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Abstract

This project aims to optimise energy consumption in Heating, Ventilation and Air
Conditioning systems modifying their working schedules. Taking advantage of a machine
learning algorithm I have developed (based on Python), schedules can be daily updated
depending on multiple variables and guaranteeing comfort. To facilitate the interaction
with the algorithm, I have also created a simple website to introduce the data required
and to display the results.

The project has been developed in Montrol Open Solutions, SL.
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Chapter 1

Introduction

1.1 Motivation

Acceptable ambient conditions are key to guarantee the wellness and productivity of both
users and employees. To ensure this, Heating, Ventilation and Air-conditioning (HVAC)
systems are installed all over the world. Nowadays, HVAC systems are responsible, ap-
proximately, of about a half of the energy consumption in buildings [1], what implies high
environmental and economic costs. Therefore, optimising the HVAC systems’ functioning
should be a ’must’ in every facility.

With this goal, many buildings already have automatic control systems to regulate
their HVAC equipment [2], but working schedules are barely never modified due to lack
of time, tools and knowledge on how to do it. Furthermore, schedules are almost always
set in a conservative way, i.e. to ensure comfort conditions in a vast majority of the
year. Thus, specially during non-extreme seasons, working schedules could be shortened
to reduce energy consumption. The same way, during the coldest/hottests days, working
schedules could be enlarged to maintain comfort.
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1.2 Objectives

The main goal of this project is to develop a user-friendly tool to permit maintenance
technicians to easily optimise the working schedules of their HVAC systems, based on
the historical data available. Also, this tool should be capable to be installed in many
different buildings without requiring a huge amount of programming hours. To do so,
several sub-goals have to be accomplished:

• Understand the automatic control of the HVAC system of a pilot installation.

• Obtain historical data from the pilot installation.

• Pre-process the data to improve its quality (data cleaning).

• Choose a proper predictive model based on heat transfer knowledge, defining the
required variables.

• Develop a methodology to predict future values from the current ones.

• Write an algorithm to optimise the working schedules.

• Prepare a user interface to facilitate interaction between the final user and the
program.

• Integrate the developed tool with the current control system.

• Check the tool’s performance.
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1.3 Scope

The scope of the project is to use machine learning techniques to reduce energy consump-
tion and/or improve thermal comfort by developing a generic and flexible tool able to be
integrated with HVAC control systems and to be commercialised. So, the tool must be
reliable, simple and safe.

The scope of this project includes data monitoring, processing and logging; program-
ming in Python to develop the machine learning algorithm; comparing statistical results
to choose the best-fitting predictive model; developing the website in HTML+PHP and
integrating the schedules-optimising tool with a Programmable Logic Controller (PLC).

Due to the nature of the data used and to be predicted (mainly temperatures) and
the capability to model it as a multi-variable linear equation as explained in Section 2.4, I
have based the predictive algorithm on multi-variable regressions. Two types of regressions
have been analysed: Linear Regression (LR) and Support Vector Regression (SVR) with
Radial Basis Function (RBF) kernel.

All the project is based on the heating installation of a pilot building located in Salt
(Girona), which is a public primary school. However, and because of several difficulties,
the testing facility is the cooling system of a small room located at my house in Gavà
(Barcelona). Testing process includes all the steps required to optimise the schedules,
from the PLC programming and sensors’ connections to the results’ checking.

Assessing the energy savings derived from the implementation of the developed soft-
ware would require a relatively long period, so it is out of scope of this project.
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Chapter 2

Background and State of the Art

2.1 Montrol Open Solutions

Montrol Open Solutions SL (MOS) [3] is a young company founded in July 2016 located in
Olot (Girona) that offers monitoring and automatic control services, specially focused on
buildings’ HVAC systems. The main motivation of MOS is to maximise energy efficiency.

Currently, the company is formed by a multidisciplinary team of 3 people with the
following backgrounds:

• Industrial Engineer

• Telecommunications Engineer

• Energy Engineer

Figure 2.1: Montrol Open Solutions SL
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2.2 Machine Learning

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that studies the cre-
ation of algorithms which allow machines (computers) to create models to predict future
behaviours based on historical data [4].

ML is strongly related with statistics and optimisation, and it usually requires a con-
siderable computational power (specially for applications with large amounts of historical
data).

Currently, there are used quite a few ML algorithm sets, being some of them [5] [6]
[7]:

• Supervised learning regression: Supervised learning regression consists in providing
an equation to the machine together with historical data, and letting it just to
calculate the coefficients associated to each variable.

• Unsupervised learning: Unsupervised learning consists in giving to the machine
a set of variables (features) and outputs (labels) and letting it to freely (without
providing any equation) treat the features to build a model to predict the label. One
of the main areas of unsupervised learning are Artificial Neural Networks (ANN.
ANN try to emulate the behaviour of biological neural networks in computers and
machines. In neural networks, between the input data and the output, some hidden
layers are found. Data is processed and weighted in each layer until the final output
is computed.

• Reinforced learning: Reinforced learning lets the machine to take free/random de-
cisions given a set of values and check the goodness of the results by using a defined
cost function. Trying to minimise the cost, the machine itself learns which decisions
has to take.
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2.3 Thermal comfort

Thermal comfort is the condition of mind that expresses satisfaction with the thermal
environment and is assessed by subjective evaluation [8]. It plays a key role in people’s
general wellness [9] and big amounts of energy are used to achieve it.

