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Abstract

Let S be a set of n points in the projective d-dimensional real space RPd such that not all points of S
are contained in a single hyperplane and such that any subset of d points of S span a hyperplane. Let
an ordinary hyperplane of S be an hyperplane of RPd containing exactly d points of S . In this paper we
study the minimum number of ordinary hyperplanes spanned by any set S of n points in 4 dimensions,
following the work of Ben Green and Terence Tao in the planar version of the problem, as well as the work
of Simeon Ball in the 3 dimensional case. We classify the sets of points in 4 dimensions that span few
ordinary hyperplanes, showing that if S is a set spanning less than Kn3 ordinary hyperplanes, for some

K = o(n
1
6 ), then all but O(K ) points of S must be contained in the intersection of 5 linearly independent

quadrics.

Keywords

Discrete Geometry, Incidence and Arrangement Problems, Sylvester-Gallai-Type Problems, Computational
Geometry, Combinatorial Geometry
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1. Introduction

In 1893, James Joseph Sylvester proposed in Educational Times the following problem:

“Let n given points have the property that the line joining any two of them passes through a third
point of the set. Must the n points all lie on one line?”

That problem would be known later as the Sylvester’s problem, and a solution was presented 40 years
later (1944) by Tibor Gallai, in the form of the Sylvester-Gallai theorem:

Theorem (Sylvester-Gallai Theorem). Let S be a set of points in the plane not all contained in a line.
Then there is at least one ordinary line through S, that is to say, a line that contains exactly two points of
S.

After having the question posed by Sylvester answered, the natural follow-up problem is to try to
minimize the number of ordinary lines (lines passing by exactly two points) generated by sets of n points,
not all collinear.

There has been work on this generalization of the Sylvester problem since 1968, and the asymptotic
solution was proven by Ben Green and Terence Tao in 2013 [11].

In this thesis we focus on a generalization of this problem to higher dimensions. Different generaliza-
tions of this problem to higher dimensions can be considered, but we will focus on the one used by Simeon
Ball:

“Let S be a set of n points in the projective d-dimensional real space RPd such that they are not
contained in one hyperplane and that any subset of d points of S spans a hyperplane. Let us call an ordi-
nary hyperplane to an hyperplane that contains exactly d points of the set S. Then, what is the minimum
number of ordinary hyperplanes spanned by a set S of n points?”

The extra condition of any subset of d points of S spanning a hyperplane was added to the natural
generalization of the problem. This is because trivial examples of sets without ordinary hyperplanes can be
found if this condition is missing (allowing 3 or more collinear points, etc...). It is obvious, though, that
the restriction of this problem to dimension d = 2 is equivalent to the original Sylvester’s problem.

In general, we will denote as ed(n) to the minimum number of ordinary hyperplanes spanned by a set
S of n points in a d-dimensional space. Our problem, then, consists on finding a closed expression for that
number.

Work on this generalization to higher dimensions has been done in [6], [7] and [9]. The solution of the
problem is know for several small values of d and n, and several bounds have been found in some special
cases. Simeon Ball managed to prove in [9] the asymptotic result for the case d = 3, taking inspiration
on the work done by Green and Tao in the two dimensional case. The solution for the general problem,
though, is still missing.

In this paper we try to tackle the problem in dimensions greater than 3, since these are the areas where
most work is still to be done. The version of Sylvester’s problem from dimension 4 upward has a special
interest, since it is from here on that we lack the knowledge of significant examples of points spanning few
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On sets of points with few ordinary hyperplanes

ordinary hyperplanes. This makes the study a bit more challenging, as we have to work without a strong
guess on the solution.

Although the aim of this work is the study of the problem in dimensions higher than 3, the main focus
of this paper will be the version of the Sylvester’s problem on RP4, as this is the simplest of the not studied
cases and it gives us a strong basis for the general problem.

We will begin our thesis with an introduction to the Sylvester’s problem, explaining the problem in
the planar and 3 dimensional case, showing the important results on these dimensions, aiming to help the
understanding of our own results later.

In section 3 we will show our results on the asymptotic solution of Sylvester’s problem in the fourth
dimension. We will take inspiration on the work done in two and three dimensions, finishing with our own
version of the structure theorem, the main result of this thesis.

To end this paper, in section 4 we will present some minor results on the solution of the Sylvester’s
problem for small values of d and n. We will be exploring the value of ed(n) for a particular case of values
(d , n), giving strong bound on this value and managing to compute it exactly for one of cases.
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2. Previous results

As a first section of our thesis we will to take a quick look at the known results on the problem. We want
to review the work done on dimensions 2 and 3, as we will need many of those results for our study. Also
we are interested in the path used to prove some of these results, as we will need to use similar techniques
for our own ones.

We will use the planar case to introduce the basic concepts and tricks that we will be using on our
thesis, as it stands as the original Sylvester’s problem. We will show on this section the basic examples of
configurations of points related to the solution of the problem and we will present some of the basic results
made in this area that will be of use to us later on. For the more advanced results on the subject we will
mainly review the work by Ben Green and Terence Tao in [11].

For the 3 dimensional case we will follow the work done by Simeon Ball in [9], which is the main
reference for this generalization of Sylvester’s problem on RP3.

As this section is just to show the results made previously on our problem and to introduce the various
concepts of the work, we won’t be showing the proofs of the more complicated theorems or the technical
parts of the studies. Instead we will be focusing on just presenting the most important results, just showing
the proofs we think relevant to our own study later.

2.1 Planar case

The first step in our study is the planar case, which corresponds to the original Sylvester’s problem. The
study of the planar case helps us familiarize with the kind of work we are going to be doing, and with the
tricks and techniques needed for our proofs.

2.1.1 Melchior’s proof

Before studying the stronger results proven by Green and Tao for the asymptotic solution to the problem
we want to show briefly a proof of the original problem posed by Sylvester, by proving a simple lower bound
for the problem, showing that there cannot be a finite set of points without ordinary lines.

There are plenty of proofs of Sylvester’s problem. Here we will be showing the proof given by Melchior
(1940), as it is very simple and seems more elegant than the proof presented by Gallai later on. The proof
using the dualization of the set of points S and the Euler’s formula in the projective space, techniques that
we will be using later to prove some of our results.

Theorem 2.1 (Sylvester-Gallai). Let S be a set of points in the plane not all contained in a line. Then
there is at least one ordinary line through S, that is to say, a line that contains exactly two points of S.

Proof. Let S be a set of n points in the projective real plane RP2. Let us consider S∗ = {p∗ : p ∈ S}, the
dual set of S consisting on n lines in RP2.

The set of lines S∗ determine the drawing of a graph ΓS in RP2. The edges of this graph are the
segments of the lines p∗ ∈ S∗, while the vertices of the graph are the intersection of two or more lines
p∗, q∗... ∈ S∗, which corresponds to the dual of the line joining the points p, q... ∈ S .

By hypothesis the set S is not entirely contained in a single line, thus we can assume that there is more
than one vertex in the graph ΓS and that any line in S∗ meets at least two vertices.
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On sets of points with few ordinary hyperplanes

As a graph, we can say that ΓS partitions the projective plane RP2 into a set of vertices V , a set of
edges E and a set of faces F . If we apply Euler’s formula this partition we get:

|V |+ |F | − |E | = 1 (1)

as the Euler’s characteristic for the projective plane is equal to 1.

Let Vi ⊆ V be the set of vertices of V which are incident with exactly i lines of S∗, and let vi = |Vi |.
A vertex is incident with two edges of ΓS for each line in S∗ that passes through it, so the degree of a
vertex v ∈ Vi is d(vi ) = 2i . If we count the number of edges of the graph using this fact we obtain:

2|E | =
∑
v∈V

d(v) =
n∑

i=2

2ivi (2)

Let us also denote as Fi ⊆ F to the set of faces of F that have exactly i sides, and let fi = |Fi |. We
can count the number of edges of ΓS again with this:

2|E | =
n∑

i=3

ifi (3)

where we have used that each edge is in exactly two faces of F , and that each face of ΓS has at least
3 sides.

We can combine the three equations (1), (2), (3) to get the following expression:

|V |+ |F | − |E | = 1⇒
3|V |+ 3|F | − 3|E | = 3⇒

3
n∑

i=2

vi + 3
n∑

i=3

fi −
n∑

i=2

ivi −
n∑

i=3

ifi = 3⇒

n∑
i=2

(3− i)vi +
n∑

i=3

(3− i)fi = 3

⇒ v2 = 3 +
n∑

i=4

(i − 3)vi +
n∑

i=4

(i − 3)fi (4)

As every summand in the right hand side is positive, we can deduce that the term v2 is also positive
(in fact, we can deduce it is at least 3). By definition, v2 is the number of vertices in ΓS that are incident
with exactly two lines of S∗, which is equal to the number of lines in RP2 that goes through exactly two
points of S , that is to say, the number of ordinary lines. Proving, then, that v2 is greater than 0 proves
that any finite set of points S in the plane must span ordinary lines.

Melchior’s proof tells us that any finite set of points in the plane that is not in a line must span ordinary
lines, but it does not tell us much about how many (although we can get that there must be at least three
ordinary lines).

In the next, we will explore some examples of constructions of sets of points in the plane that span few
ordinary lines.
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2.1.2 Böröczky examples

After having the question of whether there must be ordinary lines in all set of points in the plane, we want
to solve the problem of how many must there be in any set of n points.

For an arbitrary set of points in the plane we would expect an O(n2) number of ordinary lines spanned
by the set. It is obvious, though, that this can be greatly improved.

The trivial example for a set of n points with few ordinary lines is the configuration of points where
n − 1 of the points are in the same line and the last point outside. For this configuration the number of
ordinary lines is n − 1, which is linear in n instead of quadratic.

This trivial example can be generalized to higher dimensions easily. Indeed, if we are working in the
problem on the RPd space, one can easily construct the trivial configuration where n − 1 points are con-
tained in one hyperplane, and the last points is outside. For these configurations we get

(n−1
d−1
)

ordinary
hyperplanes, which would be the starting upper bound for these problems.

In the planar case, though, we can do better than the trivial example. Now we are going to introduce
the Böröczky examples, which are an improvement on this bound. These sets were first described by
Böröczky (cited in [2]):

Definition 2.2 (Böröczky examples). Let m be an integer greater than 2. We will denote as X2m to the
set of 2m points in RP2 described as:

X2m =

{[
cos

2πj

m
, sin

2πj

m
, 1

]
: 0 ≤ j < m

}
∪
{[
−sin

πj

m
, cos

πj

m
, 0

]
: 0 ≤ j < m

} (5)

which consists on the m points of an m-gon in the unit circle and m points on the line at infinity aligned
with the lines generated by the m-gon. We will call this set of points the Böröczky set for 2m.

As we have already said, the Böröczky examples span few ordinary lines. This is due to how they are
constructed. The idea is that we take a regular polygon of m sides and we take every pair of points on
the polygon and put a point in the line at infinity in the direction of the line formed by those two points.
In that way, those points won’t be forming an ordinary line anymore and since we are beginning with a
regular polygon at the start, only m additional points are needed.

In the figure 1 we show one of the Böröczky examples, in particular (X12). We can see that from the
12 points shown in the image (6 of them in the line at infinity), only 6 ordinary lines are spanned by them.

Let us check the exact number of ordinary lines generated by these examples.

Proposition 2.3. The Böröczky set X2m spans exactly m ordinary lines.

Proof. This is a rather simple check. We just have to check which pairs of points can span a ordinary line
in the Böröczky example.

First of all, for m > 2 there will be 3 or more points in the line at infinity, thus, no two points at infinity
will span a ordinary line. Secondly, by construction any two points of the m-gon in the unit circle will be
aligned with one point in the line at infinity, so no two points in the m-gon will span an ordinary line.
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On sets of points with few ordinary hyperplanes

Figure 1: Böröczky configuration X12. The points pointed by arrows are points in the line at infinity. Green
lines mark the ordinary lines of the example.

The only case where an ordinary line is generated is joining a point of the circle with a point of the line
at infinity. But it turns out that for any point in the m-gon there is only one point in the infinity which is
not aligned with any other point in the circle. So that gives us one line for each point in the m-gon, and
we end up with just m ordinary lines.

The Börc̈zky examples are really good configurations of points, spanning only one ordinary line for every
two points, but we can only build a proper Böröczky set for an even number of points.

For n odd we would have to use the near-Böröczky examples, which can be constructed from a
Böröczky set by either adding or removing a point.

Proposition 2.4 (Near-Börc̈zky examples). Let m ≥ 2 be an integer. Then:

• The set X4m plus the point at the origin [0, 0, 1] is a set containing 4m + 1 points and that spans
exactly 3m ordinary lines.

