compression 

loading by means of the finite element method. 
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Figure 60 Theoretical failure mode of punching of wall chord for diamond bird-beak joint under 

compression loading 

 

Figure 61 Failure mode of punching of wall chord for diamond bird-beak joint under compression 

loading 
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5.3 ANALYSIS OF RESULTS: TENSIILE LOADING 

The same analysis of tensile loading results as compression results will be described in 

the current paragraph. 

1) Overview analysis and summary of obtained results under tensile loading 

2) Analysis of Fu-β curves of obtained results in the current thesis and comparison 

to EN 1993-1-8 [3] formulation as well as J.S. Owen empirically formulation in 

terms of the overall performance and relative error between different 

formulations with respect to ABAQUS results 

3) Idem as previous point for Fu-2γ curve. 

4) Analysis of Load-displacement curves of obtained results in this thesis for both 

β dependence as well as 2γ dependence and failure modes under tensile loading 

5.3.1 Design resistance dependance on β and 2γ under tensile loading 

Design resistance dependance on β and 2γ is displayed in Table 19. On the one hand, for 

a fixed column of Table 19 i.e. a fixed value of parameter β, increasing 2γ means 

decreasing ultimate resistance. On the other hand, for a fixed row i.e. fixed value of 

parameter 2γ, increasing β means incrasing ultimate design resistance.  

  

β 

0.2 0.4 0.6 0.9 

2γ 

10 
DBBX_01_SS DBBX_02_SS DBBX_03_SS DBBX_04_SS 

1162.76 kN 1157.29 kN 3486.48 kN 4001.41 kN 

15 
DBBX_05_SS DBBX_06_SS DBBX_07_SS DBBX_08_SS 

775.18 kN 1547.74 kN 2324.73 kN 2682.92 kN 

25 
DBBX_09_SS DBBX_10_SS DBBX_11_SS DBBX_12_SS 

465.31 kN 929.17 kN 1394.78 kN 1742.20 kN 

30 
DBBX_13_SS DBBX_14_SS DBBX_15_SS DBBX_16_SS 

387.74 kN 774.99 kN 1162.10 kN 1408.86 kN 

Table 19 Summary of the combined analysis for parameters β and 2γ under tensile loading 

However, results for DBBX_02_SS {β=0,4; 2γ=10} are not consitent with the overall 

analysis. This might be explained as a numerical analysis error within Abaqus 

calculation. 

A summary of perfomance variation of parameter β is visible in Figure 62, whereas 

performance of parameter 2γ for all models is displayed in Figure 63.  
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Figure 62 Performance of β variation for all models under tensile loading 
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Figure 63 Performance of 2γ variation for all models under tensile loading 
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As it is visible in Figure 62 and Figure 63, results of DBBX_02_SS, which corresponds to 

β=0,4 and 2γ=10, subjected to tensile loading are not consistent with the overall 

analysis. Expected theoretical performance of the analysis for all the models is displayed 

in Figure 64 (β dependence) and Figure 65 (2γ dependence), where dashed line is the 

expected trend of the joint. 

 

Figure 64 Expected performance of β variation for all models under tensile loading 

 

Figure 65 Expected performance of 2γ variation for all models under tensile loading 
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5.3.2 Analysis of Fu-β under tensile loading 

This paragraph analyses design resistances dependance on β parameter for a fixed value 

of 2γ. It should be noted that, although the resistance of a joint with properly formed 

welds is generally higher under tension than under compression the design resistance 

of a joint according to European Normative is generally based on the resistance of the 

brace in compression to avoid the possible excessive local deformation or reduced 

rotation capacity or deformation capacity with which might otherwise occur. 

Therefore, design resistance of the modelled joint subjected to tensile loading might 

be largely higher than those of the theoretical formulation. 

2γ=10 

Design resistances for a constant parameter 2γ=10, which corresponds to DBBX_01_SS, 

DBBX_02_SS_ DBBX_03_SS and DBBX_04_SS models, are displayed in Figure 70. As it is 

visible, curve trend is similar to curves obtained from EN 1993-1-8 [3] as well as owen 

formulations. However, results for DBBX_02_SS are not consistent with the overall 

trend. Relative differences concludes that β dependance for 2γ=10 of obtained results 

are set as being on the safety side, which is displayed in Figure 66. 

2γ=15, 2γ=25, 2γ=30 

Results for models subjected to tensile loading for 2γ=15, 2γ=25 and 2γ=30 derives to 

a consistent trend and are displayed in Figure 71, Figure 72 and Figure 73, respectively 

Therefore, they are discussed together in this paragraph.  

Increasing parameter 2γ means increasing ultimate strength. Furthermore, obtained 

results within ABAQUS are much higher than those obtained to J.S. Owen et. al. and EN 

1993-1-8 [3] formulations, with a high relative difference in all the cases. This might be 

explained because theoretical formulation is set for compression of the brace in order 

to avoid the possible excessive local deformation or reduced rotation capacity or 

deformation capacity with which might otherwise occur. Furthermore, theoretical 

design resistance that leads to a type of failure mode might be different from failure 

mode of the modelled joint as well. 

Relative differences for 2γ=15, 2γ=25 and 2γ=30 is displayed in Figure 67, Figure 68 and 

Figure 69, respectively. 
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RELATIVE DIFFERENCES BETWEEN FORMULATIONS 

 

Figure 66 Relative error design resistance in 

dependance on parameter β and constant 

parameter 2γ=10 under tensile load 

 

Figure 67 Relative error design resistance in 

dependance on parameter β and constant 

parameter 2γ=15 under tensile load 

 

 

Figure 68 Relative error design resistance in 

dependance on parameter β and constant 

parameter 2γ=25 under tensile load 

 

Figure 69 Relative error design resistance in 

dependance on parameter β and constant 

parameter 2γ=30 under tensile load 
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Figure 70 Comparison of design resistances dependance on parameter β for 2γ=10 under tensile loading   

β=0,2 

β=0,4 

β=0,6 β=0,9 
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Figure 71 Comparison of design resistances dependance on parameter β for 2γ=15 under tensile loading  
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Figure 72 Comparison of design resistances dependance on parameter β for 2γ=25 under tensile loading  

β=0,2 
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β=0,9 
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Figure 73 Comparison of design resistances dependance on parameter β for 2γ=30 under tensile loading 
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5.3.3 Analysis of Fu-2γ under tensile loading 

This paragraph analyses design resistances dependance on β parameter for a fixed value 

of 2γ.  

β=0,2 

Design resistances under tensile loading for a constant parameter β=0,2, which 

corresponds to DBBX_01_SS, DBBX_05_SS_ DBBX_09_SS and DBBX_13_SS models, is 

displayed in Figure 78. As it is visible, curve trend is similar to curves obtained from EN 

1993-1-8 as well as owen formulations. Furthermore, relative error concludes that 2γ 

dependance for β=0,2 of obtained results are set as being on the safety side. Relative 

difference is displayed in Figure 74. 

β=0,4 

Different results are achieved for the particular case of constant parameter β=0,4. For 

instance, for 2γ=10, ABAQUS results are close to bibliography formulations with a really 

low relative error, whereas for higher values of parameter 2γ ultimate resistance is 

much higher. As it has been stated in analysis of Fu-β, DBBX_02_SS is not consistent with 

the overall results. However, theoretical overall trend is achieved for parameter 2γ 

equal to 15, 25 and 30, but with much higher values. Relative difference is displayed in 

Figure 75. 

β=0,6 

Similar behaviour as β=0,2 is achieved for a constant value of parameter β=0,6, which 

is displayed in Figure 80. Relative error concludes that 2γ dependance for β=0,6 of 

obtained results are set as being on the safety side. Relative difference is displayed in 

Figure 76. 

β=0,9 

Finally, consistent results are obtained for a constant value of parameter β=0,9, which 

is displayed in Figure 81. Ultimate strength obtained when β=0,9 i.e. brace width is 135 

mm, is the largest among all the models. Relative difference is displayed in Figure 77. 
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Figure 74 Relative error design resistance in 

dependance on parameter 2γ and constant 

parameter β=0,2 under tensile load 

 

Figure 75 Relative error design resistance in 

dependance on parameter 2γ and constant 

parameter β=0,4 under tensile load 

 

 

Figure 76 Relative error design resistance in 

dependance on parameter 2γ and constant 

parameter β=0,6 under tensile load 

 

Figure 77 Relative error design resistance in 

dependance on parameter 2γ and constant 

parameter β=0,9 under tensile load 
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Figure 78 Comparison of design resistances dependance on parameter 2γ for β=0,2 under tensile loading 

2γ=10 

2γ=15 2γ=25 

2γ=30 
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Figure 79 Comparison of design resistances dependance on parameter 2γ for β=0,4 under tensile loading 

2γ=10 2γ=15 2γ=25 
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Figure 80 Comparison of design resistances dependance on parameter 2γ for β=0,6 under tensile loading 
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Figure 81 Comparison of design resistances dependance on parameter 2γ for β=0,9 under tensile loading 
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5.3.4 Analysis of load-displacement curves under tensile loading 

As explained in the analysis of compression results, one aspect that is equally important 

and is not displayed in Fu-β and Fu-2γ curves is load-displacement performance of the 

joints, which allow to acknowledge ductility performance of the mdoels. Thus ultimate 

strength at high values of displacement means model is more ductile and ultimate 

strength at low values of displacement means model is more brittle. 

5.3.4.1 Load-displacement dependance on β 

For the particular case of tensile loading and constant parameter 2γ=15, variation of 

parameter β is displayed in Figure 82 as a representative performance of the joint. Thus, 

as brace width increases, ultimate resistance increases as well. Furthermore, as β 

increases, ductility increases as well, which means ultimate strength is achieved at high 

values of displacement. Load-displacement curves for all models are displayed in 

“Appendix D. PARAMETRIC RESULTS”. 

A change in the slope of load-displacement curves might mean that there is a change in 

the failure mode. For instance, for β=0,2 there is no change in the load-displacement 

curve, thus failure occurs only in the brace. On the contrary, for higher values of β, there 

is coupling failure between chord and brace. 

 

Figure 82 Load-displacement curves for variation of parameter β for 2γ=15 under tensile loading 
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5.3.4.2 Load-displacement dependance on 2γ 

Similar performance as compression analysis is obtained for tensile loading analysis. As 

2γ increases i.e. thickness decreases, ultimate resistance of the joint decreases as well. 

Figure 83 displays models DBBX_01_SS (2γ=10), DBBX_05_SS (2γ=15), DBBX_09_SS 

(2γ=25) and DBBX_13_SS (2γ=30) as a representative performance for 2γ variation. On 

the contrary of β dependance, performance dependence on 2γ concludes that as 2γ 

increases, models are more ductile and ultimate strength is achieved at high values of 

displacement, whereas low values of parameter 2γ means models are more brittle, 

despite the fact they have higher ultimate resistance. Load- displacement curves for all 

models are displayed in “Appendix D. PARAMETRIC RESULTS”. 

 

Figure 83 Load-displacement curves for variation of parameter 2γ for β=0,2 under tensile 

loading 
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5.3.4.3 Failure modes 

Failure modes are analysed for two different cases in order to study the influence of 

brace width in failure. On the one hand, low values of parameter β (β=0,2) and, on the 

other hand, high values of β (β=0,6). β=0,9 case is not analysed since after 300 

increments of calculation, joint has not achieved its ultimate strength. 

5.3.4.3.1 Failure modes for β=0,2 

Typical load-displacement curve for β=0,2 is displayed in Figure 84, where slope is 

constant i.e. there are not abrupt changes in curve’s slope. Therefore, failure mode does 

not change as load increases. 

 

Figure 84 Load-displacement curve for β=0,2 under tensile loading 

There are three important steps within load-displacement curve: 

1) End of elastic phase, where only welded contour is being afected 

2) Ultimate strength is achieved, which leads to failure. Brace is largely afected 

with high stresses and effective width is reduced. 

3) Joint has already failed due to brace failure. However, stresses in the chord 

decreases 
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2 
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1) 

 

2) 

 

3) 

 

Figure 85 Stages of deformed shape for β=0,2 under tensile loading 

Theoretical brace failure with reduced effective width is explained in paragraph “2.5.5 

Failure modes for hollow section joints” and is displayed in Figure 86. 

