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Abstract
Brownian motion is one of the most used stochastic models in applications to financial mathematics,
communications, engineeering, physics and other areas. Many of the central results in the theory are
obtained directly from its definition as a continuous process. As a mathematical object, Brownian
motion also have some special and important properties that make it fundamental to understand
related mathematical fields and state-of-the-art concepts.

The purpose of this work is to review a relatively recent approach which allows to reobtain these
results via a random walks approximation. Brownian motion is the stochastic limit of suitably nested
random walks, but some technical details are need to be checked in order to guarantee the conver-
gence. The applications of this particular approach include the local time of Brownian motion and
the Black-Scholes model in financial mathematics.
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1. Introduction
Universe is sorrounded by a wide range of phenomena to which mathematical models provide a valu-
able tool of analysis and description. A mathematical model, in order to be useful, must satisfy two
basic principles: accuracy and simplicity. It is clear that any model should be precise when describing
a certain event, otherwise conclusions coming from it would be worthless. Simplicity is more subtile.
Recalling Occam’s razor principle, models should not make unnecessary assumptions. Provided a
model is accurate, it comes useful to choose the less sophisticated, so that analyzing it in depth
results into an easier procedure.

This work is devoted to the study of Brownian motion, the most globally spread stochastic model
in the study of random phenomena. Its strength comes from the two features mentioned above,
which Brownian motion widely satisfies. The simplicity of the Brownian motion arises from its back-
ground discrete model of random walks, based on simple random independent binary inputs. On
the other hand, Brownian motion is based on the normal distribution, which through the Central
Limit Theorem, enjoys a universal character describing the addition of a large number of independent
random inputs.

This establishes the main motivation of this work. What is the essence that makes Brownian
motion so special? Which are the components in its core that transform it into ’the model’ for ran-
domness? These questions will serve us as a starting point with the objective of cracking Brownian
motion. After that, we will have a better understanding of the general ideas hidden behind it, which
are fundamental to use in those models which are of our interest. However, Brownian motion itself
would not be that relevant if it were not for its numerous applications in many fields. We also include
a discussion on some of these applications.

From a global scale, this work intends to give a general view of Brownian motion. Firstly, a solid
background is set: definitions, properties and results about regularity and its ordered random struc-
ture. Next, a construction of the Brownian motion through random walks will be given. Brownian
motion is often described as a stochastic limit of random walks. Actually, it is so, but it is not that
simple. Just a sequence of random walks is not enough to obtain a Brownian motion, but a suitably
nested sequence of random walks that inherit its correlation along the sequence has to be defined
in a delicate construction. This is a hard task that is completely detailed in this work. With little
details left, an exhaustive proof of the convergence to Brownian motion is given. Our milestone is
to produce a mathematically robust work, hence it is essential to add all details of the construction.
We come up with the desired conclusion, which is the result used in the forthcoming applications.

The relevance of Brownian motion becomes aparent when looking at any text on random pro-
cesses. Probably, when it was firstly introduced by the botanist Robert Brown in 1824, nobody was
conscious about the impact it was going to have on the coming decades and centuries as a model in
Statistical Physics, Mathematical Finances, Electrical Engineering and as a central object in Prob-
ability Theory, Statistics, Geometry among many other areas in mathematics and applications. It
was one of the topics treated by Albert Einstein which eventually laid empirical foundations of the
corpuscular nature of matter in Theoretical Physics, and as ealrly as 1900 it was already considered
by Louis Bachelier as a model for the stock market evolution. Both directions have given substantial
developments up to our days.
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1 Introduction

This work is organized as follows. We begin by giving a short general description and classifi-
cation of stochastic processes, so that we can see fundamental properties of Brownian motion that
also apply to other stochastic processes. This is the object of chapter 2. Following this chapter,
special emphasis is given to Markov chains for two reasons: the particular vocabulary that appears
recurrently throughout this thesis with which we need to be familiar with, and the crucial fact that
Brownian motion and random walks are Markov processes, thus we need a good understanding of
them.

After this introductory material, we are ready to thrive to the most classical view of Brownian
motion: the probability approach. In chapter 4 the abstract probabilistic definition of Brownian
motion is presented and some basic properties are proved. The existence of Brownian motion from
its formal definition is backed up by the Wiener’s theorem. The proof of this theorem uses an im-
portant technique which appears recurrently in this work. Surprisingly, some other important results
are straightforward, such as the scaling invariance and the non-differentiability. As a Markov chain,
Brownian motion has some special properties that makes it even more particular. They are studied
in chapter 5. The most breathtaking is the reflection principle, not only by its own interest, but also
because of its direct consequences.

Since its introduction at the beginning of the 19th century, the feature which has given Brownian
motion a greater entity is its several applications in science. From pure mathematics to natural
sciences, Brownian motion has been a key piece in research throughout the time, allowing ground-
breaking advances that make science progress. In this thesis two applications will be visited: Brownian
local time and the Black-Scholes model.

We aim at replicating these results not only through a classical approach, but also using embed-
ded random walks. To do so, the twist and shrink construction of Tamas Tsabados will be followed.
Actually, chapter 6 is devoted to check that there is convergence to Brownian motion of random
walks defined in this particular way. It contains the core of this work, the way Brownian motion can
be approached through nested random walks. More precisely, some accurate bounds will be given as
illustration. These inequalties will be instrumental to discuss later approximations of this approach.
Many technical details are necessary to give an accurate proof. The lemmas stated lead to the a
final theorem that asserts the desired convergence.

As an almost surely, nondifferentiable stochastic process, Brownian motion produces very irregu-
lar paths, in the sense that changes of value happen suddenly as the result of a random law. Thus,
it could be of interest to analyze the time distribution that the process spends at a given level,
from a probability point of view. This gives rise to Brownian local time. We approximate it via the
classical results, the Trotter’s theorem, and also by using the twist and shrink construction. The
later is followed from the article [10], but some details are ommited due to its technical complexity
and extension. The classical proof is based on the idea that underpins the proof of the Ray-Knight
theorem, which is not included in this work.
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1 Introduction

Lastly, chapter 8 turns around the Black-Scholes model. It was a significant breakthrough in
financial mathematics, as finally there was a unique formula to price some financial claims, and even
for some of them, explicit formulas exist. First, a brief introduction on changes of measure is given,
for reasons concerning risk-neutral pricing, in which much of financial options theory is based. Also,
we state the fundamentals of the model in order to set a framework of reference. The approach used
to retrieve the results is based on [11]. It is relatively straight to find these formulas using simple
probability arguments and the twist and shrink embedding of random walks.

This work is based on the recent monography by Peters Morter and Yuval Peres entitled Brownian
motion [8] and on a series of papers by Tamás Szabados and his collaborators [9, 10, 11], which were
on the background motivation of this work. On one side, a thorough understanding of Brownian
motion in the probabilsitic framework, and on the other side the detailed description of Brownian
motion from the perspective of Random Walks for a better understanding of its nature and some of
its applications.
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2. Overview of Stochastic Processes
Consider a probability space (Ω,A,P), and a random variable X : Ω −→ R. Ω, the set of possible
successes, which a probability of occurrence is determined on R and A is a σ-algebra. Stochastic
processes are the most general extension on A of random variables. Instead of a random distribu-
tion for the variable, an additional index set I is introduced, so that the distribution evolves over
time. Another level of difficulty are random vectors. Now, events are not identified by numbers
but a vector. Probability distributions (joint, marginals, conditionals) play a more important role
when we try to describe randomness. Stochastic processes appear to give a infiniteness version of
vectors extended to the whole real line, or a subset of it I depending on the case. They can be
seen from two different perspectives, as they have two arguments: the state-space elements ω ∈ Ω
and a temporal parameter t. Hence two rather different interpretations can be done: fix t0, observe
how the state-space in configured at that time, or fixed ω ∈ Ω, a path is generated path along the
time. The latter interpretation will be of essential importance for us in some sections, as we will
be interested in the analysis of continuity and differentiation of Brownian paths. But, it is possible
to find a connection of this two visions of a stochastic process in some cases, which is given by
Ergodic theorems. They are a series of theorems, with applications in many mathematicals branches,
in particular in probability theory that allow us to study the assymptotic properties of some random
processes, such as Makov chains.

Also, it will be fundamental to decide or argue if a given process actually can exist and is well-
defined. In the case of Brownian motion two different approaches will be detailed in this work. One
of them is underpinned by the so-called Wiener’s theorem, which definitely states that Brownian
motion exists. The proof of this theorem was vital for the historical development of theory and
applications that followed.