• The set X4m minus any point on the line at infinity contains 4m−1 points and spans precisely 3m−3
ordinary lines.

• The set X4m+2 minus any point on the line at infinity contains 4m + 1 points and span 3m ordinary
lines.

In figures 2a and 2b we show two of these near-Böröczky examples.

Ben Green and Terence Tao proved in [11], via their structural theorem, that the Böröczky and near
Böröczky examples are optimal for larger values of n. This gives us the asymptotic solution of the Sylvester’s
problem (the value of e2(n) for n ≥ n0).

It is important to note here that, even though their work serves to prove the asymptotic bound of the
problem and that the Böröczky examples are optimal there, the same is not proven for small values of n.
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(a) Near Böröczky configuration of the set X12

plus the point in the center. The set spans 9
ordinary lines, marked in green.

(b) Near Böröczky configuration of the set X12

minus one of the points on the line at infiniry.
The points pointed by arrows are points in the
line at infinity. The set span 6 ordinary lines,
marked in green.

In fact, there are known examples for n small that best the bound reached with the Böröczky and near
Böröczky configurations. The very existence of these examples is an interesting add to the study of this
problem.

2.1.3 Structural theorems

Now we want to mention the work of Green and Tao. As we have already said, their work aims to prove
that the optimal solution for the Sylvester’s problem are the Böröczky examples, and thus:

e2(n) =

{
n
2 if n ≡ 0mod(2)

3bn4c if n ≡ 1mod(2)
(6)

We are not going to immerse ourselves into the whole proof, which is too large for this thesis, but we
will mention the scheme and some of the ideas of the proof. Later for our own work we will be trying to
prove similar results in dimension 4 and some of these ideas will prove key to our study.

The proof of Green and Tao works in the dualization of the set of points S , looking at the graph
defined by that dualization, just as we saw in Melchior’s proof. The idea behind the whole approach is
that, intuitively, a set S of points with few ordinary lines should be rich in lines passing through exactly
3 points. Then they prove that the dual of these kind of sets of points must contain some structures
(triangular grids), which allows them to categorize these sets of points.

The whole work of Green and Tao ends with their full structure theorem. The purpose of the theorem
is to classify the set of points of the projective plane that span few ordinary lines. With this intent, they
define the concept of sets spanning few ordinary lines as sets of points which span less than Kn of these
lines for some K , and then state which sets of points can satisfy this.

Theorem 2.5 (Full structure theorem). Let S be set of n points in the projective real plane RP2 and
suppose that S spans at most Kn ordinary lines for n ≥ exp exp(CKC ) for some constant C . Then the set
S differs by at most O(K ) points from some of the following:
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On sets of points with few ordinary hyperplanes

(i) n − O(K ) points in a line.

(ii) The Böröczky set X2m, for some m = n
2 + O(K ).

(iii) A coset H⊕g, 3g ∈ H, of a finite subgroup H of the real points on an elliptic curve {[x , y , z ] : y2z =
x3 + axz2 + bz3} in Weierstrass normal form, with H having cardinality n + O(K ).

It is easy to spot that the first case of the theorem corresponds to the trivial example mentioned earlier,
or sets close to the near example, having almost all the points in a single line. The second case on the
other hand, corresponds to the Böröczky and near Börözcky examples described earlier. The third case is
a bit harder to explain, but it still keeps a close relation with the other two cases.

We will expand later on some of the arguments that Green and Tao used to arrive at this theorem and
how these seemingly different sets of points come up next to each other in the same theorem. But the
main idea is that they prove that for a set of points to span few ordinary lines big part of it should lie on
a finite subgroup of the group defined on a cubic curve (see explanation on [11]).

These three cases come from the different nature of the cubic curve in question. Case 1 would come
from a line, case 2 from a conic curve plus a line, and the case 3 from an irreducible cubic curve.

One can check that, even though all three kind of sets span few ordinary lines (less than Kn), the
Böröczky examples are the ones that give the best bound, and thus the optimal examples for the Sylvester’s
problem.

Indeed, checking for the first set one would expect O(Kn) + O(K 2) ordinary lines generated by this
set. This number can be a bit optimized by aligning some of the O(K ) points outside of the line. But, if
we call x to the number of points not in the line (x ∈ O(K )), we see that any of those points would span
at least n − 2x ordinary lines. Which means that the whole set span n − O(K ) ordinary lines.

It can also be proven that the third case examples span as well a number n − O(K ) of ordinary lines,
and in the end we conclude that the Böröczky bound is the best possible outcome, giving us the result in
(6).

2.2 3d case

We will now comment on the results known for the Sylvester’s problem in dimension 3.

Our generalization of Sylvester’s problem restricted to 3 dimensions consists on finding the minimum
number of ordinary planes spanned by a set of points S in the 3 dimensional space such that not all S is
in a line and such that there are not three collinear points in S .

The condition of non-collinearity is necessary for our generalization in order to not have sets without
ordinary planes and to have a proper generalization of the Sylvester’s problem. Indeed, if this condition
were missing, for n ≥ 6, the example with the n points distributed between two skew lines, each of them
having at least three points does not span any ordinary plane.

Also, this non-collinearity condition in the 3 dimensional case is the motivation behind the condition
added to the general d-dimensional problem of having every subset of d points in S span a hyperplane.

The main reference we will use for this will be the work of Simeon Ball in [9]. In his article Simeon
Ball tries to prove a similar result as that of Green and Tao in [11], giving a structural theorem for sets of
points in dimension 3 spanning few ordinary planes.
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As in the planar case, we do not want to immerse ourselves too deep explaining in detail the work done
by Simeon Ball, but we think interesting to show the examples with few ordinary planes for 3 dimensions,
as well as the most important results.

Also, we feel important to show these results as this work is closer to the study of the problem in 4
dimensions, which we will be facing in the later section of this thesis.

First we will show which are the examples in 3 dimensions of sets that span few ordinary planes. Then
we will show the structural theorem for the 3 dimensions.

2.2.1 Prism and antiprism examples

In this section we want to present briefly the examples of collections of points on RP3 that span few
ordinary planes.

The expected number of ordinary planes in a random configuration is of the order of O(n3). The trivial
example for RP3, which is all but one of the n points contained in the same plane, is the first example to
improve this bound, producing

(n−1
2

)
= (n−1)(n−2)

2 ordinary planes.

To improve this bound further, we are going to present the key examples in three dimensions: the prism
and the antiprism.

Definition 2.6 (Prism). Let m be an integer greater than 2, and let π1 and π2 be two planes of RP3.
Let us consider two sets R1 and R2 of m points each, distributed respectively in π1 and π2 such that both
R1 and R2 are projectively equivalent to a regular m-gon. Now we say that the collection of 2m points
R = R1 ∪ R2 is a prism if there is a point pinf such that for any point p ∈ R1, the line joining p and pinf

intersects π2 into a point of R2.

We refer to the configuration described above as prism, and we will denote it as P2m.

Figure 3: The prism configuration P10.

In the image 3 we show a prism in the more geometrical sense. Notice that the definition above
is describes a prism in a more general way, but it can simply be interpreted as the sets which can be
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On sets of points with few ordinary hyperplanes

transformed into a prism (classically speaking) by a projective transformation. Because of this, in the
following we will be thinking of the prism examples as if they were in the form presented in 3.

We have said that the prism example is a configuration of points spanning few ordinary planes in RP3.
In the following we show the exact number of ordinary planes spanned by one prism P2m.

Proposition 2.7. Let m be an integer greater than 3, then the prism set P2m spans 2mbm−12 c ordinary
planes.

Proof. Let us count the number of ordinary planes by checking the planes generated by each set of 3
points.

The prism P2m has its 2m points divided between the two planes π1 and π2, in the form of a regular
polygon on each plane.

Let us choose 3 points out of the 2m of the prism. If the three points are contained in the same plane
πi , then the plane spanned by the three points will be the plane πi , and since each πi has m points and
m > 3, it is not an ordinary plane.

So any ordinary plane must be spanned by two points on π1 and one point on π2 or the other way around.

Let us fix x the only point in π1. Now let us consider two points y and z in the plane π2. Let us draw
a line through x parallel to the line 〈y , z〉. If this line passes through another point of π1, this would mean
that this other point will be contained in the plane generated by x , y and z .

Let us consider the lines generated by a pair of points in π2. These lines go on m different directions.
If we draw a line on each of these m directions, only one of the lines will not contain any other point of
π1, which is the line tangent to the circumscribed circle of the m-gon on π1. Let us call this line l .

The only pairs of points y , z on π2 that will span an ordinary plane with x are the ones such that the
line 〈y , z〉 is parallel to the tangent l . There are bm−12 c of these pairs. This is portrayed in the figure 4.

Figure 4: Prism configuration P10 with the ordinary planes (in blue) generated from a point X .

By symmetry, we obtain the same number of ordinary planes for each selection of the point x . So we
get a total of 2m × bm−12 c ordinary planes spanned by P2m.

There is another example of structure with few ordinary planes in RP3, which is the anti-prism, as

12



referred to in [6] and [9]. An anti-prism can be thought as a prism where the top face has been given a
little twist, as depicted in 5. We will denote the anti-prism set with 2m vertices as A2m.

Figure 5: Anti-Prism configuration of 10 points spanning 20 ordinary planes.

Because of the similarities between the two structures, it is easy to see that the anti-prism span, as the
prism examples, few ordinary planes. Doing similar arguments as before one can prove the following:

Proposition 2.8. Let m be an integer greater than 3. Then, the anti-prism set A2m spans 2mbm2 c.

This coincides with the number of ordinary planes for m odd, and is worse otherwise. In fact, one can
prove that for m odd, one can do a projective transformation to transform the anti-prism (image 5) into a
prism (image 3).

This is more easily seen if we notice that the anti-prism for m odd fits in the definition 2.6 (by taking
pinf to be the center point of the anti-prism).

Now, as in the two dimensional case, these presented examples are good for the cases when n is even.
For the odd cases, we would need to content ourselves with the near examples, that is to say, a prism with
a point removed or an anti-prism with a point removed.

We will not include here the analysis of these cases to compute the exact number of ordinary planes,
but the whole proof of those results can be found on [6].

Before continuing, we think it is worth to mention the relation between the sets described in this section
(the prism and anti-prism examples) and the key examples in the 2 dimensional version of the Sylvester’s
problem (the Böröczky examples).

To see this relation, we have to make the following observation: If we have a set of points S in RP3 and
project this set from one of its points p ∈ S to RP2, the number of ordinary lines in the projection is equal
to the number of ordinary planes of S that contains p. This is because every ordinary plane containing p
projects into an ordinary line in RP2.

It is only natural, then, that if we want to build sets of points in RP3 spanning few ordinary planes we
should be looking at configurations of points that project into sets in RP2 with few ordinary lines.
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On sets of points with few ordinary hyperplanes

The prism and anti-prism examples are perfect in this sense, since they project from any of their points
into Böröczky sets. This assures that there are few ordinary planes passing through each point, and is the
reason of the good quality of these examples for the Sylvester’s problem.

2.2.2 Structural theorem in dimension 3

We have mentioned that the prism examples are the optimal configurations for the 3 dimensional version
of the Sylvester’s problem. Joining the results mentioned in the last section we are able to get the value
of the optimal number of spanned ordinary planes by a set of n points.

e3(n) =


nbn−14 c if n ≡ 0mod(2)
3
8n2 − n + 5

8 if n ≡ 1mod(4)
3
8n2 − 3

2n + 17
8 if n ≡ 3mod(4)

(7)

This holds true for large values of n, having some small counterexamples when n is small, which can
be seen as simple corner cases.

This is proven in [9] by Simeon Ball when he proofs the optimality of the prism and anti-prism example.
This he does by creating his own version of the structure theorem of Ben Green and Terence Tao.

In his structure theorem, with inspiration on its version on 2 dimensions, Simeon classifies the nature
of the sets of points in RP3 which span few ordinary plane (at most Kn2).

Theorem 2.9. Let S be a set of n points in RP3, no three collinear and not all coplanar, spanning less

than Kn2 ordinary planes, for some K = o(n
1
7 ). Then one of the following holds:

(i) There are two distinct quadrics such that all but at most O(K ) points of S are contained in the
intersection of the quadrics. Furthermore, all but at most O(K ) points of S are incident with at least
3
2n − O(K ) ordinary planes.

(ii) There are two planar conic sections of a quadric which contain at least 1
2n − O(K ) points of S.

(iii) All but at most 2K points of S are contained in a plane.