 

Figure 86 Theoretical failure mode of brace failure with reduced effective width 
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5.3.4.3.2 Failure modes for β=0,6 

Typical load-displacement curve for β=0,6 is displayed in Figure 87. It is visible that the 

curve has different slopes before failure. 

 

Figure 87 Load-displacement curve for β=0,6 under tensile loading 

There are five important steps within load-displacement curve: 

1) End of elastic phase, which not important stresses are visible 

2) Chord face failure is starting to occur, which leads to chord plastification 

3) Ultimate step of chord face failure. Chord is completely plastified. Afterwards, 

failure moves to brace 

4) Failure mode is brace failure with reduced effective width. Ultimate design 

resistance is achieved. 

5) Joint has already failed due to brace failure. Stresses in the chord decreases 

slowly 
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1) 

 

2) 

 

3) 

 

4) 

 

5) 

 

Figure 88 Stages of deformed shape for β=0,6 under tensile loading 

Theoretical brace failure with reduced effective width and chord face failure are 

explained in paragraph “2.5.5 Failure modes for hollow section joints” and are displayed 

in Figure 89. In the particular case of high values of β there is coupling failure between 

chord and brace. 
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Figure 89 Theoretical failure mode of chord face failure (left) and brace failure with reduced 

effective width (right) 

5.3.4.3.3 Specific analysis of failure modes for β=0,9 under tensile loading 

Different failure modes are described in EN 1993-1-8 for β≥0,85. For the present thesis, 

design resistance for β≥0,9 has been considered as the minimum of different failure 

modes i.e. minimum value between chord face failure, chord side wall buckling, brace 

failure and punching shear.  

Moreover, as it has been explained in “2.5.5 Failure modes for hollow section joints”, 

the resistance of a joint with properly formed welds is generally higher under tension 

than under compression. However, the design resistance of a joint according to EN 

1993-1-8 is generally based on the resistance of the brace in compression to avoid the 

possible excessive local deformation or reduced rotation capacity or deformation 

capacity with which might otherwise occur. 

Therefore, minimum value of the design resistance of the European Normative might 

not be the actual design resistance that leads to failure mode of the modelled joint. 

As it has been concluded within previous paragraphs, large differences have been 

obtained between modelled results and European Normative for β≥0,85. This fact might 

be due to theoretical failure mode stated in the normative is not the same as the actual 

failure mode of a modelled diamond bird-beak joints subjected to tensile loading. 

JOINT 

Chord face 
failure 

Chord side wall 
buckling 

Brace failure Punching shear 

β≤0,85 β≥0,85 β≥0,85 0,85≤β≤(1-1/γ) 

β=0.9 / 2γ=10 3471.55 kN 1764.00 kN 2016.00 kN 1309.43 kN 

β=0.9 / 2γ=15 2074.91 kN 1036.00 kN 1148.00 kN 727.46 kN 

β=0.9 / 2γ=25 2675.39 kN 554.40 kN 594.72 kN 366.64 kN 

β=0.9 / 2γ=30 3176.09 kN 448.00 kN 476.00 kN 290.98 kN 

Table 20 Design resistances for β=0,9 for different failure modes according to EN 1993-1-8 
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Results for β=0,9 for different failure modes are set in Figure 90. On the one hand, it is 

visible that the closer failure mode for 2γ=10 and 2γ=15 is chord face failure of the joint 

instead of punching shear, which is the minimum design resistance. On the other hand, 

for 2γ=25 and 2γ=30, theoretical design resistances that leads to chord face failure are 

higher than the modelled design resistances. Therefore, design resistance that leads to 

failure mode of modelled joint that is suitable with theoretical formulation for 2γ=25 

and 2γ=30 is brace failure with reduced effective width.  

 

Figure 90 Design resistances of EN 1993-1-8 for different failure modes in comparison to design 

resistances obtained within ABAQUS 

In conclusion, high values of thickness leads to chord face failure instead of theoretical 

failure modes of the European normative i.e. brace failure with reduced effective width, 

whereas low values of thickness leads to brace failure, which is consistent with 

theoretical failure mode of European Normative. 

JOINT ABAQUS EN 1993-1-8 Failure mode 

β=0.9 / 2γ=10 4001.41 kN 3471.55 kN Chord face failure 

β=0.9 / 2γ=15 2682.92 kN 2074.91 kN Chord face failure 

β=0.9 / 2γ=25 1742.20 kN 594.72 kN Brace failure 

β=0.9 / 2γ=30 1408.86 kN 476.00 kN Brace failure 

Table 21 Design resistances of the actual failure modes of European Normative in comparison to 

modelled design resistances  
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For instance, in the particular case of 2γ=10 and β=0,9, European Normative 

formulation states that failure mode should be punching shear taking into account the 

minimum value of design resistances. However, modelled results are closer to chord 

face failure value (Figure 91). 

  

Figure 91 Chord face failure of modelled joint for β=0.9 and 2γ=10 (left) and theoretical chord face 

failure (right) 

For the particular case of 2γ=30 and β=0,9, ultimate resistance that leads to failure mode 

of the joint is identical to failure mode explained in previous paragraph “5.3.4.3.2 Failure 

modes for β=0,6”, which corresponds to brace failure with reduced effective width 

(Figure 92), instead of the minimum value of the design resistance that corresponds to 

punching shear failure. 

  

Figure 92 Brace failure of modelled joint for β=0.9 and 2γ=30 (left) and theoretical brace failure with 

reduced effective width (right) 
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5.4 COMPARISON OF CARBON STEEL AND STAINLESS STEEL  

Once all the models have been analysed for both tensile and compression by means of 

curves Fu-β, Fu-2γ and P-δ, shall be of high importance to compare stainless steel results 

obtained in this thesis with carbon steel results of similar diamond bird-beak joints in 

order to understand behaviour of both cases and find advantages and disadvantages in 

using stainless steel against using carbon steel. 

A. PEÑA and R. CHACÓN, in their article “Structural analysis of diamond bird-beak joints 

subjected to compressive and tensile forces” [7], studied several diamond bird-beak X-

type joints of carbon steel. Thus, geometrical models that are exacly equal in their study 

in comparison to geometrical models in this thesis will be compared in terms of Load-

Displacement curves. 

They analysed three types of carbon steel of different yield strength each i.e. fy=235 

N/mm2, fy=275 N/mm2 and fy=460 N/mm2. Since the material analysed in the current 

thesis is a stainless steel with a yield strength of 280 N/mm2, it shall be compared to 

yield strength of 275 N/mm2 since is the closer value. Young’s modulus is slighltly 

different for both studies as well i.e. E=200000 N/mm2 for this thesis, whereas 

E=210000 N/mm2 for A. PEÑA and R. CHACÓN study. 

Carbon steel and stainless steel models of both studies are linked in Table 22, where 

first column refers to models nomenclature in the article mentioned above. Comparison 

of carbon steel DBBX joints and stainless steel DBBX joints under compression loading 

and tensile loading will be carried out. 

CARBON 
STEEL 
JOINT 

STAINLESS 
STEEL 
JOINT 

Geometric parameters 

2γ β Chord Brace 

L0 
(mm) 

b0 
(mm) 

t0 
(mm) 

b1 
(mm) 

t1 
(mm) 

DBBX_21 DBBX_05_SS 3000 150 10 30 10 15 0,2 

DBBX_22 DBBX_06_SS 3000 150 10 60 10 15 0,4 

DBBX_24 DBBX_08_SS 3000 150 10 135 10 15 0,9 

DBBX_25 DBBX_09_SS 3000 150 6 30 6 25 0,2 

DBBX_26 DBBX_10_SS 3000 150 6 60 6 25 0,4 

DBBX_28 DBBX_12_SS 3000 150 6 135 6 25 0,9 

DBBX_29 DBBX_13_SS 3000 150 5 30 5 30 0,2 

DBBX_30 DBBX_14_SS 3000 150 5 60 5 30 0,4 

DBBX_32 DBBX_16_SS 3000 150 5 135 5 30 0,9 

Table 22 Linked nomenclature and geometric parameters between carbon steel models by A. Peña and 

R. Chacón [7] and stainless steel models analysed in the current thesis 

The most important difference between carbon steel and stainless steel is visible in the 

stress-strain curve. Carbon steel stres-strain curve used within ABAQUS in the analysis 
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by A. PEÑA and R. CHACÓN, as well as stainless steel stress-strain curve used in the 

present thesis, are displayed in Figure 93. It is visible that stainless steel does not reach 

a specific yield stress and displays a rounded curve. For high elongation percentages, 

i.e. elongation higher than approximately 4,5%, stainless steel achieves higher values of 

ultimate tensile strength due to its ductility. 

 

Figure 93 Comparison of carbon steel and stainless steel stress-strain curves 

As expected, stainless steel models have higher ultimate strength due to their higher 

ductility, as it is clear from Figure 94 to Figure 102.  

On the one hand, in the particular case of compression loading and for lower values of 

β, ultimate strength for carbon steel is achieved at approximately 1/3 of the 

displacement that lead to ultimate strength for stainless steel. For instance, ultimate 

strength for carbon steel is achieved at approximately 10 mm of displacement, whereas 

for stainless steel is achieved at approximately 30 mm of displacement. This fact is 

visible in models for β=0,2 i.e. DBBX_05_SS, DBBX_09_SS and DBBX_13_SS (Figure 94, 

Figure 97 and Figure 100, respectively); as well as in models for β=0,4 i.e. DBBX_06_SS, 

DBBX_10_SS and DBBX_14_SS (Figure 95, Figure 98 and Figure 101, respectively). 

However, for higher values of β (β=0,9), which are models DBBX_08_SS, DBBX_12_SS 

and DBBX_16_SS (Figure 96, Figure 99 and Figure 102, respectively), ultimate strength 

is achieved at much higher values of displacement. 

Design resistances for carbon steel and stainless steel are listed in Table 23. Increment 

factor is approximately 1.3 for most of the models, which means stainless steel ultimate 

resistance is 30% higher than carbon steel. However, for the particular cases of {β=0,9 

and 2γ=25} and { β=0,9 and 2γ=30}, increment factor is higher than 3. 
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 2γ β 
Fu 

Carbon steel 
Fu  

Stainless steel 
Increment factor 

DBBX_05_SS 15 0,2 269,73 380,17 1,41 

DBBX_06_SS 15 0,4 305,15 406,93 1,33 

DBBX_08_SS 15 0,9 546,43 854,18 1,56 

DBBX_09_SS 25 0,2 116,49 146,11 1,25 

DBBX_10_SS 25 0,4 127,97 163,95 1,28 

DBBX_12_SS 25 0,9 240,82 786,52 3,27 

DBBX_13_SS 30 0,2 85,61 105,65 1,23 

DBBX_14_SS 30 0,4 93,25 118,02 1,27 

DBBX_16_SS 30 0,9 180,85 564,18 3,12 

Table 23 Design resistances comparison for stainless steel and carbon steel subjected to compression 

loading 

On the other hand, in the particular case of tensile loading, ultimate strength is higher 

than compression loading, as expected and consistent due to steel behaviour under 

tensile is much better than behaviour under compression. However, it is visible in 

figures from Figure 94 to Figure 102 that ultimate strength for stainless steel subjected 

to tensile loading is much more higher than carbon steel i.e. in most of the cases ultimate 

strength for stainless steel is more than double than ultimate strength for carbon steel, 

as it is visible in Table 24 as well. 