Even though thermal comfort is a subjective concept, some methodologies have been
developed to evaluate it. The principle one is the known as Predicted Mean Vote (PMV),
that has also many variations to adapt it for different conditions and environments.

PMV index predicts the mean response of a larger group of people according to the
ASHRAE thermal sense scale [10] (see Table 2.1). There exists many literature about
models to compute the thermal sense scale values [9].

Table 2.1: ASHRAE thermal sense scale

+3 Hot
+2 Warm
+1 Slightly warm
0 Neutral
-1 Slightly cool
-2 Cool
-3 Cold
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2.4 Temperature evolution modelling

As stated in [11], the temperature heat gain a room/building heated or cooled by water
radiators can be expressed as:

Q̇room = Q̇radiator + Q̇wall + Q̇window + Q̇Sun + Q̇activity (2.1)

Q̇room: Room heat exchange

Q̇room = ρroomVroomCv,room
dTroom

dt
(2.2)

ρroom: Room air density
Vroom: Room volume
Cv,room: Room air specific heat at constant volume
Troom: Room air temperature

Q̇radiator: Radiators heat exchange

Q̇radiator = Uo,radiatorFradiator∆Tml,radiatorSradiator (2.3)
Uo,hx: Radiator heat transfer coefficient
Fhx: Radiator correction factor
Shx: Radiator equivalent surface
∆Tml,hx: Radiator temperature difference logarithmic mean

∆Tml,hx = (Twater,in − Tair,out) − (Twater,out − Tair,in)
ln Twater,in−Tair,out

Twater,out−Tair,in

(2.4)

Twater,in: Water temperature at the radiator inlet
Tair,out: Air temperature at the radiator outlet
Twater,out: Water temperature at the radiator outlet
Tair,in: Air temperature at the radiator inlet

Q̇wall: Walls heat exchange

Q̇wall = Text − Troom

Rair,in +Rwall +Rair,ext

Swall (2.5)
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Text: Exterior air temperature
Swall: Walls equivalent surface
Rair,in: Interior air convection thermal resistance

Rair,in = 1
hair,in

(2.6)

hair,in: Interior air convection heat transfer coefficient

Rwall: Wall conduction thermal resistance
Rwall = Lwall

kwall

(2.7)

Lwall: Wall thickness kwall: Wall conduction heat transfer coefficient
Rair,ext: Exterior air convection thermal resistance

Rair,out = 1
hair,out

(2.8)

Q̇window: Windows heat exchange

Q̇window = Text − Troom

Rair,in +Rwindow +Rair,out

Swindow (2.9)

Swindow: Window equivalent surface
Rwindow: Window conduction thermal resistance

Rwindow = Lwindow

kwindow

(2.10)

Lwindow: Window thickness kwindow: Window conduction heat transfer
coefficient

Q̇Sun: Sun heat exchange. It is a function of many parameters, being the main ones
the geographical position (latitude and longitude), solar position (altitude and azimuth)
and sky state.

Q̇activity: Activity (humans and devices) heat exchange. To keep it simple, it can be
expressed as a function of the room’s occupation.

Substituting in Equation 2.1, grouping all the constants (and assuming thermal coeffi-
cients as constants, even though they are actually not), the resulting expression to model
room temperature is:

a
dTroom

dt
= b∆Tml + c(Text − Troom) + d(Text − Troom) + e(SolarPos) + f(Occ) (2.11)

Dividing by coefficient ’a’ (to isolate dTroom

dt
) and accordingly defining new coefficients,
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the final expression is:

dTroom

dt
= B∆Tml +C(Text − Troom) +D(Text − Troom) +E(SolarPos) +F (Occ) (2.12)
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Chapter 3

Pilot installation

3.1 Overview

The selected building to study its temperature evolution and apply a schedule’s optimi-
sation tool is a primary school located in Salt (Girona).

The school works from 9 a.m. to 5 p.m. on workdays, and is closed on weekends.
This winter, the school has had some issues to keep the temperature at comfort levels
(specially on Mondays’ mornings) and has been forced to close at least once due to low
temperatures inside the classrooms. To solve this problem, heating system’s schedule has
been extended, increasing energy costs.

Figure 3.1: Pilot installation image
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3.2 Heating system

For heating purposes, the school is divided in two big areas: one oriented towards north
and another towards south.

The heating system is composed by a water boiler and two levels of water circuits.
The first level corresponds to the primary water circuit, which goes trough the boiler and
is heated up to the boiler set-point. The second level corresponds to the secondary water
circuits and is split into two circuits, one for each area (north and south) that bring the
hot water to the radiators that heat the rooms.

Water from the supply flow of the primary circuit is mixed with water from the return
flow of each of the secondary circuits using 3-ways valves to achieve the desired flow
temperature.

Lastly, two water pumps are located in parallel in each circuit to move the water.
These devices rotate weekly.