A first clear classification of processes is determined by the index parameter T . If T = (0, 1 ... )
then the process Xt is said to be a discrete-time stochastic process. If T = [0,∞), then Xt is called
a continuous time stochastic process.
Some general properties identify important classes of random processes. They not only describe
natural features of random processes, but also allow mathemtical analysis in greater depth. These
are the different stochastic processes:

a) Processes with stationary independent increments
If the random variables

Xt2 − Xt1 ,Xt3 − Xt2 , ... ,Xtn − Xtn−1

are independent for all t1 < t2 < · · · < tn then Xt is a process with independent increments (also
allowing a first time t0). Even if restrictive, this condition is satisfied by a wide class of random
processes. It allows to obtain all joint distributions from the knowledge of the one for Xt and
every t.
If the distribution of increments X (t + h)−X (t) depends only on the length of h and not on the
time t, then process is said to have stationary increments.
These properties hold for both Brownian motion and Poisson processes.
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2 Overview of Stochastic Processes

b) Markov Processes
These processes generalize the idea of Markov chains (see Section 3) for a wider range of state-
space. The idea of these processes is that what happens in the future is only determined by
the present of not the past, that cannot alter the future whatsoever, given the present. This
leads to the Markov property of the process. In fact, conditional to an initial distribution of the
state-space, the process is uniquely determined by a transition probability matrix between states
that provides how states evolve in the Markov process. More formally, for each t1 < t2 < ... tk

Pr(Xt = x |Xt1 = x2,Xt2 = x2 ...Xtk = xk) = Pr(Xt = x |Xtk = xk)

The two main stochastic process that are considered in this work, random walks and Brownian
motion are Markov processes.

c) Martingales
The idea of martigales is similar to the one of Markov processes but in this case, instead of a
probability idistribution and a transition matrix, the expectation of the process is the defining
property for martingales. In other words, let {Xt} a real-valued stochastic process. We say that
{Xt} is a martingale if E(|Xt |) <∞ for all t, and for any t1 < t2 < · · · < tk < tk+1

E(Xtk+1 |Xt1 = x1,Xt2 = x2, ...Xtk = xk) = xk

This model is used in gambling games where fair games need to be defined, and after a game
the player expects to have the same amount of money of the beggining of the game. They are
also used in finance for events forecasting. Again, this property holds for Brownian motion and
random walks.

d) Stationary processes
The concept of stationarity has very widely meanings, but in stochastic processes’ context, we
say that a process Xt is stricly stationary if the joint distributions

(Xt1+h, ...Xtn+h) and (Xt1 , ...Xtn)

are equal for all h > 0 and for any choice of t1, ... , tn. A stochastic process Xt is said to be
widely sense stationary if the process has finite second order moments and if Cov(Xt ,Xt+h) =
E (XtXt+h) − E (Xt)E (Xt+h) depends only on h for all t. A stationary process is stationary in
wide sense, but the converse is not necessary so, it is a wider assumption (only at expectation
level).

In addition to this processes, there are also renewal processes and point processes. They do
concern the contents of this work, therefore no details about them are given. In interested, more
information can be found in [6]. These are the main types of stochastic processes. As radom walks
and Brownian motion are included in some types of the processes described, it is easier to extract
information about them, or conversely, some properties of them can be generalised.
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3. Markov chains
Markov chains are probably, together with Brownian motion, one of the most broadly studied stochas-
tic processes. In this section, some of its most outstanding properties will be studied: from recurrent
or transient states of discrete-time Markov chains to the connection of random walks to them through
an assymptotic approxiamtion.
Despite this wide range of basic properties, the defining property that all Markov chains share is
known as Markov property. Getting straight to it, it can be interpreted as a past independence given
the present, in other words, for chains only matters the very last step. More formally, consider a
sequence of random variables X0,X1, ...Xn, the property states that:

Pr(Xn+1 = xn+1|Xn = xn,Xn−1 = xn−1 ...X0 = x0) = Pr(Xn+1 = xn+1|Xn = xn)

Markov chains and Markov processes are used in several applications, such as, weather forecast,
simulation, game theory, birth-death processes (Galton-Watson )..., and, more importantly for us, in
finance, in order to examine possible situations in which an arbitrage operation can be executed or
to determine the volatitlity of prices of an underlying asset.

Although it is not proved in this chapter, Brownian motion is a continuous-time Markov chain,
which in fact is also a martingale. Thus, in order to approximate it, we need a discrete process that
taken to the limit converges to a Brownian motion. Here random walks appear to be exactly what
fills the gap. It will be the tool used to approach Brownian motion through a discrete process. This
joining process is detailed in chapter 6, where it will be seen that the embedding should be done
suitably, so that we get a convergent process.

Markov chains are the vast majority of Markov processes. However, apart from Markov chains,
there exist other Markov processes, which have more general state spaces, such as nonnumerable,
which are not possible for Markov chains. The Markov property still holds for them. In this work, we
will only work with discrete time Markov chains, as they will be our interest to see some properties
of Brownian motion and random walks. Another type of Markov chains are continuous-time Markov
chains. They have very similar properties to the discrete time chains, with some modifications.
However, the general theory would be too extense to develop in deepth, and we will focus on the
Markov property of Brownian motion in chapter 5, where important consequences will be deduced.

3.1 Discrete-time Markov Chains
Let I be a countable set. We call i ∈ I the set of all possible states of the Markov chain. Then, I is
known as the state-space. Consider a probability space (Ω,A,P) and a distribution of probability λ
in this space. For a random variable X : Ω→ I , set:

λi = P(X = i) = P(ω : X (ω) = i)

Definition 3.1. We say that a matrix P = (pij , i , j ∈ I ) is stochastic if every row (pij , j ∈ I ) is a
probability distribution.

This condition on matrices representing the states transition is natural, as for a given state, a
probability distribution will be established among all states, including itself. In this case, the transition
to the next step is well-defined.

8



3 Markov chains

Definition 3.2. We say that (Xn)n≥0 taking values in I is a Markov chain with initial distribution
λ = (λi )i∈I and trasition matrix P if

(1) X0 has a distribution λ;

(2) for n ≥ 0, conditional on Xn = i , Xn+1 has a distribution (Pij : j ∈ I ) and is independent of
X0,X1, ... ,Xn−1.

If the previous conditions are satisfied, for simplicity, we say that (Xn)n≥0 is Markov(λ,P). Moreover,
it is time-homogeneous, since P does not change with time. From the definition of Markov chains
it is clear that:

Theorem 3.3. A discrete-time random process (Xn)0≤n≤N is Markov(λ,P) if and only if

∀i0, i1, ... iN ∈ I P(X0 = i ,X1 = i1, ... ,XN = iN) = λi0pi0i1pi1i2 · · · piN−1iN (3.1)

A first-stage result on Markov chains is the weak Markov property. It is weak because later we
will see a generalisation of it.

Theorem 3.4. (Weak Markov property). Let (Xn)n≥0 be Markov(λ,P). Then, conditional on
Xm = i , (Xm+n)n≥0 is Markov(δi ,P) and it is independent of the random variables X0,X1, ... ,Xm.

A Markov chain can be very difficult to understand globally, but sometimes it is possible to split
it in differents parts, so that its structure becomes easier to interpret and analize.

Definition 3.5. We say that i leads to j (and write i → j) if

Pi (Xn = j for some n ≥ 0) := Pi (Xn = j for some n ≥ 0|X0 = i) > 0

If i → j and j → i , then we say that i communicates j (write i ↔ j).

From definition and some basic properties, it is easy to check that ↔ satisfies the conditions of
an equivalence relation, whence it partitions I into communicating classes. We say that C is a closed
class if

i ∈ C i → j , imply j ∈ C

In other words, a closed class is a class from where it is not possible to scape. Particularly, if {i} is
a closed class, the state is said to be absorbing. A chain that has one unique communicating class
is called irreducible.

3.2 Hitting times, recurrence and transience
Consider a Markov chain (Xn)n≥0, with state-space I and a subset A ⊂ I .

Definition 3.6. The hitting time of a random variable: HA(ω) : Ω→ {0, 1, ... }∪{∞} is defined as:

HA(ω) = inf {n ≥ 0 : Xn(ω) ∈ A}

The probability of hitting A starting from i is:

hAi = Pi (HA <∞)

In the case A is closed, we say that HA
i is the absorption probability.
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3 Markov chains

Definition 3.7. A random variable T : Ω→ {0, 1, ... } ∪ {∞} is called a stopping time if the event
{T = n} denpends only on X0,X1, ... ,Xn.

The most plausible interpretation of this definition is that just by observing the past of the
process, it is known when a certain event is going to happen. There are many types of random
variables that involve stopping times, but the following will be object of study in this project.

Example 3.8. The first passage time random variable:

Tj = inf {n ≥ 1 : Xn = j}

is a stopping time. only has to be checked that:

{Tj = n} = {X1 6= j , ... ,Xn−1 6= j ,Xn = j}

Now, we provide a stroger form of Theorem 3.4, using stopping times and its properties.

Theorem 3.9. (Strong Markov property) Let (Xn)n≥0 be a Markov(λ,P) and let be T a stopping
time of (Xn)n≥0. Then conditional on T < ∞ and XT = i , (XT+n)n≥0 is Markov(δi ,P) and
independent of X0,X1, ...XT .

Actually, we are more interested in a generalisation of Example 3.8, considering the r -th passage
time T

(r)
i to state i

T
(0)
i (ω) = 0, T

(r+1)
i (ω) = inf {n ≥ T

(r)
i (ω) + 1 : Xn = i}.

