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The collinear four body problem.
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1. Introduction

The N body problem studies the movement of N bodies subject to gravitational laws. Since the publication
of the first volume of the Isaac Newton’s Philosophiae Naturalis Principia Mathematica in 1687 where there
were established the principles of classical mechanics the N body problem has captivated a large number of
astronomers and mathematicians for its obvious applications in celestial mechanics. The problem for N = 2
was solved by the Swiss mathematician Jean Bernoulli in the beginnings of the 18-th century. However,
for N ≥ 3 the problem becomes significantly more difficult. Since the ending of the 19-th century with
the apparition of the theory of dynamical systems the N body problem has been an excellent framework
where to apply the results of this discipline. In this master thesis we will study the collinear case of the
4 body problem from the numerical perspective. More precisely we will find different families of periodic,
homoclinic and connection orbits and generalize the results. An homoclinic orbit, briefly speaking, is an
orbit such that its limit forward in time and backward in time (ω and α limit) exist and are the same (in our
case will be a periodic orbit). On the other hand a connection orbit is an orbit such that its limit forward
in time is the total collision (collision of the four masses) and its limit backward in time is a periodic orbit.
These orbits play an essential role in the dynamics of the system. For instance, the presence of homoclinic
orbits is tightly related to chaotic phenomena. For finding these orbits we will proceed as follows:
Firstly we will deduce the equation of the system and we will get rid of the singularities of it using the
ideas of Devaney described in [6] and applied by Mart́ınez-Simó in the article [3]. Therefore, based on the
article of Sekiguchi-Tanikawa [1] we will find four periodic orbits for a given value of h = −1 (conserved
quantity) and α = 1 (parameter of the system) using a suitable Poincaré map and extend the results for
all h ∈ R∗. Then, we will focus in one family of periodic orbits and, related to this one, we will find a
family of homoclinic and connection orbits. We remark that the discovery of these families of connection
and homoclinic orbits involve our own contribution to the study of the collinear four body problem.
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The collinear four body problem.

2. The collinear four body problem

The aim of this master thesis is to discuss the behaviour of the collinear four body problem. We depart from
the following situation: four bodies m1,m2,m3 and m4 aligned in this order move around the center of
mass which we will fix on the origin. We suppose that the masses satisfy m2 = m4 = α and m3 = m1 = 1
and we define {xi(t), t ∈ R+, i ∈ {1, 2, 3, 4}} as the position of the i-th body at time t. In the following
image we illustrate this situation. Firstly, we define x = x1, ỹ = x2 (the bodies on the right side of the

image in this respective order). Introducing the variable y :=
√
αỹ we apply Newton’s laws to the objects

m1 and m2:
Assuming x, y ≥ 0, y√

α
≥ x:

d2x
dt2

=
α( y√

α
−x)

‖ y−
√
αx√
α
‖3
− 2x
‖2x‖3 +

α(−y√
α
−x)

‖ y√
α
+x‖3

αd
2ỹ
dt2

= α√
α
d2y
dt =

α(x− y√
α
)

‖x− y√
α
‖3 −

α(x+ y√
α
)

‖ y√
α
+x)‖3 −

2 y√
α
α2

‖2 y√
α
‖3 .

(1)

Simplifying the above equation we obtain:{
d2x
dt2

= − 1
4x2

+ α2

(y−
√
αx)2
− α2

(y+
√
αx)2

d2y
dt2

= − α3/2

(y−
√
αx)
− α3/2

(y+
√
αx)2
− α5/3

4y2

(2)

Doing the change of variables x′ = px
2 , y′ =

py
2 where x′, y′ denote the first derivatives of x(t) and y(t)

we get the following system of four first order differential equations in the variables {x, y, px, py}:
dx
dt = px

2
dy
dt =

py
2

dpx
dt = − 1

2x2
+ 2α2

(y−
√
αx)2
− 2α2

(y+
√
αx)2

dpy
dt = −−α5/2

2y2
− 2α3/2

(y−
√
αx)2
− 2α3/2

(y+
√
α)2
.

(3)

We observe that the above system defines a Hamiltonian system with hamiltonian:

H(x, y, px, py) =
1

4
(p2x + p2y)− U(x, y), (4)

where

U(x, y) :=
1

2x
+
α5/2

2y
+

2α3/2

y −
√
αx

+
2α3

y +
√
αx

.

Calling h = H the value of the hamiltonian we check that

h+ U(x, y) =
1

4
(p2x + p2y) ≥ 0

6



As the hamiltonian is a first integral of the system (i.e. its value is constant along an orbit) we have that
for every orbit of the system (3) with hamiltonian h, the (x, y) coordinates of the orbit must satisfy:

U(x, y) + h ≥ 0
y√
α
> x.

(5)

So, in other words. the (x, y) projection of all the orbits with hamiltonian h must belong to the region (5).
In general these regions are called Hill’s regions. In the following image we observe an example of a Hill’s
region of our problem.

Figure 1: Hill’s region of the system (3) (the region between the curves) for h = −10.

We realize that when x = 0, y ≥ 0 there is a collision between the internal bodies. From now on, we
will call these collisions 1− 2− 1 collisions. On the other hand, when y =

√
αx we have two simultaneous

collisions in the external bodies: one between the bodies m1, m2 and another between the bodies m3 and
m4. From now on we will call this type of collisions 2− 2 collisions.
For studying properly the motion of the system we need to regularize the equations. In other words, we
need to get rid of the singularities of (3) doing some changes of variables and time. We will apply the
ideas of Devaney described in [6] . Firstly we define:


x = r√

2
cos θ

y = r√
2

sin θ

px =
√

2px cos θ −
√
2pθ
r sin θ

py =
√

2pr sin θ +
√
2pθ
r cos θ

(6)

We check that this change of variables is in fact a canonical change of variables. Let φ : R4 → R4 be the
vector field that defines (6). Defining M := D(r,θ,pr,pθ)φ the Jacobian matrix of φ we observe that:

M tJM = J,
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The collinear four body problem.

when

M =


cos θ√

2
− r sin θ√

2
0 0

sin θ√
2

r cos θ√
2

0 0
√
2pθ sin θ
r2

−
√

2pr sin(θ)−
√
2pθ sin θ
r

√
2 cos θ

√
2 sin θ
r

−
√

2pθ
r2

cos θ
√

2pr cos θ −
√
2pθ
r sin θ

√
2 sin θ

√
2
r cos θ

 (7)

and

J =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 (8)

As J is a symplectic matrix we realize that the system (3) with respect to the new variables is hamiltonian
with the following hamiltonian function.

H(r, θ, pr, pθ) =
1

2
(p2r +

p2θ
r2

)− 1

r
V (θ), (9)

where

V (θ) :=
1√

2cos θ
+

α5/2

√
2 sin θ

+
2
√

2α3/2

sin θ −
√
α cos θ

+
2
√

2α3/2

sin θ +
√
α cos θ

. (10)

For more details about this property look at the Meyer’s book [5]. So, we obtain the following equations
of the motion: 

dr
dt = pr
dθ
dt = pθ

r2

dpr
dt =

p2θ
r3
− 1

r2
V (θ)

dpθ
dt = 1

rV
′(θ)

(11)

We remark that the manifold r = 0 represents the total collision and the manifold θ = π
2 and θ = arctan

√
α

represent the collisions 1−2−1 and 2−2 respectively. We observe that the new vector field that defines the
ode still have discontinuities when r = 0, θ = arctan

√
α and θ = π

2 . Firstly, for removing the singularity
r = 0 (Total collision) we introduce the following variables, pr = v√

r
, pθ =

√
ru. Then the system (11)

becomes 
dr
dt = r−1/2v
dv
dt = r−3/2(u2 + v2

2 − V (θ))
dθ
dt = r−3/2u
du
dt = r−3/2(−1

2uv + V ′(θ)).