Figure 3.2: Heating system scheme
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3.3 Control system

3.3.1 Architecture

The architecture of the control system is simple: the field elements (sensors and actuators)
are connected to the Inputs/Outputs (I/O) module of the (PLC), which is located in a
panel near the boiler’s room. This I/O module is then connected via communications
bus with the communications module, that is connected via Ethernet with the router,
which sends and receives the information via Internet Protocol (IP) and some proprietary
protocol to the Supervisory Control And Data Acquisition (SCADA) located in a remote
PC.

Figure 3.3: Architecture scheme

3.3.2 Field components

As introduced in subsection 3.3.1, field elements composing the control system are the
controllers, the sensors and the actuators. In this case, these are the following ones:

PLC: I/O module, Net module.

Sensors: Water temperature probes and air temperature probes.
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Actuators: 3-ways valve actuator, pump’s motor, boiler’s burner.

3.3.3 Algorithm

The goal of the control system is to maintain the rooms’ temperature above a minimum
temperature. To do so, when the working schedule is ON, the boiler’s burner is regulated
to achieve a primary circuit return temperature equal to 60◦. Then, depending on the
area’s ambient and the exterior temperature, the secondary circuit supply temperature
set-point is computed as follows:

The 3-ways valve actuators regulate to maintain the secondary circuits’ supply temper-
ature as close as possible to the set-point to heat (or not) the rooms. When the set-point
is below 60◦, the valves are forced to be closed.
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Chapter 4

Temperature prediction model

4.1 Available data

In the controller, each variable is stored in a separate csv file that must be downloaded
manually. Data is recorded every 15 min, and comprises the following variables:

• Secondary circuit supply temperature setpoint (North area) [◦C]

• Secondary circuit supply temperature setpoint (South area) [◦C]

• Boiler’s burner regulation [%]

• 3-ways valve regulation (North area) [%]

• 3-ways valve regulation (South area) [%]

• Ambient temperature (North area) [◦C]

• Ambient temperature (South area) [◦C]

• Exterior temperature [◦C]

• Boiler’s supply temperature [◦C]

• Secondary circuit supply temperature (North area) [◦C]

• Secondary circuit supply temperature (South area) [◦C]
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4.2 Model

To predict temperature evolution, the model considered is based on multi-variable regres-
sions and following Equation 2.12. To keep the physical meaning of the coefficients, what
is predicted are ambient temperature differentials. This way, each regression coefficient is
related to one type of heat transfer. Furthermore, the differential between a time t and
t-1 must be predicted with only the t-1 data.

Data pre-processing is required to compute the temperature differentials of the histor-
ical data and to add some variables that are not recorded directly, such as solar position
(to allow irradiance estimations) and building’s occupation.

With respect to the model proposed in Section 2.4, some simplifications have been
introduced:

• Due to the lack of water return temperature data, ∆Tml in the radiators is assumed
to be equal to the temperature difference between the secondary circuit supply
temperature and the ambient temperature. ∆Tml ≈ Twater,sup − Tamb

• Wall and windows heat transfer has been mixed together in the same coefficient, as
the associated variable is the same (Text − Tamb)

• Heat gain from the Sun is assumed to be independent of the sky state. This is surely
not a good assumption, but there is no information on the sky state of the historical
data.

• Solar position has been divided in two variables with their own coefficient: altitude
and azimuth. This way, theoretically, building’s orientation is better described.

• Building’s occupation is assumed to be a boolean variable (1 for occupied building
and 0 for unoccupied building). Building is assumed to be occupied on weekdays
from 9 a.m. to 5 p.m. Therefore, in the model is not considered partial occupation.

So, Equation 2.12 can be expressed as:

dTroom

dt
= B(Twater,sup − Tamb) + CD(Text − Tamb)

+ E1(sin(Altitude)) + E2(cos(Azimuth)) + F (Occ) (4.1)
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Figure 4.1: Variables scheme

Variables scheme used is summarised in Figure 4.1

4.2.1 Training and testing

Available data has been split in two big groups: training data and testing data. Training
data is used to compute the coefficients and to construct the model, and testing data is
used to evaluate the model’s performance. In the present case, testing data has been set
as the last 48h of data. This way of splitting the data is useful to test the model behaviour
against what can be considered as the most similar day compared to the one it has to be
predicted.

From all the available variables, not all the theoretically identified might be useful.
Therefore, a study comparing various featuresâĂŹ combinations has been performed.

Also, old data is not necessarily useful to predict the temperature evolution of the
building in the near future. For example, data from February might not be useful at all
to predict a day in May. To prove this, the effect of setting a initial cutting date to neglect
all previous data has been studied.

Lastly, two different ways of performing multi-variable regressions have been tested:
linear regression and Support Vector Machines with ’rbf’ kernel.