There are parallelisms between the structure theorem by Green and Tao (2.5) and the one here. One
can see that the third case corresponds to the trivial example and the second case corresponds to the prism
and anti-prism examples, which we have seen have relation with the Böröczky examples in RP2. The first
case can also be related with the remaining case of the structural theorem in 2 dimensions.

In fact, Simeon Ball uses a few times in his proof of this theorem the projection of the set S from a
point to RP2, with the argument that the projections of the set from a point with few ordinary planes give
sets in 2 dimensions with few ordinary lines. This allows him to use the work of Green and Tao, and in
proving the characteristics of the projection of his sets, he is later able to nature of the sets themselves.

An important part of the proof of Simeon Ball is the relationship between the problem and the inter-
section of two quadrics. As Green and Tao proved in their paper that sets with few ordinary lines should
mostly be contained in a cubic curve, Simeon managed to prove that for any set in RP3 spanning few
ordinary planes, all but a small part of it must be contained in the intersection of two quadrics.
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We will expand later in the relation between the cubic curve appearing in the Green and Tao’s work
and the intersection of two quadrics.

Parting from the structure theorem 2.9, Simeon Ball reaches the following theorem as an immediate
consequence:

Theorem 2.10. Let S be a set of n points in RP3, no three collinear and not all coplanar. There is a
constant c such that if S spans less than 1

2n2− cn ordinary planes then, for n sufficiently large, S is either
a prism, an anti-prism, a prism with a point removed or an anti-prism with a point removed.

Which proves that the prism and anti-prism examples are the optimal configurations of points when n
is large enough.

This follows naturally from the structure theorem 2.9, as one can easily prove that the first and third
cases of the theorem yield sets with more than 1

2n2 − cn for a large enough constant c . That leaves us
only with the prism and anti-prism examples.
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On sets of points with few ordinary hyperplanes

3. Sylvester’s problem in RP4

In this section we are going to introduce our own study of the problem in 4 dimensions.

After the work of Ben Green and Terence Tao in one hand and Simeon Ball in the other, we are able
to classify the sets of points with few ordinary hyperplanes in RP2 and RP3, obtaining then the asymptotic
solution of the Sylvester’s problem for those dimensions.

For us the next natural step is the study of the problem in 4 dimensions. After the work in the lower
dimensions, one would think a similar result could be achieved in dimension 4 by the same means used in
the previous studies. Our objective will be exactly that.

This work, though, presents some complications not present in the equivalent studies in the previous two
dimensions. For one thing, just the fact of working in 4 dimensions is in itself a complication with respect
to the other studies, as the visualization of the kind of objects we will be working with in 4 dimensions is
somewhat more challenging.

On the other hand, and most problematic of all, unlike in the cases of dimensions 2 and 3, we start our
study in 4 dimensions without known examples of structures of points spanning few ordinary hyperplanes
(aside from the trivial example). The existence of the Böröczky examples for the planar case and the prism
and anti-prism examples for the 3-dimensional case help the study of those cases, giving a clear direction
to the research, as one can suspect from the start these examples to be optimal.

In our case, though, we are helpless in this aspect. The restriction that any subset of 4 points must
span a hyperplane implies that we cannot have in our sets of points any 3 points collinear or 4 points
coplanar. This condition is very strong and has prevented us from finding any simple generic examples
(similar to those in 2 and 3 dimensions) of structures with few ordinary hyperplanes, aside from the trivial
one. The lack of this kind of examples forces us to work from scratch, having to guess if either no such
structure existed in the first place or simply we could not find it.

This alone makes us suspect that the trivial example is the optimal configuration for dimension 4. But
even with this suspicion we need to do a structural study similar to the one in lower dimensions to prove this.

We will follow the same steps as Simeon or Green and Tao did for their respective results.

First we will describe the equivalent concept of triangular grids in 4 dimensions, as to classify the
sets with few ordinary hyperplanes we will have our eyes set on configurations of points rich in (d − 1)-
hyperplanes. We will prove some algebraic results over triangular grids in 4 dimensions, in the end arriving
at the characterization of the sets of points whose dual form a triangular grid: points whose dual defines
a triangular grid in 4 dimensions must be contained in the intersection of 5 quadrics.

After these results, we will try to give our own version of the structure theorem for 4 dimensions,
arriving, then, to the solution of the Sylvester’s problem for this case.

3.1 Triangular grids in 4 dimensions

One of the key ingredients in the work of Green and Tao are the structures they define as triangular grids.
Their definition of triangular grids can be roughly presented as:

Definition 3.1. Let I , J, K be three discrete intervals in Z. A triangular grid of dimensions I , J, K is a
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collection of lines (p∗i )i∈I , (q∗j )j∈J , (r∗k )k∈K in RP2 such that p∗i , q∗j and r∗k intersect into a point if and
only if i + j + k = 0 and no other line in the grid passes through the point of intersection.

Figure 6: Triangular grid of dimensions [−2, 2], [−3, 3] and [−5, 5].

In their study, Green and Tao prove two things about triangular grids that serve to prove their structural
theorem.

• First they prove a set of points in RP2 whose dual forms a triangular grid is contained in a single
cubic curve.

• Secondly they prove that the dual of any set of points in RP2 that spans few ordinary lines must be
mostly by triangular grids.

Joining these together they manage to prove that any set of points spanning few ordinary lines is
contained in the union of a handful of cubic curves, which then they manage to reduce to a single cubic
curve. The structural theorem in RP2 comes just by studying different cases on the nature of the cubic curve.

The interest in triangular grids in the study of Sylvester’s problem comes from the intuitive notion that
sets with few ordinary lines should be rich in lines with exactly 3 points. This connects with the triangular
grid naturally, as any point of intersection in the triangular grid dualizes into a line with exactly 3 points.

Starting with this intuitive notion, one can think of the results just mentioned as proving that any
set spanning few ordinary lines must be rich in 3-lines, and that sets of points rich in 3-lines are almost
contained in a cubic curve.

For the study in three dimensions, Simeon Ball had to make use of an equivalent structure in RP3.
The definition of what Simeon calls a ’tetra-grid’ is the natural generalization of the definition by Green
and Tao to the 3 dimensions.

Similar statements as the ones proved by Green and Tao can be reached by using the concepts derived
from the tetra-grid. Simeon does that in his work. First proving that a set of points that dualizes into a
tetra-grid is contained in the intersection of two linearly independent quadrics, using this to prove in the end
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On sets of points with few ordinary hyperplanes

that any set of points in RP3 spanning few ordinary planes must be contained in two linearly independent
quadrics.

As in the two dimensional case, the idea behind the tetra-grid is the characterization of sets of points
rich in planes containing exactly 4 points.

To face the problem in 4 dimensions we will need to do the same kind of study.

In this section we are going to use the natural generalization of the definition of triangular grids to
higher dimensions. Our goal will be to find which algebraic variety plays the same role as the cubic curve
in two dimensions or the intersection of two quadrics in three.

After the exposition on Green and Tao’s work on the triangular grid, the generalization to the fourth
dimension of this structure should be obvious. We will call this structure a 5-cell grid:

Definition 3.2. Let I , J, K , L, M be discrete intervals in Z. A 5-cell grid of dimensions I , J, K , L, M is a
collection of hyperplanes (p∗i )i∈I , (q∗j )j∈J , (r∗k )k∈K , (s∗l )l∈L, (t∗m)m∈M in RP4 such that p∗i , q∗j , r∗k , s∗l , t∗m
intersect into a point if and only if i + j + k + l + m = 0 and no other hyperplane of the grid passes through
the point of intersection.

Now, along with the notion of 5-cell grid, we want to introduce the notion of good/bad edges to
help us in our study. In their paper, Green and Tao defined good and bad edges in order to character-
ize edges of the graph Γ according to whether they contributed to the triangular grid structure of the graph.

According to Green and Tao, a good edge in the graph in RP2 was an edge that was the side of two
triangular faces and whose end vertices were each of degree 6. A bad edge was simply any edge that was
not good.

For RP4 we will call a good edge to the following:

Definition 3.3 (Good and bad edges). A good edge of the graph Γ in RP4 is any edge e in Γ such that
any face that contains e is a triangle and such that the end vertices of e are each incident with exactly 5
hyperplanes of S∗. A bad edge is any edge of Γ that is not good.

To state this in the same way as Green and Tao we could say that the end vertices of a good edge have
degree 20.

Let us also define the concept of rather good edges as follows:

Definition 3.4 (Rather good edges). We say an edge of the graph Γ is a rather good edge if it is a good
edge and every edge coming from its end vertices is also a good edge. We will call an edge of Γ slightly
bad if it is not a rather good edge.

These two concepts are important, as their appearance comes naturally inside the 5-cell structure. The
other implication is also true, as it can be proven that the structure of Γ around a rather good edge is that
of a 5-cell grid. This fact will be more useful to us, and will help us later.

Although it seems a rather obvious statement, to really prove it we need to perform a little check first:

Proposition 3.5. Let e be a rather good edge of the graph Γ lying on the line p∗ ∩ q∗ ∩ r∗. If there is a
triangle in the plane p∗ ∩ q∗ with side e that has its other sides cut out by s∗ and r∗, then there must be
triangles in the planes p∗ ∩ r∗ and q∗ ∩ r∗ with side e whose sides are also cut by r∗ and s∗ respectively.
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From this the earlier mention result follows:

Corollary 3.6. The structure of Γ around a rather good edge is that of a 5-cell grid.

Now, we have mentioned the relationship between good and rather good edges and 5-cell grids. Also,
as we have mention earlier, the objective of introducing the grids in the first place was the idea we have
that sets of points spanning few ordinary hyperplanes should be rich in 5-hyperplanes, and thus, should
contain 5-cell grids.

One of the early results we can show indicating this has to do with the notions we have just introduced
of good edges and rather good edges. The key thing to notice here is that, when we are dealing with sets
of points spanning few ordinary hyperplanes, the number of bad/slightly bad edges in the graph Γ is low.

We state this as the following two propositions:

Lemma 3.7. Let S be a set of n points in RP4 not all in an hyperplane and such that any subset of 4
points span a hyperplane. Let us assume that S spans less than Kn3 ordinary hyperplanes. Then in the
graph Γ = ΓS there are at most 48Kn3 bad edges.

Proof. First of all, let us call V and E respectively to the set of vertices and edges on the graph Γ.

Let π and π′ be two elements of S∗. As these are hyperplanes of RP4, the intersection π ∩ π′ forms a
plane.

Let us call Vπ,π′ to the set of vertices in Γ which are in both π and π′, and let us define in the same
way the set Eπ,π′ of edges in the intersection. Let us also consider the set of faces Fπ,π′ in the plane π∩π′
defined by these vertices and edges. As π ∩ π′ is a projective plane, Euler’s formula gives us:

|Vπ,π′ | − |Eπ,π′ |+ |Fπ,π′ | = 1 (8)

Let us call F to the set of faces in the graph Γ, which we will take as the union of the faces defined in
the planes π ∩ π′ for all π,π′ ∈ S∗:

F =
⋃

π,π′∈S∗
Fπ,π′

Now, taking the Euler’s formula (8) into account, if we sum for all the choices of π ∩ π′ in S∗ we end
up with:

n∑
i=4

i(i − 1)

2
vi − 3|E |+ |F | =

n(n − 1)

2
(9)

where the numbers vi represent the number of vertices in Γ which are incident with exactly i hyperplanes
of S∗. This formula comes naturally for the following:

• Any face is exactly in one plane π ∩ π′.

• Any line in RP4 is the intersection of 3 hyperplanes. Thus, any edge of E is in exactly 3 planes
π ∩ π′.

• A vertex which is incident with exactly i hyperplanes of S∗ will be contained in i(i−1)
2 planes π ∩ π′.
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On sets of points with few ordinary hyperplanes

Now we will use some counting arguments to derive some relations between the number of faces, edges
and vertices of the graph.

First, since each edge is contained in exactly three planes π ∩ π′ and since in each of these planes, it is
the bound between two faces, we can obtain the following equation by counting pairs (e, f ) of edges and
faces in two different ways:

#(e, f ) = 6|E | =
∑
j≥3

jfj (10)

where fi denotes the number of faces in Γ with j edges.

Secondly let us count pairs (v , e) of edges and vertices in two different ways. For that we will note that

for a vertex incident with exactly i hyperplanes there are i(i−1)(i−2)
6 lines (which are intersection of three

hyperplanes) incident with it. Then:

#(v , e) = 2|E | =
∑
i≥4

2× i(i − 1)(i − 2)

6
vi

⇓

6|E | =
∑
i≥4

i(i − 1)(i − 2)vi

(11)

Now we will use these equations and the fact that v4 ≤ Kn3 (since v4 represents the number of ordinary
hyperplanes), to obtain the bound for the number of bad edges in Γ.