(12)

We observe that

rH =
1

2
(u2 + v2)− V (θ), (13)

where H defined in (4) is a first integral of the system in these new variables. We define the following
change of variables in time dt

dτ = r3/2. Calling ′ = d
dτ the system (12) becomes:

r′ = rv

v′ = u2 + v2

2 − V (θ)

θ′ = u

u′ = −1
2uv + V ′(θ)

(14)
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Then, we will regularize the binary collisions 2− 2 and 1− 2− 1. Firstly, we will introduce the variable:

w :=
cos θ(sin θ −

√
α cos θ)√

W (θ)
u,

where,
W (θ) = V (θ) cos(θ)(sin θ −

√
α cos θ). (15)

We observe that W (θ) is regular in the Hill region. Then, the system becomes:

r′ = rv

v′ = 2rh− v2

2 + W (θ)
cos θ(sin θ−

√
α cos θ)

θ′ =

√
W (θ)

cos θ(sin θ−
√
α cos θ)

w

w′ = −1
2vw + (cos 2θ +

√
α sin 2θ)( 2rh−v2√

W (θ)
+

√
W (θ)

cos θ(sin θ−
√
α cos θ)

)− W ′(θ)√
W (θ)

( cos θ(sin θ−
√
α cos θ)

2W (θ) (2rh− v2).
(16)

Finally, doing the change of variables in time dτ
ds = cos θ(sin θ−

√
α cos θ√

W (θ)
we obtain:



dr
ds = rv cos θ(sin θ−

√
α cos θ)√

W (θ)

dv
ds =

√
W (θ)

(
1 + (2rh− v2

2 ) cos θ(sin θ−
√
α cos θ)

W (θ)

)
dθ
ds = w
dw
ds = −1

2
vw cos θ(sin θ−

√
α cos θ)√

W (θ)
+ (cos 2θ +

√
α sin 2θ)

(
2rh−v2
W (θ) cos θ(sin θ −

√
α cos θ) + 1

)
+

W ′(θ)
W (θ) (cos θ(sin θ −

√
α cos θ)− w2

2 )

(17)

We remark that the system of ode (17) is free of singularities. In this new set of variables we can write the
conserved quantity (13) as:

w2 = (2rh− v2)cos2 θ(sin θ −
√
α cos θ)2

W (θ)
+ 2 cos θ(sin θ −

√
α cos θ) (18)

where h is the Hamiltonian of the system . In the total collision r = 0 we obtain the following relation:

w2 = −cos2 θ(sin θ −
√
α cos θ)2

W (θ)
v2 + 2 cos θ(sin θ −

√
α cos θ). (19)
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The collinear four body problem.

3. Variational equations and the Poincaré map

One of the goals of this thesis is to find periodic orbits in some special cases and analyze its stability. For
doing that it will be required to us to use two essential tools in dynamical systems: the Poincaré map and
the variational equations. In this chapter we will introduce some basic properties that we will use during
the development of this thesis. We remark that all the results that we expose for autonomous differential
equations can be generalized for non autonomous systems.

Definition 3.1. Given an autonomous differential equation

x′ = f(x) (20)

where f : Rn → Rn is a smooth function (f ∈ Cr, r ∈ N, r ≥ 1) we define the flow as the function
φ : R×R×Rn → Rn such that φ(t, t0, x0) is the solution x(t) of (20) at time t that satisfies x(t0) = x0.

We observe that as a consequence of the theorem of existence and uniqueness of differential equations
the flow is well defined.
Once defined the flow we will introduce the Poincaré map.

Definition 3.2. Let Σ be a manifold in Rn. We will say that it is Poincaré a transversal section of the
system (20) if ∀t0, x0 such that t0 ∈ R, x0 ∈ Σ exists t′ ∈ R t′ > t0 such that φ(t′; t0, x0) ∈ Σ.

Definition 3.3. Given an autonomous system of ode defined as in (20) and Σ a Poincaré transversal
section, we define the Poincaré map: P : Σ→ Σ as

P (x) = φ(τ(x), 0, x0)

where τ : Rn → R is such that

τ(x) = min{t ∈ R, t > 0 | φ(τ(x), 0, x0) ∈ Σ}.

In other words, the Poincaré map follows the orbit of a point x0 ∈ Σ until this orbit intersects again Σ
at time τ(x). We can visualize this behaviour in the following plot.
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Figure 2: Scheme of the Poincaré map

We remark that if Σ is a transversal manifold then the Poincaré map is always well defined. Here below
we state a basic property of the Poincaré map.

Proposition 3.4. Given an autonomous system of ode defined as in (20) and a Poincaré map P : Σ→ Σ
then if x0 is a fixed point of Pn for some n ∈ Z+ then φ(t, t0, x0) is a periodic orbit.

Proof. It is a consequence of the theorem of existence and uniqueness of ordinary differential equations.

In our case we will use these techniques for finding periodic orbits of the collinear four body problem
using a suitable Poincaré map.
As the Poincaré map is an important tool in order to find periodic orbits, the variational equations are
related to the stability of these periodic orbits. Here below we will introduce them and state some basic
properties that we will use during this thesis:

Definition 3.5. Let φ(t, t0, x0) be the flow of an autonomous differential equation (20) we call variational
equations of the system to the following system of ode:

d

dt
Dx0φ(t, t0, x0) = Dxf(φ(t, t0, x0))Dx0φ(t, t0, x0), (21)

As a first remark we observe that the system comes from the fact that the flow satisfies

d

dt
φ(t, t0, x0) = f(φ(t, t0, x0)),

then we obtain:
d

dt
Dx0φ(t, t0, x0) = Dxf(φ(t, t0, x0))Dx0φ(t, t0, x0).

The following theorem will allow us to describe properly the dynamic of a periodic orbit.

Theorem 3.6. Let φ(t, t0, x0) be the flow of an autonomous differential equation (20) and z(t) a periodic
orbit of this system with period T . Let Dx0φ(t, t0, x0) be the solution of the variational equations (21).
Then for all x0 = z(r), 0 ≤ r ≤ T there exists a stable invariant manifold W s(x0) tangent to the
eigenspace related to the eigenvectors λ ∈ C of Dx0φ(T, 0, x0) with |λ| < 1 and there exists an unstable
manifold tangent to the eigenspace related to the eigenvectors λ ∈ C of Dx0φ(T, 0, x0) with |λ| > 1.
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The collinear four body problem.

Proof. The proof can be found in the book of Guckenheimer and Holmes [9].

For a periodic orbit z(t) we will define the stable and unstable invariant manifolds of the whole orbit
z(t) as

W s(z(t)) :=
⋃

0≤r≤T
W s(z(r)),

W u(z(t)) :=
⋃

0≤r≤T
W u(z(r)).