 2γ β 
Fu 

Carbon steel 
Fu  

Stainless steel 
Increment factor 

DBBX_05_SS 15 0,2 324,43 775,18 2,39 

DBBX_06_SS 15 0,4 654,02 1547,74 2,37 

DBBX_08_SS 15 0,9 1435,37 2682,92 1,87 

DBBX_09_SS 25 0,2 195,56 465,31 2,38 

DBBX_10_SS 25 0,4 391,67 929,17 2,37 

DBBX_12_SS 25 0,9 849,58 1742,20 2,05 

DBBX_13_SS 30 0,2 163,60 387,74 2,37 

DBBX_14_SS 30 0,4 325,75 774,99 2,38 

DBBX_16_SS 30 0,9 704,30 1408,86 2,00 

Table 24 Design resistances comparison for stainless steel and carbon steel subjected to tensile 

loading 
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β=0,2 / 2γ=15 (DBBX_21 vs DBBX_05_SS) 

Compression 

 

 

 

 

Tensile 

 

 

 

Figure 94 Comparison of load-deformation curves for DBBX_21 (carbon steel) and DBBX_05_SS 

(stainless steel) under compression loading (up) and tensile loading (down)  
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β=0,4 / 2γ=15 (DBBX_22 vs DBBX_06_SS) 

Compression 

 

 

 

Tensile 

 

 

 

Figure 95 Comparison of load-deformation curves for DBBX_22 (carbon steel) and DBBX_06_SS 

(stainless steel) under compression loading (up) and tensile loading (down) 
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β=0,9 / 2γ=15 (DBBX_24 vs DBBX_08_SS) 

Compression 

 

 

 

Tensile 

 

 

 

Figure 96 Comparison of load-deformation curves for DBBX_24 (carbon steel) and DBBX_08_SS 

(stainless steel) under compression loading (up) and tensile loading (down) 
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β=0,2 / 2γ=25 (DBBX_25 vs DBBX_09_SS) 

Compression 

 

 

 

Tensile 

 

 

 

Figure 97 Comparison of load-deformation curves for DBBX_25 (carbon steel) and DBBX_09_SS 

(stainless steel) under compression loading (up) and tensile loading (down) 
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β=0,4 / 2γ=25 (DBBX_26 vs DBBX_10_SS) 

Compression 

 

 

 

Tensile 

 

 

 

Figure 98 Comparison of load-deformation curves for DBBX_26 (carbon steel) and DBBX_10_SS 

(stainless steel) under compression loading (up) and tensile loading (down) 

  



 

Numerical analysis on stainless steel 

diamond bird-beak joints subjected to 

compressive and tensile forces 

Chapter 5: Analysis of results  

 

  111 

β=0,9 / 2γ=25 (DBBX_28 vs DBBX_12_SS) 

Compression 

 

 

 

Tensile 

 

 

 

Figure 99 Comparison of load-deformation curves for DBBX_28 (carbon steel) and DBBX_12_SS 

(stainless steel) under compression loading (up) and tensile loading (down) 
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β=0,2 / 2γ=30 (DBBX_29 vs DBBX_13_SS) 

Compression 

 

 

 

Tensile 

 

 

 

Figure 100 Comparison of load-deformation curves for DBBX_29 (carbon steel) and DBBX_13_SS 

(stainless steel) under compression loading (up) and tensile loading (down) 
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β=0,4 / 2γ=30 (DBBX_30 vs DBBX_14_SS) 

Compression 

 

 

 

Tensile 

 

 

 

Figure 101 Comparison of load-deformation curves for DBBX_30 (carbon steel) and DBBX_14_SS 

(stainless steel) under compression loading (up) and tensile loading (down) 
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β=0,9 / 2γ=30 (DBBX_32 vs DBBX_16_SS) 

Compression 

 

 

 

Tensile 

 

 

 

Figure 102 Comparison of load-deformation curves for DBBX_32 (carbon steel) and DBBX_16_SS 

(stainless steel) under compression loading (up) and tensile loading (down) 
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6. CONCLUSIONS 
6.1 SUMMARY OF THE THESIS 

The main objective of the current thesis has been to analyse hollow secion joints taking 

into account stainless steel material by means of a parametric study. In particular, 

several models of diamond bird-beak X-type (DBBX) joints have been modelled and 

calculated within ABAQUS, which is a high resolution finite element method software.  

As stated in “1. INTRODUCTION” paragraph, there are some studies and articles 

analysing tubular hollow section joints in carbon steel under all kinds of loading 

assumptions i.e. tensile loading, compression loading, and both in-plane bending and 

out-of-plane bending. Furthermore, all types of joints have been analysed and studied 

throughtout recent history.  

This thesis has been an attempt to study a specific X-type of diamond bird-beak joint 

under axial tensile and axial compression loading for a stainless steel material. Results 

obtained by means of the finite element method within ABAQUS will be compared to 

analytical formulation obtained by J.S. Owen et. al. in their article “The influence of 

member orientation on the resistance of cross joints in square RHS construction” [6] as 

well as the European Normative formulation EN 1993-1-8 [3]. 

First of all, tubular hollow section of joints as well as the most important characteristics 

of stainless steel have been largely explained in “2. STATE OF THE ART” paragraph, 

which are the most important tools for being able to carry out this study. Afterwards, 

finite elements method as well as modelling procedure within ABAQUS is explained and 

detailed in “3. THE FINITE ELEMENT METHOD”. 

As mentioned before, the main objective of the current thesis is to carry out a parametric 

analysis of a diamond bird-beak X-type joint, which is explained in “4. PARAMETRIC 

STUDY OF DBB-X JOINTS”. Variation of two dimensionless parameters are considered: β 

=b1/b0 (relation between brace width and chord width) and 2γ=b0/t0 (relation between 

chord width and chord thickness). 

On the one hand, as stated in Owen et. al., parameter β ranges from 0.2 to 0.9. In the 

particular case of this thesis, β is taken as 0.2, 0.4, 0.6 and 0.9, which have been obtained 

from mantaining constant chord width and varying brace width for values 30 mm, 60 

mm, 90mm and 135 mm, respectively. On the other hand, in the Owen et. al.’s article 2γ 
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is ranged between 9.4 to 35.3. In this thesis, 2γ values are: 10, 15, 25 and 30, which are 

obtained from varying thickness for values 15 mm, 10 mm, 6 mm and 5 mm, 

respectively. Thus, the total number of models is 16, which are analysed under 

compression loading as well as tensile loading, which leads to a total amount of 32 

different cases. 

Finally, results have been analysed and discussed in the last paragraph of the thesis 

called “5. ANALYSIS OF RESULTS”. Results are mainly analised and studied by three 

different points of view: design resistance dependance on β parameter (Fu-β); design 

resistance dependance on 2γ parameter (Fu-2γ); and load-displacement analysis. 

Furthermore, as mentioned before, results have been compared to J.S. Owen 

formulation as well as EN 1993-1-8 [3] formulation. 

6.2 CONCLUSIONS OF THE STUDY 

As mentioned before, 16 models have been analysed under compression as well as 

tensile loading and their design resistances have been compared to European 

Normative EN 1993-1-8 [3] and J.S. Owen article [6]. Also, stainless steel models have 

been compared to identical geometry models, but calculated in carbon steel material. 

Conclusions of the results obtained in the overall thesis are listed below: 

Conclusions of results under axial compression loading 

First of all, design resistance (Fu) dependance on parameter β concludes that as β 

increases, ultimate resistance increases as well. Moreover, β dependance states that for 

low values of β, results are similar to those of bibliography formulation and, therefore, 

they are suitable to analyse stainless steel joints taking into account these geometrical 

characteristics. Results for {β=0.9; 2γ=10} and {β=0.9; 2γ=15} are not consistent with 

the overall analysis. 

Moreover, design resistance (Fu) dependance on parameter 2γ concludes that 

increasing parameter 2γ (reducing brace thickness) for a fixed value of β means 

decreasing ultimate resistance. Design resistance curves states that, as before, {β=0.9; 

2γ=10} and {β=0.9; 2γ=15} are not consistent with the overall analysis. 

Finally, conclusions for load-displacement curves states that as β increases (brace width 

increases), ultimate resistance increases as well and as 2γ increases (brace thickness 

decreases), design resitance decreases, which is consistent with previous conclusions. 

Moreover, load-displacement curves allows to acknowledge ductility performance. 

Thus, if β increases, ductility incrases and ultimate strength is achieve at higher values 

of displacement. However, if parameter 2γ increases (thickness decreases), ultimate 

strength decreases and models are less ductile i.e. models are more brittle and ultimate 

strength is achieved at lower values of displacement. 
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It is important to highlight that for compression loading, punching on the chord is the 

principal failure mode. 

Conclusions of results under axial tensile loading 

First of all, design resistance (Fu) dependance on parameter β concludes that as β 

increases, ultimate resistance increases as well. Furthermore, it is visible that modelled 

results in this thesis derive to a much higher ultimate resistance in comparison to design 

resistance of mentioned bibliography, which might be explained because EN 1993-1-8 

is generally based on the resistance of the brace in compression to avoid the possible 

excessive local deformation or reduced rotation capacity or deformation capacity with 

which might otherwise occur. It is important to note that results for {β=0.4, 2γ=10} are 

not consistent with the overall analysis. 

Analysis of design resistance (Fu) dependence on parameter 2γ for mdoels subjected to 

axial tensile loading concludes that increasing parameter 2γ for a fixed value of β means 

decreasing ultimate resistance. Thus, decreasing thickness means decreasing ultimate 

resistance. It is visible that modelled results in this thesis derive to a much higher 

ultimate resistance in comparison to design resistance of mentioned bibliography. As 

before, results for {β=0.4, 2γ=10} are not consistent with the overall analysis. 

Finally, conclusions for load-displacement curves states that as β increases (brace width 

increases), ultimate resistance increases as well and as 2γ increases (brace thickness 

decreases), design resitance decreases, which is consistent with previous conclusions. 

Moreover, load-displacement curves allows to acknowledge ductility performance. 

Thus, if β increases, ductility incrases and ultimate strength is achieve at higher values 

of displacement. However, if parameter 2γ increases (thickness decreases), ultimate 

strength decreases but models are still more ductile, therefore ultimate strength is 

achieved at higher displacement for higher values of 2γ.  

Principal failure mode for low values of β is brace failure with reduced effective width, 

whereas for high values of β there is coupling failure between chord face failure and 

brace failure. It should be important to note that for β=0.9, high values of thickness leads 

to chord face failure instead of theoretical failure modes of the European normative i.e. 

brace failure with reduced effective width, whereas low values of thickness leads to 

brace failure, which is consistent with theoretical failure mode of European Normative. 

Conclusions of comparison between carbon steel and stianless steel 

Stainless steel results of diamond bird-beak joints show a much higher ultimate 

strength than identical carbon steel geometry models, as expected. On the one hand, in 

the particular case of compression loading and for lower values of β, ultimate strength 

for carbon steel is achieved at approximately 1/3 of the displacement that lead to 

ultimate strength for stainless steel. Furthermore, ultimate strength for stainless steel 

is about 1.3 times of the design resistance for carbon steel. On the other hand, ultimate 
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resistance under tensile loading for stainless steel is more than double of design 

resistance for carbon steel for most of the cases. This might be explained due to stainless 

steel ductility is higher than carbon steel’s. 

6.3 FUTURE SCOPE AND PERSPECTIVES  

This thesis is a parametric study to understand the failure modes of a stainless steel 

diamond bird-beak X-type joint (DBBX) subjected to compression and tensile forces. 

This paragraph highlights some perspectives in order to enlarge this study. 

First of all, despite the fact that this thesis concludes with great advantages of stainless 

steel joints against traditional carbon steel joints when the joint is subjected to axial 

forces due to its ductility, it shall be of high interest to study all the models but subjected 

to in-plane bending as well as out-of-plane bending in order to acknowledge their 

performance. 

Furthermore, different types or grades of stainless steel should be studied in order to 

acknowledge their differences. For instance, different yield stresses might be 

considered in future studies. Also, this study has been carried out for a X-type welded 

planar joint with 90º angles between brace and chord. It shall be interesting to study 

joints with diagonal elements as well as different joint configurations (T, Y, N, K or KT) 

and/or study a spatial 3D joint, with braces in the transversal axis in order to 

realistically approach truss configuration. 

Stress concentration factors should be of high interest to study as well in further 

research of stainless steel diamond bird beak-joints in order to compare results with 

literature of stress concentration factors of diamond bird-beak joints. 