We can combine the Euler’s formula (9) with the equations (10) and (11) to obtain the following:

|F | − 3|E |+
∑
i≥4

i(i − 1)

2
vi =

n(n − 1)

2

6|F | − 18|E |+ 3
∑
i≥4

i(i − 1)vi = 3n(n − 1)

6|F | −

2
∑
j≥3

jfj

−
∑

i≥4
i(i − 1)(i − 2)vi

+ 3
∑
i≥4

i(i − 1)vi = 3n(n − 1)

−2
∑
j≥3

(j − 3)fj −
∑
i≥4

i(i − 1)(i − 5)vi = 3n(n − 1)

12v4 = 3n(n − 1) + 2
∑
j≥4

(j − 3)fj +
∑
i≥6

i(i − 1)(i − 5)vi (12)

We can use this last equation (12) to obtain some bounds, since every summand on the right hand side
is non-negative.

First we can deduce for the faces that:
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∑
j≥4

(j − 3)fj ≤ 6v4 ≤ 6Kn3

∑
j≥4

fj ≤
∑
j≥4

(j − 3)fj ≤ 6Kn3

∑
j≥4

jfj ≤ 6Kn3 + 18Kn3 = 24Kn3

This gives us a bound for the number of edges incident with a face which is not a triangle. Now, if we
look at the vertices:

∑
i≥6

i(i − 1)(i − 5)vi ≤ 12v4 ≤ 12Kn3

∑
i≥6

i(i1)vi ≤
∑
i≥6

i(i − 1)(i − 5)vi ≤ 12Kn3

∑
i≥6

i(i − 1)(i − 2)vi ≤ 12Kn3 + 36Kn3 = 48Kn3

From this last equation we can find a bound for the number of edges incident to a vertex which is not
incident to exactly 5 hyperplanes:

∑
i 6=5

i(i − 1)(i − 2)

3
vi = 8v4 +

∑
i≥6

i(i − 1)(i − 2)

3
vi ≤ 8Kn3 +

48Kn3

3
= 24Kn3 (13)

Now, an edge can be bad if either it is contained in some non-triangular face or if one of its end vertices
is not incident with exactly 5 hyperplanes (i.e. the vertex has degree different than 20. Because of that, if
we join the two equations (3.1) and (13) we obtain the following bound:

#Bad Edges ≤ 24Kn3 + 24Kn3 = 48Kn3 (14)

Lemma 3.8. The number of slightly bad edges is at most 1872Kn3.

Proof. This is quickly proven by counting. A slightly bad edge is either a bad edge itself or a good edge
which is incident with a bad edge. We know from lemma 3.7 that the number of bad edges in Γ is at most
48Kn3. In the other hand, we know that the end vertices of a good edge have degree 20 (since they are
incident to 5 hyperplanes of S∗. Thus, we can bound the number of slightly bad edges by the following
rough estimation:

#Slightly Bad Edges ≤ 48Kn3 + 2× (20− 1)× 48Kn3 = 1872Kn3 (15)
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On sets of points with few ordinary hyperplanes

3.2 Intersection of 5 quadrics

We have defined in the previous section the concepts of 5-cell grid and good/bad edges and how they
relate to our problem. To keep following the steps of the work of Green and Tao now we want to study
if sets of points which dualize into 5-cell grids are contained in a certain variety and, in that case, what is
the nature of that variety.

The answer to that question is that, indeed, sets of points which dualizes in RP4 into 5-cell grids are
contained the intersection of 5 quadrics.

In this section we will prove this, along with some other results that we will need later about these vari-
eties. Also, we will discuss briefly the nature of this kind of variety and how it relates with its counterparts
in 2 and 3 dimensions.

The first thing we want to do, before studying the characteristics of the variety, is prove that the sets of
points forming the 5-cell are contained in the intersection of 5 quadrics. For this we will need two lemmas,
the first of which is the following:

Lemma 3.9. Let {p0, p1, q0, q1, r−1, r0, s−1, s0, t−1, t0, t1} be eleven points of RP4 such that pi , qj , rk , sx , ty
are contained in a hyperplane if and only if i + j + k + x + y = 0. Then there are 5 linearly independent
quadrics that contains the 11 points.

Proof. With this set of points we have defined the following 14 hyperplanes:

H11 := {p0, q0, r0, s0, t0} H12 := {p1, q1, r−1, s−1, t0}
H21 := {p1, q0, r−1, s0, t0} H22 := {p0, q1, r0, s−1, t0}
H31 := {p1, q0, r0, s−1, t0} H32 := {p0, q1, r−1, s0, t0}
H41 := {p0, q1, r0, s0, t−1} H42 := {p1, q0, r−1, s−1, t1}
H51 := {p1, q1, r−1, s0, t−1} H52 := {p0, q0, r0, s−1, t1}
H61 := {p1, q1, r0, s−1, t−1} H62 := {p0, q0, r−1, s0, t1}
H71 := {p1, q0, r0, s0, t−1} H72 := {p0, q1, r−1, s−1, t1}

Any two hyperplanes Hj1 and Hj2 form an hyperplane pair quadric. Let us denote by Qj = Hj1 ∪ Hj2.

Let us take the four quadrics Qj for j = 4, 5, 6, 7. These quadrics are four linearly independent quadrics
that contains the 10 points {p0, p1, q0, q1, r−1, r0, s−1, s0, t−1, t1} (the eleven points without t0).

Now let us consider two quadrics Wk = Q1 + λkQk for k = 2, 3. These quadrics contain the 9 points
{p∗, q∗, r∗, s∗, t0}. We choose λk so that Wk passes also through the point t1.

Let us consider a map γ such that it maps the points p0 ↔ p1, q0 ↔ q1, r−1 ↔ r0, s−1 ↔ s0 and
t−1 ↔ t1. The map γ satisfies for j = 1..7 that:

γ(Hj1) = Hj2

γ(Hj2) = Hj1

This implies that the quadrics Qj remain the same through γ, and therefor also the quadrics Wk . On
the other side, because γ maps the points t−1 ↔ t1, and because the quadrics Wk contain the point t1
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and are unaltered by γ we can deduce that the point t−1 is also contained in the quadrics Wk .

With this we get a total of 6 linearly independent quadrics passing through the 10 points {p∗, q∗, r∗, s∗, t−1, t1},
which are {W1, W2, Q4, Q5, Q6, Q7}. These quadrics form a subspace of dimension 6 on the space of
quadrics on RP4.

As we have a subspace of dimension 6 of the space of quadrics passing through those 10 points, adding
an extra restriction to the space will give us a subspace of dimension 5. So, adding the point t0 we get
that there are 5 linearly independent quadrics containing the original 11 points.

Notice that the space of quadrics in RP4 has dimension
(6
2

)
= 15, and that, in a generic situation,

each point we force our quadrics to contain should impose a linearly independent condition on the space of
quadrics. Thus, in that general situation we would expect the space of quadrics passing through 11 points
to be of dimension 4 and the space of quadrics passing through 10 points to be of dimension 5.

In this last lemma we have managed to prove, though, that there are 6 linearly independent quadrics
passing through the 10 points used in the proof, and 5 quadrics through the whole set of 11 points. This
constitute one more dimension than what we would expect in a general situation.

From this first lemma we obtain the variety that we were looking for, the intersection of 5 linearly
independent quadrics. In order to extend this result to the entire 5-cell grid, we will need a further result,
which is closely related with the proof we did on the previous one:

Lemma 3.10. Let {p0, p1, q0, q1, r−1, r0, s−1, s0, t−1, t1} be 10 points on RP4 such that pi , qj , rk , sx , ty are
contained in a hyperplane if and only if i + j + k + x + y = 0. Then any quadric that contains 9 of the 10
points must also contain the tenth one.

Proof. As we have said, the expected dimension of the space of quadrics passing through the 10 points
should be 5, instead of having the 6 linearly independent quadrics we proved in the 3.9 lemma.

Now we want to prove that the space of quadrics through any subset of 9 points of these 10 is of
dimension 6, as one would expect. This will imply that the 6 linearly independent quadrics passing through
any 9 points are the same as the ones going through the 10 points, and thus, any quadric going through
9 points should contain the tenth point of this set.

For this we will try to prove that any subset of 9 points of these impose 9 linearly independent conditions
in the space of quadrics.

Without loss of generality, let us suppose that the subset of 9 points we choose is the one without the
point t1. We can apply a projective transformation so the points have the following coordinates:

p0 = [1, 0, 0, 0, 0] p1 = [a1, a2, a3, a4, a5]

q0 = [0, 1, 0, 0, 0] q1 = [b1, b2, b3, b4, b5]

r−1 = [0, 0, 1, 0, 0] r0 = [c1, c2, c3, c4, c5]

s−1 = [0, 0, 0, 1, 0] s0 = [d1, d2, d3, d4, d5]

t−1 = [0, 0, 0, 0, 1]

Now let us consider φ a generic quadric in RP4 with coefficients as follows:
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On sets of points with few ordinary hyperplanes

φ(X ) = α11X 2
1 + ... + α55X 2

5 + α12X1X2 + ... + α45X4X5

To impose that the quadric φ contains a certain point x is the same as to impose the equation φ(x) = 0.
Now, if we want to impose that this quadric contains the 9 points mentioned above, we obtain the following
system of equations:



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
a21 a22 a23 a24 a25 a1a2 a1a3 a1a4 a1a5 a2a3 a2a4 a2a5 a3a4 a3a5 a4a5
b2
1 b2

2 b2
3 b2

4 b2
5 b1b2 b1b3 b1b4 b1b5 b2b3 b2b4 b2b5 b3b4 b3b5 b4b5

c2
1 c2

2 c2
3 c2

4 c2
5 c1c2 c1c3 c1c4 c1c5 c2c3 c2c4 c2c5 c3c4 c3c5 c4c5

d2
1 d2

2 d2
3 d2

4 d2
5 d1a2 d1d3 d1d4 d1d5 d2d3 d2d4 d2d5 d3d4 d3d5 d4d5





α11

α22

α33

α44

α55

α12

α13

α14

α15

α23

α24

α25

α34

α35

α45



= 0

(16)

The fact that we want to prove is that these 9 equations impose 9 linearly independent conditions,
giving the space of quadrics only 6 degrees of liberty, and thus, dimension 6.

This is the same as proving that the matrix (16) has rank 9.

The five points corresponding to the basis of RP4 give us immediately rank 5 on the matrix. We just
need to prove that the 4× 10 sub-matrix corresponding to the last four rows is of rank 4.

The key ingredient to prove this comes from the nature of the set we are dealing with. We will use the
fact that these points form 5-hyperplanes and that the points pi , qj , rk , sx , ty are in an hyperplane if and
only if i + j + k + x + y = 0.

First of all, we can suppose that none of the coefficients a5, b5, c5, d5 are 0. This is because, if any of
them were, that point would be contained in the hyperplane formed by p0, q0, r0, s0 and by hypothesis they
are not.

Secondly, we know that the 5 points p1, q1, r−1, s−1 and t−1 are not contained in an hyperplane, as
their indexes sum to −1. This means that the 5 points are linearly independent and that the matrix

0 0 0 0 1
a1 a2 a3 a4 a5
b1 b2 b3 b4 b5

c1 c2 c3 c4 c5
d1 d2 d3 d4 d5


has rank 5.
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Now, because we know that the coefficients a5, b5, c5, d5 are different from 0, we can scale the points
to make them 1 and get rid of the X5 coefficients. After doing that, looking at the sub-matrix given by the
columns corresponding to the coefficients of X1X5, X2X5, X3X5 and X4X5, we get the following matrix:

a1 a2 a3 a4
b1 b2 b3 b4

c1 c2 c3 c4
d1 d2 d3 d4


which we know has rank 4.

From this we get that the 9 points we chose impose 9 linearly independent conditions to the space of
quadrics, and thus, there should be just 6 linearly independent quadrics through the 9 points.

If the point left out was other than t1 we will need to use other coordinates and use other points as
the basis, but we are able to do the same reasoning.

As we have proven that there are just 6 linearly independent quadrics through each subset of 9 points, we
conclude that any quadric passing through said subset of 9 points should also contain the tenth point.

From these two lemmas 3.9, 3.10 we have proved that some small sets of points on a 5-cell grid are
contained in the intersection of 5 linearly independent quadrics. What we want to prove now, using these
two results, is that the whole 5-cell grid structure must be contained in the intersection of 5 quadrics,
which is the main theorem of this section.

In order to use these lemmas later, we will need to be careful and verify that the points to which we
apply them maintain the same structure as the points in the lemma. With this in mind and to avoid
complications later, we will present the sets of points in these two lemmas as follows.