In this thesis we will approximate these manifolds by its linear approximation.
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4. Periodic orbits

Coming back to the system (17) we depart from the following system of ode. The following system is free
of singularities in the Hill’s region.

dr
ds = rv cos θ(sin θ−

√
α cos θ)√

W (θ)

dv
ds =

√
W (θ)

(
1 + (2rh− v2

2 ) cos θ(sin θ−
√
α cos θ)

W (θ)

)
dθ
ds = w
dw
ds = −1

2vw
vw cos θ(sin θ−

√
α cos θ)√

W (θ)
+ (cos 2θ +

√
α sin 2θ)

(
2rh−v2
W (θ) cos θ(sin θ −

√
α cos θ) + 1

)
+

W ′(θ)
W (θ) (cos θ(sin θ −

√
α cos θ)− w2

2 )

(22)

In this section we will apply the techniques defined in the article of Sekiguchi-Tanikawa [1] for finding
periodic orbits using a suitable section in R4 where we will apply the Poincaré map. Firstly we will study
only the cases h = −1 and α = 1 and later we will generalize. In fact, in regards to h we can generalize
easily the results that we will find for h = −1 using the following property of our system.

Lemma 4.1. Let x(t) = (r(t), v(t), θ(t), w(t)) be a solution of (17) with conserved energy h0 ∈ R∗ then
∀h1 ∈ R∗, yh1(t) := (h0h1 r(t), v(t), θ(t), w(t)) is a solution of (17) with conserved energy energy h1.

Proof. Let x(t) = (r(t), v(t), θ(t), w(t)) be a solution of (17) with first integral h0 ∈ R∗ we check easily
that the function yh1(t) := (h0h1 r(t), v(t), θ(t), w(t)) for h1 ∈ R∗ is a solution of

dr
ds = rv cos θ(sin θ−

√
α cos θ)√

W (θ)

dv
ds =

√
W (θ)

(
1 + (2rh1 − v2

2 ) cos θ(sin θ−
√
α cos θ)

W (θ)

)
dθ
ds = w
dw
ds = −1

2vw
vw cos θ(sin θ−

√
α cos θ)√

W (θ)
+ (cos 2θ +

√
α sin 2θ)

(
2rh1−v2
W (θ) cos θ(sin θ −

√
α cos θ) + 1

)
+

W ′(θ)
W (θ) (cos θ(sin θ −

√
α cos θ)− w2

2 ).

(23)
Hence yh1(t) is a solution of (23) with conserved quantity h1.

Corollary 4.2. Let x(t) = (r(t), v(t), θ(t), w(t)) be a periodic orbit of the system (17) with period T and
conserved energy h0, then we have a family of periodic orbits, varying with h,

F = {xh(t)| xh(t) = (
h0
h
r(t), v(t), θ(t), w(t)),∀h ∈ R∗},

where each orbit xh(t) has period T.

Proof. By the previous lemma we know that ∀h ∈ R∗, xh(t) is a solution of (17) and it satisfies:

xh(0) = xh(T ).

Hence xh(t) is a periodic orbit with period T .
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The collinear four body problem.

This corollary allows us to state that the problem of finding periodic orbits of (17) can be reduced to
finding periodic orbits for a fixed conserved energy h ∈ R∗. In our case we will study the case h = −1.
This fact is also true in the case of homoclinic and connection orbits. We will talk about these topics in
the next chapters.
Returning to our restricted problem (h = −1, α = 1), we introduce the section θ = θc where θc is the
solution of

dV

dθ
= 0,

and V (θ) is a real function defined in (10). Looking at the conserved energy equation (18) restricted on
the manifold {θ = θc} we obtain the following relation:

w2 = −(2r + v2)
cos θ2c (sin θc −

√
α cos θc)

2

W (θc)
+ 2 cos θc(sin θc −

√
α cos θc). (24)

Calling

p(r) :=
−2r cos2 θc(sin θc −

√
α cos θc)

2

W (θc)
+ 2 cos θc(sin θc −

√
α cos θc),

we can write (24) as:
w2

p(r)
+

v2

W (θc)p(r)
cos2 θc(sin θc−

√
α cos θc)2

= 1. (25)

We observe that as W (θc) > 0, we have that in the cases p(r) > 0 the previous equation represents an
ellipse with respect to w and v. For a similar reason we observe that

p(r) ≤ 2 cos θc(sin θc −
√
α cos θ),

and the equality is satisfied if and only if r = 0. Hence, we observe that in the section {θ = θc} all the
orbits that satisfy (25) and p(r) > 0 satisfy also:

w2

2 cos θc(sin θc −
√
α cos θc)

+
v2

2W (θc)
cos θc(sin θc−

√
α sin θc)

≤ 1 (26)

where, in fact the boundary of this set represents the v, w components of the intersection of the total
collision r = 0 with the section {θ = θc}. The strategy now will be the following: We will work in the
(w, v) projection of the section θ = θc. We realize that applying the first integral relation we can write r
as a function of the rest of the variables.
Taking M = 100 initial conditions on the x-axis of the interior of the ellipse (26) we will calculate the
N = 100 iterations of the Poincaré map defined in the manifold {θ = θc} and plot the results in the (w, v)
plane. This will provide us an intuition of how our system behaves. Doing this simulation we obtain:

14



Figure 3: Iterations of the Poincaré map in the section θ = θc in (w, v) coordinates.

Firstly we remark that the ellipse of the plot represents the intersection of the total collision with
the section {θ = θc} projected in the plane (w, v). Moreover, we can appreciate the two different regions
described in the Sweetman’s article [7]: one defined by the two gaps in the center of the plot that Sweetman
defines as quasiperiodic region and another with a ”chaotic” behaviour outside these two gaps.
Now we will proceed to find periodic orbits of the system. For simplicity, from now on we call Σc the
section {θ = θc}. Defining Pθc the Poincaré map on the section Σc, we know from proposition 3.4 that
every periodic orbit that intersects Σc will be a fixed point of Pnθc for some n ∈ Z+. In other words, we
want to find solutions x ∈ R4 of

Pnθc(x) = x n ∈ N.

Every solution x ∈ R4 will correspond to an initial condition of a periodic orbit. Taking into account the
fact that x ∈ Σc and the first integral relation we realize that (r, θ) can be uniquely determined by (w, v).
So, in fact we can reduce our problem to find x = (w, v) ∈ R2 such that for some n ∈ N

Pnθcx = x,

when Pθc is defined in the (w, v) plane. For finding numerically solutions of this problem we will use an
iterative method taking initial conditions in some special regions that we can observe from the figure 5.
Firstly we consider the regions with more density of points or where we can appreciate aligned points:
these regions could represent an stable manifold of a periodic orbit and hence, it could be a good region
for take the initial conditions of an iterative method. On the other side, the two gaps of the figure 5 could
represent an stable region defined by an stable periodic orbit. Applying this procedure for taking the initial
conditions using our iterative method we found the following periodic orbits:

15
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Periodic orbits of the system for α = 1 and h = −1

Number of the periodic
orbit

Initial conditions in
(w, v)

Period Number of intersections
with Σc per period

1 (0.295463117983,
0.159856987581) 5.629520695466097 2

2 (0.3338390474572,
−1.0789608423286) 15.154887900710179 4

3 (−0.388798768702389,
−0.658050218585429) 47.371127699916727 16

4 (−0.343932372061647,
1.327830372465703) 17.909921477392498 4

We remark that all the results are obtained using double precision and an absolute and relative tolerances
of 10−12. Automatically, from corollary 4.2 we obtain a family of four periodic orbits depending on h ∈ R∗.
Now we are going to analyze better each periodic orbit. First of all, we represent each periodic orbit in the
variables (x, y). We remark that the (x, y) variables represents the distance of the objects on the right of
figure 1 with the center of mass.