To choose the best model among all the exposed ones, mean Squared Error (MSE)
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when predicting the temperature evolution of the last 24-48h of the real data available
(corresponding to 7th and 8th May 2018). As is proven in refer section 4.2.3, the er-
ror when predicting the ambient temperature differential presents a normal distribution
around a mean value of 0. Therefore, it is easy to define the confidence interval of the
prediction given the standard deviation of the error. Taking into account that is error is
propagated in every prediction, the resulting expression is:

Tamb,h = Tamb,h−1 + dTamb ± ∆Tamb (4.2)

For a 95% confidence interval:

∆Tamb = 2σerr,h (4.3)

σerr,h =
√
σ2

err,h−1 + σ2
err (4.4)

Therefore
Tamb,h = Tamb,h−1 + dTamb ± 2

√
σ2

err,h−1 + σ2
err (4.5)

4.2.2 Features

Features’ combinations considered have been (and according to what exposed in Sec-
tion 2.4 and Section 4.2):

• Combination 1:

Secondary circuit supply temperature - Ambient temperature

dTroom

dt
= B(Twater,sup − Tamb) (4.6)

• Combination 2:

Secondary circuit supply temperature - Ambient temperature

Exterior temperature - Ambient temperature

dTroom

dt
= B(Twater,sup − Tamb) + CD(Text − Tamb) (4.7)
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• Combination 3:

Secondary circuit supply temperature - Ambient temperature

Exterior temperature - Ambient temperature

Sine of the solar altitude

dTroom

dt
= B(Twater,sup − Tamb) + CD(Text − Tamb) + E1(sin(Altitude)) (4.8)

• Combination 4:

Secondary circuit supply temperature - Ambient temperature

Exterior temperature - Ambient temperature

Sine of the solar altitude

Cosine of the solar azimuth

dTroom

dt
= B(Twater,sup − Tamb) + CD(Text − Tamb)

+ E1(sin(Altitude)) + E2(cos(Azimuth)) (4.9)

• Combination 5:

Secondary circuit supply temperature - Ambient temperature

Exterior temperature - Ambient temperature

Sine of the solar altitude

Cosine of the solar azimuth

Occupation

dTroom

dt
= B(Twater,sup − Tamb) + CD(Text − Tamb)

+ E1(sin(Altitude)) + E2(cos(Azimuth)) + F (Occ) (4.10)

• Combination 6:

Secondary circuit supply temperature - Ambient temperature

Exterior temperature - Ambient temperature

Sine of the solar altitude
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Occupation

dTroom

dt
= B(Twater,sup − Tamb) + CD(Text − Tamb)

+ E1(sin(Altitude)) + F (Occ) (4.11)

• Combination 7:

Secondary circuit supply temperature - Ambient temperature

Exterior temperature - Ambient temperature

Occupation

dTroom

dt
= B(Twater,sup − Tamb) + CD(Text − Tamb) + F (Occ) (4.12)

4.2.3 Results

Table 4.1: North area: MSE

24h 48h
LR SVR LR SVR

Comb. 1 0.43 0.43 0.82 0.86
Comb. 2 0.52 0.25 0.72 0.75
Comb. 3 0.64 0.26 0.82 0.63
Comb. 4 0.42 0.47 0.71 0.81
Comb. 5 0.31 0.29 0.58 0.82
Comb. 6 0.41 0.36 0.59 0.81
Comb. 7 0.31 0.42 0.40 0.67

Analysing the results, the best model to predict temperature evolution for the last 48h
in the North area is, by far, LR with features’ combination 7 (see Figure 4.2). For the
South area, however, the best model is LR with features’ combination 6 (see Figure 4.5).
Complete results (and plots) are found in Annex I.

Optimal regression coefficients are summarised in Table 4.5:

Figure 4.4 and Figure 4.5 prove that the error made when predicting ambient temper-
ature differentials presents a normal distribution around a mean value of 0 (as stated in
subsection 4.2.1).

So, it is concluded that:
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Table 4.2: North area: Data cutting date

24h 48h
LR SVR LR SVR

Comb. 1 05/03/2018
2:30

04/03/2018
17:45

05/03/2018
3:30

04/03/2018
13:45

Comb. 2 04/03/2018
16:00

05/03/2018
1:15

05/03/2018
3:15

04/03/2018
19:30

Comb. 3 05/03/2018
5:15

04/03/2018
14:45

28/02/2018
2:00

04/03/2018
14:15

Comb. 4 24/02/2018
11:30

04/03/2018
17:45

28/02/2018
2:00

04/03/2018
17:30

Comb. 5 24/02/2018
21:15

26/02/2018
23:15

28/02/2018
4:15

04/03/2018
17:15

Comb. 6 28/02/2018
3:45

28/02/2018
22:00

28/02/2018
4:15

04/03/2018
17:45

Comb. 7 01/03/2018
16:00

04/03/2018
17:30

01/03/2018
16:00

04/03/2018
19:30

Table 4.3: South area: MSE

24h 48h
LR SVR LR SVR

Comb. 1 0.24 0.25 0.27 0.28
Comb. 2 0.19 0.28 0.24 0.28
Comb. 3 0.15 0.12 0.21 0.22
Comb. 4 0.15 0.12 0.22 0.22
Comb. 5 0.06 0.02 0.11 0.15
Comb. 6 0.04 0.03 0.10 0.13
Comb. 7 0.09 0.02 0.13 0.18

• All prediction models work better for the South area rather than for the North one.

• LR and SVR present similar accuracy results, being LR slightly better for longer-
term predictions.

• Adding more variables does not always increase accuracy (but does not neither
decrease it neither). This can be caused by the fact that both solar altitude, azimuth
and building occupation are strongly related to the hour, so taking into account all
three variables may result in redundancies.

