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Abstract: This paper suggests a novel nonlinear state feedback stabilization control law using linear matrix 

inequalities for a class of time-delayed nonlinear dynamic systems with Lipschitz nonlinearity conditions. 

Based on the Lyapunov-Krasovskii stability theory, the asymptotic stabilization criterion is derived in the 

linear matrix inequality form and the coefficients of the nonlinear state-feedback controller are determined. 

Meanwhile, an appropriate criterion to find the proper feedback gain matrix F is also provided. The 

robustness purpose against nonlinear functions and time-delays is guaranteed in this scheme. Moreover, the 

problem of robust H∞ performance analysis for a class of nonlinear time-delayed systems with external 

disturbance is studied in this paper. Simulations are presented to demonstrate the proficiency of the offered 

technique. For this purpose, an unstable nonlinear numerical system and a rotary inverted pendulum system 

have been studied in the simulation section. Moreover, an experimental study of the practical rotary inverted 

pendulum is provided. These results confirm the expected satisfactory performance of the suggested 

method. 
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1. Introduction 

Time delays are often sources of instability and degradation of system efficiency in many control systems 

and are frequently encountered in a wide range of nonlinear dynamical systems, such as pneumatic systems 

[1], chemical engineering [2], hydraulic systems [3], biological systems [4], nuclear reactors [5] and 

population dynamics models [6]. The problem of stabilization of the time-delayed dynamical systems and 

synthesis of controllers for them has received a significant attention over the past years and different 

approaches have been proposed. Nevertheless, the offered methodologies remain restrictive to the specific 

classes of nonlinear systems, and there is any general technique to analyze and synthesize the general class 

of nonlinear systems [7-9]. This is the purpose of the current investigation on the analysis and control of the 

time-delayed nonlinear systems. For this purpose, selection of the predefined variables using a powerful 

computational design tool such as linear matrix inequality (LMI) technique is required.   

LMIs have developed as an influential structure and design procedure for various control problems [10]. 

In the past years, this method has been applied to find solutions of minimization convex problems, for 

instance, H2 control [11], H∞ control [12] and guaranteed cost control [13]. Even though LMI is a convex 

optimization problem, such structure offers a numerically tractable mean for hard problems in the absence 

of analytical solutions. Moreover, some effective interior-point algorithms are now available to solve LMI 

problems. In [14], an LMI-based H∞ state feedback stabilization problem for the uncertain switched 

impulsive linear systems with state-delays and nonlinear parametric uncertainties is proposed. In [15], a 

robust H∞ fuzzy control method for TS-fuzzy time-delayed discrete-time bilinear systems with disturbances 

is proposed where the conditions of the system stability are formulated in the form of LMIs. In [16], the 

problem of stabilization analysis using LMIs and robust H∞ controller design for time-delayed systems with 

stochastic disturbances and parametric uncertainties is investigated. In [17], an LMI-based Robust H∞ state-



  

feedback controller for the uncertain discrete-time systems with state-delays is proposed. In [18], using a 

quadratic Lyapunov functional and variation of parameters method, the problem of LMI-based delay-

dependent BIBO stabilization control for the uncertain time-delayed systems is investigated. In [19], a 

nonlinear matrix inequality is employed as a stabilization condition for uncertain time-delayed linear 

systems. In [20], the robust exponential stabilization problem based on the Lyapunov parameter-dependent 

function and LMIs for a class of uncertain systems with time-varying delays is investigated. In [21], the 

stabilization problem of a two-dimensional Burgers equation around a stationary solution using nonlinear 

feedback boundary controller is investigated. In [22], the stabilization problem of uniform Euler-Bernoulli 

beam via nonlinear locally-distributed feedback controller is studied where the energy of the beam decays 

exponentially. In [23], chaotification technique based on the nonlinear time-delayed feedback control 

method for a two-dimensional vibration isolation floating raft structure is presented. In [24], the 

synchronization problem of the uncertain time-delay chaotic systems with the unknown inputs in a drive-

response framework using robust adaptive observer-based controller is investigated. In [25], the nonlinear 

vibration control problem of the active vehicle suspension systems with the actuator delays using feedback 

linearization technique is studied. In [26], the impact of delays on the self-excited oscillations of single and 

two degrees of freedom systems via nonlinear feedback is considered and a bounded saturated feedback 

control technique with controllable time-delays is suggested to induce the self-excited oscillations. To the 

best of the author's information, very little attention has been paid for the nonlinear state-feedback 

stabilization problem of time-delayed nonlinear systems with Lipschitz nonlinearities using LMIs, which is 

still an open problem. This stimulates the present research. 