Figure 4: Periodic orbits 1 to 4 in (x, y) variables and the 2− 2 collision.

Solving the variational equations of the system applied in each periodic orbit we can conclude that the
periodic orbit 1 on the table is stable, and the other three are unstable (there exists an unstable manifold).
The periodic orbit 1 is an example of a Schubart like periodic orbit. A Schubart like periodic orbit is an
orbit such that in one period it achieves a 1−2−1 and a 2−2 collision. We can appreciate this behaviour
in the first image of the figure 4.
From now on we will focus on the periodic orbit 2 (unstable). For the later calculations it will be required
to us to simulate the unstable invariant manifold of this orbit. For doing that we will proceed as follows:
Firstly we take a random point x0 of the periodic orbit 2 and the normalized eigenvector v0 of eigenvalue
|λ| > 1 of the solution of the variational equations taking initial condition the identity matrix. Then, we

16



will consider the following intervals in R4:

I+ = {x ∈ R4 | x = x0 + tsv0, s = 10−2, t ∈ [0, 1]},

I− = {x ∈ R4 | x = x0 − tsv0, s = 10−2, t ∈ [0, 1]}.

Therefore, we discretize the intervals I+ and I− in the following way:

xn = x0 ±
n

N
sv0, 1 ≤ n ≤ N.

In our case we will take N = 100. For each xn, 1 ≤ n ≤ N we will calculate M = 100 iterations of the
Poincaré map Pθc and plot the results in the (w, v) plane. Doing that, we obtain the following simulation
of the unstable invariant manifold of the periodic orbit 2.

Figure 5: Unstable periodic orbit 2 defined on the section θ = θc.
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5. Homoclinic orbits

In this chapter we will introduce a technique for finding homoclinic orbits connected to an unstable periodic
orbit of the system (17) and we will apply it for finding an homoclinic connections to the periodic orbit 2.
Firstly, we will restrict to the case h = −1 and α = 1 and later we will generalize ∀h ∈ R∗.

Definition 5.1. Let x′ = f(x) be an autonomous system of ode with a fixed point x0, we will say that an
orbit x(t) is an homoclinic connection to x0 if

lim
t→∞

x(t) = lim
t→−∞

x(t) = x0.

Equivalently, x(t) ∈W u(x0)∩W s(x0) where W u(x0) and W s(x0) denote the unstable and stable invariant
manifolds of x0 respectively.

As a first remark we can define homoclinic connections to periodic orbits in the following way:

Definition 5.2. Let x′ = f(x) be an autonomous system of ode with a periodic orbit z(t). We will say
that an orbit w(t) is an homoclinic connection to z(t) if and only if w(t) ∈ W u(z(t)) ∩W s(z(t)), where
W u(z(t)) and W s(z(t)) denote the unstable and stable invariant manifolds of the orbit z(t) respectively.

The following lemma states that in fact we can generalize in h easily as we did in the case of periodic
orbits in 4.2.

Lemma 5.3. Let w(t) = (r(t), v(t), θ(t), w(t)) be an homoclinic orbit of (17) with conserved energy h0
connected to a periodic orbit z(t) = (r̃(t), ṽ(t), θ̃(t), w̃(t)), then we have a family of homoclinic orbits

F = {wh(t) = (r(t)
h0
h
, v(t), θ(t), w(t)) |h ∈ R∗},

where each orbit wh(t) is connected to the periodic orbit zh(t) := (r̃(t)h0h , ṽ(t), θ̃(t), w̃(t)).

Proof. As a consequence of the corollary (4.2) we observe that the orbits zh(t) = (r̃(t)h0h , ṽ(t), θ̃(t), w̃(t))

are periodic. On the other hand, the function wh(t) = (r̃(t)h0h , ṽ(t), θ̃(t), w̃(t)) is an orbit of the system
(17) as a consequence of the lemma 4.1. We check easily that is wh(t) is homoclinically connected with
zh(t).

Returning to our problem, i.e taking the system (17) we will describe how to find numerically an
homoclinic orbit given an unstable periodic orbit. First of all we must introduce the following proposition.

Proposition 5.4. Let x(t) be an orbit belonging to the unstable invariant manifold of a periodic orbit of
the system (17). If x(t) intersects the manifold R = {(r, v, θ, w) ∈ R4 | v = w = 0} then x(t) is an
homoclinic symmetric orbit.

Using this proposition we observe that finding an homoclinic connection of a given periodic orbit will
be equivalent to find an orbit belonging to the unstable invariant manifold such that it intersects the
manifold R described above. For doing this we will proceed as follows: Firstly we take a random point x0
of the unstable periodic orbit and the normalized eigenvector v0 of eigenvalue |λ| > 1 of the solution of
the variational equations taking initial condition the identity matrix. Then, we will consider the following
interval in R4:

I = {x ∈ R4 | x = x0 + tsv0, s = 10−2, t ∈ [0, 1]}.
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We realize that I is contained in the unstable invariant manifold of the periodic orbit (in fact it belongs to
its linear approximation). In general for every s sufficiently small this interval is called fundamental interval.
Firstly, we will discretize I in N = 600 equidistant points of the form:

xn = x0 +
n

N
sv0, 1 ≤ n ≤ N. (27)

We will integrate each initial condition xn ∈ I up to the k-th crossing with the hiperplane {w = 0} and
we will consider its variable v of the intersection. For each k we will plot the variable v with respect to n.

As a consequence of proposition 5.4 we realize that if we find a value t∗ ∈ [0, 1] such that for a given
k ∈ N, the k-th intersection of the orbit with initial condition x∗ := x0 + t∗sv0 ∈ I with the hiperplane
{w = 0} has its component v = 0 then, x∗ is the initial condition of an homoclinic orbit.
Now we will apply this methodology to the unstable periodic orbit 2. So, we restrict to the case α = 1 and
h = −1. Firstly we will calculate for each 1 ≤ k ≤ 20 the plot of the component v with respect to n of
the k-th crossing with the hiperplane {w = 0} and look for the presence of zeros in the y-axis (component
v). Concretely, for k = 18 we obtain the following plot: In this plot we appreciate taking into account the

Figure 6: Component v in terms of n of the 18-th crossing of the elements in (27) with the hiperplane
{w = 0}.

continuity of the flow with respect to the initial conditions that there exists a point x∗ in the fundamental
interval I such that its orbit intersects R = {(r, v, θ, w) ∈ R4 | v = w = 0}. Hence, the orbit of x∗ is
homoclinically connected to the periodic orbit 2. In fact, we can find explicitly this point x∗ finding a zero
of the following function F : R→ R such that

F (r) = φ2(τr,18, 0, xr),

where, φ2 denotes the second component of the flow, xr = x0 + rsv0 ∈ I and τr,18 denotes the time the
orbit with initial condition xr takes for intersecting {w = 0} for 18-th time. Applying this technique we
obtain the following initial condition of an homoclinic orbit:

x∗ = (6.346850623987035,−1.078420078535209, 1.263757439765094, 0.334412126197204).