• The optimal amount of data to train the model corresponds, approximately and for
all models, to 2 months before the date to be predicted. Less data make the models
imprecise, but older data only disturbs the results.
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Table 4.4: South table: Data cutting date

24h 48h
LR SVR LR SVR

Comb. 1 05/03/2018
2:30

04/03/2018
12:15

05/03/2018
3:15

01/03/2018
16:45

Comb. 2 05/03/2018
8:30

28/02/2018
14:45

05/03/2018
2:45

05/03/2018
1:00

Comb. 3 05/03/2018
4:30

04/03/2018
11:45

05/03/2018
5:15

04/03/2018
18:00

Comb. 4 05/03/2018
4:30

01/03/2018
16:15

05/03/2018
3:30

04/03/2018
18:00

Comb. 5 05/03/2018
6:15

28/02/2018
10:45

26/02/2018
22:45

01/03/2018
10:30

Comb. 6 05/03/2018
6:30

01/03/2018
10:15

26/02/2018
12:15

25/02/2018
11:00

Comb. 7 28/02/2018
15:45

04/03/2018
16:45

28/02/2018
8:30

04/03/2018
18:00

Table 4.5: Regression best-fitting coefficients

North South
B 0.01013563 0.00270163
CD 0.00703451 0.00398531
E1 - -0.02169058
E2 - -
F 0.0664441 0.05828716

Figure 4.2: 48h temperature evolution prediction. North area.
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Figure 4.3: 48h temperature evolution prediction. South area.

Figure 4.4: Prediction error histogram. North area.
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Figure 4.5: Prediction error histogram. South area.
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Chapter 5

Optimisation algorithm

5.1 Algorithm description

The optimisation algorithm consists in, basically, an iterative temperature prediction
process.

The required input data are:

• Current temperature

• Temperature setpoint

• Initial date and time

• Final date and time

The algorithm can be divided in two sub-processes, one computing the optimal starting
date and time for the installation, and the other computing the optimal ending date and
time.

To optimise starting date and time, and for energy efficiency purposes, the initial guess
is that starting date/time is equal to the initial date/time introduced by the user (i.e. if
the user wants thermal comfort between 9 a.m. and 5 p.m., first iteration is performed
assuming the heating installation starts working exactly at 9 a.m.). Iterations’ procedure
is:
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1. Iteration starting date/time = Initial date/time

2. Get current date/time

3. Get current ambient temperature

4. Predict temperature at initial date/time

5. (a) If initial ambient temperature > setpoint:
Optimal starting date/time = Iteration starting date/time

(b) Else:
Iteration starting date/time = Iteration starting date/time - 15min
Back to point 4

On contrary, to optimise heating shut down, the initial guess is that the ending date/-
time for the heating installation is equal to the initial date/time (i.e. ending date/time
equal to 9 a.m., following the previous example).

1. Iteration ending date/time = Initial date/time

2. Get current date/time

3. Get current ambient temperature

4. Predict temperature at final date/time

5. (a) If ambient temperature is always > setpoint:
Optimal ending date/time = Iteration ending date/time

(b) Else:
Iteration ending date/time = Iteration ending date/time + 15min
Back to point 4
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5.2 Optimisation results

Optimisation results have been evaluated by predicting the optimal working schedule of
the heating installation for the 5th June 2018. Despite not being the best moment to
analyse a heating system, and despite not having connection with the field elements,
some valid results regarding the performance of the algorithm could be extracted.

To perform the simulation, I have assumed that, the day before (4th June 2018) at
6 p.m., the maintenance technician decides to optimise the schedule for the day after.
Setting a temperature setpoint of 24.0◦C and estimating a current ambient temperature
of 22.0◦C in both North and South areas, to be above the setpoint between 9 a.m. and 5
p.m., the optimal heating schedule would be from 6:45 a.m. to 9 a.m. in the North area
and from 2:15 a.m. to 9 a.m. in the South area.

Comparing the optimal schedule results with the normal schedule, in the North area,
energy savings are estimated in a 10% for this precise day. In the South area, energy
consumption would be higher, but thermal comfort would be better. Main results are
summarised in Table 5.1.

Table 5.1: Optimisation results

North South
Optimal schedule 6:45 a.m. - 9 a.m. 2:30 a.m. - 9 a.m.

Temp. at 9 a.m. (opt. sch.) [◦C] 24.1 24.0
Temp. at 9 a.m. (std. sch.) [◦C] 24.5 23.1
Temp. at 5 p.m. (opt. sch.) [◦C] 25.5 25.2
Temp. at 5 p.m. (std. sch.) [◦C] 25.8 25.2
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Chapter 6

Tool integration

6.1 Communications

The optimisation tool is thought to be installed in a PC connected via TCP/IP with
the PLC. Data is sent and received to/from the PLC using a communications standard
protocol, being Modbus TCP the one used in this project (running on port 502).

Modbus function used has been Holding Registers (what allows reading and writing
data).

Modbus adresses have been defined as follows:

• Adress 0: Enable optimal schedule

• Adress 1: Optimal initial minute

• Adress 2: Optimal initial hour

• Adress 3: Optimal initial day

• Adress 4: Optimal initial month

• Adress 5: Optimal initial year

• Adress 6: Optimal final minute

• Adress 7: Optimal final hour
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• Adress 8: Optimal final day

• Adress 9: Optimal final month

• Adress 10: Optimal final year

• Adress 11-12: Current ambient temperature
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6.2 Aemet API

The meteorological prediction is obtained taking advantage of the API created by the
Spanish Meteorological Agency (AEMET) [12], that provides a town-based hourly pre-
diction for the 48h after the query.