Definition 3.10. The length of the r -th excursion to i is:

S
(r)
i =

{
T

(r)
i − T

(r−1)
i if T (r−1)

i <∞
0 otherwise

We denote the number of visits Vi to i by:

Vi =
∞∑
n=0

1{Xn=i}

Then,

Ei (Vi ) := E(Vi |X0 = i) = Ei

( ∞∑
n=0

1{Xn=i}
)

=
∞∑
n=0

Ei (1{Xn=i}) =
∞∑
n=0

Pi (Xn = i) =
∞∑
n=0

p
(n)
ii ,

where the index i denotes the initial state i , and therefore, we are describing the probability (or the
mean) of returning to the state i ∈ I , respectively.
We compute the distribution of Vi under Pi in terms of the return probability:

fi = Pi (Ti <∞)

10



3 Markov chains

Lemma 3.11. For r = 0, 1 ... , we have P(Vi > r) = f ri

Proof. We prove the result by induction over r . For r = 0 it is clearly true. For r ≥ 1 it hold the
{Vi > r} = {T (r)

i <∞}. If it is true for r , then:

Pi (Vi > r + 1) = Pi (T (r+1)
i <∞) = Pi (T (r)

i <∞ and S
(r+1)
i <∞)

= Pi (S (r+1)
i <∞|T (r)

i <∞)Pi (T (r)
i <∞)

= fi f
r
i = f r+1

i

Definition 3.12. We say that a state i is recurrent if:

Pi (Xn = i for infinitely many n) = 1

Alternatively, we say that a state is transient if:

Pi (Xn = i for infinitely many n) = 0

Theorem 3.13. The following dichotomy holds:

(1) If Pi (Ti <∞) = 1, then i is recurrent and
∑∞

i=0 p
(n)
ii =∞

(2) If Pi (Ti <∞) < 1, then i is transient and
∑∞

i=0 p
(n)
ii <∞

Proof. If Pi (Ti <∞) = 1, then by Lemma 3.11,

Pi (Vi =∞) = lim
r→∞

Pi (Vi > r) = 1.

Thus, i is recurrent and
∞∑
n=0

p
(n)
ii = Ei (Vi ) =∞.

Conversely, if fi = Pi (Ti <∞) < 1,
∞∑
n=0

p
(n)
ii = Ei (Vi ) =

∞∑
r=0

Pi (Vi > r) =
∞∑
r=0

f ri = 1
1− fi

<∞.

But for more generalisation in terms of the state-space, the preceding dichotomy can be extended
to a class property. In other words:

Lemma 3.14. Let C be a communicating class. Then either all states in C are recurrent or transient.

Proof. Take any pair of states i , j such that i is transient. Then, there exist m, n ≥ 0 such that p(n)
ij

and p
(m)
ji , then, for all r ≥ 0,

p
(n+r+m)
ii ≥ p

(n)
ij p

(r)
jj p

(m)
ji .

Thus, if i is transient,
∞∑
r=0

p
(n)
jj ≤

1
p

(n)
ij p

(m)
ji

∞∑
r=0

p
(n+r+m)
ii <∞.

Hence, j is transient, as required.
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3 Markov chains

3.3 Random Walks
Random walks are one type of Markov chains that require especial attention in this work due to their
close connection to Brownian motion. They are also used in many applications in science and tech-
nology, embracing the model of a particle moving in a gas or to study the dynamic of a population,
entre others. The first example for instance, is surprising as the reader could think of the movement
of a particle as a continuous motion. Actually, it is, but in models and simulations continuous data
and time intervals are impossible to get and there random walks appear as a good approximation to
brownian motion. In principle, the motion could be modelled using other ideas and approximations,
but as we will see later, brownian motion can be retrieved from a random walk taken to the limit of
the discretization of Zn grid with an appropiate scale.

A particular reason why they shoud be carefully studied is because random walks have a non-finite
state space, what means that though its is irreducible and closed, it may be nonrecurrent. However,
combinatorail arguments will be given to solve the problem of recurrence of random walks in low
dimensions.
Remark 3.15. (Stirling’s formula) For n sufficiently large, n! ≈

√
2πn(ne )n, where ≈ denotes an

assymptotic equivalence of both expressions.

For example, if a one-dimensional random walk is considered, the probability of return after an
odd number of steps is zero. For even number of steps, the probability of return is:

p
(2n)
00 =

(
2n
n

)
pnqn ≈ (4pq)n√

nπ
.

In the symetric case, p = q = 1
2 , pq = 1

4 and thus, for some N and all n ≥ N:

p
(2n)
00 ≥ 1

2
√

2πn
≈ 1√

nπ
.

In consequence, we have:
∞∑

n=N

p
(2n)
00 ≥ 1√

π

∞∑
n=N

1√
n

=∞

So the symetric one-dimensional random walk is recurrent. In the non-symetric case, 4pq = r < 1,
and for some N: ∞∑

n=N

p
(2n)
00 ≤ 1√

2π

∞∑
n=N

rn <∞,

what shows that the one-dimensional random walk is transient, and by symmetry it also holds for∑∞
n=N p

(2n)
ii for any state i . In dimension two, this property still holds, due to the fact that the

harmonic series is divergent, but from dimension three on, the series analysed are convergent and
hence, the random walk comes back to the origin infinitely many times with zero probability.
In oder to connect random walks with discrte time Markov chains it is useful to introduce the so-called
Chapman-Kolmogorov equations. These equations describe the relation between states in a Markov
chain via the transition probabilities that uniquely determine the chain, up to an initial distribution.
Chapman-Kolmogorov equations are:

pij =
∑
k∈I

pikpkj

These equations are not of interest in this work, but for example, they are useful to derive the partial
differential equation that a Brownian satisfies.

12



4. Introduction to Brownian motion
Brownian motion has its origins in the 19th. century, when the british scientist R. Brown discovered
it by studying the erratic movement of particles on the surface of a liquid. The way he described
the motion of particles was named after R. Brown, and was called Brownian motion. However, the
concept today has been devolvoped and many generalizations and variations have been introduced.
Actually, Brownian motion is widely used in many fields, and its construction and definition gives it
some particular properties that make it appropiate for some applications. Usually it appears when in
the process handled some uncertainty takes place. Its utility comes from the fact that it has no bias
and, therefore, it faithfully simulates nature phenomena that happen in real life.

Suppose the motion of a particle is to be analysed. On the macroscopic level it is not clear at
all which will be the path described by the particle at all. But, some inferences can be done when
microscopic level is studied. At this level, we see that at any step of it, the particle undergoes a dis-
crete path which is modeled by a random walk. Say Sn is the random walk started at X0. Every step
is a random variable that takes the value Xk = ±1 with equal probability, and then Sn = S0+

∑n
i=1 Xi .

However, some results are surprising, because not all features of the microscopic view will have
an effect on the macroscopic view. In other words, it is possible to obtain similar path for random
walks that share mean and covariance matrices. That makes Brownian motion a very general object,
which will link different processes.

Physical interpretation aside, the objective of this section will be making a first approach to its
most famous construction and visiting basic properties that will be the seed for the following devel-
opments, where more specific topics will be discussed. This will be a fist overlook of the macroscopic
figure generated by the process.

4.1 A joint probabilities approach. The Wiener process
Brownian motion is usually defined by a process that must satisfy some conditions. This definition is
very versatile, as it allows to study it using arguments underpinned by the normal distribution. Since
this distribution is well-known, it requires a softer introduction to acquire a first idea of the nature
of this particular process. However, it must be ensured that the definition gives raise to the process
desired. This is given by the Wiener’s theorem. After this is done, the random walk approach is
more sensitive, provided the local behaviour of the process.

Definition 4.1. A stochastic process {X (t) : t ≥ 0} is a Brownian motion if:

i) Paths are almost surely continuous for all t ≥ 0.

ii) Every increment X (t + s)− X (s) is normally distributed with mean 0 and variance t.

iii) for any t1 < t2 < t3 < t4, the increments: X (t2) − X (t1) and X (t4) − X (t3) are independent
with the distributions specified in ii).

In addition, if X (0) = 0 then we say that the process is a standard Brownian motion.

13



4 Introduction to Brownian motion

This definition has many important consequences that are followed almost inmediately from it.
The first remarkable fact is that Brownian motion satisfies the Markov property, as the distribution
of the increments only depends on the time elapsed independently of the values taken by the random
variable. More formally,

Pr(X (t) ≤ x |X (tk) ≤ xk , ...X (t0) ≤ x0) = Pr(X (t) ≤ x |X (tk) ≤ xk).

It is particularly interesting to compute easily the previous probability and the joint probability of the
increments from the definition of Brownian motion.

p(x − x0, t − t0) := Pr(X (t) ≤ x |X (t0) ≤ x0) = Pr(X (t)− X (0) ≤ x − x0)

= 1√
2π(t − t0)

∫ x−x0

−∞
e
− y2

2(t−t0) dy

Now recall that, from a very basic convolution product, the sum of normal random variables is
also normal, so the last part of the definition as, for any t1 < t2 < t3:

X (t3)− X (t1) = (X (t3)− X (t2)) + (X (t2)− X (t1))

Applying recurrently the Markov property and the independence assumed by hypothesis, using the
same notation it holds that the joint probability distribution of increments in terms of the normal
density function is:

f (x1, ... xn) = p(x1, t1)p(x2 − x1, t2 − t1) · · · p(xn − xn−1, tn − tn−1)

4.2 Wiener’s theorem
The next step is to show that a process defined as above exists, that is, the conditions given are
compatible and define a unique process. Previously it is convinient to proof this result:

Lemma 4.2. Let X ≥ 0 be a non-negative random variable and p > 0, then:

E(X p) =
∫ ∞

0
pxp−1P(X > x)dx

Proof. This is a generalization of the result already known for p = 1 and the proof is mainly the
same, with some modifications using the Fubini’s theorem.