Here below we observe the (x, y) projection of this orbit:
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Figure 7: Homoclinic periodic orbit and the second unstable periodic orbit.

We observe that finding this homoclinic orbit in fact we obtain a family of homoclinic orbits depending
on h ∈ R∗ as a consequence of the lemma 5.3.
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6. Connection orbits

In this section we will find a family of connected orbits from a given unstable periodic orbit to the total
collision manifold T := {(r, v, θ, w) ∈ R4 | r = 0}. In other words, let w(t) be a parametrization of the
periodic orbit we will find an orbit z(t) of our system such that limt→−∞ z(t) = w(t) and limt→∞ z(t) ∈ T .
From now on, for simplicity we will call these orbits connection orbits. First of all we realize that, as in the
cases of homoclinic and periodic orbits, if we find a connection orbit for a fixed h ∈ R∗ we will obtain a
family of connection orbits depending on h. The following proposition formalizes this fact:

Proposition 6.1. Let x(t) = (r̃(t), ṽ(t), θ̃(t), w̃(t)) be a periodic orbit of the system (17). Therefore, if
z(t) = (r(t), v(t), θ(t), w(t)) is an orbit of (17) with conserved energy h0 ∈ R∗ that connects x(t) and T ,
then there is a family of connection orbits

F = {zh(t) = (
h0
h
r(t), v(t), θ(t), w(t)) | h ∈ R∗},

where each orbit zh(t) has conserved energy h ∈ R∗ and it is a connection orbit between the periodic orbit
(h0h r(t), v(t), θ(t), w(t)) and T .

Proof. The proof is essentially the same than the proof of the proposition 5.3.

Now we observe that finding a connection orbit for h = −1 in fact we obtain a family of connection
orbits depending in h ∈ R∗. For finding it numerically we will proceed in a similar way than in the case
of homoclinic orbits: Firstly we will use again the fundamental interval of the unstable manifold of the
periodic orbit:

I = {x ∈ R4 | x = x0 + tsv0, s = 10−2, t ∈ [0, 1]}.
where x0 is the eigenvector of the eigenvalue |λ| > 1 of the solution of the variational equations taking
initial condition the identity matrix. We observe, as in the previous chapter that I is a subset of the
unstable invariant manifold (the linear approximation). Now we will define the following discretization of
I:

xn = x0 +
n

N
sv0, 1 ≤ n ≤ N. (28)

Now we define the following region:

T = {(r, v, θ, w) ∈ R4 | θ =
π

4
} ∪ {(r, v, θ, w) ∈ R4 | θ =

π

2
}.

We realize that the region T is the region of the 1 − 2 − 1 and 2 − 2 collisions defined before for α = 1.
Basically T defines all types of collisions except the total one. Taking N = 600 we will integrate each
initial condition xn ∈ I up to the k-th crossing with a T and we will consider the value of r(θ − θc). For
doing that we implement the Poincaré map PT defined on T . Then, for a fixed k-th crossing with T we
will represent each value r(θ−θc) in terms of n (the index of the initial point xn) and we will pay attention
at the changes of sign of this plot. Concretely, for the particular example of the periodic orbit 2, α = 1
and h = −1 applying the described methodology we obtain for k = 16 the following plot:

In this case we observe, taking into account the continuity with respect of the initial conditions of the
solutions of the system (17) that between the elements x274 and x275 there must be an initial condition
x∗ such that

r(θ − θc) = 0 (29)

in the 16-th intersection of the its orbit with T . Here below we can a appreciate the change of signs of
the expression r(θ− θc) in the 16-th intersection with T of the orbits with initial condition x274 and x275.
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Figure 8: Value of r(θ − θc) of the 16-th crossing with T of the orbits with initial condition in (28) in
terms of the index n.

Figure 9: x274 and x275 orbits and the 16-th intersection of the elements of (28) with T .

Looking at this plot we can appreciate intuitively that there must be an orbit with initial condition in
the segment defined by x274 and x275 such that its limit achieve the total collision (x, y) = (0, 0).

We will see that (29) implies r = 0. If not, it would imply that θ = θc in the 16-th intersection of x∗

with T . Looking at the definition of T we see that θ must be either arctan
√
α = π

4 or π
2 , both different

that θc. Hence, r = 0 and of course, as r = 0 is an invariant manifold of the system, the time that takes
x∗ to achieve T is infinite. Therefore, we observe that the initial condition x∗ defines a collision orbit.
Here below we can appreciate the plot of the (x, y) projection of this orbit:
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Figure 10: (x, y) projection of the connection orbit.

In fact doing the same process for the k-th crossing with T for k = 20 we obtain the following plot:

Figure 11: Value of r(θ − θc) in the 20-th crossing with T in terms of the index n.

Looking at this plot we can ensure the presence of two more connection orbits with initial conditions in
the fundamental interval I doing the same argument as before. Finally, applying the lemma 6.1 we obtain
three different families of connection orbits depending on the first integral h ∈ R∗.
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7. Conclusions

In this master thesis we found four families of periodic orbits depending in h ∈ R∗ and, related to one
of them we found two families of homoclinic and connection orbits. For arriving to this conclusion we
proceeded as follows: Firstly we deduced the equation of the system and we got rid of the singularities of
it using the ideas of Devaney described in [6] and applied by Mart́ınez-Simó in the article [3]. Therefore,
based on the article of Sekiguchi-Tanikawa [1] we found four periodic orbits for a given value of h = −1
(conserved quantity) and α = 1 (parameter of the system) using a suitable Poincaré map and extended the
results for all h ∈ R∗. Then, we described a methodology for finding homoclinic and connection orbits and
we applied it to one periodic orbit. Finally, we obtained two different families of homoclinic and connection
orbits depending in h ∈ R∗. We remark that the discovery of these families of connection and homoclinic
orbits involve our own contribution to the study of the collinear four body problem.
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8. Numerical considerations

All the numerical simulations and calculations that we did in this thesis are implemented in Matlab. For
integrating the differential equations we used the package ode45 (Explicit Runge Kutta method of orther
4). On the other hand, for implementing the Poincaré map we used the option ”Events” of the package
ode45 that allows us to fix an endpoint of and integration (in our case θ = θc). Finally, for finding zeros
of functions we used the package ”fsolve” for its simplicity and effectiveness. We remark that all the
numerical results are obtained using double precision and an absolute and relative tolerances of 10−12.
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9. Codes

In this section we will introduce the most important codes that we used during this master thesis.