Motivated by the above discussion, the problem of robust H∞ performance analysis for a class of 

nonlinear systems with state-delay and external disturbance is investigated in this paper. This work presents 

a state feedback control law for the stability problem of Lipschitz nonlinear time-delayed systems. By 



  

constructing a Lyapunov-Krasoviskii functional, asymptotical stabilization conditions are prepared in LMI 

form and the coefficients of the nonlinear state-feedback control law are determined via LMIs. The 

proposed controller guarantees asymptotical stability of these systems even if the nonlinear part is non-zero. 

Unlike the former researches, the resultant LMI conditions have fewer pre-assumed design parameters, and 

consequently, the planned technique can yield less conservative conditions.  

The presentation of this article is listed as follows: Sect. 2 develops the problem description and some 

required preliminaries. Sect. 3 proposes the analysis of the stability and design process of nonlinear state 

feedback controller based on LMIs for the nonlinear time-delayed systems. In Sect. 4, simulation results on 

two dynamical systems are illustrated. Moreover, experimental results on a rotary inverted pendulum (RIP) 

system are shown in Sect. 4. Finally, some concluding remarks are given in Sect. 5.   

2. Problem description and required preliminaries 

The nonlinear time-delayed system is considered as:  

1( ) ( ) ( ) ( ) ( ),
( ) ( ),

x t f x Ax t A x t Bu t
y t Cx t

t= + + − +
=

&
 (1) 

where ( ) nu t R∈ , ( ) nx t R∈ , and y( ) nt R∈  represent the input to system, the state variables and the output 

of the system, respectively. The parameter τ  is the time-delay and the nonlinear function ( ) nf x R∈  is a 

time-varying vector. Moreover, matrices A , 1A , B , and C  are some constant matrices with appropriate 

dimensions. 

Assumption 1. The nonlinear function )(xf  is Lipschitz for all nRx∈  and nRx∈  which satisfies [27, 28]:  

,)()()( xxLxfxf −≤−  (2) 



  

where nnRL ×∈  is a Lipschitz constant matrix. Equivalently, the Lipschitz inequality (2) is re-written as 

follows: 

( ) ( ) .)0()()0()( LxLxfxfIfxf TTT ≤−−  (3) 

The nonlinear state feedback control input is specified by: 

1( ) ( ) (0)u t Fx t B f−= − , (4) 

where F  is the state-feedback gain which will be calculated later using LMIs. The additional term )0(1 fB−  

in (4) is necessary so that deal with systems possessing 0)0( ≠f . 

Remark 1. The matrix B  in (4) is assumed to be square and of full row rank. When the matrix B  is non-

square and has full rank, the nonlinear state-feedback control law can be expressed using the right inverse of 

B  as:   

( ) 1
( ) ( ) (0)T Tu t Fx t B BB f

−
= − . (5) 

Therefore, this approach can be applied also on the situations in which the matrix B  is non-square. 

Lemma 1 (Schur complement) [29]. If there exist matrices 1S , 2S  and 3S  where 1 1
TS S=  and 3 3

TS S= , 

then the inequality  

1
1 2 3 2 0TS S S S−− <  (6) 

is equivalent to:  

1 2

2 3

0T

S S
S S
 

< 
 

 (7) 

Lemma 2 (S-procedure) [30]. Let pTT ,...,0  be symmetric matrices. Consider the following 

condition on : 



  

 for all 0≠ζ  such that .,...,1,0 piTi
T =≥ζζ  (8) 

If there exist non-negative scalars  for , such that ∑
=

>−
p

i
iiTT

1
0 0τ  is 

satisfied, then (8) holds. 

3. Main results 

Theorem 1. Consider the nonlinear system (1) and the control input (4) with 0)0( =f . Given a positive 

scalar 1τ , if there exist matrices M , 0TQ Q= >  and 0TH H= >  with appropriate dimensions such that 

the following LMI condition is satisfied: 

1 1

1

1

1

* 0 0
0,

* * 0
* * *

T T T TQA M B AQ BM H A I QL
P

I
I

β

β
β

 + + + +
 −  <
 −
 

−  

 (9) 

then the asymptotical stability of the state trajectories is fulfilled and one can obtain the gain matrix F  as 

1F MQ −= .       