E(X p) =
∫ ∞

0
xpf (x)dx =

∫ ∞
0

∫ x

0
ptp−1f (x)dtdx =∫ ∞

0

∫ ∞
t

ptp−1f (x)dxdt =
∫ ∞

0
ptp−1P(X > t)dt

Reviewing again the definiton of the process, it seems that the conditions imposed to marginals
densities of the process can lead to a contradiction or may generate discontinuous paths. This is the
main concern of the following theorem. In order to prove it, we will construct Brownian motion as a
uniform limit of continuous functions, producing a continuous limit process. Mainly, dyadic intervals
will be used to generate the distributions imposed, and then this properties will be extended to any
interval.

14



4 Introduction to Brownian motion

Theorem 4.3. (Wiener’s theorem) Brownian motion exists.

Proof. Consider the set of D = ∪DN , with DN defined as the set of integer multiples of 2−N in
[0,∞) for N = 0, 1, 2, ... . The steps to follow to complete this proof are delicate, from point of view
of mathematical analysis. First we will construct a Brownian motion for some set of indeces and
then the difficult task will be how to extend it to the semi-real line continuously and see that, the
extension is a Brownian motion.
For any t ∈ D, consider an independent Gaussian random variable Yt with mean 0 and varaince 1.
For t ∈ D0 = Z+ set:

Bt =
t∑

i=0
Yi

then, Bt is a Brownian motion indexed by D0. Now, by induction we should see that this process can
be extended for all other indexes DN as a Brownian motion. Suppose that (Bt : t ∈ D0) is brownian
motion for DN−1. For t ∈ DN\DN−1 set r = t − 2−N and s = t + 2−N ⇒ r , s ∈ DN−1
Consider

Zt = 2−
N+1

2 Yt

Bt = 1
2(Br + Bs) + Zt

The new increments obtained are:

Bt − Bs = 1
2(Bs − Br ) + Zt

Bt − Bs = 1
2(Bs − Br )− Zt

Then with a little compututation we get:

E[(Bt − Br )2] = E[(Bs − Bt)2] = 1
42−(N−1) + 2−(N+1) = 2−N

E[(Bt − Br )(Bs − Bt)] = 1
42−(N−1) − 2−(N+1) = 0

Thus, the increments are independent and they have the variance required for a Brownian motion.
Hence, (Bt : t ∈ DN) is a Brownian motion for all N, and in consequence, (Bt : t ∈ D) is also a
Brownian motion.
Now, for each N, denote by (B(N)

t )t≥0 the continuous process obtained by linear interpolation of
(Bt : t ∈ DN). Also, Z

(N)
t = B

(N)
t − B

(N−1)
t . It is clear, by construction that Z

(N)
t = 0 for

t ∈ DN\DN−1 and

Z
(N)
t = Bt −

1
2(Bt−2−N + Bt+2−N ) = Zt = 2−

(N+1)
2 Yt

Set Mt = sup
t∈[0,1]

|Z (N)
t | = sup

t∈DN\DN−1∩[0,1]
2−

(N+1)
2 |Yt |

Note that there are 2N−1 points in (DN\DN−1 ∩ [0, 1]), so for λ > 0 we have:

P(MN > λ2−
(N+1)

2 ≤ 2N−1P(|Y1| > λ)

Now, using Lemma 4.2 for the random variable 2p
N+1

2 E(Mp
N), we have:

2p
N+1

2 E(Mp
N) =

∫ ∞
0

pxp−1P(2
(N+1)

2 MN > x)dx ≤ 2N−1
∫ ∞

0
pxp−1P(|Y1| > x) = 2N−1E(|Y1|p).
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4 Introduction to Brownian motion

Thus, for any p > 2, recalling Hölder’s inequalty:

E
( ∞∑
N=0

MN

)
=
∞∑

N=0
E(MN) ≤

∞∑
N=0

E(Mp
N)

1
p ≤ E(|Y1|p)

1
p

∞∑
N=0

(2
p−2
2p )−N <∞.

Using this result, it follows from Borel-Cantelli’s lemmas that with probability 1, as N →∞,

B
(N)
t = B

(0)
t + Z

(1)
t + · · ·+ Z

(N)
t

converges uniformly in t ∈ [0, 1], and by extension, for any bounded closed interval. Therefore,
(Bt : t ∈ D) has a continuous extension (Bt)t≥0.
The last thing that remains to be proved is that the increments of the random variables built for the
process are also independent. As we are in a compact set, for any 0 < t1 < · · · < tn, we can define
sequences (tmk )m∈N such that tmk → tk for all k . Then, by continuity of the covariance function of
these random variables (it is zero since they are Gaussian), it holds that

Bt1 − Bt0 , ...Btn − Btn−1

are independent, and normally distributed, as required.

This Theorem shows that Gaussian processes with continuous paths do exist, although nothing
else can be said about regularity of the paths, so far. The next step is to study differentiability of
Brownian motion. Before, we need some auxiliar results and properties. This will be a direct approach
using up and down derivatives. However, in chapter 5 a more straight proof of non-differentiability
will be given using the reflection principle.

4.3 Time scaling and time inversion
Before getting deeper in regularity issues of Brownian motion, from the definition it is straightforward
to deduce two key properties that will be recurrently used. They can be summerized in the following
results:

Lemma 4.4. (Scaling invariance) Suppose {B(t) : t ≥ 0} is a standard Brownian motion and let
a > 0. Then the (scaled) process {X (t) : t ≥ 0} defined by X (t) = 1

aB(a2t) is also a standard
Brownian motion.

Proof. The only property that is not obvious to hold is that the distribution of increments is normally
distributed and with the right parameters. Observe that:

X (t)− X (s) = 1
a

(B(a2t)− B(a2s)),

which is a normal distribution with the parameters required for a standard Brownian motion, since
it has expectation 0 and variance 1

a2 (a2t − a2s) = t − s.

This principle will be retrieved in the next chapter. To anticipate it, just consider T (a, b) =
inf {t ≥ 0 : B(t) = a or B(t) = b}, that is, T (a, b) is the first exit time of the interval [a, b] for a
one-dimensional Brownian motion . Then, with the scaled Brownian motion X (t) = 1

a2B(a2t):

E(T (a, b)) = a2E
(
inf
{
t ≥ 0 : X (t) = 1 or X (t) = b

a

})
= a2E

(
T (1,

b

a
)
)

.

The conclusion is that the exit time for the motion only depends on the ratio of a and b.
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4 Introduction to Brownian motion

Figure 4.1: Brownian motion and scaled processes with parameters a=1.25 and a=0.75

Lemma 4.5. Let {Bt : t ≥ 0} a standard Brownian motion. Then for all s < t:

Cov(Bs ,Bt) = s

Proof. Write BsBt = B2
s + Bs(Bt − Bs), then, using that their mean is 0:

Cov(Bs ,Bt) = E(BsBt)− E(Bs)E(Bt) = E(B2
s )− E(Bs)E(Bt)

= E(B2
s ) = Var(Bs) + E(Bs)2 = s

since Bs ∼ N (0, s) for any s ≤ t and increments of non-overlapping intervals are independent.

Theorem 4.6. (Time inversion) Suppose {B(t) : t ≥ 0} is a standard Brownian motion, then the
process {X (t) : t ≥ 0} defined by:

X (t) =
{

0 for t = 0
tB(1

t ) for t 6= 0

is also a standard Brownian motion.

Proof. {X (t) : t ≥ 0} is also a Gaussian process and the random vectors (X (t1), ... ,X (tn)) have
expectation 0. Using the previous lemma, covariance for h > 0 is:

Cov(X (t + h),X (t)) = (t + h)Cov
(
B
( 1
t + h

)
,B
(1
t

))
= t

Then, the covariance is also the one of a Brownian motion. Now, it only remains to see that paths
are continuous. Away from the origin, they are clearly continuous. At t = 0, on the rationals X is
almost surely continuous on (0,∞), so:

lim
t→0

X (t) = 0 almost surely

Hence, {X (t) : t ≥ 0} has almost surely continuous paths and so it is a standard Brownian motion.
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4 Introduction to Brownian motion

The inversion will be a very useful in the analysis of assymptotic properties of Brownian motion
as it will suffice to study it in a neighbourhood of t = 0.

Corollary 4.7. Almost surely,
lim
t→∞

B(t)
t

= 0.

Proof. Let {X (t) : t ≥ 0} be defined as in Theorem 4.6, then by continuity of X (t):

lim
t→∞

B(t)
t

= lim
t→∞

X
(1
t

)
= X (0) = 0.

4.4 Nondifferentiability
The natural questions that arise at this point are mainly two:

i) How strong is the continuity of Brownian motion?

ii) Is Brownian motion more regular than continuous, i.e., it can be diferenciated at some points
or almost surely every point is nondifferentiable?

This two question will be answered in this section. The second one will be answered in brief, whereas
the first one will be quantified by the notion of α-Hölder continuity.

Definition 4.8. A function f : [0,∞)→ R is said to be locally α-Hölder continuous at x ≥ 0, if
there exists ε > 0 and c > 0 such that

|f (x)− f (y)| ≤ c|x − y |α, for all y ≥ 0 with |y − x | < ε

We refer to α > 0 as the Hölder exponent and c > 0 as the Hölder constant.

This is a measure on the strength of continuity of a function: as α increases the continuity gets
stronger. For the particular case of Brownian motion, α = 1

2 is the critical value, as the following
result states. We do not give a formal proof of it, since it requires a previous theorem, but it can be
found in detail in [8], when Brownian motion continuity is extensively discussed.

Proposition 4.9. If α < 1
2 , then, almost surely, Brownian motion is everywhere locally α-Hölder

continuous.