Finally, it is worth pointing out that the database of results provided herein is based 

upon an experimentally validated numerical model which assumes perfect match 

between solids. Further research detailing the effect of welding might improve and 

enlarge conclusions of this thesis by including the potential failure mode which involves 

the welding toes. 
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A. GEOMETRY OF MODELS 
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Figure 103 Geometry of models. Brace widht of 30 mm (left) and brace width of 60 mm (right)   
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Figure 104 Geometry of models. Brace widht of 90 mm (left) and brace width of 135 mm (right)  
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B.1 DESIGN RESISTANCES ACCORDING TO EN 1993-1-8 

 

Table 25 Design axial resistances of welded T, X and Y joints between RHS braces and RHS chords 

(EN 1993-1-8 Table 7.11 [3]) 
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JOINT 

Chord face failure Chord side wall buckling Brace failure Punching shear 

β≤0,85 β≥0,85 β≥0,85 0,85≤β≤(1-1/γ) 

Tension Compression Tension Compression Tension Compression Tension Compression 

Ni,Rd,TENS Ni,Rd,COMP Ni,Rd,TENS Ni,Rd,COMP Ni,Rd,TENS Ni,Rd,COMP Ni,Rd,TENS Ni,Rd,COMP 

DBBX_01_SS 376.24 376.24 NA NA NA NA NA NA 

DBBX_02_SS 577.33 577.33 NA NA NA NA NA NA 

DBBX_03_SS 965.45 965.45 NA NA NA NA NA NA 

DBBX_04_SS Linear interpolation 1764.00 1270.08 2016.00 2016.00 1309.43 1309.43 

DBBX_05_SS 167.22 167.22 NA NA NA NA NA NA 

DBBX_06_SS 256.59 256.59 NA NA NA NA NA NA 

DBBX_07_SS 429.09 429.09 NA NA NA NA NA NA 

DBBX_08_SS Linear interpolation 1036.00 621.60 1148.00 1148.00 727.46 727.46 

DBBX_09_SS 60.20 60.20 NA NA NA NA NA NA 

DBBX_10_SS 92.37 92.37 NA NA NA NA NA NA 

DBBX_11_SS 154.47 154.47 NA NA NA NA NA NA 

DBBX_12_SS Linear interpolation 554.40 221.76 594.72 594.72 366.64 366.64 

DBBX_13_SS 41.80 41.80 NA NA NA NA NA NA 

DBBX_14_SS 64.15 64.15 NA NA NA NA NA NA 

DBBX_15_SS 107.27 107.27 NA NA NA NA NA NA 

DBBX_16_SS Linear interpolation 448.00 143.36 476.00 476.00 290.98 290.98 

Table 26 Design axial resistances of DBBX different models according to EN 1993-1-8 
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B.2 DESIGN RESISTANCES ACCORDING TO J.S. OWEN 

Design resistances according to J.S. Owen are obtained from following formulation: 

𝐹𝑢1 =
𝑓𝑦0

1000
(

𝑓𝑦0

275
)

0.8
(6.06 − 5.6𝛽 + 11.4𝛽2)(0.6 + 1.97√𝛽)𝑡0

2

𝑡0
𝑏0

(6.06 − 5.6𝛽 + 11.4𝛽2) +
1
3

(0.6 + 1.97√𝛽)
 Eq. 16 

 

JOINT Fu1 (kN) 

DBBX_01_SS 494,33 

DBBX_02_SS 564,45 

DBBX_03_SS 665,58 

DBBX_04_SS 875,41 

DBBX_05_SS 266,01 

DBBX_06_SS 298,47 

DBBX_07_SS 353,54 

DBBX_08_SS 477,34 

DBBX_09_SS 115,18 

DBBX_10_SS 126,68 

DBBX_11_SS 150,82 

DBBX_12_SS 209,95 

DBBX_13_SS 84,26 

DBBX_14_SS 92,09 

DBBX_15_SS 109,81 

DBBX_16_SS 154,35 

Table 27 Design axial resistances of DBBX joints according to J.S. Owen formulation 
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C. VON MISES 
 

 



 

Numerical analysis on stainless steel 

diamond bird-beak joints subjected to 

compressive and tensile forces 

Appendix C: Von Mises  

 

  130 

C.1 COMPRESSION 

DBBX_01_SS_C 

 

DBBX_02_SS_C 

 

Figure 105 Von Mises stresses for DBBX_01_SS (left) and DBBX_02_SS (right) under compression loading  
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DBBX_03_SS_C 

 

DBBX_04_SS_C 

 

Figure 106 Von Mises stresses for DBBX_03_SS (left) and DBBX_04_SS (right) under compression loading  
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DBBX_05_SS_C 

 

DBBX_06_SS_C 

 

Figure 107 Von Mises stresses for DBBX_05_SS (left) and DBBX_06_SS (right) under compression loading  
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DBBX_07_SS_C 

 

DBBX_08_SS_C 

 

Figure 108 Von Mises stresses for DBBX_07_SS (left) and DBBX_08_SS (right) under compression loading  
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DBBX_09_SS_C 

 

DBBX_10_SS_C 

 

Figure 109 Von Mises stresses for DBBX_09_SS (left) and DBBX_10_SS (right) under compression loading  
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DBBX_11_SS_C 

 

DBBX_12_SS_C 

 

Figure 110 Von Mises stresses for DBBX_11_SS (left) and DBBX_12_SS (right) under compression loading  
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DBBX_13_SS_C 

 

DBBX_14_SS_C 

 

Figure 111 Von Mises stresses for DBBX_13_SS (left) and DBBX_14_SS (right) under compression loading  
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DBBX_15_SS_C 

 

DBBX_16_SS_C 

 

Figure 112 Von Mises stresses for DBBX_15_SS (left) and DBBX_16_SS (right) under compression loading  
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C.2 TENSION 

DBBX_01_SS_T 

 

DBBX_02_SS_T 

 

Figure 113 Von Mises stresses for DBBX_01_SS (left) and DBBX_02_SS (right) under tensile loading  



 

Numerical analysis on stainless steel 

diamond bird-beak joints subjected to 

compressive and tensile forces 

Appendix C: Von Mises  

 

  139 

DBBX_03_SS_T 

 

DBBX_04_SS_T 

 

Figure 114 Von Mises stresses for DBBX_03_SS (left) and DBBX_04_SS (right) under tensile loading  
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DBBX_05_SS_T 

 

DBBX_06_SS_T 

 

Figure 115 Von Mises stresses for DBBX_05_SS (left) and DBBX_06_SS (right) under tensile loading  



 

Numerical analysis on stainless steel 

diamond bird-beak joints subjected to 

compressive and tensile forces 

Appendix C: Von Mises  

 

  141 

DBBX_07_SS_T 

 

DBBX_08_SS_T 

 

Figure 116 Von Mises stresses for DBBX_07_SS (left) and DBBX_08_SS (right) under tensile loading  
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DBBX_09_SS_T 

 

DBBX_10_SS_T 

 

Figure 117 Von Mises stresses for DBBX_09_SS (left) and DBBX_10_SS (right) under tensile  loading  
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DBBX_11_SS_T 

 

DBBX_12_SS_T 

 

Figure 118 Von Mises stresses for DBBX_11_SS (left) and DBBX_12_SS (right) under tensile loading  
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DBBX_13_SS_T 

 

DBBX_14_SS_T 

 

Figure 119 Von Mises stresses for DBBX_13_SS (left) and DBBX_14_SS (right) under tensile loading  
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DBBX_15_SS_T 

 

DBBX_16_SS_T 

 

Figure 120 Von Mises stresses for DBBX_15_SS (left) and DBBX_16_SS (right) under tensile loading  
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D.1 COMPRESSION LOADING 

D.1.1 Variation of parameter β 

  

Figure 121 Load-displacement curves for variation of parameter β for 2γ=10 (left) and for 2γ=15 (right) under compression loading  
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Figure 122 Load-displacement curves for variation of parameter β for 2γ=25 (left) and for 2γ=30 (right) under compression loading  
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D.1.2 Variation of parameter 2γ 

  

Figure 123 Load-displacement curves for variation of parameter 2γ for β=0,2 (left) and for β=0,4 (right) under compression loading  
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Figure 124 Load-displacement curves for variation of parameter 2γ for β=0,6 (left) and for β=0,9 (right) under compression loading  
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D.1.3 Compression loading numerical results 

DBBX_01 DBBX_02 DBBX_03 DBBX_04 DBBX_05 DBBX_06 DBBX_07 DBBX_08 

Displ React Displ React Displ React Displ React Displ React Displ React Displ React Displ React 

(mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) 

0,00 0,00 0,00 0,00 0,00 0,00 0,99 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

1,00 181,69 1,00 225,31 1,00 307,71 1,97 580,00 1,00 77,72 1,00 89,90 1,00 127,65 1,00 280,49 

2,00 324,82 2,00 394,44 2,00 508,59 2,95 882,97 2,00 148,17 2,00 165,87 2,00 217,14 1,98 416,16 

3,51 449,06 3,50 540,04 2,99 631,57 3,91 1055,44 3,51 221,25 3,50 242,04 3,50 300,67 2,96 497,81 

5,78 542,15 5,75 649,09 4,48 742,11 4,88 1169,54 5,77 282,33 5,76 305,11 5,74 369,69 3,94 554,97 

9,19 609,05 9,12 727,56 6,71 834,53 5,85 1252,50 9,18 327,46 9,15 351,08 9,11 421,76 4,91 597,96 

14,32 658,84 14,19 783,38 10,05 911,13 7,29 1316,71 14,30 358,45 14,24 382,68 14,16 461,15 6,37 646,19 

22,00 692,89 21,79 817,96 15,07 972,66 9,46 1391,36 22,00 376,41 21,89 401,59 19,22 482,84 8,57 697,46 

33,51 706,12 29,41 828,94 20,09 1006,74 12,72 1474,57 29,71 380,17 29,56 406,93 24,29 496,20 10,76 734,54 

45,02 698,96 37,04 829,57 25,12 1027,28 15,97 1562,44 37,43 377,34 37,25 406,22 29,37 504,68 12,95 763,30 

47,90 695,73 44,67 824,88 30,15 1040,14 19,23 1625,51 45,17 370,67 44,95 402,48 34,45 510,17 15,15 786,49 

50,79 692,08 52,32 817,57 35,19 1048,29 20,86 1673,80 52,92 361,66 52,66 397,20 39,53 513,73 17,34 805,81 

55,11 685,80 59,97 809,05 40,23 1053,40 22,48 1694,04 60,68 351,47 60,38 391,39 44,62 515,97 19,54 822,11 

61,60 675,06 67,62 800,45 45,27 1056,54 23,71 1712,32 68,45 341,00 68,11 385,74 49,71 517,31 21,73 836,14 

65,25 668,73 75,28 792,59 50,31 1058,38 24,62 1724,82 76,22 330,92 75,84 380,68 54,81 518,15 22,28 839,34 

70,73 658,93 82,94 785,87 55,36 1059,42 25,31 1733,66 84,01 321,69 83,58 376,64 59,91 518,79 22,83 842,48 

78,95 644,09 90,60 781,02 60,41 1059,99 25,83 1739,99 91,80 313,74 91,33 374,11 65,02 519,41 23,38 845,53 

87,17 630,66 98,27 779,11 65,46 1060,40 26,34 1744,59 99,59 307,41 99,08 373,65 70,13 520,15 23,93 848,47 

95,40 619,55 105,93 781,01 68,30 1060,77 26,86 1749,06 107,38 303,27 106,83 375,66 75,23 521,18 24,48 851,33 
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DBBX_01 DBBX_02 DBBX_03 DBBX_04 DBBX_05 DBBX_06 DBBX_07 DBBX_08 

Displ React Displ React Displ React Displ React Displ React Displ React Displ React Displ React 

(mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) 

103,63 611,33 113,60 787,20 72,56 1061,46 27,37 1753,41 115,18 301,64 114,59 380,43 80,34 522,62 25,03 854,11 

111,87 606,63 121,27 798,10 78,96 1063,14 27,89 1757,62 122,98 302,92 122,35 388,28 85,46 524,58 25,04 854,13 

124,21 607,10 128,94 814,17 85,35 1066,10 28,41 1761,74 130,78 307,48 130,11 399,01 90,57 527,19 25,04 854,15 

136,56 619,12 136,61 834,82 91,75 1070,55 28,92 1765,75 142,47 319,51 137,87 412,15 95,68 530,54 25,04 854,16 

139,65 624,57 144,28 859,64 98,15 1076,98 29,44 1769,67 145,40 323,93 145,62 427,47 100,80 534,70 25,04 854,18 

142,74 630,57 151,95 888,36 104,54 1085,91 29,95 1773,50 148,32 328,66 153,38 444,69 105,91 539,76 25,04 854,18 