Proof. If Eq. (4) (without )0(1 fB−− ) is substituted into (1), we obtain: 

1( ) ( ) ( ) ( ) ( ).x t f x A BF x t A x t t= + + + −&  (10) 

We construct the Lyapunov-Krasovsky function candidate as follows:  

∫
−

+=
t

t

TT dssxPsxtPxtxtV
t

,)()()()()( 1  (11) 

with real symmetric matrices 0P >  and 1 0P >  which are determined using the LMI. The derivative of (11) 

with respect to time is derived as:  



  

)()()()()()()()()( 11 ττ −−−++= τxPτxτxPτxτxPτxτPxτxτV TTTT &&& , (12) 

Substituting (10) in (12) obtains: 

1

1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

T T T T T T T T

T T T T

V t f x Px t x t A F B Px t x t A Px t x t Pf x
x t P A BF x t x t PA x t x t P x t x t P x t

t

t t t

= + + + − +

+ + + − + − − −

&
 (13) 

which can be rewritten by: 

1 1

1

( ) ( ) ( ) ( )
( ) ( ) * 0 ( ) 0.

( ) * * 0 ( )

T T T Tx t P A BF A F B P P PA P x t
V t x t P x t

f x f x
t t

 + + + +   
    = − − − <    

        

&  (14) 

Note that the condition (3) can be restated as: 

( ) 0 0 ( )
( ) 0 0 0 ( ) 0.

( ) 0 0 ( )

T Tx t L L x t
x t x t

f x I f x
t t

    
    − − ≥    

    −    

 (15) 

By combining (14) and (15) with S-procedure (Lemma 1), the condition ( ) 0V t <&  is satisfied if there exist 

a scalar 1τ  such that:  

1 1 1

1

1

( ) ( )
* 0 0.
* *

T T T TP A BF A F B P P L L PA P
P

I

τ

τ

 + + + + +
 − < 
 − 

 (16) 

Since the inequality (16) is not in the form of LMIs, assuming 1Q P −= , M FQ= , 1P PHP= , and pre- 

and post- multiplying (16) by 1( , , )diag Q I Iτ −  yields: 

1
1 1 1

1
1

1

* 0 0.
* *

T T T TQA M B AQ BM H QL LQ A I
P

I

ττ

τ

−

−

 + + + + +
 − < 
 − 

 (17) 

Inequality (17) can be rewritten in the form of (6) as 



  

( )[ ]
1

1 1

1 1
1

1

* 0 0 0 0 0.
* * 0

T T T TQA M B AQ BM H A I QL
P I LQ

I

τ
τ

τ

−

−

   + + + +
   − − − <   
   −   

 (18) 

By applying Schur complement on (18), the following inequality is obtained:  

1
1 1

1
1

1
1

1

* 0 0
0,

* * 0
* * *

T T T TQA M B AQ BM H A I QL
P

I
I

τ

τ
τ

−

−

−

 + + + +
 −  <
 −
 

−  

 (19) 

where defining 1
1 1β τ −= , LMI (9) is attained. This completes the proof.   

Theorem 2. Let consider the nonlinear time-delayed system (1) and the proposed control input (4). Assume 

that Assumption 1 is fulfilled. If there exist matrices M , 0TQ Q= > , and 1H QPQ=  with appropriate 

dimensions such that: 

1

* 0 0
0,

* * 0
* * *

T T T TQA M B AQ BM H A Q I QL
H

I
I

 + + + +
 

− Π = <
 −
  − 

 (20) 

is fulfilled, then the control signal (4) confirms the asymptotical stability of states of the considered system 

and we can obtain F  in (4) as 1F MQ −= .       