It is important to recall that α < 1
2 is the optimal result meaning that for larger values of

α > 1
2 the property does not holds, and there exist points where Brownian motion is not α-Hölder

continuous, almost surely.
Next point to discuss is the differentiability of Brownian motion. Firstly, some local properties will
be given, and then the nondifferentiability property will be extended to any compact set. Here, it
will be fundamental to retrieve the inversion property of Brownian motion together with two new
notions of derivatives.
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4 Introduction to Brownian motion

Proposition 4.10. Almost surely, for all 0 < a < b <∞, Brownian motion is not monotone on the
interval [a, b].

Proof. Suppose [a, b] is an interval of monotonicity, i.e., B(s) < B(t) for all a < s < t < b. Then
we can split the interval in a = a1 < a2 < · · · < an = b which are n subintervals of [a, b]. Then,
every increment B(ai+1)−B(ai ) has to have the same sign, as Brownian motion is monotone on the
interval. Also, increments are independent, hence the probability for all them to have the same sign
is 2 · 2−n. Taking n→∞, the probability of [a, b] of being an interval of monotonicity is 0. Taking
countable unions gives us that there are no such intervals with rational endpoints, but any interval
must contain rational numbers, so we have the result required.

Now, to continue studying the differentiability of Brownian motion, we are interested in its
assymptotic behaviour, and then applying time inversion property, we will be able to deduce new
properties for times near t = 0.

Proposition 4.11. Almost surely,

lim sup
n→∞

B(n)√
n

= +∞ lim inf
n→∞

B(n)√
n

= −∞

In order to prove this proposition, we need an auxiliary result: the Hewitt-Savage 0 − 1 law for
exchangeable events.

Definition 4.12. Let X1, ... ,Xn be a sequence of random variables in a probability space (Ω,F ,P),
and consider a set A such that:

{X1, ...Xn ∈ A} ∈ F

The event {X1, ...Xn ∈ A} is called exchangeable if

{X1, ...Xn ∈ A} ⊂ {Xσ1 , ...Xσn ∈ A}

for all finite permutations of N, i.e., permutations with a finite number of nonfixed elements (Note
that the inclusion can eventually become an equalty, in some cases).

Plainly, an event is exchangeable if it is closed under permutations of random variables. For
instance, in the exmaple below, if Brownian motion is condidered in the discrete version, i.e., as a
random walk, it is clear that many paths lead to the same event at the n-th step, the only condition
that they must share is that the number of up/down moves is equal. All events that share this
condition are exhangeable. The following law was firstly introduced in [5]:

Lemma 4.13. (Hewitt-Savage 0− 1 law)
Let be (Xn) a sequence of independent identically distributed random variables. Then the σ-field of
exchangable events E is trivial.

Proof. We need to prove that for any A ∈ E , P(A) is either 0 or 1. Take A ∈ E . Given a
partition of the σ-field E = ∪Fn, approximate A by An ∈ Fn such that P(A4An) → 0. We write
An = {(X1, ...Xn) ∈ Bn} and Ãn = {(Xn+1, ...X2n) ∈ Bn} and condider the permutation the sends
An to Ãn.
By exchangeability, P(Ãn4A) = P(An4A) ⇒ P(An ∩ Ãn) → P(A). Since the sequence (Xn) is
i.i.d., we have: P(An ∩ Ãn) = P(An)P(Ãn)→ P(A)2. Hence, P(A) ∈ {0, 1}.
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4 Introduction to Brownian motion

Now, we have everything necessary to proof the non-differentiability, applying the Hewitt-Savage
0− 1 law:

Proof. (Proposition 4.11)
By Fatou’s lemma, we have:

P(B(n) > c
√
n infinitely often) ≥ lim sup

n→∞
P(B(n) > c

√
n) > 0

Taking Xn = B(n + 1)− B(n), note that:

{B(n) > c
√
n infinitely often} = {

n∑
j=1

Xj > c
√
n infinitely often}

is an exhangeable event. Hence, by lemma 4.13 with probability 1, B(n) > c
√
n infinitely often. As

the constant c can be taken as large as desired, we deduce the first equalty of the proposition. The
other part is proved analogously.

In Corollary 4.7 it has been proved that the local growth of Brownian motion is slower than a
linear function. The Proposition 4.11 shows that the growth is larger than the square root, so it is
natural to try to find an intermediate function that expresses the assymptotic growth of Brownian
motion more accurately. The answer to this question will be given by the law of iterated logartihm,
which will not be stated in this work, although more details can be found in [8].

Definition 4.14. Given function f , the upper derivative is defined by:

D∗f (t) = lim sup
h↓0

f (t + h)− f (t)
h

Analogously, the lower derivative:

D∗f (t) = lim inf
h↓0

f (t + h)− f (t)
h

Theorem 4.15. Fix t ≥ 0. Then, almost surely, Brownian motion B(t) is not differentiable at t.
Furthermore,

D∗B(t) = +∞ and D∗B(t) = −∞

Proof. Given a standard Brownian motion B(t), we construct another by time inversion that satisfies:

D∗X (0) ≥ lim sup
n→∞

X ( 1
n )− X (0)

1
n

≥ lim sup
n→∞

√
nX (1

n
) = lim sup

n→∞

B(n)√
n

= +∞.

Thus, X (t) is not differentiable at t = 0. Now, consider B(t) = X (t + s) − X (s), and given the
non-differentiability of X (t) at t = 0, now it is equivalent to the nondifferentiability of B(t) at t.

From the theorem above we cannot still deduce the desired property, it is a weaker form of
it. We know that for a given t, Brownian motion will be nondifferentiable, almost surely, but it is
not equivalent that almost surely every point is a nondiferentiability point. There exists a subtile
but important difference between both statements, due to quatificator orders. However, the second
statement is proved in the next theorem.
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4 Introduction to Brownian motion

Theorem 4.16. Almost surely, Brownian motion is nowhere differentiable. In addition, almost surely,
for all t, either D∗B(t) = +∞ or D∗B(t) = −∞ or both.

Proof. Suppose there is t0 ∈ [0, 1] such that −∞ < D∗B(t) < D∗B(t) <∞, then

lim sup
h↓0

|B(t + h)− B(t)|
h

<∞.

By continuity of Brownian motion in the interval [0,T ], we would have that:

sup
h∈[0,1]

|B(t + h)− B(t)|
h

< M.

Whence it suffices to prove that this happens with zero probability. Take t0 ∈ [ k−1
2n , k

2n ], for n > 2
and 1 ≤ j ≤ 2n − k, by the triangle inequalty:∣∣∣B(k + j

2n
)
− B

(k + j − 1
2n

)∣∣∣ ≤∣∣∣B(k + j

2n
)
− B(t0)

∣∣∣+ ∣∣∣B(t0)− B
(k + j − 1

2n
)∣∣∣ ≤ M

j

2n + M
j − 1

2n = M
2j + 1

2n .

Define the events

Ωn,k =
{∣∣∣B(k + j

2n
)
− B

(k + j − 1
2n

)∣∣∣ ≤ M
2j + 1

2n for j = 1, 2, 3, ... l
}

.

Then by independence of marginal distributions of increments in a Brownian motion and properly
scaling of the process:

P(Ωn,k) =
l∏

j=1
P
{∣∣∣B(k + j

2n
)
− B

(k + j − 1
2n

)∣∣∣ ≤ M
2j + 1

2n
}
≤ P{|B(1)| ≤ 7M√

2n
}l .

Now, we have to think accurately of the distribution of B(1). Note that we are considering a
discrete approach of Brownian motion, i.e., a random walk. Then, B(1) con only take a finite number
of values, following a binomial distribution. Thus, when n → ∞ by the central limit theorem A.12
the distribution tends to a N (0, 1

4), thus:

P(|B(1)| ≤ 7M√
2n

) =
∫ 7M√

2n

− 7M√
2n

2√
2π

e−x
2
dx ≤ 7M√

2n
= 7M2−

n
2 .

Hence, given n, we have:

P(
2n−l⋃
k=1

Ωn,k) ≤ 2n(7M2−
n
2 )l < (7M)32−

n
2 ,

given, l ≥ 3, which is necessary for this events to form a convergent sum for all n. Now, using the
Borel-Cantelli lemma:

P
{
there is t0 ∈ [0, 1] : sup

h∈[0,1]

|B(t0 + h)− B(t0)|
h

≤ M
}
≤ P

( 2n−l⋃
k=1

Ωn,k for infinitely many n
)

= 0,

where the inequalty holds as a consequence of the more restrictive condition, as for the latter case
the condition must be satisfied infinitely many cases.
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5. The Markov property of Brownian mo-
tion

The introduction made in chapter 3 will now be contextualized with Brownian motion. Some results
seen there will be revisited, may be with some modifications, adapted to this particular process. It
aims at stablishing the Markov property (weak and strong versions) using the notion of stopping
times that holds for Brownian motion, and also some consequences will be included, such as the
reflection principle.

5.1 Markov property and Blumenthal’s 0− 1 law
In this chapter our mission is to state in which sense Markov property holds for the case of Brownian
motion, even in multidimensional cases, and from here deduce some interesting properties and laws.
In a more general property, we will see that some processes that proceed from Brownian motion are
also Markov processes. This will lead to the reflection principle, which will be dicussed in the next
section, whose consequences are surprinsing and interesting from a mathematical point of view.