% System of ode r4bp
function [y] = f 2(t,x)

global alpha;
global h;
r=x(1);
v=x(2);
theta=x(3);
w=x(4);
y = [r.∗v.∗cos(theta).∗(sin(theta)−sqrt(alpha)∗cos(theta))./sqrt(W(theta));

sqrt(W(theta)).∗(1+(2∗r∗h−(v.ˆ2)/2).∗cos(theta).∗(sin(theta)−sqrt(alpha)∗cos(
theta))./W(theta));

w;
−(1/2)∗v.∗w.∗cos(theta).∗(sin(theta)−sqrt(alpha)∗cos(theta))./sqrt(W(theta))+(cos

(2∗theta)+sqrt(alpha)∗sin(2∗theta)).∗((2∗r∗h−v.ˆ2).∗cos(theta).∗(sin(theta)−
sqrt(alpha)∗cos(theta))./W(theta)+1)+(W prime(theta)./W(theta)).∗(cos(theta)
.∗(sin(theta)−sqrt(alpha)∗cos(theta))−(w.ˆ2)/2);];

end

% Function W
function [y] = W(theta)

global alpha;
s=sin(theta);
c=cos(theta);

y = (sin(theta)−sqrt(alpha)∗cos(theta))/sqrt(2)+(alphaˆ(5/2)∗cos(theta)∗(sin(theta)−
sqrt(alpha)∗cos(theta)))/(sqrt(2)∗sin(theta))+2∗sqrt(2)∗alphaˆ(3/2)∗cos(theta)+(2∗
sqrt(2)∗alphaˆ(3/2)∗cos(theta)∗(sin(theta)−sqrt(alpha)∗cos(theta)))/(sin(theta)+
sqrt(alpha)∗cos(theta));

end

% W’ function
function [y] = W prime(theta)

global alpha;
c=cos(theta);
s=sin(theta);
y= 1/sqrt(2)∗(c+sqrt(alpha)∗s)∗(1+alphaˆ(5/2)∗c/s)−alphaˆ(5/2)∗(s−sqrt(alpha)∗c)/((s

ˆ2)∗sqrt(2))−4∗sqrt(2)∗(sˆ2)/(s+sqrt(alpha)∗c)+4∗sqrt(2)∗(alphaˆ2)∗c/(s+sqrt(
alpha)∗c)ˆ2;

end

% System variational equations
function [y]=var f2(t,x)

global alpha;
global h;
r=x(1);
v=x(2);
theta=x(3);
w=x(4);
s=sin(theta);
c=cos(theta);
z = [r.∗v.∗cos(theta).∗(sin(theta)−sqrt(alpha)∗cos(theta))./sqrt(W(theta));
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sqrt(W(theta)).∗(1+(2∗r∗h−(v.ˆ2)/2).∗cos(theta).∗(sin(theta)−sqrt(alpha)∗cos(
theta))./W(theta));

w;
−(1/2)∗v.∗w.∗cos(theta).∗(sin(theta)−sqrt(alpha)∗cos(theta))./sqrt(W(theta))+(cos

(2∗theta)+sqrt(alpha)∗sin(2∗theta)).∗((2∗r∗h−v.ˆ2).∗cos(theta).∗(sin(theta)−
sqrt(alpha)∗cos(theta))./W(theta)+1)+(W prime(theta)./W(theta)).∗(cos(theta)
.∗(sin(theta)−sqrt(alpha)∗cos(theta))−(w.ˆ2)/2);

];
A = [v∗c∗(s−sqrt(alpha)∗c)/sqrt(W(theta)) r∗c∗(s−sqrt(alpha)∗c)/sqrt(W(theta)) r∗v∗((

cos(2∗theta)+sqrt(alpha)∗sin(2∗theta))/sqrt(W(theta))−0.5∗c∗(s−sqrt(alpha)∗c)∗W(
theta)ˆ(−3/2)∗W prime(theta)) 0;
2∗h∗c∗(s−sqrt(alpha)∗c)/sqrt(W(theta)) −v∗c∗(s−sqrt(alpha)∗c)/sqrt(W(theta))

W prime(theta)/(2∗sqrt(W(theta)))+(2∗r∗h−1/2∗vˆ2)∗c∗(s−sqrt(alpha)∗c)∗W prime(
theta)/(2∗W(theta)ˆ(3/2))+(2∗r∗h−1/2∗vˆ2)∗((cos(2∗theta)+sqrt(alpha)∗sin(2∗
theta))/sqrt(W(theta))−c∗(s−sqrt(alpha)∗c)∗W prime(theta)/(W(theta)ˆ(3/2))) 0;

0 0 0 1;
(cos(2∗theta)+sqrt(alpha)∗sin(2∗theta))∗2∗h∗c∗(s−sqrt(alpha)∗c)/W(theta) −0.5∗w∗c∗(

s−sqrt(alpha)∗c)/sqrt(W(theta))−(cos(2∗theta)+sqrt(alpha)∗sin(2∗theta))∗2∗v∗c∗(
s−sqrt(alpha)∗c)/W(theta) −0.5∗v∗w∗(c∗W prime(theta)∗(sqrt(alpha)∗c−s)+2∗W(
theta)∗(sqrt(alpha)∗sin(2∗theta)+cos(2∗theta)))/(2∗W(theta)ˆ(3/2))+(−sin(2∗
theta)∗2+sqrt(alpha)∗cos(2∗theta)∗2)∗((2∗r∗h−vˆ2)∗c∗(s−sqrt(alpha)∗c)/W(theta)
+1)+(cos(2∗theta)+sqrt(alpha)∗sin(2∗theta))∗(−W prime(theta)/(W(theta)ˆ2)∗(2∗r∗
h−vˆ2)∗c∗(s−sqrt(alpha)∗c)+(2∗r∗h−vˆ2)∗(cos(2∗theta)+sqrt(alpha)∗sin(2∗theta))/
W(theta))+(ddW(theta)∗W(theta)−W prime(theta)ˆ2)/(W(theta)ˆ2)∗(c∗(s−sqrt(alpha)
∗c)−1/2∗wˆ2)+W prime(theta)/W(theta)∗(cos(2∗theta)+sqrt(alpha)∗sin(2∗theta))
−0.5∗v∗c∗(s−sqrt(alpha)∗c)/sqrt(W(theta))−w∗W prime(theta)/W(theta)];

p=[x(5:8)’;x(9:12)’;x(13:16)’;x(17:20)’];
q=A∗p;
y=[z;q(1,:)’;q(2,:)’;q(3,:)’;q(4,:)’];

end

% Second derivative of W
function [y] = ddW(theta)

global alpha;
s=sin(theta);
c=cos(theta);
y = −1/sqrt(2)∗(s−sqrt(alpha)∗c)∗(1+alphaˆ(5/2)∗c/s)+1/(sqrt(2))∗(c+sqrt(alpha)∗s)∗(−

alphaˆ(5/2)/sˆ2)−alphaˆ(5/2)/sqrt(2)∗((c+sqrt(alpha)∗s)/sˆ2−2∗(s−sqrt(alpha)∗c)∗c
/sˆ3)−8∗sqrt(2)∗alphaˆ(3/2)∗s∗c/(s+sqrt(alpha)∗c)+4∗sqrt(2)∗alphaˆ(3/2)∗sˆ2∗(c−
sqrt(alpha)∗s)/(s+sqrt(alpha)∗c)ˆ2−4∗sqrt(2)∗alphaˆ2∗s/(s+sqrt(alpha)∗c)ˆ2−8∗sqrt
(2)∗alphaˆ2∗c∗(c−sqrt(alpha)∗s)/(s+sqrt(alpha)∗c)ˆ3;

end

% First integral h of the system of ode
function [y] = h2(x)

global alpha;
r = x(:,1);
v = x(:,2);
theta = x(:,3);
w = x(:,4);
y=(((w.ˆ2−2∗cos(theta).∗(sin(theta)−sqrt(alpha)∗cos(theta))).∗W(theta))./((cos(theta)