147,37 640,59 159,61 921,06 110,94 1097,61 30,47 1777,24 152,71 336,35 161,12 463,56 111,02 545,76 25,04 854,18 

154,32 658,53 167,27 957,49 117,34 1112,28 30,99 1780,89 159,30 349,55 168,86 484,02 116,14 552,73 25,04 854,18 

161,27 680,78 174,93 997,26 123,73 1129,96 31,50 1784,47 165,88 365,20 176,59 506,17 121,25 560,66 25,04 854,18 

168,22 707,07 182,58 1040,22 130,12 1150,59 32,02 1787,95 172,47 383,46 184,31 530,01 128,91 574,06 25,04 854,18 

175,19 735,37 190,22 1086,19 136,51 1174,05 32,54 1791,36 179,05 403,23 192,03 555,47 136,57 589,42 25,04 854,18 

182,16 765,40 197,86 1134,53 142,90 1200,18 33,05 1794,70 185,64 423,37 199,74 582,35 144,23 606,57 25,04 854,18 

189,13 796,46 209,31 1209,89 149,28 1228,73 33,57 1797,97 192,22 443,85 207,45 610,49 151,88 625,59 25,04 854,18 

196,11 828,43 220,77 1287,68 155,65 1259,79 34,09 1801,18 198,80 297,93 215,15 639,70 159,52 646,62 25,04 854,18 

203,08 861,25 232,26 1364,72 162,02 1293,47 34,60 1804,33 0,00 0,00 222,87 669,79 167,15 669,86 25,04 854,18 

210,05 894,46 243,82 1441,36 168,39 1329,88 35,12 1807,42 0,00 0,00 230,61 700,57 174,77 695,41 25,04 854,18 

217,00 927,92 255,41 1516,19 174,74 1369,23 35,64 1810,44 0,00 0,00 238,39 731,89 182,37 723,26 25,04 854,18 

223,90 961,43 267,06 1590,32 181,09 1411,59 36,02 1813,41 0,00 0,00 246,26 763,48 189,96 753,51 25,04 854,18 

225,60 969,60 269,96 1608,56 187,43 1456,99 36,41 1815,60 0,00 0,00 254,22 794,75 197,52 786,08 25,04 854,18 

0,00 0,00 272,84 1626,53 193,75 1505,34 36,80 1817,77 0,00 0,00 266,25 839,51 205,07 820,77 25,04 854,18 
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DBBX_01 DBBX_02 DBBX_03 DBBX_04 DBBX_05 DBBX_06 DBBX_07 DBBX_08 

Displ React Displ React Displ React Displ React Displ React Displ React Displ React Displ React 

(mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) 

0,00 0,00 277,13 1652,73 200,07 1556,47 37,19 1819,91 0,00 0,00 275,78 872,65 212,58 857,30 25,04 854,18 

0,00 0,00 281,37 1677,86 (...) (...) (...) (...) 0,00 0,00 281,84 892,72 (...) (...) 25,04 854,18 

0,00 0,00 285,54 1701,80 295,06 2354,80 43,30 1852,11 0,00 0,00 286,64 908,03 313,94 1437,84 25,04 854,18 

0,00 0,00 291,63 1734,69 302,01 2387,00 43,35 1852,36 0,00 0,00 290,81 920,80 319,17 1459,88 25,04 854,18 

0,00 0,00 297,54 1763,98 308,77 2413,58 43,41 1852,61 0,00 0,00 294,52 931,78 324,23 1478,60 25,04 854,18 

0,00 0,00 303,27 1789,91 315,36 2435,25 43,46 1852,86 0,00 0,00 297,90 941,48 329,13 1494,50 25,04 854,18 

0,00 0,00 308,87 1812,66 321,81 2452,68 43,52 1853,11 0,00 0,00 0,00 0,00 333,92 1508,23 25,04 854,18 

0,00 0,00 314,31 1832,22 328,16 2466,19 43,57 1853,36 0,00 0,00 0,00 0,00 338,64 1520,21 25,04 854,18 

0,00 0,00 319,58 1848,67 334,40 2475,84 43,63 1853,61 0,00 0,00 0,00 0,00 343,31 1530,60 25,04 854,18 

0,00 0,00 327,05 1867,17 340,56 2482,06 43,68 1853,86 0,00 0,00 0,00 0,00 347,93 1539,53 25,04 854,18 

0,00 0,00 334,02 1879,46 346,64 2484,84 43,73 1854,11 0,00 0,00 0,00 0,00 352,51 1547,09 25,04 854,18 

0,00 0,00 340,47 1885,59 352,63 2484,38 43,78 1854,36 0,00 0,00 0,00 0,00 357,05 1553,29 25,04 854,18 

0,00 0,00 346,46 1886,01 358,56 2481,02 43,78 1854,54 0,00 0,00 0,00 0,00 361,53 1557,98 25,04 854,18 

0,00 0,00 352,11 1881,86 364,42 2474,71 43,78 1854,57 0,00 0,00 0,00 0,00 365,95 1560,96 25,04 854,18 

0,00 0,00 357,52 1873,16 370,22 2465,69 43,78 1854,58 0,00 0,00 0,00 0,00 370,29 1562,32 25,04 854,18 

0,00 0,00 362,79 1860,33 375,98 2454,11 43,78 1854,58 0,00 0,00 0,00 0,00 374,57 1562,01 25,04 854,18 

Table 28 Numerical results for compression loading. Models from DBBX_01_SS to DBBX_08_SS  
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DBBX_09 DBBX_10 DBBX_11 DBBX_12 DBBX_13 DBBX_14 DBBX_15 DBBX_16 

Displ React Displ React Displ React Displ React Displ React Displ React Displ React Displ React 

(mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) 

0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

1,00 21,53 1,00 26,36 1,00 38,50 1,00 104,02 1,00 13,80 1,00 16,77 1,00 24,56 1,00 71,36 

2,00 42,42 2,00 50,74 2,00 68,35 1,98 150,14 2,00 27,26 2,00 32,55 2,00 44,32 1,99 102,25 

3,51 69,55 3,51 80,16 3,00 90,92 2,97 180,14 3,00 39,91 3,51 52,60 3,50 66,38 2,98 122,89 

5,77 97,13 5,77 109,63 4,50 116,27 4,45 212,47 4,01 51,01 5,77 74,21 5,76 89,50 4,46 145,98 

9,19 119,81 9,17 133,85 6,76 141,72 6,67 245,88 5,52 64,29 9,18 93,22 9,16 110,46 6,69 170,98 

14,33 135,68 14,30 150,68 10,15 163,96 8,89 269,18 7,80 78,11 14,31 106,91 12,56 122,68 8,91 189,23 

22,07 144,55 22,01 160,69 13,55 177,05 11,11 286,81 11,22 90,48 17,21 111,02 15,97 130,63 11,14 203,40 

26,44 146,11 29,75 163,86 16,96 185,93 13,33 300,88 16,38 99,78 21,56 114,80 19,39 136,42 13,37 214,95 

33,02 146,05 37,51 163,95 22,07 195,05 15,56 312,65 24,15 105,00 28,11 117,38 22,81 140,84 15,60 224,61 

36,72 145,13 45,30 162,58 27,19 201,45 17,78 322,78 31,96 105,65 34,68 118,02 26,24 144,33 17,84 232,98 

42,29 142,98 53,10 160,58 32,32 206,08 20,00 331,64 39,81 104,03 41,27 117,62 29,67 147,13 20,07 240,36 

50,66 138,58 60,92 158,43 37,46 209,36 22,23 339,51 47,68 101,14 47,88 116,68 33,10 149,40 22,31 246,93 

59,06 133,44 68,75 156,45 42,60 211,71 24,46 346,59 55,57 97,63 54,50 115,53 36,54 151,24 24,55 252,81 

67,47 128,15 76,59 154,89 47,76 213,39 26,69 353,11 63,48 93,92 61,13 114,37 39,98 152,72 25,11 254,18 

75,89 123,12 84,43 153,95 52,91 214,66 28,92 359,10 71,42 90,27 67,76 113,35 43,43 153,93 25,67 255,54 

84,33 118,64 92,29 153,84 58,08 215,69 31,15 364,71 79,36 86,93 74,41 112,61 46,88 154,91 26,51 257,52 

92,78 114,94 100,15 154,76 63,25 216,67 33,38 369,95 87,31 84,06 81,06 112,19 50,33 155,75 27,77 260,39 

101,23 112,26 108,01 156,90 68,42 217,70 35,62 374,87 0,00 0,00 87,72 112,18 53,79 156,49 29,66 264,45 

109,69 110,86 115,88 160,33 73,59 218,86 37,85 379,52 0,00 0,00 94,39 112,67 57,25 157,18 31,55 268,28 
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DBBX_09 DBBX_10 DBBX_11 DBBX_12 DBBX_13 DBBX_14 DBBX_15 DBBX_16 

Displ React Displ React Displ React Displ React Displ React Displ React Displ React Displ React 

(mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) 

118,14 110,98 123,76 164,98 78,77 220,21 40,09 383,98 0,00 0,00 101,05 113,73 60,71 157,85 33,44 271,90 

126,61 112,79 131,63 170,74 83,95 221,82 42,33 388,27 0,00 0,00 107,73 115,44 64,17 158,54 35,34 275,37 

135,07 116,40 139,50 177,40 89,13 223,71 44,57 392,40 0,00 0,00 114,40 117,77 67,63 159,25 38,18 280,27 

143,53 121,77 147,37 184,79 94,32 225,93 46,81 396,38 0,00 0,00 121,08 120,72 71,10 160,01 41,03 284,88 

152,00 128,74 155,23 192,74 99,50 228,49 49,05 400,24 0,00 0,00 127,76 124,25 74,56 160,83 43,88 289,25 

0,00 0,00 163,08 201,25 104,69 231,42 51,29 404,01 0,00 0,00 134,44 128,27 78,03 161,72 46,72 293,48 

0,00 0,00 170,93 210,34 109,88 234,72 53,54 407,73 0,00 0,00 141,11 132,70 81,50 162,70 49,58 297,56 

0,00 0,00 178,76 220,07 115,06 238,38 55,78 411,39 0,00 0,00 147,78 137,47 84,97 163,76 52,43 301,57 

0,00 0,00 0,00 0,00 120,25 242,40 58,02 415,01 0,00 0,00 154,45 142,51 88,45 164,91 55,28 305,53 

0,00 0,00 0,00 0,00 121,55 243,48 60,27 418,58 0,00 0,00 161,11 147,79 91,92 166,16 58,14 309,46 

0,00 0,00 0,00 0,00 122,84 244,58 63,64 423,93 0,00 0,00 167,76 153,31 95,39 167,51 61,00 313,37 

0,00 0,00 0,00 0,00 124,79 246,24 67,01 429,27 0,00 0,00 174,40 159,05 98,87 168,96 63,86 317,31 

0,00 0,00 0,00 0,00 127,70 248,81 70,39 434,62 0,00 0,00 181,00 165,06 102,34 170,52 66,72 321,28 

0,00 0,00 0,00 0,00 130,62 251,46 73,76 440,03 0,00 0,00 187,57 171,48 105,82 172,20 69,58 325,28 

0,00 0,00 0,00 0,00 133,53 254,21 77,14 445,50 0,00 0,00 193,82 177,85 109,29 173,99 72,44 329,34 

0,00 0,00 0,00 0,00 137,90 258,47 80,52 451,05 0,00 0,00 198,77 182,94 112,77 175,88 75,31 333,46 

0,00 0,00 0,00 0,00 142,26 262,94 83,90 456,70 0,00 0,00 202,44 186,68 116,24 177,89 78,17 337,63 

0,00 0,00 0,00 0,00 146,63 267,61 87,28 462,46 0,00 0,00 205,33 189,55 119,72 179,99 81,04 341,87 

0,00 0,00 0,00 0,00 150,98 272,49 90,66 468,29 0,00 0,00 207,67 191,83 123,19 182,21 83,91 346,17 

0,00 0,00 0,00 0,00 155,34 277,58 94,05 474,19 0,00 0,00 209,62 193,64 126,66 184,52 86,78 350,54 
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DBBX_09 DBBX_10 DBBX_11 DBBX_12 DBBX_13 DBBX_14 DBBX_15 DBBX_16 

Displ React Displ React Displ React Displ React Displ React Displ React Displ React Displ React 

(mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) 

0,00 0,00 0,00 0,00 (...) (...) (...) (...) 0,00 0,00 211,29 195,11 (...) (...) (...) (...) 