Definition 5.1. If B1, ...Bd are independent Brownian motions started in (x1, ... , xd)T , the stochastic
process {B(t) : t ≥ 0} given by

B(t) = (B1(t), ... ,Bd(t))
is a d-dimensional Brownian motion started in (x1, ... , xd)T .

If we recall the Markov property for a stochastic process, we have that a process {B(t) : t ≥ 0}
with such property is only determined by the distribution at some s, and information in the interval
[0, s] can be disregarded, and it will have no influence in the future of the process.

Also note that two stochastic processes {X (t) : t ≥ 0} and {Y (t) : t ≥ 0} are said to be inde-
pendent is for any set of t1, t2, · · · , tn and s1, s2, · · · , sn the random vectors (X (t1),X (t2), ... ,X (tn))
and (Y (s1),Y (s2), ... ,Y (sn)) are independent vectors.

Theorem 5.2. (Markov property) Suppose that {B(t) : t ≥ 0} is a d-dimensional Brownian
motion started in x ∈ Rd . Let s > 0, then the process {B(t + s) − B(s) : t ≥ 0} is a standard
Brownian motion independent of the process {B(t) : 0 ≤ t ≤ s}.

Proof. It is clear that {B(t + s)−B(s) : t ≥ 0} satisfies the definition of a d-dimensional Brownian
motion, and the independence of {B(t) : 0 ≤ t ≤ s} is a consequence of the independence of
increments that characterizes the Brownian motion, by definition.

In this context, information that a random process gives us can be gathered in a filtration, which
abstractly will come to express exactly this. More formally:

Definition 5.3. A filtration on a probability space (Ω,F ,P) is a family (F(t) : t ≥ 0) of σ-algebras
such that F(s) ⊂ F(t) ⊂ F ∀s < t. A prrbability space with a filtration defined, is called a filtered
probability space. A stochastic process {X (t) : t ≥ 0} defined on (Ω,F ,P) is called adapted if
X (t) is F(t)-measurable for any t ≥ 0.

Remark 5.4. A filtration F(t) can also be denoted by Ft , which is generally used, but we will denote
it in the first way because the latter notation can result ambiguous for the next steps that we are
going to consider in this chapter.
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5 The Markov property of Brownian motion

Given a random process, such as Brownian motion {B(t) : t ≥ 0}, it is easy to build an adpated
filtration. We just need to take the filtration (F0(t)), where F0(t) is the σ-algebra generated by the
random variables {B(s) : 0 ≤ s ≤ t}. Obviously, Brownian motion is adpated to this filtration, that
contains the information of the process observed up to t. From theorem 5.2 we can easily deduce
that the process {B(t + s)−B(s) : t ≥ 0} is independent of F0(s), but can this be extended? What
if we know the information up to an infinitessimal time instant after s?
Consider the filtration

F+(s) = ∩t>sF0(t)

Then, clearly F0(s) ⊂ F+(s)

Theorem 5.5. For s ≥ 0, the process {B(t + s)− B(s) : t ≥ 0} is independent of F+(s).

This theorem is just a consequence of the continuity of Brownian paths. It is necessary to take
a decreasing sequence {sn}n≥0 convergent to s, and by continuity, the theorem holds.
From all σ-algebras, there is one, the so-called germ σ-algebra, defined as F+(0), which contains
information known at an infinitessimal time after the start of the process. So, the following result
was found and named after its discoverer in [3]:

Theorem 5.6. (Blumenthal’s 0− 1 law) Let A ∈ F+(0), then P(A) ∈ {0, 1}

Proof. Apply Theorem 5.5 for s = 0, which implies that for any A ∈ σ{B(t) : t ≥ 0}, A is
independent of F+(0). In particular applies if A ∈ F+(0), whence A is independent of itself, thus
P(A) ∈ {0, 1}

Remark 5.7. The previous proof is interesting from the point of view of the idea used. 0 − 1 laws
have appeared in this work, and all of them are proved using the same idea. If an event A has
probability either 0 or 1, then it suffices to prove that this event is independent of itself.

Theorem 5.8. Suppose {B(t) : t ≥ 0} a standard Brownian motion.
Define τ = inf {t > 0 : B(τ) > 0} and σ = inf {t > 0 : B(τ) = 0}. Then,

P{τ = 0} = P{σ = 0} = 1

Proof.
{τ = 0} =

∞⋂
n=1

{
there is 0 < ε <

1
n

: B(ε) > 0
}

Obviously, the event is in F+(0), and in addition, P(τ < t) > P(B(t) > 0) = 1
2 , which proves the

first part, as a consequence of theorem 5.6. The same argument is valid for the case B(t) < 0,
thus, by continuity of Brownian motion, using the mean-value theorem, we have that the property
for σ holds.

5.2 The strong Markov property
As in chapter 3, to introduce the idea of the strong Markov property, it is necessary to use stop-
ping times, which intuitively are related with the Markov property of only near-present dependence.
Roughly, a stopping time is a random variable whose value at time t can be deduced from the
information of the past values of itself. More formally,

Definition 5.9. A random variable T with values in [0,∞], defined in a probability space with an
associated filtration (F(t) : t ≥ 0) is called a stopping time if {T < t} ∈ F(t), for every t ≥ 0.
Additionally, if {T ≤ t} ∈ F(t) for every t ≥ 0, then T is a strict stopping time.
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5 The Markov property of Brownian motion

From the definition is is clear that every strict stopping time is also a stopping time, just observing
the following:

{T < t} =
∞⋃
n=1
{T ≤ t + 1

n
} ∈ F(t).

The main problem is to indentify in which cases the converse in also true. Fortunately, there are
nice enough filtrations where this happens. To overcome this problem in case of Brownian motion
it is appropiate to work with the filtration (F+(t) : t ≥ 0). Recall that this filtration satisfies
F0(s) ⊂ F+(s), what results in a larger filtration, and hence more stopping times accepted by
the process. The key point why we consider this filtration instead of the natural one is due to the
right-continuity of F+(t).

Theorem 5.10. Every stopping time T with respect to the filtration (F+(t) : t ≥ 0) is also a strict
stopping time.

For every stopping time T , we define:

F+(T ) = {A ∈ A : A ∪ {T < t} ∈ F+(t) for all t ≥ 0}

This introduces a slightly different notion, as now we are only considering the events that are com-
pletely known or determined up to a stopping time T .

Theorem 5.11. (Strong Markov property) For every almost surely finite stopping time T , the
process {B(t + T )− B(T ) : t ≥ 0} is a standard Brownian motion independent of F+(T ).

Proof. We start by an upper discrete approximation of the stopping time T by Tn = (m+1)
2n if

m
2n ≤ T < (m+1)

2n . Also, consider the following processes:

Bk(t) = B
(
t + k

2n
)
− B

( k

2n
)

and, fixing n, consider:
Bn(t) = B(t + Tn)− B(Tn)

Suppose we have an event E ∈ F+(Tn). Then, for every event {Bn ∈ A}, we have:

P({Bn ∈ A} ∪ E ) =
∞∑
k=0

P({Bk ∈ A} ∩ E ∩ {Tn = k2−n}) (∗)=

=
∞∑
k=0

P({Bk ∈ A}) ∩ P(E ∩ {Tn = k2−n}) (∗∗)=

= P({B ∈ A}
∞∑
k=0

P(E ∩ {Tn = k2−n}) = P{B ∈ A}P(E )

which shows that Bn is a Brownian motion independent of E , hence of F+(Tn). In the proof it has
been used that:

(*) {Bk ∈ A} is independent of {E ∩ Tn = k2−n} ∈ F+(k2−n).

(*) P(Bk ∈ A) = P(B ∈ A) is independent of k .

The generalisation to stopping times T follows from the continuity of Brownian motion for any
sequence Tn such that Tn ↓ T .
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5 The Markov property of Brownian motion

5.3 The reflection principle
The first and most important consequence of the Markov property of Brownian motion is the reflection
principle. It is almost a raw application of it. We consider a stopping time T , which can be arbitrary,
and the process:

B∗(t) = B(t)1{t≤T} + (2B(T )− B(t))1{t>T} (5.1)

t

B(t)

B∗(t)

a = B(T )

T

Theorem 5.12. (Reflection principle) If T is a stopping time and {B∗(t) : t ≥ 0} is a standard
Brownian motion, then the process defined in ( 5.1), called Brownian motion reflected at T is
also a standard Brownian motion.

Proof. If T is finite, then using the strong Markov property,

{B(t + T )− B(T ) : t ≥ 0} and {−(B(t + T )− B(T )) : t ≥ 0}

are Brownian motion independent of the original {B(t) : t ≥ 0}. Hence the process B∗(t) is a
standard Brownian motion, as the first part and the second one have the same distirbution and both
are standard Brownian motions.

Let a = B(T ), that is, the level at the stopping time. This level clearly exhibits a symmetry for
those Brownian motions that at t ∈ [T ,T ′] are above or below a, as for any path that is above there
is a relfected path that is below and conversely.
Let M(t) = max

0≤s≤t
B(s). This random variable has unknown distribution, a priori, but in application

of the reflection principle, we can determine it:

Corollary 5.13. If a > 0, then P{M(t) > a} = 2P{B(t) > a}

Proof. Let T = inf {t ≥ 0 : B(t) = a} and {B∗(t) : t ≥ 0} is the refelected Brownian motion, then:

P(M(t) > a) = P(M(t) > a,B(t) ≥ a) + P(M(t) > a,B(t) < a) =
P(B(t) > a) + P(B∗(t) > a) = 2P(B(t) > a)

since both are Brownian motions.