.ˆ2).∗(sin(theta)−sqrt(alpha)∗cos(theta)).ˆ2)+v.ˆ2)./(2∗r);
end
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% Derivative of the function V
function [y] = dV(theta)

global alpha;
s=sin(theta);
c=cos(theta);
y= −s/(sqrt(2)∗cˆ2)+alphaˆ(5/2)∗c/(sqrt(2)∗sˆ2)+2∗sqrt(2)∗alphaˆ(3/2)∗(c+sqrt(alpha)∗

s)/((s−sqrt(alpha)∗c)ˆ2)+2∗sqrt(2)∗alphaˆ(3/2)∗(c−sqrt(alpha)∗s)/((s+sqrt(alpha)∗
c)ˆ2);

end

% Plot Poincare Map section theta=theta c
global alpha;
alpha=1;
global h;
h=−1;
global theta c;
options1=optimoptions(’fsolve’,’FunctionTolerance’,1e−12);
theta c=fsolve(@dV,pi/3,options1);
s=1;
p=cos(theta c)∗(sin(theta c)−sqrt(alpha)∗cos(theta c));
N=500;
iter=100;
B c=2∗p;
A c=W(theta c)/(pˆ2);
w=linspace(−sqrt(B c),sqrt(B c),1e6);
z1=w;
y1=zeros(1e6,1);
y2=zeros(1e6,1);
for i=1:1e6

y1(i)=sqrt((1−(w(i)ˆ2)/B c)∗A c∗B c);
y2(i)=−sqrt((1−(w(i)ˆ2)/B c)∗A c∗B c);

end
x=zeros(N,iter);
y=zeros(N,iter);
x(:,1)=linspace(−0.5,−0.1,N);
y(:,1)=zeros(N,1);
options2=odeset(’AbsTol’,1e−12,’RelTol’,1e−12,’Events’,@Evenfun);
options1=odeset(’AbsTol’,1e−12,’RelTol’,1e−12);
hold on
plot(z1,y1,’b’);
plot(z1,y2,’b’);
for i=1:N

t0=0;
for k=1:iter−1

r=W(theta c)/(2∗h∗pˆ2)∗(x(i,k)ˆ2+y(i,k)ˆ2∗pˆ2/W(theta c)−2∗p);
z=[r y(i,k) theta c x(i,k)]’;
if pr>2∗cos(theta c)∗(sin(theta c)−sqrt(alpha)∗cos(theta c))

break
end
[tt,zz]=ode45(@f 2,[0 1e−1],z,options1);
[t,zz]=ode45(@f 2,[1e−1 100],zz(end,:),options2);
z=zz(end,:);
r=z(1);
pr=−(2∗r∗cos(theta c)ˆ2∗(sin(theta c)−sqrt(alpha)∗cos(theta c))ˆ2)/W(theta c)

+2∗cos(theta c)∗(sin(theta c)−sqrt(alpha)∗cos(theta c));
if pr<=2∗cos(theta c)∗(sin(theta c)−sqrt(alpha)∗cos(theta c))
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x(i,k+1)=z(4);
y(i,k+1)=z(2);
plot(x(i,k+1),y(i,k+1),’.b’);

end
end

end
hold off

% Auxiliary function matlab (endpoint integration)
function [ value, isterminal,direction ] = Evenfun(t,y)

global theta c;
value(1)=y(3)−theta c;
isterminal(1)=1;
direction=[];

end

% Calculation unstable invariant manifold related to the periodic orbit 2 main
% alpha=1 h=−1
global alpha;
global h;
alpha=1;
h=−1;
global theta c;
global v0;
options1=optimoptions(’fsolve’,’FunctionTolerance’,1e−13,’OptimalityTolerance’,1e−13,’

StepTolerance’,1e−13);
theta c=fsolve(@dV,pi/3,options1);
options2=odeset(’Events’,@Evenfun,’AbsTol’,1e−12,’RelTol’,1e−12);
options22=odeset(’Events’,@Evenfun2);
options3=odeset(’AbsTol’,1e−13,’RelTol’,1e−13);
x3=theta c;
intersec=50;
norb=1000;
s=1e−4;
% Initial condition periodic orbit 2
x0=[6.35315094974196;−1.07896084232869;1.26450466042599;0.333839047457243];
% Period
T= 15.154887900710179;
[tt,ZZ]=ode45(@var f2,[0 T],[x0’ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1],options3);
B = [ZZ(end,5:8);ZZ(end,9:12);ZZ(end,13:16);ZZ(end,17:20)];
[V,D]=eig(B);
% Choose the eignevalue lambda, |lambda|>1 unstable
% Choose the eigenvalue lambda, |lambda|<1 stable
aux=abs(D(1,1));
k=1;
for i=1:4

if abs(D(i,i))>aux
aux=D(i,i);
k=i;

end
end
v0=V(:,k)/norm(V(:,k));
X=zeros(norb,25);
Y=zeros(norb,25);
titer=zeros(norb,25);
p=cos(theta c)∗(sin(theta c)−sqrt(alpha)∗cos(theta c));
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B c=2∗p;
A c=W(theta c)/(pˆ2);
w=linspace(−sqrt(B c),sqrt(B c),1e6);
y1=zeros(1e6,1);
y2=zeros(1e6,1);
X=zeros(norb,25);
Y=zeros(norb,25);
for i=1:1e6
y1(i)=sqrt((1−(w(i)ˆ2)/B c)∗A c∗B c);
y2(i)=−sqrt((1−(w(i)ˆ2)/B c)∗A c∗B c);

end
hold on
plot(w,y1,’b’),
plot(w,y2,’b’);
tol=1e−11;
% Primera branca

for i=1:norb
x ini=x0+s∗i/norb∗v0;
x=x ini;
h=h2(x ini’);
for j=1:50

[ttt,xxx]=ode45(@f 2,[0 100],x,options2);
x=xxx(end,:);
X(i,j)=x(4);
Y(i,j)=x(2);
if abs(x(3)−theta c)<tol

plot(x(4),x(2),’.r’);
else

break;
end

end
end
% Segona branca
for i=1:norb

x ini=x0−s∗i/norb∗v0;
x=x ini;
h=h2(x ini’);
t0=0;
for j=1:50

[ttt,xxx]=ode45(@f 2,[0 10000],x,options2);
x=xxx(end,:);
if abs(x(3)−theta c)<tol

plot(x(4),x(2),’.r’);
else

break;
end

end
end
hold off

% Homoclinic orbit main
global alpha;
global h;
alpha=1;
h=−1;
global theta c;
global v0;
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options1=optimoptions(’fsolve’,’FunctionTolerance’,
1e−13,’OptimalityTolerance’,1e−13,’StepTolerance’,1e−13);
theta c=fsolve(@dV,pi/3,options1);
options2=odeset(’Events’,@Evenfun3,’AbsTol’,1e−11,’RelTol’,1e−11);
options22=odeset(’Events’,@Evenfun2);
options3=odeset(’AbsTol’,1e−13,’RelTol’,1e−13);
x3=theta c;
intersec=25;
norb=600;
s=1e−2;
x0=[6.35315094974196;−1.07896084232869;1.26450466042599;0.333839047457243];
T= 15.154887900710179;
[tt,ZZ]=ode45(@var f2,[0 T],[x0’ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1],options3);
B = [ZZ(end,5:8);ZZ(end,9:12);ZZ(end,13:16);ZZ(end,17:20)];
[V,D]=eig(B);
v0=V(:,1)/norm(V(:,1));
hold on;
X=zeros(norb,25);
Y=zeros(norb,25);
titer=zeros(norb,25);
tol=1e−7;
options1=optimoptions(’fsolve’,’FunctionTolerance’,1e−13,’OptimalityTolerance’,1e−13,’