0,00 0,00 0,00 0,00 297,72 651,43 238,03 712,80 0,00 0,00 212,74 196,28 293,00 475,80 252,39 564,15 

0,00 0,00 0,00 0,00 303,28 668,83 243,11 724,96 0,00 0,00 214,03 197,22 297,40 486,47 254,07 564,18 

0,00 0,00 0,00 0,00 308,87 683,90 248,21 736,57 0,00 0,00 215,21 197,99 301,84 496,27 255,67 562,32 

0,00 0,00 0,00 0,00 314,49 696,92 253,31 747,67 0,00 0,00 216,30 198,62 306,29 505,14 257,17 558,56 

0,00 0,00 0,00 0,00 320,13 708,32 258,43 758,29 0,00 0,00 217,33 199,14 310,74 513,02 258,66 553,00 

0,00 0,00 0,00 0,00 325,78 718,27 263,56 768,25 0,00 0,00 218,30 199,58 315,22 520,03 260,14 546,05 

0,00 0,00 0,00 0,00 331,44 726,61 268,73 777,17 0,00 0,00 219,66 200,07 319,71 526,12 261,61 538,30 

0,00 0,00 0,00 0,00 337,10 733,43 273,99 783,88 0,00 0,00 221,56 200,56 324,21 531,34 263,07 530,26 

0,00 0,00 0,00 0,00 342,75 738,83 275,28 785,15 0,00 0,00 223,34 200,91 328,70 535,73 264,52 522,40 

0,00 0,00 0,00 0,00 348,38 742,92 276,57 786,09 0,00 0,00 225,04 201,17 333,19 539,32 265,98 514,99 

0,00 0,00 0,00 0,00 353,97 745,77 277,82 786,52 0,00 0,00 226,67 201,40 337,64 542,14 267,43 508,26 

0,00 0,00 0,00 0,00 359,37 747,20 279,05 786,34 0,00 0,00 228,99 201,67 341,94 544,04 268,88 502,30 

0,00 0,00 0,00 0,00 364,29 747,25 280,84 784,57 0,00 0,00 231,22 201,98 345,81 544,64 271,05 494,47 

0,00 0,00 0,00 0,00 368,20 745,98 282,59 781,39 0,00 0,00 233,37 202,37 349,01 543,32 273,22 488,15 

Table 29 Numerical results for compression loading. Models from DBBX_09_SS to DBBX_16_SS  
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D.2 TENSILE LOADING 

D.2.1 Variation of parameter β 

  

Figure 125 Load-displacement curves for variation of parameter β for 2γ=10 (left) and for 2γ=15 (right) under tensile loading  
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Figure 126 Load-displacement curves for variation of parameter β for 2γ=25 (left) and for 2γ=30 (right) under tensile loading  
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D.2.2 Variation of parameter 2γ 

  

Figure 127 Load-displacement curves for variation of parameter 2γ for β=0,2 (left) and for β=0,4 (right) under tensile loading  
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Figure 128 Load-displacement curves for variation of parameter 2γ for β=0,6 (left) and for β=0,9 (right) under tensile loading  
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D.2.3 Tensile loading numerical results 

DBBX_01 DBBX_02 DBBX_03 DBBX_04 DBBX_05 DBBX_06 DBBX_07 DBBX_08 

Displ React Displ React Displ React Displ React Displ React Displ React Displ React Displ React 

(mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.00 184.11 1.00 121.28 1.00 311.91 1.00 585.00 1.00 73.73 1.00 91.51 1.00 129.92 1.00 283.95 

2.00 332.95 2.00 214.81 2.00 521.62 1.98 895.95 2.00 142.55 2.00 171.45 2.00 224.24 1.98 425.22 

3.51 467.34 3.50 299.11 3.48 704.84 2.95 1078.25 3.50 216.93 3.50 255.50 3.49 316.85 2.96 513.75 

5.78 574.45 5.74 368.85 5.71 855.75 3.91 1203.77 5.76 284.91 5.75 332.20 5.73 400.72 3.93 578.79 

9.22 655.91 9.11 429.96 9.05 992.42 4.88 1299.40 9.16 344.72 9.12 400.50 9.08 476.84 4.91 630.58 

14.41 724.76 14.15 491.49 14.04 1136.23 6.33 1411.94 14.26 400.59 14.16 468.76 14.10 557.03 5.88 674.02 

22.21 792.94 19.18 539.77 21.51 1311.40 7.77 1503.64 21.98 455.93 19.19 523.06 19.10 625.42 7.34 729.31 

33.93 866.79 24.22 582.55 28.97 1477.90 9.21 1583.07 29.75 496.03 24.21 572.37 24.09 692.52 9.53 799.41 

51.54 950.38 31.80 640.61 36.44 1649.90 10.66 1654.36 37.56 528.73 29.22 620.31 29.06 763.01 11.71 861.74 

69.17 1018.02 39.45 692.15 43.97 1822.35 12.10 1720.06 49.32 570.17 36.70 693.22 34.02 839.63 12.25 876.55 

86.80 1076.20 47.17 737.31 51.65 1978.28 13.54 1781.36 61.11 605.90 44.18 769.56 38.96 923.63 12.80 891.19 

104.45 1127.73 58.87 793.52 59.47 2107.83 13.56 1782.12 72.93 637.87 51.73 846.88 43.91 1015.24 13.34 905.48 

110.50 1144.22 70.66 839.77 67.39 2209.90 13.58 1783.05 84.77 666.93 59.43 916.99 48.86 1112.61 13.48 908.97 

113.90 1153.11 82.49 879.47 79.33 2340.59 13.61 1783.98 96.63 693.72 67.27 977.75 53.89 1209.35 13.62 912.50 

115.81 1157.97 100.29 930.55 91.31 2451.14 13.64 1785.37 108.50 718.76 75.18 1031.27 59.03 1298.00 13.75 916.01 

116.89 1160.66 121.16 980.60 103.31 2543.28 13.69 1787.45 120.39 741.95 83.15 1078.08 64.30 1368.60 13.89 919.47 

117.50 1162.11 142.07 1023.10 121.35 2665.94 13.74 1789.52 138.23 774.44 95.15 1138.37 69.63 1428.10 14.02 922.86 

117.84 1162.76 162.99 1059.99 139.40 2771.78 13.79 1791.58 138.70 775.18 113.20 1214.82 75.00 1477.74 14.16 926.21 



 

Numerical analysis on stainless steel 

diamond bird-beak joints subjected to 

compressive and tensile forces 

Appendix D: Parametric results  

 

  162 

DBBX_01 DBBX_02 DBBX_03 DBBX_04 DBBX_05 DBBX_06 DBBX_07 DBBX_08 

Displ React Displ React Displ React Displ React Displ React Displ React Displ React Displ React 

(mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) 

118.35 1161.97 183.92 1092.72 157.46 2866.21 13.84 1793.62 139.16 774.88 131.29 1279.21 80.38 1523.45 14.30 929.53 

118.86 1158.84 204.86 1120.93 178.62 2965.14 13.89 1795.64 139.61 772.75 149.39 1334.94 88.48 1578.88 14.43 932.83 

119.38 1154.86 225.81 1146.94 199.77 3055.39 13.94 1797.63 140.06 770.19 170.59 1392.19 100.65 1652.62 14.57 936.11 

120.14 1148.18 231.04 1152.55 220.94 3137.00 13.99 1799.61 140.73 765.99 191.80 1443.71 118.94 1743.04 14.70 939.37 

121.30 1137.25 233.99 1155.61 242.11 3214.10 14.04 1801.58 141.74 759.21 213.01 1489.67 137.25 1818.50 14.91 944.27 

123.02 1119.75 235.65 1157.29 263.28 3285.02 14.10 1803.54 143.26 748.52 234.22 1532.51 155.57 1885.43 15.21 951.39 

125.62 1092.16 238.13 1151.37 284.46 3351.61 14.15 1805.49 145.53 731.78 239.53 1542.35 173.89 1944.95 15.52 958.42 

129.50 1049.23 240.61 1135.82 305.63 3415.72 14.20 1807.43 148.94 705.78 242.51 1547.74 192.22 1999.34 15.83 965.43 

135.33 985.11 243.10 1118.77 326.80 3473.89 14.25 1809.36 154.05 666.61 244.21 1544.21 210.55 2049.66 16.13 972.42 

141.16 926.68 245.58 1100.57 327.13 3474.72 14.30 1811.29 161.23 616.13 245.88 1530.90 228.89 2095.76 16.59 982.87 

0.00 0.00 248.06 1081.31 327.47 3475.57 14.35 1813.21 168.41 574.75 247.56 1516.41 250.36 2147.48 17.05 993.01 

0.00 0.00 251.79 1050.34 327.80 3476.43 14.42 1816.09 175.59 542.53 249.23 1501.11 271.83 2194.77 17.51 1003.21 

0.00 0.00 257.37 1000.09 328.29 3477.70 14.50 1818.96 182.78 516.77 251.75 1476.67 293.31 2239.73 17.97 1013.56 

0.00 0.00 265.75 924.08 329.04 3479.61 14.58 1821.79 189.96 491.75 255.52 1436.79 314.78 2282.70 18.65 1029.13 

0.00 0.00 274.13 859.98 330.15 3482.46 14.65 1824.54 197.14 465.54 261.17 1370.95 336.24 2321.23 19.68 1052.69 

0.00 0.00 282.51 810.05 331.82 3486.34 14.73 1827.26 204.33 440.78 266.83 1303.39 336.58 2321.78 20.71 1076.72 

0.00 0.00 290.89 769.84 331.91 3486.44 14.84 1831.33 211.51 419.64 272.48 1240.34 336.92 2322.34 21.74 1100.94 

0.00 0.00 299.27 736.34 331.98 3486.48 14.96 1835.33 218.70 401.03 280.96 1160.06 337.26 2322.90 22.77 1125.95 

0.00 0.00 307.65 709.87 332.05 3486.29 (...) (...) 225.88 387.16 289.45 1097.42 337.76 2323.72 23.80 1151.61 

0.00 0.00 316.03 687.73 332.12 3485.83 153.62 4001.24 233.06 378.46 297.93 1047.63 338.51 2324.73 24.83 1177.71 
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DBBX_01 DBBX_02 DBBX_03 DBBX_04 DBBX_05 DBBX_06 DBBX_07 DBBX_08 

Displ React Displ React Displ React Displ React Displ React Displ React Displ React Displ React 

(mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) 

0.00 0.00 324.42 664.04 332.22 3484.66 153.62 4001.25 240.24 373.78 306.42 1005.39 339.06 2323.39 (...) (...) 