In chapter 4 the regularity of Brownian motion have been studied with a direct approach. Now,
also as a consequence of the reflection principle, the non-differentiation results is retrieved.
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5 The Markov property of Brownian motion

Corollary 5.14. If {B(t) : 0 ≤ t ≤ T} is a standard Brownian motion, then, almost surely, ∀t ≥ 0
B(t) is nondifferentiable.

Proof. We argue by contradiction. Suppose that at some t, the derivative exists. Then:

|B(t + ε′)− B(t)| ≤ εA

Let M(ε) = max
ε′
|Bt+ε′ − Bt | ≤ εA. By Corollary 5.13, we have

P(M(t) > εA) = 2P(B(ε) > εA) = 2P(N (0, ε) > εA) = 2P(N (0, 1) >
√
εA) −→

ε→0
1

where N denotes a normal distribution.
Thus, there is a contradiction, since the maximum is not bounded for any ε with probability 1, and
therefore, B(t) is nondifferentiable at any point.
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6. From random walks to Brownian mo-
tion

6.1 Preliminaries
Throughout this chapter, there will be a permanent idea overflying theorems and arguments: how
to approximate a Brownian motion through a random walk. There are many constructions possible,
but the approach given in the proof of the Ray-Knight theorem has the advantadge that it is natural
and elementary. Sometimes, the embedding process is called twist and shrink for obvious reasons.
The key point is to construct a sequence of random walks uniformly convergent to Brownian motion.

Firstly, imagine that we observe the motion of a particle when it hits to coordinates {j , j ∈ Z}.
Then, we observe the particle exclusively when coordinates { j2 , j ∈ Z} are hit. And so on. This
generates a sequence of random walks, which suitably managed, converge appropiately.
We consider a sequence of independent identically distributed random variables Xm(k) in a probability
space (Ω,F ,P) such that P(Xm(k) = ±1) = 1

2 , for m ≥ 0 and k ≥ 1. Then the random walk
considered is: Sm(0) = 0 and Sm(n) =

∑n
k=1 Xm. Thus, E(Xm(k)) = 0 and Var(Xm(k)) = 1.

Hence:
E(Sm(n)) = 0 Var(Sm(n)) = n. (6.1)

This expression suggests that time and space scaling can not be done arbitrarely. The question is:
if the space is halved, what should be time reduction in order to converge to a Brownian motion?
From (6.1), we know that the square root of the average squared distance of a random walks from
the origin at time n is

√
n, so an appropiate shrink after n would require a lenght of 1√

n
.

So far, the construction of the random walks is independent ofm, but this does not give a convengence
to a limit as desired. We need to find a link, which will be a successive refinement of them, that
joins them correctly. With this construction in mind, we define the stopping times Tm(0) = 0, and:

Tm(k + 1) = inf {n > Tm(k) : |Sm(n)− Sm(Tm(k))| = 2} (6.2)

These are random (stopping) times when the random walk visits even integers different from the
provious one. A key point is that the distribution of Tm(k) is known, and it is given by the following
Lemma:

Lemma 6.1. Let Tm(k) be random variables defined as in (6.2). Then Tm(k) follows the distribution
of the double negative binomial random variable with parameters k and p = 1

2 .

Proof. Consider the random variables τj = inf {n > τj−1 : |Sm(n) − Sm(τj−1)| = 2} − τj−1, with
τ0 = 0. These random variables have a known distribution. Imagine the random walks as a sequence
of independent pairs of steps: returns or change of magnitud ±2. Then, P{τk+1 = 2j} = 1

2j , what
implies that τk+1 = 2Yk+1, where Yk+1 is a geometric random variable with paraemter p = 1

2 . This
results follow from the fact that Tm(k) can be seen as the sum of k independent geometric random
variables τj :

Tm(k) =
k∑

j=0
τj = 2

k∑
j=0

Yj ,

that leads to a negative binomial distribution, and also, E(Tm(k)) = 4k and Var(Tm(k)) =
4 p

(1−p)2 k = 8k .
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6 From random walks to Brownian motion

As a consequence the Central Limit Theorem 6.1 and A.12, we have that for any real fixed x and
k →∞:

P
{Tk − 4k√

8k

}
→ Φ(x) (6.3)

where Φ(x) denote the cummulative distribution of a standard normal random variable. Now, we
can define recursively twisted random variables for Tm(k) < n < Tm(k + 1):

X̃m(n) =
{
Xm(n) if Sm(Tm(k + 1))− Sm(Tm(k)) = 2X̃m−1(k + 1)
−Xm(n) otherwise

(6.4)

and then S̃m(n) =
∑n

j=1 X̃m(j).

1

2

1 2 3
u

u

u

u

Figure 6.1: S0(t,ω)
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Figure 6.2: S1(t;ω)
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Figure 6.3: S̃1(t;ω)

The figures below illustrate the twist introduced to the random walks that correlate two consec-
utive terms of the sequence. However, this correlation must satisfy some restrictions, commented
above, and next Lemma is going to give us certainty that the construction respects the random walk
structure.
Lemma 6.2. For each m ≥ 0, S̃(t), (t ≥ 0) is a random walk, that is, X̃m(1), X̃m(2), ... is a sequence
of independent random variables indentically distributed such that:

P{X̃m(n) = 1} = P{X̃m(n) = −1} = 1
2 (6.5)

The proof of this lemma is ommited, since its very extense. The difficult point of it is to prove
the independence of the random walks defined. For more detials, see [9, Lemma 1].
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6 From random walks to Brownian motion

6.2 Twist and shrink embedding
The main consequence of Lemma 6.2 is the twist property that implies the correlation between two
consecutive random walks in the following way:

S̃m(Tm(k)) =
k∑

j=1
(S̃m(Tm(j))− S̃m(Tm(j − 1))) =

k∑
j=1

X̃m−1(j) = S̃m−1(k) (6.6)

The next step is the shrink of the random walk. We know that time steps must be the square of
spatial steps. Therefore, we define the m-th approximation to the Wiener process by:

B̃m

( t

22m

)
= 1

2m S̃m(t) (t ≥ 0,m ≥ 0) (6.7)

Rewriting it with a change of variable:

B̃m(t) = 2−mS̃m(22mt)

These expressions for (m ≥ 0) give an approximation to the Wiener process on the coordinates
x = j

2m j ∈ Z. Thus, for the case of Brownian motion, (6.6) becomes the following refinement
property:

B̃m

(Tm(k)
22m

)
= 1

2m S̃m(Tm(k)) = 1
2m S̃m−1(k) = B̃m−1

( k

22(m−1)

)
(6.8)

for any m ≥ 1 and k ≥ 0.

The main objective of this chapter is to see how, from the refinement property proved above,
the times Tm(k)

22m and k
22(m−1) get arbitrarely close, so that, Bm(t) converges to the Wiener process,

donoted by W (t), hereinafter. Firstly, we establish a technical lemma, which will be useful for other
auxiliar results.

Lemma 6.3. Suppose that for j ≥ 0, we have E(Zj) = 0 and Var(Zj) = j and with some a > 0 and
b > 0,

P({|Zj | ≥ t}) ≤ 2aje−bt (t ≥ 0)

(exponential-Chebyshev inequalty).
Assume as well that there exists j0 > 0 such that for any j > j0,

P
{ |Zj |√

j
> xj

}
≤ e−

xj
2

whenever Xj →∞ and xj = o(j1/6) (large deviation type inequalty).
Then, for any C > 1,

P
{
max

0≤j≤N
|Zj | ≥ (2CNlog(N))

1
2
}
≤ 2

N1−C (6.9)

if N is large enough, N ≥ N0(C ).

Proof. Firstly we introduce a bound for the maximum, which, although is not accurate, can be very
useful in this lemma. For any random variable Zj , it holds that:

P( max
1≤j≤N

Zj > t) = P(∪Nj=1{Zj > t}) ≤
N∑
j=1

P{Zj > t} (6.10)
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6 From random walks to Brownian motion

Then, the condition in ( 6.9) can be directly found with the previous bound. We split the sum in two
parts, which will be bounded with the Chebishev-type inequalty and large deviation type inequalty
respectively. In the second case, xj will be taken equal to

√
2Clog(N) and since j ≤ N then xj →∞.

For j ≥ log4(N) the conditions for xj hold, and both inequalties can be applied in the following way:

P
{
max

0≤j≤N
|Zj | ≥

√
2CNlog(N)

}
≤

blog4(N)c∑
j=0

2aje−b
√

2CNlog(N) +
N∑

j=blog4(N)c
P{|Zj |/

√
j ≥

√
2Clog(N)} ≤

2a
a− 1e

log(a)log4(N)−b
√

2CNlog(N) + Ne−Clog(N) ≤ 2
NC−1

The crucial fact that happens in this case is that the assumption made in the previous lemma holds
for any sequence Zj of partial sums of independent identically distributed random variables with mean
0. The justification of this properties can be found in [10]. Next result is a consequence of Lemma 6.3
applied to the random variable Tm(k)−4k

8k , with N = K22m. So log(N) = log(K ) + 2log(N)m and
consequently, for m large enough, logN ≤ 3

2m and
√

2CNlog(N) ≤
√

3CKm2m.