StepTolerance’,1e−13);
x ini=x0+s∗380/norb∗v0;
h=h2(x ini’);
x=fsolve(@findhomo,380,options1);
x ini=x0+s∗x/norb∗v0;
t=0;
for j=1:13
[tt1,xx1]=ode45(@f 2,[0 100],x ini,options2);
x ini=xx1(end,:);
t=t+tt1(end);
end
for i=1:norb

x ini=x0+s∗i/norb∗v0;
x=x ini;
h=h2(x ini’);
t0=0;
for j=1:intersec

[tt1,xx1]=ode45(@f 2,[0 100],x,options2);
x=xx1(end,:);
t0=t0+tt1(end);
X(i,j)=x(2);
titer(i,j)=t0;

end
end
hold on
for i=1:intersec

plot([1:norb],X(:,i),’.’);
end
hold off;
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% Function for finding the zero for the Homoclinic orbit
function [y] = findhomo(t)
global alpha;
global h;
global v0;
s=1e−2;
intersec=18;
x0=[6.35315094974196;−1.07896084232869;1.26450466042599;0.333839047457243];
options2=odeset(’Events’,@Evenfun3,’AbsTol’,1e−11,’RelTol’,1e−11);
x=x0+s∗v0∗t/600;
h=h2(x’);
for i=1:intersec

[tt1,xx1]=ode45(@f 2,[0 100],x,options2);
x=xx1(end,:);

end
y=x(2);
end

% Find periodic orbits main

% Example of initial points of the search
% Initial points search Schubart like periodic orbit
%x0=[0.2,0.1]’;
% Initial points search unstable periodic orbit 4
%x0=[−0.35,1.3]’;
global alpha;
global h;
alpha=1;
h=−1;
global theta c;
options1=optimoptions(’fsolve’,’FunctionTolerance’,1e−13,’OptimalityTolerance’,1e−13,’

StepTolerance’,1e−13);
theta c=fsolve(@dV,pi/3,options1);
options2=odeset(’AbsTol’,1e−13,’RelTol’,1e−13,’Events’,@Evenfun);
options3=odeset(’AbsTol’,1e−13,’RelTol’,1e−13);
x=fsolve(@Po,x0,options1);
x3=theta c;
p=cos(theta c)∗(sin(theta c)−sqrt(alpha)∗cos(theta c));
r=W(theta c)/(2∗h∗pˆ2)∗(x(1)ˆ2+x(2)ˆ2∗pˆ2/W(theta c)−2∗p);
% Initial condition periodic orbit
x=[r x(2) theta c x(1)]’;
% Find period T
%i=Crossing with the section theta=theta c
T=0;
for i=1:4 %2 or 16 (depending on the p.o)

[tt,xx]=ode45(@f 2,[0 1e−2],x,options3);
T=T+tt(end);
[tt,xx]=ode45(@f 2,[1e−2 100],xx(end,:),options2);
T=T+tt(end);
x=xx(end,:);

end

% Find periodic orbit with 16, 4 or 2 intersections with theta c per period
function [y] = Po(x)

global theta c;
global alpha;
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global h;
t0=0;
options2=odeset(’AbsTol’,1e−13,’RelTol’,1e−13,’Events’,@Evenfun);
options1=odeset(’AbsTol’,1e−13,’RelTol’,1e−13);
x3=theta c;
p=cos(theta c)∗(sin(theta c)−sqrt(alpha)∗cos(theta c));
r=W(theta c)/(2∗h∗pˆ2)∗(x(1)ˆ2+x(2)ˆ2∗pˆ2/W(theta c)−2∗p);
z0=[r x(2) x3 x(1)]’;
for i=1:4

[t,zz]=ode45(@f 2,[t0 t0+1e−2],z0,options1);
t1=t(end);
z1=zz(end,:);

[t,zz]=ode45(@f 2,[t1 1e20+t1],z1’,options2);
t0=t(end);
z0=zz(end,:);

end
y=[z0(4),z0(2)]−[x(1),x(2)];

end

% Plot connection orbit main
global alpha;
global h;
alpha=1;
h=−1;
global theta c;
options1=optimoptions(’fsolve’,’FunctionTolerance’,1e−13,’OptimalityTolerance’,1e−13,’

StepTolerance’,1e−13);
theta c=fsolve(@dV,pi/3,options1);
options2=odeset(’Events’,@Evenfun3,’AbsTol’,1e−11,’RelTol’,1e−11);
options22=odeset(’Events’,@Evenfun2);
options3=odeset(’AbsTol’,1e−13,’RelTol’,1e−13);
x3=theta c;
% Crossings
intersec=20;
% Number of elements of the discretization
norb=600;
s=1e−2;
% Initial condition periodic orbit 2
x0=[6.35315094974196;−1.07896084232869;1.26450466042599;0.333839047457243];
% Period
T= 15.154887900710179;
[tt,ZZ]=ode45(@var f2,[0 T],[x0’ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1],options3);
B = [ZZ(end,5:8);ZZ(end,9:12);ZZ(end,13:16);ZZ(end,17:20)];
[V,D]=eig(B);
v0=V(:,1)/norm(V(:,1));
hold on;
X=zeros(norb,22);
Y=zeros(norb,22);
titer=zeros(norb,22);
tol=1e−7;
for i=1:norb

x ini=x0+s∗i/norb∗v0;
x=x ini;
h=h2(x ini’);
t0=0;
for j=1:intersec

[tt1,xx1]=ode45(@f 2,[0 100],x,options2);
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x=xx1(end,:);
t0=t0+tt1(end);
while abs(x(3)−pi/2)>tol && abs(x(3)−pi/4)>tol

[tt1,xx1]=ode45(@f 2,[0 100],x,options2);
t0=t0+tt1(end);
x=xx1(end,:);

end
X(i,j)=x(1);
Y(i,j)=x(3);
titer(i,j)=t0;

end
end
hold on
for i=1:intersec

plot([1:norb],X(:,i).∗(Y(:,i)−theta c∗ones(1,norb)),’.’);
end
hold off;

% Auxiliary matlab function. Stoping time integration
function [ value, isterminal,direction ] = Evenfun3(t,y)

global alpha;
value(1)=y(4);
isterminal(1)=1;
direction=0;

end

% Auxiliary matlab function. Stoping time integration 2
function [ value, isterminal,direction ] = Evenfun2(t,y)

value(1)=y(3)−pi/2;
isterminal(1)=1;
direction=[];

end
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