To interact with the API, a personal alphanumeric key is required. The procedure to
obtain it is really easy and it only involves mail registration and validation.

Lastly, to request town-based predictions, the town’s code has to be known (or con-
sulted in a database). The two towns considered in this project (Salt and Gavà) have the
codes presented in Table 6.1:

Table 6.1: AEMET API town codes

Town Code
Salt 17155
Gavá 08089
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6.3 User Interface

The user interface has been developed as a webpage programmed with HTTP and PHP,
and runs over a local server (based on Apache).

The webpage is very simple, and it contains 3 pages:

• Login (see Figure 6.1): To initiate user’s session. If the user and password match
the defined ones, redirects to page ’Input data’.

• Input data (see Figure 6.2): To allow the introduction of data by the user. If
all data is introduced properly, optimisation algorithm can be ran clicking on the
button ’Launch Calculations’.

• Results (see Figure 7.1): To show the optimisation results. Once the optimisation
algorithm has finished working, results are displayed. Then, the computed schedule
can be sent to the PLC clicking on the button ’Send Data’.

Figure 6.1: User Interface. Login.
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Figure 6.2: User Interface. Data input.

Figure 6.3: User Interface. Results.
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Chapter 7

Test installation

7.1 Overview

This test installation has been added to fully prove the tool, as testing was not feasible
in the pilot installation due to several reasons. The installation consists on a small room
with an air-conditioning and heating machine. The device is controlled by a thermostat,
that sends an ON/OFF signal to the refrigerant compressor and to the air fan. The
temperature setpoint is changed by a potentiometer, and Heat/Cool mode is chosen by a
switch. Empirically, I have seen that the hysteresis band of the control is equal to 2.5◦C.
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Figure 7.1: Test installation image

7.2 Prediction model

The theoretical equation to model temperature is almost identical to the one exposed
in Section 2.4 and Section 4.2 but with one difference has to be mentioned: in this
installation, instead of radiators, room air is cooled/heated by direct mixing with the
discharge air coming from the split. However, the resulting best-fitting equation is:

dTroom

dt
= B(Tdischarge − Troom) + F (Occ) (7.1)

Exterior temperature had also been recorded, but results when taking into account
were absurd and, thus, discarded.



Machine learning for energy consumption optimisation in HVAC systems 37

7.3 Results

Temperature modelling results for this test installation have not been really meaningful
due to the small amount of data available. A lot of data had to be erased because an
error I made when programming the PLC, that resulted in non-valid values.

However, the purpose of this test installation was to prove the integration of the
schedules-optimisation algorithm with the PLC, what has been a success. Data can be
read and written to the PLC and schedules can be updated according to the values
computed by the software.
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Chapter 8

Economic study

8.1 Costs

8.1.1 Material cost

Material costs are highly dependent on the existing elements in the facility (if any) and
the number of control points required.

In the best case, meaning that all required sensors are already present in the instal-
lation and that PLCs are able to communicate via a standard communications protocol,
material costs could be null.

For all other cases, cost of the hardware elements would be:

• PC: 500.00 e/unit

• PLC: 351.00 e/unit

• Exterior air temperature probe: 33.00 e/unit

• Ambient air temperature probe: 22.50 e/unit

• Duct air temperature probe: 53.50 e/unit

• Duct water temperature probe: 92.00 e/unit
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• Solar irradiance sensor: 138.80 e/unit

Also, distribution panel connection and mounting (if required) and installation hours must
be accounted, but they are strongly case-dependent and difficult to extrapolate from a
building to another.

8.1.2 Engineering costs

Engineering costs include adapting the program to each facility, studying and choosing
the best features’ combinations to predict temperatures, installing all software required
and integrating the schedules’ optimiser tool with the HVAC control system.

All this is estimated to last for 8h, what is translated into 400 e.
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8.2 Savings

Economic savings have not been studied in any real installation, as it was out of the scope
of the project. However, I have performed some predictions.

For a building where only engineering costs were required (that would mean that there
is already a HVAC control system working and, thus, further energy savings would come
from optimising schedules), to achieve a payback of 6 months, yearly savings should be
higher than the ones shown in Table 8.1 (energy prices have been obtained from [13] and
[14]).

Table 8.1: Required savings

Price [e/kWh] Required savings [kWh/year]
Natural gas 0.05 16000
Electricity 0.13 6154

For a natural gas boiler like the one present at the pilot installation, with a power
of 100 kW, assuming it is working 6 months/year during an average of 59h 45min per
week (Mondays from 4:15 to 17:00 and from Tuesday to Friday from 5:15 to 17:00) and
estimating an efficiency equal to 90%, saving 16000 kWh/year means a gas consumption
reduction equal to a 10%.
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Chapter 9

Environmental impact

9.1 Cost

To fully assess environmental costs, a Life Cycle Assessment should be performed for all
the elements required to properly run the optimisation tool, but this is out of scope of
the project.

Despite this, considering that the project’s goal is just the developing of the software
tool, and assuming that the PC where it would be installed would be running whether or
not this software is implemented, environmental costs can be considered as null.
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9.2 Savings

Environmental ’savings’ (understanding savings as avoided emissions), are directly related
to the energy savings achieved by optimising schedules.