0.00 0.00 332.80 640.17 332.38 3481.98 153.63 4001.27 247.43 371.99 314.90 969.41 339.48 2320.39 164.90 2679.14 

0.00 0.00 341.18 623.99 332.60 3477.01 153.63 4001.28 254.61 372.33 323.39 940.53 339.90 2316.97 164.97 2679.41 

0.00 0.00 349.57 610.33 332.95 3468.83 153.63 4001.29 261.79 374.28 331.87 917.11 340.54 2311.56 165.05 2679.69 

0.00 0.00 357.95 597.52 333.46 3455.79 153.63 4001.30 268.97 377.48 340.36 895.04 341.49 2303.04 165.13 2679.96 

0.00 0.00 366.33 586.22 334.22 3435.12 153.64 4001.31 276.16 381.60 348.85 866.37 342.91 2289.62 165.20 2680.23 

0.00 0.00 374.71 575.93 335.37 3402.10 153.64 4001.33 283.34 386.32 357.35 839.19 345.05 2268.20 165.28 2680.51 

0.00 0.00 383.09 565.25 336.88 3355.12 153.64 4001.34 290.52 391.26 365.84 823.06 348.27 2233.19 165.36 2680.78 

0.00 0.00 391.46 546.74 338.39 3304.07 153.64 4001.35 297.71 395.70 374.33 810.21 351.48 2194.99 165.43 2681.06 

0.00 0.00 393.56 541.55 339.89 3248.60 153.65 4001.36 304.88 397.54 382.82 797.80 354.69 2153.60 165.51 2681.33 

0.00 0.00 395.65 535.85 341.39 3188.39 153.65 4001.37 312.07 392.70 391.31 784.64 357.90 2109.16 165.59 2681.60 

0.00 0.00 397.75 529.80 342.88 3123.43 153.65 4001.38 319.25 387.18 399.79 766.73 361.11 2062.04 165.66 2681.88 

0.00 0.00 399.84 523.82 344.38 3054.25 153.65 4001.40 326.42 384.74 408.28 739.69 364.33 2013.04 165.74 2682.15 

0.00 0.00 401.93 518.15 345.86 2982.27 153.66 4001.41 333.58 384.14 416.76 715.93 369.14 1938.08 165.82 2682.42 

0.00 0.00 405.08 510.47 347.35 2909.59 153.66 4001.41 335.38 383.97 425.25 699.33 373.96 1866.39 165.89 2682.70 

0.00 0.00 409.79 500.81 348.84 2838.52 153.66 4001.41 337.18 384.06 433.74 688.89 378.78 1801.24 165.97 2682.97 

 

Table 30 Numerical results for tensile loading. Models from DBBX_01_SS to DBBX_08_SS  
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DBBX_09 DBBX_10 DBBX_11 DBBX_12 DBBX_13 DBBX_14 DBBX_15 DBBX_16 

Displ React Displ React Displ React Displ React Displ React Displ React Displ React Displ React 

(mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.00 21.92 1.00 26.92 1.00 39.35 1.00 106.07 1.00 14.05 1.00 17.14 1.00 25.13 1.00 73.04 

2.00 43.94 2.00 52.82 2.00 71.07 1.98 155.39 2.00 28.27 2.00 33.95 2.00 46.17 1.99 106.49 

3.50 73.70 3.50 85.56 3.50 106.69 2.97 189.10 3.50 48.55 3.50 56.35 3.00 63.24 2.98 129.98 

5.76 106.22 5.75 121.19 5.74 144.52 3.96 215.96 5.75 72.62 5.75 82.43 4.50 84.14 4.46 157.87 

9.14 137.44 9.12 155.77 9.11 181.47 4.94 238.80 9.13 96.82 9.12 109.15 6.74 108.06 5.94 181.08 

14.20 167.28 12.49 179.55 12.47 207.83 5.93 258.93 14.20 120.17 14.17 135.44 10.11 133.35 7.42 201.73 

21.77 198.79 15.85 198.75 15.83 230.39 7.40 285.75 21.75 144.50 19.19 155.71 13.48 152.49 9.64 230.27 

23.66 205.62 20.87 223.99 19.17 252.03 9.61 321.55 23.63 149.73 24.20 174.22 16.84 169.45 11.86 258.00 

25.55 212.21 25.87 247.89 22.51 274.28 11.82 355.25 25.51 154.80 29.18 192.75 20.19 186.23 14.07 286.28 

28.37 221.65 30.85 272.07 24.39 287.51 12.92 371.97 28.33 162.14 34.14 212.14 23.53 203.96 14.62 293.53 

32.61 235.13 35.81 297.59 27.19 308.57 14.02 388.81 32.54 172.65 39.08 233.10 26.86 223.45 15.17 300.92 

36.86 247.97 40.74 324.98 31.40 343.57 15.12 405.77 38.83 187.82 43.99 256.14 30.19 245.23 16.00 312.15 

41.11 260.29 45.66 354.81 35.58 383.13 15.40 410.02 45.13 202.60 48.87 281.73 35.16 282.67 16.47 318.53 

45.39 271.84 50.55 387.71 39.75 427.40 15.67 414.31 46.70 206.25 53.72 310.60 40.10 326.03 17.17 328.22 

49.69 282.95 55.42 424.31 43.90 476.74 15.95 418.62 48.27 209.91 58.55 343.68 45.01 375.50 17.86 338.05 

54.02 293.35 60.30 465.05 48.03 531.02 16.22 422.95 50.63 215.28 63.38 381.81 49.91 430.60 18.56 348.02 

58.35 303.56 65.28 508.04 52.16 589.24 16.50 427.28 54.21 222.92 68.34 423.15 54.79 490.22 19.26 358.09 

62.72 313.04 70.45 547.02 56.31 649.94 16.77 431.63 57.78 230.52 73.55 459.65 59.72 553.10 19.96 368.24 

67.10 322.40 75.76 579.72 60.53 710.27 17.05 435.99 61.38 237.77 78.93 488.04 64.78 614.39 20.65 378.52 
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DBBX_09 DBBX_10 DBBX_11 DBBX_12 DBBX_13 DBBX_14 DBBX_15 DBBX_16 

Displ React Displ React Displ React Displ React Displ React Displ React Displ React Displ React 

(mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) 

71.50 331.42 81.14 607.87 64.86 765.76 17.32 440.37 65.00 244.81 84.37 511.54 70.06 665.20 21.35 388.93 

75.92 340.16 86.55 630.54 69.36 809.28 17.60 444.73 68.63 252.03 89.83 530.67 75.49 703.97 22.04 399.39 

80.35 348.91 94.70 660.87 73.92 845.94 17.87 449.08 72.30 259.14 95.30 548.00 81.00 732.39 22.74 409.96 

84.81 357.42 106.95 698.26 78.53 874.12 18.15 453.45 76.01 266.69 100.79 562.80 86.52 757.68 23.43 420.66 

91.53 370.10 119.22 729.39 83.15 900.04 18.42 457.85 79.75 274.67 106.27 576.75 92.05 777.88 24.13 431.44 

98.28 382.57 131.50 756.91 90.11 931.81 18.70 462.27 83.53 282.57 114.51 595.35 97.59 796.47 24.82 442.23 

105.07 394.58 143.78 781.31 100.56 972.90 18.97 466.73 87.34 290.59 126.87 619.98 103.14 814.09 25.52 453.12 

111.87 406.12 156.06 803.60 111.02 1006.91 19.24 471.21 91.17 298.21 145.42 651.50 108.69 829.25 26.21 464.13 

122.09 422.13 174.49 833.62 121.49 1037.62 19.66 477.94 96.94 309.10 167.13 683.18 117.01 850.31 26.90 475.19 

137.45 443.79 196.07 865.37 131.97 1065.17 20.07 484.66 105.62 324.00 188.86 710.78 129.51 879.38 27.94 491.82 

144.84 453.52 217.65 893.62 147.69 1102.09 20.48 491.46 118.66 343.54 210.58 735.28 148.26 916.66 28.98 508.49 

149.00 458.69 239.23 919.90 163.42 1135.56 20.89 498.34 138.25 367.97 232.31 758.08 167.02 949.83 30.02 525.27 

151.34 461.48 244.63 925.90 179.15 1165.95 21.30 505.30 143.15 373.49 237.74 763.39 185.79 979.50 31.06 542.11 

152.66 463.01 247.66 929.17 202.76 1207.56 21.92 515.91 148.05 378.83 245.88 770.99 207.77 1011.25 32.10 559.02 

154.64 465.24 249.38 925.04 235.52 1258.58 22.84 531.90 155.40 386.26 250.47 774.99 229.76 1040.02 33.14 575.93 

154.75 465.31 251.08 916.10 268.30 1304.94 23.76 548.28 155.83 386.66 250.72 774.89 251.75 1066.96 34.17 592.85 

154.91 465.18 252.78 906.51 301.08 1346.60 24.69 565.00 156.41 387.22 250.96 774.25 273.74 1091.88 35.21 609.76 

155.06 464.78 254.49 896.41 333.85 1384.62 26.07 590.54 156.66 387.45 251.20 773.34 295.74 1115.15 36.25 626.66 

155.22 464.29 256.19 885.86 342.04 1393.01 28.14 629.54 157.03 387.74 251.56 771.88 317.74 1137.68 37.29 643.51 

155.46 463.48 258.75 869.20 342.48 1393.45 30.21 669.13 157.24 387.56 252.11 769.58 339.72 1157.80 38.33 660.36 
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DBBX_09 DBBX_10 DBBX_11 DBBX_12 DBBX_13 DBBX_14 DBBX_15 DBBX_16 

Displ React Displ React Displ React Displ React Displ React Displ React Displ React Displ React 

(mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) 

155.81 462.17 262.58 842.70 342.91 1393.87 32.28 708.90 157.44 387.04 252.92 765.99 340.07 1158.10 39.88 685.40 

156.33 460.09 266.41 815.30 343.35 1394.28 34.35 748.78 157.65 386.45 254.14 760.35 340.42 1158.39 41.45 710.30 

157.13 456.81 270.25 788.02 343.99 1394.77 36.42 788.58 157.96 385.48 255.97 751.43 340.76 1158.68 43.01 734.99 

158.31 451.69 276.00 749.22 344.02 1394.78 38.49 828.31 158.43 383.94 257.81 742.06 341.28 1159.11 44.58 759.41 

160.09 443.73 284.62 699.40 344.05 1394.78 (…) (…) 159.13 381.53 259.64 732.32 342.05 1159.76 46.15 783.22 

162.76 431.36 293.25 660.11 344.07 1394.76 239.01 1741.34 160.17 377.76 262.38 717.01 343.21 1160.72 46.55 788.95 

166.77 412.39 301.87 629.08 344.10 1394.71 239.06 1741.43 161.75 371.90 266.51 692.83 344.94 1162.05 46.94 794.44 

172.78 384.98 310.50 604.31 344.13 1394.63 239.11 1741.51 164.10 362.79 270.63 668.17 345.04 1162.09 47.34 799.99 

178.78 361.00 319.13 582.85 344.15 1394.53 239.21 1741.69 167.64 348.76 274.75 644.10 345.18 1162.10 47.73 805.40 

184.79 341.09 327.76 563.39 344.18 1394.39 239.26 1741.77 172.95 328.06 280.93 610.77 345.31 1161.97 (...) (...) 

193.81 317.90 336.40 548.24 344.21 1394.24 239.31 1741.86 178.25 309.33 287.11 582.25 345.45 1161.68 212.53 1408.53 

202.83 298.50 345.03 536.67 344.23 1394.05 239.36 1741.95 183.56 293.19 293.29 558.27 345.66 1160.96 212.64 1408.69 

211.84 278.05 353.65 524.03 344.26 1393.84 239.41 1742.03 191.52 273.61 302.57 528.60 345.96 1159.64 212.75 1408.85 

220.86 258.69 362.29 505.43 344.28 1393.61 239.46 1742.12 199.48 258.89 311.84 505.48 346.43 1157.53 212.78 1408.85 

229.88 241.85 370.93 488.22 344.31 1393.36 239.51 1742.20 207.45 245.67 321.12 486.24 347.12 1154.21 212.78 1408.86 

Table 31 Numerical results for tensile loading. Models from DBBX_09_SS to DBBX_16_SS
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E. CROSS-SECTION 
CLASSIFICATION 
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Table 32 Maximum width-to-thickness ratios for compression parts for stainless steel (EN 1993-1-4 

Talbe 5.2 [2]) 

 

  



 

Numerical analysis on stainless steel 

diamond bird-beak joints subjected to 

compressive and tensile forces 

Appendix E: Cross section classification  

 

  169 

 

    d/t Cross section class 

JOINT ε 50*ε2 70*ε2 Chord Brace Chord Brace 

DBBX_01_SS 0.938 43.963 61.548 10 2 Class 1 Class 1 

DBBX_02_SS 0.938 43.963 61.548 10 4 Class 1 Class 1 

DBBX_03_SS 0.938 43.963 61.548 10 6 Class 1 Class 1 

DBBX_04_SS 0.938 43.963 61.548 10 9 Class 1 Class 1 

DBBX_05_SS 0.938 43.963 61.548 15 3 Class 1 Class 1 

DBBX_06_SS 0.938 43.963 61.548 15 6 Class 1 Class 1 

DBBX_07_SS 0.938 43.963 61.548 15 9 Class 1 Class 1 

DBBX_08_SS 0.938 43.963 61.548 15 13.5 Class 1 Class 1 

DBBX_09_SS 0.938 43.963 61.548 25 5 Class 1 Class 1 

DBBX_10_SS 0.938 43.963 61.548 25 10 Class 1 Class 1 

DBBX_11_SS 0.938 43.963 61.548 25 15 Class 1 Class 1 

DBBX_12_SS 0.938 43.963 61.548 25 22.5 Class 1 Class 1 

DBBX_13_SS 0.938 43.963 61.548 30 6 Class 1 Class 1 

DBBX_14_SS 0.938 43.963 61.548 30 12 Class 1 Class 1 

DBBX_15_SS 0.938 43.963 61.548 30 18 Class 1 Class 1 

DBBX_16_SS 0.938 43.963 61.548 30 27 Class 1 Class 1 

Table 33 Cross section classification of each model according to EN 1993-1-4 
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Stainless steel used in the current thesis is an austenitic elasto-plastic material with 

the following code for stress-strain curve obtained by means of the CodeSkulptor web 

site (www.codeskulptor.org). 