For the lemma 3.9:

p1 q1 t1
p0 q0 r0 s0 t0

r−1 s−1 t−1

And for the lemma 3.10:

p1 q1 t1
p0 q0 r0 s0

r−1 s−1 t−1

The exact statement that we will prove is slightly different of what we have mentioned, as we will
be proving that a 5-cell grid at the neighborhood of a segment of rather good edges is contained in the
intersection of 5 linearly independent quadrics. We present the theorem in this way as it will be more useful
for us later if stated like this. Though, one can see that the proof we present here can be easily adapted
to take into account the whole grid.

Theorem 3.11. Let S be a set of points in RP4. Let p, q, r ∈ S be points in S such that the line p∗∩q∗∩r∗

in Γ contains a segment T of m rather good edges. Then there are 5 linearly independent quadrics such
that they contain the points p, q and r and all the points s such that s∗ intersects p∗ ∩ q∗ ∩ r∗ in T .
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On sets of points with few ordinary hyperplanes

Proof. First of all, because the segment T is a segment of m rather good edges, we know that the structure
of Γ around T is that of a 5-cell grid of dimensions 3× 3× 3× (m + 1)× (m + 1).

Now, because it has the structure of a 5-cell grid, we can rename the points involved to be as follows:

p−1 p0 p1

q−1 q0 q1

r−1 r0 r1

s−m ... s−1 s0

t0 t1 ... tm

having p = p0, q = q0 and r = r0.

Now is the time to apply the lemmas 3.9 and 3.10 in order to get our 5 quadrics. It will be important
when we use this lemmas that the 11 (respectively 10) points we apply the lemmas to hold the same
structure as the points used in the lemmas and that one can form a bijection between the sets of points
that keeps invariant the spanned hyperplanes of the set.

First of all we can apply the lemma 3.9 to the set:

t1 r1 p1

t0 r0 s0 q0 p0

s−1 q−1 p−1

It is clear that this set of points hold the same structure as that of the set in 3.9. So the lemma applies
and we know that there are 5 linearly independent quadrics containing the 11 points.

Let us call {Q1, Q2, Q3, Q4, Q5} to this set of quadrics.

Now let us consider the set of 10 points:

t1 r1 q1

t0 r0 s0 p0

s−1 p−1 q−1

It holds the same structure as the set of points in lemma 3.10, so the lemma applies and any quadric
passing through 9 of these points passes through the tenth. But because of what we saw earlier, we know
that the 9 points {t0, t1, r0, r1, s−1, s0, p−1, p0, q−1} are contained in the 5 quadrics Qi . Thus, the tenth
point q1 is also contained in these quadrics.

We can do this same trick to argue that the point r−1 is also contained in the quadrics.

Now we want to extend this argument to include all the points s−i and ti . We will manage this by
induction:

First of all, we know already that the points {s0, s−1, t0, t1} are contained in the 5 quadrics.

Now, for the induction hypothesis, let us suppose that the set of points {s0, s−1...s−i , t0, t1...ti} are all
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contained in our set of 5 quadrics. We will now prove that both s−i−1 and ti+1 are also contained in the
5 quadrics.

To begin, let us consider the following set of points:

p1 q0 ti+1

p0 q−1 r0 s−i+1

r−1 s−i ti−1

Although it a bit more complicated than before, we can also check that this set of points hold the same
hyperplane relation as the one in lemma 3.10. Indeed, this set span the following 8 hyperplanes:

H11 = {p0, q0, r0, s−i+1, ti−1} H21 = {p0, q0, r−1, s−i , ti+1}
H12 = {p1, q0, r0, s−i , ti−1} H22 = {p0, q−1, r0, s−i , ti+1}
H13 = {p1, q0, r−1, s−i+1, ti−1} H23 = {p0, q−1, r−1, s−i+1, ti+1}
H14 = {p1, q−1, r0, s−i+1, ti−1} H24 = {p1, q−1, r−1, s−i , ti+1}

With this, lemma 3.10 applies. Now, as we know from the induction hypothesis that the 9 points
{p0, p1, q−1, q0, r−1, r0, s−i+1, s−i , ti−1} are all contained in the 5 quadrics Qi , we deduce that the tenth
point ti+1 is also contained in the quadrics.

On the other hand, let us consider the following points:

p−1 q0 s−i−1
p0 q1 r0 ti−1

r1 ti s−i+1

As in the previous case we can prove the same structure holds, having the set span the same hyperplanes:

H11 = {p0, q0, r0, ti−1, s−i+1} H21 = {p0, q0, r1, ti , s−i−1}
H12 = {p−1, q0, r0, ti , s−i+1} H22 = {p0, q1, r0, ti , s−i−1}
H13 = {p−1, q0, r1, ti−1, s−i+1} H23 = {p0, q1, r1, ti−1, s−i−1}
H14 = {p−1, q1, r0, ti−1, s−i+1} H24 = {p−1, q1, r1, ti , s−i−1}

So the lemma 3.10 applies, and by the same argument as before, as the induction hypothesis tells us
that the 9 points {p0, p−1, q0, q1, r0, r1, ti−1, ti , s−i+1} are already contained in our 5 quadrics we get that
the tenth point of the set s−i−1 is also contained in the quadrics.

With this theorem we have proven that the dual set of a 5-cell grid (or a segment of rather good edges
in Γ) is contained in the intersection of 5 quadrics. Later we will prove using this that any set of points
spanning few ordinary hyperplanes must also be mostly contained in the intersection of 5 quadrics.

Thus, it is obvious the importance of this variety for our study. For this reason, before moving on, we
want to take some time to comment on the nature of this variety, and some of the properties it present
relevant to our work.

First of all we want to mention the work made by Glynn on [5]. In his paper, Glynn talks, between
other things, about normal rational curves and the intersection of quadrics. Although his work is made
over the finite field Fq, most of his results can be adapted to work over the reals.
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On sets of points with few ordinary hyperplanes

We are particularly interested in the theorem 3.1 of his paper:

Theorem 3.12. Consider a set Q of quadrics on RPd generated by a collection of
(d
2

)
independent quadrics.

Let B =
⋂

Q be the intersection of the quadrics in Q. Suppose that B generates the whole RPd and that
Q does not contain any quadric that is the union of two hyperplanes of RPd . Then B is an arc of RPd .

where he defines an k-arc of RPd as a set of k points of RPd such that every subset of d + 1 points
span the whole space.

This is very interesting for us, because this means that if instead of 5 linearly independent quadrics we
had that our set S is included in the intersection of 6 linearly independent quadrics such that they do not
span any hyperplane pair quadric, then the set S would be an arc. By the definition of arc, this would
mean that every hyperplane spanned by the set S would be ordinary, and that would make the set S really
bad for our problem.

Glynn’s theorem can be extended to the following proposition:

Proposition 3.13. Suppose that we have 5 linearly independent quadrics in RP4 that does not span a
quadric which is an hyperplane pair and such that the intersection of the quadrics does not contain a line.
Then the intersection of the 5 quadrics is a set S with the property that any hyperplane of RP4 intersects
S in at most 5 points.

Proof. Suppose that this is false, and let H be an hyperplane containing at least 6 points of S . Without
loss of generality we can assume that H is the hyperplane X5 = 0 and that the six points are:

p1 = [1, 0, 0, 0, 0]

p2 = [0, 1, 0, 0, 0]

p3 = [0, 0, 1, 0, 0]

p4 = [0, 0, 0, 1, 0]

p5 = [d1, d2, d3, d4, 0]

p6 = [e1, e2, e3, e4, 0]

It is easy to check that the two last points impose distinct conditions on the space of quadrics. Indeed,
the points p5 and p6 will impose linearly independent conditions in the space of quadrics unless the
determinant of the matrix [

d1d2 d1d3 d1d4 d2d3 d2d4 d3d4

e1e2 e1e3 e1e4 e2e3 e2e4 e3e4

]
was zero. This can only happen if the two points are the same or if only one of the coefficients XiXj

is non-zero, which means that the points p5 and p6 are on a line with the two points of the basis. By
hypothesis this cannot happen, so p5 and p6 impose different conditions on the space of quadrics.

So the 6 points pi impose 6 linearly independent conditions on the space of quadrics defined in the
hyperplane H = RP3. As the space of quadrics in RP3 has dimension 10, this means that we have at most
4 linearly independent quadrics on H containing the points S ∩ H.

As we have 5 linearly independent quadrics which are zero on S , this means that in the subspace of
quadrics generated by them, there must be two independent quadrics that agree on their restriction to H.
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This implies that there is a quadric in the subspace generated by the 5 quadrics which is zero on H. This
quadric is necessarily an hyperplane pair quadric, which is a contradiction with the hypothesis.

This result implies that the set of points in the intersection of 5 linearly independent quadrics does not
span hyperplanes containing more than 5 points. This is also an interesting conclusion, since most of the
examples that we have explained until now (trivial, Böröczky or prism examples) stand out for having one
or more hyperplanes containing a big number of the points of S .

The next thing we want to talk about is the relation between the intersection of 5 quadrics and the
other key varieties in the lower dimensions.

We have already mentioned that the fact that each of these varieties show as in the optimal examples
for this problem is no accident, and have hinted at a relation between these. In the next proposition we
want to show this relation between an irreducible cubic and the intersection of 5 quadrics.

Proposition 3.14. The lift of an elliptic curve to RP4 is a variety equivalent to the intersection of 5
quadrics.

Proof. In [4] Massimo Giullietti defines a lifting mechanism for elliptic curves by means of the morphism
from the points of the elliptic curve on RP2 to the k dimensional space RP2.

For the case which is of interest for us:

Let us denote the homogeneous coordinates of RP4 as [X1, X2, X3, X4, X5], and let us denote the
non-homogeneous coordinates of RP2 as [1, X , Y ].

Let ε be an elliptic curve in RP2 with equation in normal Weierstrass form:

Y 2 = X 3 + aX + b (17)

Let us define the map φ from the points of the elliptic curve ε to RP4:

φ : ε → RP4

[1, X , Y ] →[1, X , Y , X 2, XY ]
(18)

Now, we want to find 5 linearly independent quadrics such that the points in the image of φ are
contained in the intersection of the quadrics.

Just by the definition of the map φ we can deduce that the points in φ(ε) are contained in the following
three quadrics:

Q1 := X 2
2 = X1X4

Q2 := X2X3 = X1X5

Q3 := X2X5 = X3X4

For the other two quadrics that we need we will look at the equation of the elliptic curve (17). We can
obtain one quadric by using the direct equation. To obtain the last quadric we can multiply the equation
of the elliptic curve by X , obtaining then another linearly independent quadric. The results would be:

Q4 := X 2
3 = X2X4 + aX1X2 + b

Q5 := X3X5 = X4X4 + aX2X2 + bX2
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It is easy to check that all the quadrics Qi for i = 1..5 contain the image of the elliptic curve by the
mapping φ. The linearly independence of the quadrics can also be checked quite easily, giving us the proof
of the proposition.

To end this section we want to make a comment on why there are sets of points spanning few hyperplanes
in the varieties we have seen in each dimension (cubic curve, intersection of two/five quadrics...).

We have shown in previous sections that sets of points in RP2 and RP3 spanning few ordinary lines/-
planes must be mostly contained in a cubic curve or the intersection of two quadrics respectively. Also, we
will prove in the next section the same result for sets of points in RP4 and the intersection of five quadrics.

But it should be clear that not every set of points included in these varieties is a good set of points, in
the sense that it doesn’t span few ordinary hyperplanes.

We have talked about the Böröczky examples for two dimensions and the prism and anti-prism examples
at length. But we have not made much effort into proving the existence of examples for the cases of an
irreducible cubic or the intersection of two generic quadrics in their respective structure theorems.

The key reason why we can find examples of sets with few ordinary hyperplanes in these varieties is the
existence of a group structure within the variety which contains finite subgroups.

Ben Green and Terence Tao make a great exposition of this in their paper [11, pp. 14..17] for the
planar case. They talk about the group structure of the set of non-singular points of an elliptic curve, and
then they describe the Sylvester examples, which consist on the n points of a subgroup of order n of the
non-singular points of the curve.

For our case, to be able to assure the existence of finite examples off sets with few ordinary hyperplanes,
we are interested to know if there exist the same kind of group structure in the intersection of 5 quadrics.

It is not obvious the existence of the group structure, but we are able to prove it by looking at the
relation between the cubic curve and the intersection of 5 quadrics.

In 3.14 we have proven that the intersection of 5 quadrics is the lift of an elliptic curve to four
dimensions, by using an injective map from the curve to RP4 and proving that the image is contained in
the intersection of 5 linearly independent quadrics.