Assuming that the software will only be installed if the payback goal of 6 months
is achieved (see Section 8.2), CO2 equivalent emissions’ savings would be, at least, the
figures displayed in Table 9.1. Specific emissions for electricity have been assumed to be
equal to 392 gCO2/kWh [15]. Specific emissions for natural gas have been assumed to be
equal to 252 gCO2/kWh [16].

Table 9.1: CO2 equivalent emissions savings

Min. En. savings [kWh/year] Min. CO2 eq. savings [kg CO2 eq./year]
Natural gas 16000 4032
Electricity 6154 2413
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Chapter 10

Conclusions

Optimising HVAC working schedules daily using ML techniques is not only technically
possible (as proven in the test installation), but also feasible and sustainable.

From an environmental point of view, feasibility is evident: costs are almost null, and
emissions reduction is estimated in, at least, a 10%.

From an economic point of view, feasibility depends strongly on the already existing
control system and the installation requirements. Analysing just the software (that is the
scope of this project), economic feasibility (i.e. payback < 6 months) starts for energy
savings larger than 16000 kWh for natural gas and 6154 kWh for electricity (considering
prices exposed in Section 8.2). This values, despite being big, represent (for example) just
a 10% consumption reduction for a 100 kW natural gas boiler.

Academically, this project has allowed me to improve (a lot) my programming skills
specially with Python (which I had not touched it since my 1st engineering year) and with
HTML and PHP (what I had never seen before). Also, I have reviewed a considerable part
about heat transfer. Lastly, I have been able to compute and understand some statistics
concepts I had studied years ago.

Personally, developing the project while working full-time has forced me to organise
a lot my time (both my working time and my free time) and has made me prove my
willpower.
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Chapter 11

Future work

Future work will basically consist in checking the performance of the developed tool in
a real installation during a long period of time, assessing energy savings and thermal
comfort gains (if any).

Furthermore, the user interface should be improved making it more attractive and
safe.

Lastly, some other ML techniques could be assessed. For example, reinforced learning
could be interesting to let the software freely decide the schedule.
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Annexes

Annex I: Pilot installation prediction models’ compar-
ison

This Annex contains the main results of the various simulations performed to choose the
best regression model and the best features’ combinations.
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Linear Regression. Variables combination 1. Prediction time 48h

North South
MSE [◦C] 0.82 0.27

Error st. dev. [◦C] 0.11 0.10
67% conf. int. [◦C] 1.55 1.44
95% conf. int. [◦C] 3.09 2.88

Linear Regression. North Area. Variables combination 1. Prediction time 48h

Linear Regression. South Area. Variables combination 1. Prediction time 48h
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Linear Regression. Variables combination 2. Prediction time 48h

North South
MSE [◦C] 0.72 0.24

Error st. dev. [◦C] 0.11 0.10
67% conf. int. [◦C] 1.51 1.44
95% conf. int. [◦C] 3.02 2.87

Linear Regression. North Area. Variables combination 2. Prediction time 48h

Linear Regression. South Area. Variables combination 2. Prediction time 48h
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Linear Regression. Variables combination 3. Prediction time 48h

North South
MSE [◦C] 0.72 0.21

Error st. dev. [◦C] 0.11 0.10
67% conf. int. [◦C] 1.49 1.41
95% conf. int. [◦C] 2.98 2.83

Linear Regression. North Area. Variables combination 3. Prediction time 48h

Linear Regression. South Area. Variables combination 3. Prediction time 48h
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Linear Regression. Variables combination 4. Prediction time 48h

North South
MSE [◦C] 0.71 0.22

Error st. dev. [◦C] 0.11 0.10
67% conf. int. [◦C] 1.49 1.44
95% conf. int. [◦C] 2.98 2.88

Linear Regression. North Area. Variables combination 4. Prediction time 48h

Linear Regression. South Area. Variables combination 4. Prediction time 48h
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Linear Regression. Variables combination 5. Prediction time 48h

North South
MSE [◦C] 0.58 0.11

Error st. dev. [◦C] 0.11 0.10
67% conf. int. [◦C] 1.45 1.37
95% conf. int. [◦C] 2.90 2.73

Linear Regression. North Area. Variables combination 5. Prediction time 48h

Linear Regression. South Area. Variables combination 5. Prediction time 48h
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Linear Regression. Variables combination 6. Prediction time 48h

North South
MSE [◦C] 0.59 0.10

Error st. dev. [◦C] 0.11 0.10
67% conf. int. [◦C] 1.45 1.37
95% conf. int. [◦C] 2.91 2.74

Linear Regression. North Area. Variables combination 6. Prediction time 48h

Linear Regression. South Area. Variables combination 6. Prediction time 48h



60 Machine learning for energy consumption optimisation in HVAC systems

Linear Regression. Variables combination 7. Prediction time 48h

North South
MSE [◦C] 0.40 0.13

Error st. dev. [◦C] 0.10 0.10
67% conf. int. [◦C] 1.36 1.38
95% conf. int. [◦C] 2.73 2.76