Proof. If (4) is substituted into (1), one can achieve: 

1( ) ( ) (0) ( ) ( ) ( ).x t f x f A BF x t A x t t= − + + + −&  (21) 

The Lyapunov-Krasovsky functional candidate is constructed as (11). The derivative of (11) with respect 

to time is derived as (12). Substituting (21) into (12) gives: 



  

1 1

1 1

( ) ( ( ) (0)) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ( ) (0)) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ),

T T T T T

T T T T

T T T

V t f x f P x t x t A F B Px t
x t A Px t x t P f x f x t P x t
x t P x t x t P A BF x t x t PA x t

t

t t t

= − + +

+ − + − +

− − − + + + −

&

 (22) 

where considering (3) and (22), one can obtain:  

1

1

1 1

( ( ) (0)) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ( ) (0)) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ( ) f(0)) ( ( ) f(0)) ( ) ( ),

T T T T T T T

T T T

T T T T T

V f x f Px t x t A F B Px t x t A Px t
x t P f x f x t P A BF x t x t PA x t
x t P x t x t P x t f x I f x x t L Lx t

t

t

t t

≤ − + + + −

+ − + + + −

+ − − − − − − +

&

 (23) 

which, further, can be written as: 

,TV ≤ Ψ ΓΨ&  (24) 

where  

( ) ( ) ( ( ) (0)) ,
TT T Tx t x t f x ft Ψ = − −   (25) 

1 1

1

( ) ( )
* 0 0.
* *

T T T TA F B P P A BF L L P PA P
P

I

 + + + + +
 

Γ = − < 
 − 

 (26) 

Inequality (26) can be written in the form of (6) as 

( )( )
1 1

1

( ) ( )
* 0 0 0 0 0.
* * 0

T T T TA F B P P A BF P PA P L
P I L

I

   + + + +
   

− − − <   
   −   

 (27) 

Now, applying the Schur complement on (27) yields: 

1 1

1

( ) ( )
* 0 0

0
* * 0
* * *

T T T TA F B P P A BF P PA P L
P

I
I

 + + + +
 

−  <
 −
  − 

. (28) 



  

Since the inequality (28) is non-LMI, assuming 1Q P −= , M FQ= , 1H QPQ= , and pre- and post- 

multiplying (28) by diag( , , , )Q Q I I , LMI (20) is obtained.   

In what follows, the asymptotic stability and H∞ performance analysis of system (1) with external 

disturbance are considered. Then, considering ( ) 0u t = , we have: 

1( ) ( ) ( ) ( ) ( ),
( ) ( ),

x t f x Ax t A x t E t
y t Cx t

ωt ω= + + − +
=

&
 (29) 

where ( )tω  denotes the external disturbance and Eω  represent the constant matrix with suitable dimension.  

Definition 1. The perturbed time-delayed system (29) is said to be robustly asymptotically stable with an 

H∞ disturbance attenuation 0γ >  if the system (29) with ( ) 0tω =  is robustly stable and under zero initial 

condition, there exists:  

2 22

0 0

( ) ( ) .y t dt t dtγ ω
∞ ∞

≤∫ ∫  (30) 

Theorem 3. Consider the nonlinear perturbed time-delayed system (29). Suppose that Assumption 1 is 

guaranteed. If there exist matrices 0TQ Q= > , and 1H QPQ=  with suitable dimensions such that the LMI 

condition: 

1

2

* 0 0 0 0
* * 0 0 0

0
* * * 0 0
* * * * 0
* * * * *

T T TQA AQ H A Q I E QL QC
H

I
I

I
I

ω

γ

 + +
 

− 
 −

< 
− 

 −
  − 

 (31) 

is satisfied, then the perturbed time-delayed system (29) is asymptotically stable and fulfills the H∞ 

performance condition (30).  



  

Proof. The Lyapunov-Krasovsky candidate function is defined as (11). Substituting (29) into the time-

derivative of the Lyapunov-Krasovsky function gives: 

1

1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).

T T T T

T T T T

T T T

V t f x P x t x t Pf x x t A P PA P x t

x t A Px t x t PA x t x t P x t
x t PE t t E Px tω ω

t t t t

ω ω

 = + + + + 
+ − + − − − −

+ +

&

 (32) 

Now, considering (3) and (32), we have:  

1

1 1 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).

T T T T

T T T T

T T T T T T

V f x P x t x t Pf x x t A P PA P x t

x t A Px t x t PA x t x t P x t
x t PE t t E Px t f x I f x x t L Lx tω ω

t t t t

ω ω

 ≤ + + + + 
+ − + − − − −

+ + − +

&

 (33) 

The H∞ disturbance attenuation in (30) can be written as: 

2( ) ( ) ( ) ( ).T T Tx t C Cx t t tγ ω ω≤  (34) 

From (33) and (34), one can obtain: 

2( ) ( ) ( ) ( )T T T TV x t C Cx t t tγ ω ω+ − ≤ Ω ΘΩ&  (35) 

where using (33)-(35) gives: 

1

1 1 1
2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .

T T T T T T

T T T T

T T T T T T

x t A P PA P C C L L x t f x P x t x t Pf x

x t A Px t x t PA x t x t P x t
x t PE t t E Px t f x I f x t tω ω

t t t t

ω ω γ ω ω

 + + + + + + 
+ − + − − − −

+ + − − ≤ Ω ΘΩ

 (36) 

where  

( ) ( ) ( ) ( ) ,
TT T T Tx t x t f x tt ω Ω = −   (37) 



  

1 1

1

2

* 0 0
0

* * 0
* * *

T T TA P PA C C P L L PA P PE
P

I
I

ω

γ

 + + + +
 

− Θ = <
 −
  − 

 (38) 

Inequality (38) can be written in the form of (6) as 

( )( )
1 1

1

2

* 0 0 0
0 0 0 0.

* * 0 0
* * * 0

T T T TA P PA C C P L L PA P PE L
P

I L
I

I

ω

γ

   + + + +
   

−   − − <
   −
      −   

 (39) 

Applying the Schur complement on (39) gives: 

1 1

1

2

* 0 0 0
0* * 0 0

* * * 0
* * * *

T T T
wA P PA C C P PA P PE L

P
I

I
I

γ

 + + +
 

− 
  <−
 

− 
 − 

. (40) 

Similarly, if the Schur complement is applied on (40), one obtains: 

1 1

1

2

* 0 0 0 0
* * 0 0 0

0
* * * 0 0
* * * * 0
* * * * *

T T TA P PA P PA P PE L C
P

I
I

I
I

ω

γ

 + +
 

− 
 −

< 
− 

 −
  − 

. (41) 

Since Eq. (40) is non-LMI, assuming 1Q P −= , 1H QPQ= , and pre- and post- multiplying (40) by 

diag( , , , , , )Q Q I I I I , LMI (31) is achieved.   



  

4. Simulation results 

To illustrate the usefulness of the planned method, two simulation examples are considered. In Example 

A, an unstable nonlinear numerical system with state-delays is proposed. In Example B, the proposed control 

technique is applied on a practical RIP system with state-delays and nonlinearities.  

Example A: Unstable Nonlinear Numerical System 

The differential equations of this system are considered as:  

1

2
2

3

0.2cos 0.1 0.2 0.3 0 0.01 0.01
0.3 5 0.1 0.1 0.5 0.05 0.04 0 ( )
0.4sin 0.3 0.4 0.3 0.01 0.02 0.03

0.012 0.013 0.014 0.016
0.01 0.014 0.01 0 ,

0.013 0.017 0.018 0.011

x

x x x x t
x

u

y

t

  −        = + + − + − −            − − −    
 
 +  
 
 

=

&

1.5 2 1.25
.

0.84 0.5 0.2
x 

 
 

 
(42) 

For simulation, the initial states and time-delay value are initialized as: [ ]Tx 6401)0( −= , 2τ = . The 

Lipschitzian matrix is specified by: .
4.000

03.00
002.0
















=L  The solutions of LMI (20) are attained using LMI® 

toolbox in Matlab® software and YALMIP® solver as:  

0.0141 0.0316 0.0262
0.0316 0.1419 0.0649
0.0262 0.0649 0.1196

H
 
 =  
  

, 
17.238 4.7564 10.5622
4.7564 27.9164 20.9467
10.5622 20.9467 39.3667

P
− − 

 = − − 
 − − 

.  



  

1

12.5486 1.6137 25.1278
1.6137 84.36 86.4733
25.1278 86.4733 134.515

P
− 

 = − 
 − − 

, 

90.2711 93.498 189.909
-74.8967 -56.8381 75.6911
100.6461 107.5033 216.382

-3.705 46.7269 7.824

F

--  
 
 =
 -
 - 

.  

Figure 1 displays the states of the differential equations of system (42) by using the nonlinear state 

feedback controller (4). All of the state trajectories are appropriately convergent to the origin. The output 

responses of the system are demonstrated in Figure 2. Therefore, the simulations are robust in the presence 

of time-delays and indicate satisfactory and reasonable performance as well. 
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Figure 1. The trajectories of the system states.   

0 5 10 15

-10

-5

0

5

10

15

Time(sec)

y 1,  
y 2

 

 
y1

y2

 

Figure 2. The output responses. 