In [1], proposition 3, it is explained how this lift induces a group structure in the image of the map.
This proposition also shows the relation between this group structure and our problem, claiming that for a
lift from the elliptic curve to RPd , any d + 1 points on the induced group will be contained in the same
hyperplane if and only if they sum to 0 (using the group operation).

The existence of this group structure is enough to assure that we can build examples of sets of points
in the intersection of 5 quadrics with few ordinary hyperplanes.

3.3 Structural theorem in 4 dimensions

After all the work done in the previous sections, here we are ready to state our own version of the structure
theorem in 4 dimensions.

First of all, we are going to present the weak version of the structure theorem. This version of the
structure theorem, although it seems just a weaker result of the main structure theorem we will present
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later, has a merit of its own. This is because for this one we are not making any assumptions with respect
to the value of K , in contrast with the main structure theorem, where we need K to be of the order of
o(n

1
6 ).

We will state our weak structure theorem in the same fashion as Green and Tao. The exact numbers on
the theorem are not that much important, but it is important that we can prove that the set S is contained
in the union of an O(K ) number of varieties, each of which is the intersection of 5 quadrics.

Theorem 3.15 (Weak structure theorem in 4 dimensions). Let S be a set of n points in RP4, such that
any subset of 4 points span a hyperplane and not all S is contained in a hyperplane. If S spans at most
Kn3 ordinary hyperplanes, then S is contained in the union of at most 33699K varieties, each of which is
the intersection of 5 quadrics.

Proof. From lemma 3.8 we get that there are at most 1872Kn3 slightly bad edges in the graph Γ. Using
the pigeon-hole principle we know that there have to be points p, q, r ∈ S such that the number of slightly
bad edges on the line l = p∗ ∩ q∗ ∩ r∗ is:

1872Kn3(n
3

) = 11232K
n2

(n − 1)(n − 2)

We can assume that n ≥ 33699 since otherwise the theorem is immediately proven by choosing a variety
from each point. This alone is enough to bound the number of slightly bad edges of l by b = 11233K .

The slightly bad edges will partition the line l into a set of at most b segments of consecutive good
edges. By theorem 3.11 we know that for any of these segments T , there are 5 linearly independent
quadrics containing the points p, q, r and such that any point s ∈ S such that s∗ intersects the line l into
T is contained in the intersection of the 5 quadrics. So we can cover all the points whose dual intersect l
in the middle of a segment of good edges with less than 11233K of these varieties.

In the other hand, any point whose dual intersects l into a vertex of a bad edge of l has to be treated
separately. We have, though, at most 2×11233K vertex incident with a bad edge in l , and for each one of
these vertices, we can construct a variety (intersection of 5 quadrics) such that all the points whose dual
intersect l in that vertex are contained in the variety (this is obvious, since the dual of the vertex itself is
a hyperplane that contains all of these points).

From the number of varieties covering the points incident with the segments of good edges and the
ones incident with the bad edges, we conclude that all the points of S can be covered with a collection of
at most 11233K + 2× 11233K = 33699K varieties each of which is the intersection of 5 quadrics.

Now we want to present the full structure theorem, which is the main theorem of this section, as well
as the whole thesis. The purpose of the theorem is to classify the sets of points in RP4 that span few
ordinary hyperplanes, as did the structure theorems of Green and Tao and Simeon Ball respectively.

Theorem 3.16 (Full Structure Theorem). Let S be a set of n points in RP4 such that any subset of 4
points span a hyperplane and such that not all S is contained in a hyperplane. If S spans less than Kn3

ordinary hyperplanes, for some K = o(n
1
6 ), then one of the following holds:

(i) All but at most 2K points of S are contained in a hyperplane.

(ii) There are 5 linearly independent quadrics such that all but at most O(K ) points of S are contained
in the intersection of the 5 quadrics.

31



On sets of points with few ordinary hyperplanes

Proof. We will make the proof of the statement in several steps.

One of the first thing we will be doing to prove the theorem is to look at the projection of our set S to 3
and 2 dimensions, and make use of the respective structure theorems in those dimensions. Looking at the
possible structures of the projection of our set will help us to classify and discard the different possibilities
we will have.

Next we will need to extract from the structure of the projections the necessary information to argue
the existence of the 5 linearly independent quadrics that contain the set.

Let us consider the set S ′ consisting on the points p ∈ S such that p is contained in at most dKn2

ordinary hyperplanes, for some absolute constant d . We can bound the size of S ′ in the following way:

As we know that the points not contained in S ′ span more than dKn2 ordinary hyperplanes, and since
every ordinary hyperplane contains exactly 4 points, we get:

|S\S ′|dKn2 < 4Kn3

Which gives us:

|S ′| >
(

1− 4

d

)
n (19)

If we project the set S from any point p ∈ S ′ we obtain a set in RP3 spanning less than dKn2 ordinary
planes. The structure theorem in dimension 3 by Simeon Ball 2.9 tell us the different possible sets that
span few ordinary planes in RP3. These possibilities were:

(a) There are two distinct quadrics such that all but at most O(K ) points of S are contained in the
intersection of the quadrics. And all but at most O(K ) points of S are incident with at least 3

2n−O(K )
ordinary planes.

(b) There are two planar sections of a quadric which contain 1
2n − O(K ) points of S each.

(c) All but at most 2K points of S are contained in a plane.

First of all we want to rule out the case where the projection of the set S is almost contained in a plane
(case (c)), since this is a corner case.

It is obvious that if we have a point such that the projection of S from it is of the type (c), then we
will be in the case (i).

So in the following we will suppose that no point of S ′ projects the set S into a set almost contained
in a plane.

Now we want to prove that almost none of the points of S ′ can project the set S into a set of the type
(b).

Let us suppose that there are at least 4 points in S ′ such that the projection of S from these points is
of the case (b). Let us call p1, p2, p3 and p4 to these points. This means that, for each of these points,
there are two planar conics containing n

2 − O(K ) points of the projection each.
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The lift of these two planes to RP4 consist on two hyperplanes H1 and H2 containing n
2 −O(K ) points

of S each.

Notice that the lift of the planes produced by each of the points pi must result in the same two
hyperplanes H1 and H2. Suppose not, and suppose that the lift of one of the planes produced by some
of the pi produces an hyperplane H3 different from H1 and H2. The intersections π1 = H1 ∩ H3 and
π2 = H2∩H3 are both planes on RP4. Since all H1, H2 and H3 contain n

2 −O(K ) points of S , it is obvious
that one of π1 or π2 would have at least n

4 − O(K ) points of S , which is a contradiction since we cannot
have 4 coplanar points in S .

Now, as all pi project the points in the two hyperplanes H1 and H2 into two planar conics, we deduce
that the points pi are all contained in the hyperplanes H1 and H2. That implies they are in the intersection
of the two hyperplanes which, because the hyperplanes are distinct, is a plane of RP4. But since we cannot
have 4 coplanar points in the set S we reach a contradiction.

Thus, we conclude that there are at most 3 points of S ′ which project the set S into a set of type (b).

So in the case we are studying we know that most of the points of S ′ project the set S into a set of the
type (a). This correspond to the case in RP2 of all but at most O(K ) points contained in an irreducible
cubic.

Now we want to prove that in this scenario, the set S is almost contained in the intersection of 5
quadrics.

For this let us consider a line p∗∩q∗∩ r∗ on the graph Γ and a segment T on that line of m consecutive
rather good edges, for an arbitrarily large constant m. As we have mentioned before, we can assure the
existence of this segment, as the number of slightly bad edges on Γ is low.

We have proved that for a segment T of rather good edges, there are 5 linearly independent quadrics
{Qi : i = 1..5} containing p, q, r and all the points s such that s∗ intersect the line p∗ ∩ q∗ ∩ r∗ on the
segment T .

But also we know that from all these points, the projection of the set S is contained in the intersection
of two quadrics. This means that for each point pj of these, from the subspace of quadrics generated by
the Qi , there are two linearly independent quadrics that are degenerate on pj and contain all but at most
O(K ) points of S .

Now, let us consider two of these points p1 and p2 and let us apply a projective transformation so they
become the points [1, 0, 0, 0, 0] and [0, 1, 0, 0, 0].

Let us call q1 and q′1 to the two quadrics degenerate at p1, and let us also call q2 and q′2 to the quadrics
degenerate at p2. Then these quadrics will have coefficient 0 at the X1 and X2 terms respectively.

q1 ≡ a22X 2
2 + · · ·+ a55X 2

5 + a23X2X3 + ... a45X4X5

q′1 ≡ b22X 2
2 + · · ·+ b55X 2

5 + b23X2X3 + ... b45X4X5

q2 ≡ c22X 2
1 + c33X 2

3 + · · ·+ c55X 2
5 + c13X1X3 + ... c45X4X5

q′2 ≡ d22X 2
1 + d33X 2

3 + · · ·+ d55X 2
5 + d13X1X3 + ... d45X4X5

Both pairs 〈q1, q′1〉 and 〈q2, q′2〉 are linearly independent quadrics. This together with the fact that q2

and q′2 have coefficients on the terms X1 and not q1 and q′1 allows us to assure that these four quadrics
are linearly independent.
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On sets of points with few ordinary hyperplanes

Now let us choose a point p3 from the points contained in the 5 quadrics such that the one of the two
degenerate quadrics at p3 has non-zero coefficient on the term X1X2. We can assure that such a p3 exists.

Indeed, suppose that the two degenerate quadrics at p3 have zero coefficient at X1X2. Then, if we
project these quadrics from p1 the plane, then the point p2 will be a singularity of the cubic curve. Since
the projection of S from all our points down to the plane is an irreducible cubic, there are few singularities,
and we can solve this problem by choosing another point p2.

We have enough freedom to do this, since we assure the existence of a segment T of rather good edges
sufficiently large.

Any of these quadrics will be linearly independent with the four quadrics described above, since none of
them have term X1X2. All of these quadrics are taken from the 5 linearly independent quadrics containing
the segment T , and we can assure that each of them contains all but at most O(K ) points of S .

Then, joining the quadrics together we get a set of 5 linearly independent quadrics, such that all but
at most O(K ) points of S are contained in the intersection of the five quadrics.

3.4 Conjecture for the problem on d > 4

Although on this thesis we have focused on the version of the Sylvester’s problem in RP4, a great part of
our study can be applied to higher dimensions.

We cannot make here the whole study for the problem on higher dimensions, though just the work we
have already done give us some clues to the solution.

It is easy to see that some of the concepts we have defined throughout this section, such as the 5-cell
grid, or the concepts of good and bad edges, are naturally generalized to higher dimensions. But the key
ingredient of our study, the nature of the variety containing almost all the points of the sets spanning few
ordinary points, is a bit harder to generalize to higher dimensions.

We have talked briefly of the relation between the key varieties of the examples in 2, 3 and 4 dimensions.
Proving in an earlier section that the intersection of 5 quadrics is the lift of a cubic curve to four dimensions.
One can imagine that for the problem in d > 4 the same relation should hold.

The relation between the varieties of different dimensions is very natural. It comes from the fact that,
if S is a set with few ordinary hyperplanes, the projection of S from most of its points is a set with few
ordinary hyperplanes in the lower dimension. Thus, it is only natural that the varieties containing these set
of points are one the lift of the other.

The study made by Glynn give us a reasonable enough conjecture for the nature of these varieties.

Conjecture 3.17. Let S be a set of points on RPd for d > 4 such that any subset of d points of S span
a hyperplane of RPd and such that not all of S is contained in a single hyperplane. Suppose that S spans
at most Knd−1 hyperplanes for some K , then one of the followings hold:

• All but at most O(K ) points of S are contained in a single hyperplane.

• There is a set of
(d+2

2

)
− 1 linearly independent quadrics such that all but at most O(K ) points of

S are contained in the intersection of the quadrics.
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4. Solution for small d and n

Both the work of Green and Tao, and that of Simeon are focused on the asymptotic solution of Sylvester’s
problem, proving the optimal configurations for large values of n.

Even though those are much more important results, it is interesting to look at what happens for the
problem for small values of d and n. The interest we have in the results for smaller values of n comes
from known examples that break the asymptotic solutions, meaning that they does not constitute a general
solution to the problem.

As the study of the asymptotic behavior of the problem constitute much stronger results we do not
want to spend a lot of time in this section. We will speak briefly about the know counterexamples for the
general solution of the problem, as well as the known bounds for the unknown values of ed(n). Then we
will introduce some of our own work in this matter.

4.1 Previous known results

In this section we will be going through some of the known results and bounds for the values of ed(n) for
small n. We won’t be proving the results mentioned here, as they will occupy lot of space and are quite
simple results. All the proofs can be found in [6].