Linear Regression. North Area. Variables combination 7. Prediction time 48h

Linear Regression. South Area. Variables combination 7. Prediction time 48h
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Support Vector Regression. Variables combination 1. Prediction time 48h

North South
MSE [◦C] 0.86 0.28

Error st. dev. [◦C] 0.11 0.10
67% conf. int. [◦C] 1.55 1.44
95% conf. int. [◦C] 3.09 2.88

Support Vector Regression. North Area. Variables combination 1. Prediction time 48h

Support Vector Regression. South Area. Variables combination 1. Prediction time 48h
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Support Vector Regression. Variables combination 2. Prediction time 48h

North South
MSE [◦C] 0.75 0.28

Error st. dev. [◦C] 0.11 0.11
67% conf. int. [◦C] 1.49 1.46
95% conf. int. [◦C] 2.98 2.93

Support Vector Regression. North Area. Variables combination 2. Prediction time 48h

Support Vector Regression. South Area. Variables combination 2. Prediction time 48h
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Support Vector Regression. Variables combination 3. Prediction time 48h

North South
MSE [◦C] 0.69 0.21

Error st. dev. [◦C] 0.10 0.10
67% conf. int. [◦C] 1.45 1.45
95% conf. int. [◦C] 2.90 2.89

Support Vector Regression. North Area. Variables combination 3. Prediction time 48h

Support Vector Regression. South Area. Variables combination 3. Prediction time 48h
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Support Vector Regression. Variables combination 4. Prediction time 48h

North South
MSE [◦C] 0.81 0.22

Error st. dev. [◦C] 0.11 0.10
67% conf. int. [◦C] 1.49 1.43
95% conf. int. [◦C] 2.98 2.86

Support Vector Regression. North Area. Variables combination 4. Prediction time 48h

Support Vector Regression. South Area. Variables combination 4. Prediction time 48h
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Support Vector Regression. Variables combination 5. Prediction time 48h

North South
MSE [◦C] 0.82 0.15

Error st. dev. [◦C] 0.10 0.10
67% conf. int. [◦C] 1.44 1.35
95% conf. int. [◦C] 2.89 2.70

Support Vector Regression. North Area. Variables combination 5. Prediction time 48h

Support Vector Regression. South Area. Variables combination 5. Prediction time 48h
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Support Vector Regression. Variables combination 6. Prediction time 48h

North South
MSE [◦C] 0.81 0.13

Error st. dev. [◦C] 0.11 0.10
67% conf. int. [◦C] 1.47 1.37
95% conf. int. [◦C] 2.94 2.74

Support Vector Regression. North Area. Variables combination 6. Prediction time 48h

Support Vector Regression. South Area. Variables combination 6. Prediction time 48h
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Support Vector Regression. Variables combination 7. Prediction time 48h

North South
MSE [◦C] 0.67 0.18

Error st. dev. [◦C] 0.11 0.10
67% conf. int. [◦C] 1.47 1.35
95% conf. int. [◦C] 2.95 2.71

Support Vector Regression. North Area. Variables combination 7. Prediction time 48h

Support Vector Regression. South Area. Variables combination 7. Prediction time 48h
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Annex II: Test installation prediction models’ compar-
ison

Linear Regression. Variables combination 1. Prediction time 12h

MSE 0.96
Error st. dev. 0.15
67% conf. int. 1.78
95% conf. int 3.56

Linear Regression. Variables combination 1. Prediction time 12h
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Linear Regression. Variables combination 2. Prediction time 12h

MSE 1.96
Error st. dev. 0.15
67% conf. int. 1.78
95% conf. int 3.56

Linear Regression. Variables combination 2. Prediction time 12h
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Support Vector Regression. Variables combination 1. Prediction time 12h

MSE 14.81
Error st. dev. 0.18
67% conf. int. 2.15
95% conf. int 4.30

Support Vector Regression. Variables combination 1. Prediction time 12h
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Support Vector Regression. Variables combination 2. Prediction time 12h

MSE 15.10
Error st. dev. 0.16
67% conf. int. 1.85
95% conf. int 3.70

Support Vector Regression. Variables combination 2. Prediction time 12h



72 Machine learning for energy consumption optimisation in HVAC systems

Annex III: Test installation connections scheme
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Annex IV: Test installation field elements user manu-
als

Due to the size of the user manuals, they have been located into an attached folder.


	Abstract
	Index of figures
	Index of tables
	Acronyms
	Introduction
	Motivation
	Objectives
	Scope

	Background and State of the Art
	Montrol Open Solutions
	Machine Learning
	Thermal comfort
	Temperature evolution modelling

	Pilot installation
	Overview
	Heating system
	Control system
	Architecture
	Field components
	Algorithm


	Temperature prediction model
	Available data
	Model
	Training and testing
	Features
	Results


	Optimisation algorithm
	Algorithm description
	Optimisation results

	Tool integration
	Communications
	Aemet API
	User Interface

	Test installation
	Overview
	Prediction model
	Results

	Economic study
	Costs
	Material cost
	Engineering costs

	Savings

	Environmental impact
	Cost
	Savings

	Conclusions
	Future work
	Acknowledgement
	Bibliography
	Annexes
	Annex I: Prediction models' comparison
	Annex II: Test installation prediction models' comparison
	Annex III: Test installation connections scheme
	Annex IV: Test installation field elements user manuals