#################################### 

#################################### 

#################################### 

#################################### 

#################################### 

#################################### 

# Ecuacio n constitutiva de austenitico 

#################################### 

#################################### 

#####para ABAQUS .inp############### 

#################################### 

#################################### 

#################################### 

#################################### 

#################################### 

 

import math  

 

#Introducir sigma0,2-(MPa) 

 

sig02=325.0 

 

#Introducir E-(MPa) 

 

E=200000.0 

 

#Introducir sigmaE-(MPa) 

 

sig05=280.0 

 

#Introducir fin rama lineal 

 

lin=150.0 

#Ca lculos 

http://www.codeskulptor.org/
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n=math.log(4,10)/math.log((sig02/sig05),10) 

E02=E/(1+0.002*n*E/sig02) 

sigu=sig02/(0.20+185*sig02/E) 

m=1+2.8*sig02/sigu 

epu=(1-sig02/sigu) 

 

sig03=sig02+(sig02-lin)/10 

print "n=",n 

print "E02=",E02 

print "sigu=",sigu 

print "m=",m 

print "epu=",epu 

print "****************   Material  *****************"  

print "*Material, name=InoxAustenitic,sigma02="+str(sig02) 

print "*Elastic" 

print str(E)+",0.3" 

print "*Plastic" 

print str(lin)+",0.0" 

vecaux1=range(int(lin),int(sig02),(int(sig02)-int(lin))/10) 

vecaux1.pop(10) 

vecaux1.append(int(sig02)) 

vecaux2=range(int(sig02),int(sigu),int((int(sigu)-int(sig02))/10)) 

#print vecaux1 

#print vecaux2 

def p1(x): 

    return ((x/E)+0.002*math.pow((x/sig02),n)) 

vecaux3=map(p1,vecaux1) 

#print vecaux3 

#print map(p1,vecaux1) 

def p2(x): 

    ep02=0.002+sig02/E 

    return ((x-sig02)/E02)+(epu-ep02-(sigu-sig02)/E02)*(((x-sig02)/(sigu-
sig02))**m)+ep02 

vecaux4=map(p2,vecaux2) 

#print vecaux4 

#print map(p2,vecaux2) 

def p3(x,y): 
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    return x*(1+y) 

vecaux5=map(p3,vecaux1,vecaux3) 

vecaux6=map(p3,vecaux2,vecaux4) 

#print vecaux5 

#print vecaux6 

def p4(x,y): 

    return math.log(1+x)-y/E 

vecaux7=map(p4,vecaux3,vecaux5) 

vecaux8=map(p4,vecaux4,vecaux6) 

#print vecaux7 

#print vecaux8 

for i in range(10): 

    print str(float(vecaux5[i]))+","+str(float(vecaux7[i])) 

for i in range(11): 

    print str(float(vecaux6[i]))+","+str(float(vecaux8[i])) 
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G.1 LOAD-DISPLACEMENT RESULTS FOR EACH MESH SIZE 

2 mm 3 mm 5 mm 10 mm 15 mm 20 mm 

Displ React Displ React Displ React Displ React Displ React Displ React 

(mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (kN) 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.00 36.30 1.00 36.36 1.00 36.48 1.00 36.77 1.00 37.02 1.00 37.19 

2.00 65.31 2.00 65.45 2.00 65.85 2.00 66.60 2.00 67.54 2.00 68.23 

2.25 70.75 2.25 70.92 2.25 71.41 2.57 78.69 2.57 80.09 3.51 97.70 

2.50 75.68 2.50 75.87 2.50 76.45 3.41 92.97 3.41 95.11 5.76 122.74 

2.75 80.26 2.75 80.41 2.88 83.26 4.68 108.60 4.68 111.32 9.13 137.46 

3.00 84.50 3.00 84.65 3.44 92.17 6.58 122.98 6.58 126.48 12.51 141.67 

3.25 88.45 3.25 88.64 4.28 103.03 8.47 129.00 9.42 135.26 15.90 144.17 

3.50 92.16 3.50 92.39 5.13 111.18 10.37 132.17 12.27 138.84 21.01 147.99 

3.76 95.63 3.88 97.52 5.97 117.59 12.28 134.42 15.13 141.03 26.14 152.02 

4.01 98.82 4.26 101.97 7.23 123.81 14.19 136.03 19.44 144.19 31.29 156.42 

4.26 101.72 4.63 105.87 9.13 128.01 17.06 138.10 23.76 147.41 36.46 161.04 

4.51 104.37 5.01 109.34 11.02 130.64 21.37 141.20 28.10 150.90 41.65 165.18 

4.76 106.81 5.57 113.90 12.93 132.46 25.71 144.58 32.45 154.74 46.86 168.84 

5.01 109.07 6.13 117.73 14.83 133.78 30.06 148.43 36.81 158.53 52.08 172.16 

5.26 111.16 6.69 120.60 17.70 135.67 34.43 152.54 39.27 160.57 57.32 174.92 

5.51 113.11 7.26 122.53 20.57 137.69 38.80 156.34 42.97 163.42 62.58 177.31 

5.76 114.92 7.82 123.96 23.45 139.81 43.19 159.37 45.05 164.94 67.84 179.52 

6.01 116.58 8.38 125.11 26.33 142.14 47.59 161.54 48.18 167.05 73.12 181.67 

6.26 118.08 8.94 126.11 29.22 144.64 52.01 163.23 52.89 169.65 78.41 183.94 

6.51 119.34 9.79 127.41 32.12 147.14 56.43 164.70 55.55 170.81 83.71 186.27 

6.76 120.38 10.64 128.57 35.02 149.66 63.09 166.59 59.53 172.35 89.02 188.71 

7.01 121.27 11.48 129.61 35.74 150.22 69.76 168.39 65.53 174.61 94.33 191.41 

7.26 122.03 12.33 130.52 36.47 150.84 76.46 170.22 71.54 176.77 99.66 194.31 

7.51 122.70 13.18 131.26 37.56 151.66 78.14 170.67 77.57 179.07 104.99 197.25 

7.76 123.29 14.03 131.83 37.83 151.84 79.81 171.14 83.61 181.53 110.33 200.30 

8.13 124.10 14.88 132.36 38.10 152.03 82.33 171.86 89.66 184.17 115.67 203.47 

8.51 124.82 15.73 132.96 38.51 152.30 83.74 172.26 95.73 186.99 123.70 208.61 

8.88 125.47 15.95 133.05 38.92 152.56 84.54 172.48 101.80 189.95 131.74 213.86 

9.26 126.09 16.00 133.07 39.33 152.80 85.73 172.79 107.89 193.10 139.77 219.23 

Table 34 Load-displacement results for different mesh sizes  
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Figure 129 Load-deformation curves for different mesh sizes 

G.2 JOB TIME SUMMARY AND PROBLEM SIZE  

Mesh 20 mm Mesh 15 mm 

JOB TIME SUMMARY JOB TIME SUMMARY 

USER TIME (SEC) 529.35 USER TIME (SEC) 818.46 

SYSTEM TIME (SEC) 22.76 SYSTEM TIME (SEC) 28.42 

TOTAL CPU TIME (SEC) 552.11 TOTAL CPU TIME (SEC) 846.88 

WALLCLOCK TIME (SEC) 569 WALLCLOCK TIME (SEC) 872 

PROBLEM SIZE PROBLEM SIZE 

NUMBER OF ELEMENTS 1881 NUMBER OF ELEMENTS 2936 

NUMBER OF NODES 1907 NUMBER OF NODES 2962 

NUMBER OF NODES DEFINED BY 
THE USER 1907 

NUMBER OF NODES DEFINED BY 
THE USER 2962 

TOTAL NUMBER OF VARIABLES 
IN THE MODEL 11442 

TOTAL NUMBER OF VARIABLES 
IN THE MODEL 17772 

Table 35 Job time summary and problem size for mesh size 20 mm (left) and 15 mm (right) 
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Mesh 10 mm Mesh 5 mm 

JOB TIME SUMMARY JOB TIME SUMMARY 

USER TIME (SEC) 2071.2 USER TIME (SEC) 3027.8 

SYSTEM TIME (SEC) 62.78 SYSTEM TIME (SEC) 70.94 

TOTAL CPU TIME (SEC) 2134 TOTAL CPU TIME (SEC) 3098.8 

WALLCLOCK TIME (SEC) 2254 WALLCLOCK TIME (SEC) 3133 

PROBLEM SIZE PROBLEM SIZE 

NUMBER OF ELEMENTS 7192 NUMBER OF ELEMENTS 27990 

NUMBER OF NODES 7252 NUMBER OF NODES 28113 

NUMBER OF NODES DEFINED BY 
THE USER 7252 

NUMBER OF NODES DEFINED BY 
THE USER 28113 

TOTAL NUMBER OF VARIABLES 
IN THE MODEL 43512 

TOTAL NUMBER OF VARIABLES 
IN THE MODEL 168678 

Table 36 Job time summary and problem size for mesh size 10 mm (left) and 5 mm (right) 

Mesh 3 mm Mesh 2 mm 

JOB TIME SUMMARY JOB TIME SUMMARY 

USER TIME (SEC) 22684 USER TIME (SEC) 70316.19 

SYSTEM TIME (SEC) 571.57 SYSTEM TIME (SEC) 570.81 

TOTAL CPU TIME (SEC) 23256 TOTAL CPU TIME (SEC) 70887 

WALLCLOCK TIME (SEC) 23502 WALLCLOCK TIME (SEC) 71187 

PROBLEM SIZE PROBLEM SIZE 

NUMBER OF ELEMENTS 77617 NUMBER OF ELEMENTS 176683 

NUMBER OF NODES 77804 NUMBER OF NODES 176920 

NUMBER OF NODES DEFINED BY 
THE USER 77804 

NUMBER OF NODES DEFINED BY 
THE USER 176920 

TOTAL NUMBER OF VARIABLES 
IN THE MODEL 466824 

TOTAL NUMBER OF VARIABLES 
IN THE MODEL 1061520 

Table 37 Job time summary and problem size for mesh size 3 mm (left) and 2 mm (right) 
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Mesh size 
(mm) 

Number of 
elements 

Time CPU 
(s) 

Load (kN) 
(at 7 mm) 

Error (kN) 
Relative 

error (%) 

2 176683 70887 120.8014 - 0.00% 

3 77617 23256 121.2852 0.4838 0.40% 

5 27990 3098.8 123.0032 2.2018 1.82% 

10 7192 2134 124.5703 3.7689 3.12% 

15 2936 846.88 127.5204 6.719 5.56% 

20 1881 552.11 130.7149 9.9135 8.21% 

Table 38 Summary of convergence analysis 

 

Figure 130 Graphical representation of relative error of reaction load to calculation 

CPU time in logaritmic scale  
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G.3 MESH SIZES 

Mesh size 20 mm 

 

Mesh size 15 mm 

 

Figure 131 Graphical representation of mesh size 20 mm (left) and mesh size 15 mm 

(right) 

Mesh size 10 mm 

 

Mesh size 5 mm 

  

Figure 132 Graphical representation of mesh size 10 mm (left) and mesh size 5 mm 

(right) 
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Mesh size 3 mm 

 

Mesh size 2 mm 

 

Figure 133 Graphical representation of mesh size 3 mm (left) and mesh size 2 mm 

(right) 

 