We are going to show here the results we consider more important. Instead of focusing on the particular
computations of some of the numbers, we want to show more some of the bounds for general ed(n). Some
of these results will be of use to us in the next section where we try to compute the value of some of these
numbers ourselves. The other results we will simply recollect into the table 1

In the following let S be a set of n points in the projective space RPd .

Let us call a k-hyperplane to an hyperplane of RPd that contains exactly k points of the set S . Then an
ordinary hyperplane would be a d-hyperplane. For a set S , let us denote as τk the number of k-hyperplanes
that it spans. Then, obviously ed(n) = τd = #d-hyperplanes.

With this definitions we can state the following:

Lemma 4.1. Let S be a set of n points in RPd . Then the following holds:

n∑
k=d

(
k

d

)
τk =

(
n

d

)
(20)

This is the basic equation from which we start our studies of the small cases. It is easily proven by
counting subsets of d points in two different ways. Most of the following bounds make use of this equation.

Next we want to show some lower bounds for the numbers ed(n). We are more interested in the results
for lower bounds, since in the other side, the methods for finding upper bounds are constructive, and require
us to find examples of configurations of points with few ordinary hyperplanes. That proves to be really
hard for higher dimensions if you deviate from the trivial example, and it has to be done for each particular
n and d , making it difficult to find general results for improved upper bounds.

The first lower bound we will show is the following:

Lemma 4.2.
ed(n) ≥ n

d
ed−1(n − 1) (21)
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On sets of points with few ordinary hyperplanes

As simple a result as it seems, it is interesting, as it gives us a first lower bound to work with for any
value of n and d . The only problem with this bound is its recursive nature, which makes it hard to obtain
good lower bound for greater values of n and d . We will, though, be using this lemma for our results in the
next sections. Also, after the results we obtain, this equation allows us to expand our results to improve
the bounds of later values just by their relation.

The following lemma gives us a non-recursive lower bound for ed(n), which solvents the problem of the
earlier bound:

Lemma 4.3.

ed(n) ≥
(

n

d

)
− d + 1

d + 2

(
n

d + 1

)
(22)

Apart from these bounds, in [6] we can find different results for particular values of d and n. In the
next table 1 we show a compilation of these results, along with the ones derived from the bound we just
exposed.

n 3 4 5 6 7 8 9 10 11 12 13

e2(n) 3 3 4 3 3 4 6 5 6 6 6

e3(n) 4 6 8 11 8 16-22 20 19-31 24 26-51

e4(n) 5 10 20 25-35 18-56 30-84 55-120 57-165 78-220

e5(n) 6 15 32 54-70 36-126 66-210 132-330 149-495

e6(n) 7 21 56 90-126

e7(n) 8 28 80

Table 1: Value of ed(n) for small n and d

4.2 New bounds

Now we want to make our small contribution to these results. In particular, in the following we will be
giving some results for the case when n = d +4. We will first find a stronger lower bound for this particular
case, by using some combinatoric results. Later we will use this bound and some other of the mentioned
results earlier to prove the values for e4(8) and e5(9).

4.2.1 Improved bound for n = d + 4

For our first result, the improved lower bound when n = d + 4, we will need first to introduce the following
combinatoric lemma:

Lemma 4.4. Let f (n) denote the maximum possible number of edge-disjoint K3 inside of a Kn, where Kr

represents the complete graph of n nodes. Then:

f (n) =


n(n−1)

6 if n ≡ 1, 3 mod 6
n(n−2)

6 if n ≡ 0, 2 mod 6
n(n−1)−8

6 if n ≡ 5 mod 6
n(n−2)−2

6 if n ≡ 4 mod 6

 (23)
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There are multiple ways to state this lemma, as it has a lot of applications in different areas. For
example, the function f (n) can be defined in the context of code theory as the maximum cardinality of a
code of length n with constant weight 3 and minimum distance 4. In our work we will use it to compute
a restriction on the number of (d + 1)-hyperplanes in any configuration of points.

The proof of this lemma is constructive. The upper bounds for f (n) are easily proven by a simple
counting argument, and the only thing left is to prove there is always a construction that attains this upper
bound. The full proof is quite tedious, as it involves a lot of lemmas for constructing the sets and is very
case by case based.

The complete proof is given in [3].

We will be using this lemma to improve the current lower bound for ed(d + 4). Technically the new
bound we will be giving is only an improvement in the previous known bound for some of the cases in the
lemma (particularly important for the case d even). Though, this alone will be useful for us later.

First of all, let us take a look to the best bounds known so far in this case. As there is no much work
done here, only the general bounds are applicable.

For the upper bound, we use the trivial example (a configuration of n points where n−1 of these points
are contained in the same hyperplane H, and the last one is outside of H). We can count easily an upper
bound for the number of ordinary hyperplanes in this trivial example, as every ordinary hyperplane must
contain the point outside of H. So the upper bound given by the trivial example is:

ed(n) ≤
(

n − 1

d − 1

)
(24)

Which applied to our case transforms into:

ed(d + 4) ≤
(

d + 3

d − 1

)
=

(d + 3)(d + 2)(d + 1)d

24
(25)

Now for the lower bound we can use the lemma 4.3, which gives us the following lower bound:

ed(d + 4) ≥
(

d + 4

d

)
− d + 1

d + 2

(
d + 4

d + 1

)
=

(d + 4)(d + 3)(d + 2)(d + 1)

24

− (d + 4)(d + 3)(d + 2)(d + 1)

6(d + 2)
=

(d + 4)(d + 3)(d + 1)(d − 2)

24

(26)

This is already quite a good result, since just with this bounds, the gap between lower and upper bound
is of order O(n2). Let us denote with u and l to the values of the upper and lower bound in 25 and 26.
Then indeed:

u − l =
(d + 3)(d + 2)(d + 1)d

24
− (d + 4)(d + 3)(d + 1)(d − 2)

24
=

(d + 3)(d + 1)

3

Our job now will be to improve the lower bound. For this we will use some case analysis and the
important lemma 4.4.
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On sets of points with few ordinary hyperplanes

To begin let us first take a look to the equation derived from the lemma 4.1:

τd + (d + 1)τd+1 +

(
d + 2

d

)
τd+2 +

(
d + 3

d

)
τd+3 =

(
d + 4

d

)
(27)

We will consider the different possible values of τi to get rid of lots of cases, and focus on the few
important ones.

The first thing we will do is get rid of the term τd+3. If this term was greater than 0, it would need
to be 1, and then we would be in the trivial example. Since we want in this section to improve the lower
bound, we are not interested in this. So from now on we can suppose easily τd+3 = 0.

The next thing we will argue is that τd+2 ≤ 1. To prove this let us suppose that τd+2 ≥ 2. This means
that there exists at least two different (d + 2)-hyperplanes, which we will call H1 and H2. Since they are
(d + 2)-hyperplanes, each of them contains exactly d + 2 points of P. Now, because P has only d + 4
points, the intersection of H1 and H2 must necessarily contain d points of P. As every set of d points of P
must span a hyperplane, we can deduce that H1 and H2 must be equal to this hyperplane and thus, they
must be the same. So by contradiction, we get that we can not have τd+2 ≥ 2.

Now we want to study two different cases, one for τd+2 = 1 and one for τd+2 = 0. We will prove
different bounds for these two cases and we will join them to get the general bound for ed(d + 4). We will
be using the lemma 4.4, so obviously the resulting bounds will depend on the parity of d . We will ignore
the slight difference in the cases n ≡ 4, 5 mod 6, as they don’t really provide an asymptotic improvement
on the bound and it duplicated the amount of calculations to be done.

• Case τd+2 = 1:

In this case we have exactly one (d + 2)-hyperplane. The previous equation now transforms into:

τd + (d + 1)τd+1 +

(
d + 2

d

)
=

(
d + 4

d

)
To get a lower bound for the value of τd we will try maximizing the value of τd+1 (the number of
(d + 1)-hyperplanes).

Let us call H to our (d + 2)-hyperplane, and let us call {x , y} to the two points of P outside of H.

We will start by noting that every (d + 1)-hyperplane must necessarily contain the two points {x , y}.
Indeed, let us suppose we have one (d + 1)-hyperplane H ′ that does not contain {x , y}. Then the
intersection of H and H ′ contains at least d points of P. Again, as every d points of P spans an
hyperplane, we conclude that H and H ′ must be the same, and we arrive to a contradiction.

Now, all that hyperplanes contain {x , y}, any (d + 1)-hyperplane can be seen as a selection of d − 1
of the points of H ∩ P. As H contains d + 2 points of P this is the same as choosing three points
of H ∩ P (the points excluded from the hyperplane).

Now let us consider two different (d + 1)-hyperplanes H1 and H2. These two hyperplanes can share
at most d −1 points of P (for the same argument as before, if not, the d shared points would span a
hyperplane and we would reach a contradiction). This implies that the triplets of points representing
each hyperplane (triplet of points outside of the hyperplane), can not share more than one point.
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With this preparation, the connection with the lemma 4.4 should become clear.

We want to maximize the number of (d + 1)-hyperplanes, which can be seen as triplets of points
chosen from the d + 2 points of H ∩P such that no pair of triplets intersects in more than one point.
The lemma 4.4 gives us, then, a bound for the maximum number of (d + 1)-hyperplanes we could
get.

With this bound in mind, let us solve the equation to get the bound for τd .

– If d is odd:

τd+1 ≤
(d + 2)(d + 1)

6

so we get the bound for τd

τd =

(
d + 4

d

)
−
(

d + 2

d

)
− (d + 1)τd+1

≥
(

d + 4

d

)
−
(

d + 2

d

)
− (d + 1)

(d + 2)(d + 1)

6

=
(d + 2)(d + 1)

24
[(d + 4)(d + 3)− 12− 4(d + 1)]

=
(d + 2)(d + 1)(d2 + 3d − 4)

24

which is already greater than the previous lower bound l .

– If d is even:

τd+1 ≤
(d + 2)d

6

so we get the bound

τd =

(
d + 4

d

)
−
(

d + 2

d

)
− (d + 1)τd+1

≥
(

d + 4

d

)
−
(

d + 2

d

)
− (d + 1)

(d + 2)d

6

=
(d + 2)(d + 1)

24
[(d + 4)(d + 3)− 12− 4d ]

=
(d + 3)(d + 2)(d + 1)d

24

which is equal to the upper bound u. So we can conclude that in the even case, we can not
improve the trivial example when τd+2 = 1.

• Case τd+2 = 0:

In this case we have to care only about the (d + 1)-hyperplanes, and as in the previous case, we want
to maximize the number of these hyperplanes in order to get a lower bound for τd .

As in the previous case we have to notice that (d + 1)-hyperplanes can be seen as the triplets of
points outside of them, and that any pair of (d + 1)-hyperplanes can not share more than d − 1
points of P, so their triplets can not share more than 1 point of P.

With those characteristics we can use the lemma 4.4 in the same way we did in the previous case.
So we can get a similar lower bound that depends on the parity of d :
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On sets of points with few ordinary hyperplanes

– If d is odd:

τd+1 ≤
(d + 4)(d + 3)

6
(28)

and we just get the bound:

τd =

(
d + 4

d

)
− (d + 1)τd+1 ≥

(
d + 4

d

)
− (d + 1)

(d + 4)(d + 3)

6

=
(d + 4)(d + 3)(d + 1)(d − 2)

24

(29)

This is equal to the lower bound l computed with the lemma 4.3, so in the end we can not
improve this bound for the case d odd.

– If d is even:

τd+1 ≤
(d + 4)(d + 2)

6
(30)

and the bound for τd ends up being:

τd =

(
d + 4

d

)
− (d + 1)τd+1 ≥

(
d + 4

d

)
− (d + 1)

(d + 4)(d + 2)

6

=
(d + 4)(d + 2)(d + 1)(d − 1)

24

(31)

Seen all the cases we can derive the general bound. In the case d odd we have not been able to improve
the lower bound from the previous computed bound l . In the other hand, for d even we can improve the
bound to:

ed(d + 4) ≥ (d + 4)(d + 2)(d + 1)(d − 1)

24
(32)

If we compute the gap between this lower bound and the upper bound, we obtain:

(d + 3)(d + 2)(d + 1)d

24
− (d + 4)(d + 2)(d + 1)(d − 1)

24
=

(d + 2)(d + 1)

6

which is a significant improvement on the gap given by the previous bound. This means that we have
reduced significantly the possible values for ed(d + 4).

4.2.2 Case d = 4 and n = 8

For the case d = 4, n = 8, as we are in the even case, the previous section give us strong bound on the
value of e4(8).

The upper bound is the one given by the trivial example, while the lower bound is the one given by the
previous section.