Example B: A Practical RIP System 

RIP is a well-known test platform for evaluating control strategies. The control objective is to balance the 

pendulum in upright unstable equilibrium position. RIP system involves a rotational servo-motor which 

drives the output gear, rotational arm and an inverted pendulum. This system as an underactuated 

mechanical system has significant application in robotics, aerospace, marine vehicles and pointing control . 

In Figure 3, the schematic diagram of the RIP system is shown. Let pα , aθ , pm , pl , ar , u , aτ  and bJ  be 

the pendulum angle, drive disk angle (or arm angle), pendulum mass, pendulum length, arm length, control 

signal, motor torque and moment of inertia of the effective mass, correspondingly.  



  

 
Figure 3. Schematic diagram of RIP system.  

The dynamical equations of RIP with constant time-delays, friction and backlash effects are given by:  
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(44) 

where pE , pF , pI , pH  and pG  are damping constant of the pendulum, damping constant of the arm, 

control input coefficient, elasticity coefficients and arm Coulomb friction, respectively. The parameters pA , 

pB , pC  and pD  are considered as [31]:    
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The constant parameters of the nonlinear dynamical model (43)-(44) are set as: 
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The nonlinear time-delayed model (43)-(44) with some reformations can be illustrated in the form of (1) 

as follows:  
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(46) 

where [ ]Taappx θθaa &&= . For the simulation usage, the initial states are specified as: 

[ ](0) 1 4 2 Tx π= − − , and the time-delay is chosen as 2τ = . The Lipschitzian matrix is specified by: 

0.2 0 0 0
0 0.3 0 0

.
0 0 0.4 0
0 0 0 0.8

L

 
 
 =
 
 
 

 The solutions of matrices H , P ,

 

1P , F  are calculated using Matlab® LMI® 

toolbox and YALMIP® routine as a solver as: 
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    7.8512    1.6463    9.5245   23.4526
    1.6463    1.2598    2.0790    5.7018
    9.5245    2.0790   12.1973   29.2457
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The time trajectories of states of the RIP system by using the suggested control law are presented in Figure 

4. The initial position is  , related to the experimental part. It is observed from Figure 4 

that the states of the RIP system can be regulated to the origin, irrespective of the time-delays and 

nonlinearities. The time response of the control signal is depicted in Figure 5 which displays the respectable 

efficiency of the suggested scheme. These simulations prove the robustness performance of the offered 

controller and show reasonable efficiency as well.    

 

Figure 4. The trajectories of the RIP system states.  



  

 

Figure 5. The control input. 

In what follows, an experimental assessment of the proposed controller on the practical RIP system is 

presented. The experiment is performed on an ECP Model 220 industrial emulator with inverted pendulum, 

that includes a PC-based platform and DC brushless servo system [32]. The mechatronic system includes a 

motor used as servo actuator, a power amplifier and two encoders which provide accurate position 

measurements; i.e., 4000 lines per revolution with 4X hardware interpolation giving 16000 counts per 

revolution to each encoder; 1 count (equivalent to 0.000392 radians or 0.0225 degrees) is the lowest angular 

measurable [32]. The pendulum is fixed on the load disk (see figure 6). 

 

Experimental results for the pendulum angle, load disk angle and time response of the applied control 

signal are demonstrated in Figure 7 and Figure 8, revealing that the suggested control method is indeed 

effective in practice. 



  

 

Figure 6. Practical RIP system, from CoDAlab laboratory (UPC).  

 

 
 

Figure 7. Experimental results of practical RIP system, (a) pendulum angle (α); (b) drive disk angle (θ). 



  

 
Figure 8. Control input of practical RIP system. 

5. Conclusions 

In this paper, the scheme of nonlinear feedback stabilization procedure is provided for the stabilization 

control of a class of nonlinear systems with time-delays and Lipschitz nonlinearities. Based on the 

Lyapunov-Krasovskii stability theory, the stability performance of the system is verified in the form of 

LMIs and the states are convergent uniformly asymptotically to the origin. The controller gains are specified 

by the sufficient conditions using LMIs. Furthermore, the problem of robust H∞ performance analysis for a 

class of nonlinear perturbed time-delayed systems is investigated in this paper. The obvious simulation and 

experimental results are displayed to confirm the effectiveness of the presented technique and finally, some 

acceptable results are realized. The recommended control technique can attain favorable tracking 

performance for the higher-order nonlinear dynamical systems. 
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