30 =
8× 6× 5× 3

24
≤ e4(8) ≤ 7× 6× 5× 4

24
= 35

In the following we are going to prove that e4(8) = 35. For that we are going to reduce the possibility
that e4(8) < 35 to one specific case, and then we are going to prove geometrically that that case is
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impossible.

First, by the work done in the previous section, we know that in order for τ4 to be less than the upper
bound, then τ6 should be equal to 0 (since we saw that the lower bound of τd when τd+2 = 1 was equal
to the upper bound).

Since we have only 5-hyperplanes to care about, the equation 4.1 takes the following form:

τ4 + 5× τ5 = 70

By this equation we observe that τ5 is necessarily a multiple of 5, so if we want τ4 to be less than 35
(the upper bound), it can only be equal to 30, and that implies τ5 = 8.

τ5 = 8 is the maximum attainable value according to the lemma 4.4. If we number the points
{1, 2, 3, 4, 5, 6, 7, 8}, the following set of triplets is the unique (up to permutations) way of reaching this
number:

(1, 2, 3) (4, 5, 6)

(1, 4, 7) (1, 5, 8)

(2, 5, 7) (2, 6, 8)

(3, 6, 7) (3, 4, 8)

By the way we have been using this lemma, there is a bijection between this triplets and the 5-
hyperplanes corresponding to the set of points outside each hyperplane. So we would have 8 hyperplanes
consisting on the points:

H1 = {p4, p5, p6, p7, p8} H2 = {p1, p2, p3, p7, p8}
H3 = {p2, p3, p5, p6, p8} H4 = {p2, p3, p4, p6, p7}
H5 = {p1, p3, p4, p6, p8} H6 = {p1, p3, p4, p5, p7}
H7 = {p1, p2, p4, p5, p8} H8 = {p1, p2, p5, p6, p7}

Our objective is to prove that this combination of 8 hyperplanes is geometrically impossible.

Let us take the two hyperplanes H1 and H2. These hyperplanes intersect into a plane π that contains
the two points {p7, p8}. Let us suppose that we have these two hyperplanes and we will prove that it is
impossible to configure the points in order to produce the other 6 hyperplanes.

The points {p4, p5, p6} which are inside of H1 but outside of π form a plane α1 that intersects π into
a line r1. In the same way, the points {p1, p2, p3} form the plane α2 that intersects π into the line r2.

Let us take one of the other 6 hyperplanes (H3 ... H8). All of them consist on the following set of
points: a selection of two points from the set {p1, p2, p3}, a selection of two points from the set {p4, p5, p6}
and one point from {p7, p8}.

As each hyperplane has two points from {p4, p5, p6}, the intersection of the hyperplane with the plane
α1 will be one of the three lines spanned by these three points. Consequently, it will contain the point of
intersection of that line with the line r1. The same argument apply to the points {p1, p2, p3} and the line
r2.

Let us denote these points of intersection:
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On sets of points with few ordinary hyperplanes

x11 = 〈p4, p5〉 ∩ r1, x21 = 〈p1, p2〉 ∩ r2

x12 = 〈p4, p6〉 ∩ r1, x22 = 〈p1, p3〉 ∩ r2

x13 = 〈p5, p6〉 ∩ r1, x23 = 〈p2, p3〉 ∩ r2

With this notation, each of the 6 hyperplanes must contain exactly one of the points x1i , one of the
points x2j and one of {p7, p8}. Now, as we are talking about hyperplanes and all these points are contained
in the plane π, this transforms into a condtion of collinearity.

As an example of what we mean by this: The hyperplane H7 contains the points {p1, p2} and the
points {p4, p5}. This means that it contains the points x11 and x21. As H7 also contains the point p8 and
the intersection of H7 and π is a line, this means that the points x11, x21 and p8 are aligned.

By the same reasoning we reach the following collinearity relations:

(p8, x11, x21) (p7, x11, x22)

(p8, x12, x22) (p7, x12, x23)

(p8, x13, x23) (p7, x13, x21)

Now what we are going to argue is that it is impossible to arrange a set of points in a plane that satisfy
these relations. All this is derived from our initial situation with the 5-hyperplanes H1 to H8 with no other
assumption, so if this is impossible, it follows that it is impossible to obtain the configuration with our 8
hyperplanes.

Figure 7: Configuration of points in the plane that satisfies all but one (in green) of the conditions

One way to easily see that the situation on the plane is impossible is to apply a projective transformation
to the points to send the line 〈p7, p8〉 to the line at infinity.
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After applying the transformation, the conditions of collinearity that we were using become conditions
of parallelism. For example, the points {x11, x21}, {x12, x22} and {x13, x23} must be aligned with the point
p8. At sending that point to the line at infinity, this means that the lines generated by those points must
be parallel and in the direction of the point p8 at infinity.

With this simplification, we would have two triplets of three points in the two lines r1 and r2 such that
the lines 〈x11, x21〉, 〈x11, x21〉 and 〈x11, x21〉 are parallel to each other, and the lines 〈x11, x21〉, 〈x11, x21〉
and 〈x11, x21〉 are also parallel.

This scenario is clearly impossible, so we conclude that the whole thing is impossible.

Figure 8: Configuration of points where all but one (in green) of the lines are parallel to their required
direction

Going back to the beginning, as we have now proved that it is impossible for there to be a configuration
of points with 8 5-hyperplanes, then τ4 > 30. As we saw that τ4 had to be a multiple of 5 and we had the
upper bound e4(8) ≤ 35 we conclude that:

e4(8) = 35 (33)

4.2.3 Case d = 5 and n = 9

We want now to study the case d = 5, n = 9. Our objective here is to improve the bounds for this case,
so first let us compute the bounds we have right now.

The trivial example and the lemma 4.3 give us the following upper and lower bound respectively:

54 =

(
9

5

)
− 6

7

(
9

6

)
≤ e5(9) ≤

(
8

4

)
= 70
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With the work done until now we can already do better than this. Taking a look at the lemma 4.2,
after determining the value of e4(8) in the previous section, we can improve the lower bound:

e5(9) ≥ 9

5
e4(8) =

9

5
35 = 63

In the following we will be constructing a configuration of points with lesser number of ordinary hyper-
planes than the trivial example, thus improving the upper bound for this case. We will be explaining the
process by which we are building this example instead of just showing the points.

The equation 4.1 in this case becomes:

τ5 + 6τ6 + 21τ7 + 56τ8 = 126

In order to build our example we will use the case τ8 = τ7 = 0, so this means that we will be working
only with 6-hyperplanes. In this scenario (5 dimensions) the 6-hyperplanes are the equivalent to the 5-
hyperplanes in the 4 dimensional space, and we can represent them by the triplets of points not contained
in them.

According to lemma 4.4 we could arrange the set of 9 points in up to 12 triplets of points such that any
two of them share at most one points. But translating these into 6-hyperplanes adds geometric restrictions
that make such arrangement of hyperplanes impossible. Just by the lower bound we have computed, we
know that τ6 ≤ 10.

We will be using a similar structure as the one we were proved impossible in the previous section for
d = 4. The objective will be maximize the number of 6-hyperplanes on the model.

Let us begin with three disjoint triplets of points, which will correspond to three 6-hyperplanes such
that any pair of them share only 3 points of P. If we denote the points of P by {p1, ..., p9}, then let us
denote the three hyperplanes as:

H1 = 〈p1, p2, p3, p4, p5, p6〉
H2 = 〈p1, p2, p3, p7, p8, p9〉
H3 = 〈p4, p5, p6, p7, p8, p9〉

These three hyperplanes intersect into a plane that we will name π. Also, these points form the planes:

α1 = 〈p1, p2, p3〉
α2 = 〈p4, p5, p6〉
α3 = 〈p7, p8, p9〉

Each of the planes αi intersects the plane π into a line ri (because both π and αi are contained in the
intersection of two of the Hj , which is a 3 space).

We will consider that all other 6-hyperplanes of the model will consist on two points from each of the
alphai . We notice, as in the previous section, that if an hyperplane contains exactly two of the points
of the plane alphai , then its intersection with alphai will be the line generated by the two points and in
particular it will contain the point of intersection of this line with the line ri .

Let us denote the points by:
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x11 = 〈p1, p2〉 ∩ r1 x21 = 〈p4, p5〉 ∩ r2 x31 = 〈p7, p8〉 ∩ r3

x12 = 〈p1, p3〉 ∩ r1 x22 = 〈p4, p6〉 ∩ r2 x32 = 〈p7, p9〉 ∩ r3

x13 = 〈p2, p3〉 ∩ r1 x23 = 〈p5, p6〉 ∩ r2 x33 = 〈p8, p9〉 ∩ r3

This is an important simplification, because we can restrict ourselves to the study of these points inside
the plane π and work just in two dimensions. As we are building an example, if we construct a configuration
of hyperplanes that contains the required points xij we can easily find points in the planes αi such that the
lines they generate hit the points xij .

We will consider the three lines ri are concurrent.

Figure 9: The nine points xij in the plane π

Now we want to find a configuration of the points xij that allow us to maximize the number of 6-
hyperplanes of the model. We already have the three hyperplanes H1, H2 and H3. Any other 6-hyperplane
will have to contain one point of the x1i , one of the x2j and one of the x3k , thus containing 6 points of
P. Furthermore, any two of these hyperplanes can coincide in at most one of these three points xij , since
otherwise they would share more than 4 points of P in common and that would mean they are the same.

Now to do this we will use the same trick as in the previous section and send one of the lines to infinity.
If we send the line r3 to infinity, then we are left with the lines r1 and r2, which are parallel now (because
they were concurrent with r3.

Now the problems transforms into finding the maximum number of lines that pass by one point of x1i ,
one of x2j and go in one of the three directions x3k . We call a line meeting this criteria a g̈ood linë. In the
image 10 we show a configuration with 7 good lines.
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Figure 10: Configuration of the points xij in with the line r3 at infinity spanning 7 good lines

We know that each good line will give us a 6-hyperplane when going back to the 5 dimensional model.
As we have also the three hyperplanes H1, H2 and H3, we will end up with τ6 = 10. Because of that, if we
compute the number of ordinary hyperplanes, this would give us:

τ4 =

(
9

5

)
− 6τ6 = 126− 60 = 66

Now the only thing left is to transform back these lines into the configuration of 9 points in 5 dimensions.

Let us denote a point in P5
R as [X0, X1, X2, X3, X4, X5], where [∗, ∗, ∗, ∗, ∗, 0] is the hyperplane at infinity.

We want to choose the coordinate of our objects in order to obtain the model on the picture 10 in the
plane π.

We have some freedom to (for example) get rid of two dimensions by choosing carefully the planes α1

and α2. Also, in order to get the line r3 at infinity, we would need the planes α3 and π to be parallel to
each other.

With these considerations, we can choose the objects defined so far as follows:

π = [0, 0, 1, ∗, ∗, ∗]
α1 = [∗, 0, 1, 1, ∗, ∗], α2 = [0, ∗, 1, 0, ∗, ∗], α3 = [0, 0, 0, ∗, ∗, ∗]
r1 = [0, 0, 1, 1, ∗, ∗], r2 = [0, 0, 1, 0, ∗, ∗], r3 = [0, 0, 1, ∗, ∗, 0]

x11 = [0, 0, 1, 1, 0, 1], x12 = [0, 0, 1, 1,−1, 1], x13 = [0, 0, 1, 1, 1, 1]

x21 = [0, 0, 1, 0, 0, 1], x22 = [0, 0, 1, 0,−1, 1], x23 = [0, 0, 1, 0, 1, 1]

Now we only need to find an adequate set of points P that gives matches this model. We can easily
find the three points in each of the planes αi that matches the corresponding xij . In the end we obtain the

46



following set of points:

p1 = [1, 0, 1, 1, 0, 1] p2 = [3, 0, 1, 1, 0, 1] p3 = [3/2, 0, 1, 1, 1/2, 1]

p4 = [0, 1, 1, 0, 0, 1] p5 = [0, 3, 1, 0, 0, 1] p6 = [0, 3/2, 1, 0, 1/2, 1]

p7 = [0, 0, 0, 0, 0, 1] p8 = [0, 0, 0, 2, 0, 1] p9 = [0, 0, 0, 1, 1, 1]

One can check that these points do match up with the objects defined above. Also one can check that
this configuration of points indeed span exactly 66 ordinary hyperplanes.

After finding this example we can state that:

63 ≤ e5(9) ≤ 66

In order to determine the exact value of e5(9) more work is needed. Though, we can say that if e5(9)
was less than 66 then τ7 = 1 and e5(9) = 63 (since τ5 should be multiple of three).
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