Lemma 6.4. a) For any C > 1, K > 0, and for any m ≥ m0(C ,K ) we have

P{ max
0≤k/22m≤K

|Tm+1(k)− 4k | ≥
√

24CKm2m} < 2(K22m)1−C (6.11)

b) For any K > 0,

max
0≤k/22m≤K

|Tm+1(k)
22(m+1) −

k

22m | <
√

2Km2−m (6.12)

with probability 1 for all but finitely many m.

Proof. a) ( 6.11) is a direct consequence of Lemma 6.3

b) Take C = 4
3 > 1 in a) and difine the events:

Am =
{

max
0≤k/22m≤K

|Tm+1(k)− 4k | ≥
√

32Km2m
}

(6.13)

By 6.11, we know that P{Am} < 2(K22m)−
1
3 . This implies that

∑∞
m=0 P(Am) <∞ and by the

first Borel-Cantelli lemma, with probability 1 only finitely many of the events Am occur. That is,
almost surely for all but finitely many m:

max
0≤k/22m≤K

|Tm+1(k)− 4k | <
√

32Km2m

which is equivalent to ( 6.12)

Lemma 6.5. a) For any C ≥ 3
2 , K > 0 and for any n ≥ n0(C ) we have

P
{

max
0≤k/22n≤K

|Bn+1(Tn+1(k)/22(n+1))− Bn+1(k/22n)| ≥ (1/8)n2−
n
2
}
≤ 3(K22n)1−C (6.14)

and

P
{
max

0≤t≤K
|Bn+j(t)− Bn(k/22n)| ≥ n2−

n
2 for some j ≥ 1

}
< 6(K22n)1−C . (6.15)
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6 From random walks to Brownian motion

b) For any K > 0,
max

0≤t≤K
|Bn+j(t)− Bn(t)| < n2−

n
2 (6.16)

with probability 1 for all j ≥ 1 and for all but finitely many n.

Proof. First of all we consider the difference between two consecutive approximations Bm+1(t) −
Bm(t), whose maximum can be approximated by the maximum over dyadic intervals of the form k

22m

by construction. Moreover the increment between two points k
22m and k+1

22m is always equal to 2−m.
We take, as before, tm =

⌊
t22m⌋ for each t ∈ [0,K ], thus one has tm

22m ≤ t < tm+1
22m . Consequently:

|Bm(t)− Bm(tm/22m)| < 2−m,

and
|Bm+1(t)− Bm+1(4tm/22(m+1))| < 2−m.

Using these bounds directly and the triangular inequalty with maximum, we obtain:

max
0≤t≤K

|Bm+1(t)− Bm(t)| ≤ max
0≤k/22m≤K

|Bm+1(4k/22(m+1))− Bm(k/22m)|+ 3 · 2−m

Moreover, by (6.8) and (6.7)

Bm+1(4k/22(m+1) − Bm(k/22m) = 2−(m+1)S̃m+1(4k)− 2−(m+1)S̃m+1(Tm+1(k)) (6.17)

Thus,

P
{
max

0≤t≤K
|Bn+1(t)− Bn+1(t)| ≥ (1/4)m2−

m
2
}

≤ P
{

max
0≤k/22m≤K

|Bm+1(4k/22(m+1))− Bm(k/22m)| ≥ (1/8)m2−
m
2
}

= P
{

max
0≤k/22m≤K

|S̃m+1(4k)− S̃m+1(Tm+1(k))| ≥ (1/4)m2
m
2
}

for m large enough. By Lemma 6.3, for m large enough again, the probability of:

Am =
{

max
0≤k≤K22m

|Tm+1(k)− 4k | ≥
√

24CKm2m
}

is very small.
The next part of the proof corresponds to the split of the previous expression in two parts accordidng
to Am and Ac

m. This includes a lot of technical details in order to be able to apply the previous
lemmas for suitable constants N ′ and C ′ which will not be included here. The complete proof of the
statement a) of this lemma can be found in [10]. From here, we can conclude that:

P
{

max
0≤k/22n≤K

|Bn+1(Tn+1(k)/22(n+1))− Bn+1(k/22n)| ≥ (1/8)n2−
n
2
}
≤ 3(K22n)1−C

for m large enough.
By ( 6.18), max

0≤t≤K
|Bm+1(t)− Bm(t)| > (1/4)m2−

m
2 for all m ≥ n ≥ 15, which implies, for j ≥ 1:

max
0≤t≤K

∣∣∣Bn+j(t)− Bn(t)
∣∣∣ = max

0≤t≤K
|
n+j−1∑
m=n

Bm+1(t)− Bm(t)|

≤
n+j−1∑
m=n

max
0≤t≤K

|Bm+1(t)− Bm(t)| <
∞∑

m=n

(1/4)m2−
m
2 < n2−

n
2
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6 From random walks to Brownian motion

With all those bounds, we can conclude the following:

P
{
max

0≤t≤K
|Bn+j(t)− Bn(k/22n)| ≥ n2−

n
2 for some j ≥ 1

}
≤
∞∑

m=n

P
{
max

0≤t≤K
|Bm+1(t)− Bm(t)| ≥ (1/4)m2−

m
2
}

∞∑
m=n

3(K22m)1−C = 3(K22n)1−C 1
1− 22(1−C) < 6(K22n)1−C

whenever C > 3
2 , for any n large enough. The part remaining of the statement in b) is proved

analogously to Lemma 6.3 using the Borel-Cantelli lemma.

Remark 6.6. In the proof we have used the elementary bound:
∞∑

m=n

m2−
m
2 ≤ 4n2−

n
2 (6.18)

for n ≥ 15, using that the previous sum as a derivative of
∑∞

m=n x
m at the point x = 1√

2 .

Theorem 6.7. As n→∞, almost surely, for all t ∈ [0,∞], Bn(t,ω) converge to W (t,ω) such that:

i) W (0,ω) = 0, and W (t,ω) is a continuous function of t on the interval [0,∞];

ii) for any 0 ≤ s < t, W (t) −W (s) is a normally distributed random variable with expectation 0
and variance t − s;

iii) for any 0 ≤ s < t ≤ u < v , the increments W (t)−W (s) and W (v)−W (u) are independent
random variables.

By definition, W (t) (t ≥ 0) is called a Wiener process, as defined in chapter 4.
Further, we have the following estimates for the difference of the Wiener process and its approxima-
tions.

a) For any C ≥ 3
2 , K > 0 and for any n ≥ n0(C ) we have

P
{
max

0≤t≤K
|W (t)− Bn(t)| ≥ n2−

n
2
}
≤ 6(K22n)1−C (6.19)

b) For any K > 0,
max

0≤t≤K
|W (t)− Bn(t)| < n2−

n
2 (6.20)

with probability 1 for all j ≥ 1 and for all but finitely many n.

32



6 From random walks to Brownian motion

Proof. Recall that Bn(0,ω) for any n, and by (6.5) Bn(t,ω) is convergent, thus it must hold that
W (0,ω) for any ω ∈ Ω.
Taking j → ∞ in (6.15), (6.19) follows. By (6.16), the convergence of Bn(t) is uniform on any
bounded interval [0,K ] and, since Bn(t) is continuous for all n, we have that the limit W (t) is also
continuous, since we are considering a compact set. This proves i).
Take arbitrary t > s ≥ 0. With K > t fixed, ( 6.19) shows that for any δ > 0 there exists an
n ≥ n0(C ,K ) such that:

P
{

max
0≤u≤K

|W (u)− Bn(u)| ≥ δ
}
≤ δ (6.21)

Observe that:

P{W (t)−W (s) ≤ x} = P{Bn(t)− Bn(s) ≤ x − (W (t)− Bn(t)) + (W (s)− Bn(s))},

(6.21) implies that

P{Bn(t)−Bn(s) ≤ x−2δ}−2δ ≤ P{W (t)−W (s) ≤ x} ≤ P{Bn(t)−Bn(s) ≤ x+2δ}+2δ (6.22)

These bounds of the probability distribution of W (t) −W (s) indicate that can be deduced from
Bn(t)− Bn(s), whose expression is already known. More precisely,

Bn(t)− Bn(s) = 2−nS̃n(22nt)− 2−nS̃n(22ns) (6.23)

Consider the integers jn =
⌊
22nt

⌋
and in =

⌊
22ns

⌋
, and jn ≥ in. Then 6.23 differs from

2−n(S̃n(jn)− S̃n(in)) = 2−n
jn∑

in+1
X̃k (6.24)

by an error not greater than 2 · 2−n ≤ δ. Also, jn − in differs from 22n(t − s) by at most 1. In
particular jn − in −→∞ as n −→∞. Using the Central Limit Theorem A.12, for n large enough so
that al the previous holds, we have that for any real x ′

Φ(x ′)− δ ≤ P{ 1√
jn − in

jn∑
in+1

X̃k ≤ x ′} ≤ Φ(x ′) + δ (6.25)

Taking an approximation of
√
jn − in by 2n

√
t − s, for n large enough we have:

1− δ < 2n
√
t − s√

jn − in
< 1 + δ (6.26)

Conbining the expressions 6.23- 6.26, we obtain that

Φ
(
(1− δ) x√

t − s
− δ

)
− δ ≤ P

{
Bn(t)− Bn(s) ≤ x

}
≤ Φ

(
(1 + δ) x√

t − s
+ δ

)
+ δ.

This shows that when δ → 0, the distribution of Bn(t)−Bn(s) is assymptotically normal with mean
0 and variance t− s when n→∞. Hence, by (6.2), the distribution of W (t)−W (s) is normal with
the parameters desired, what proves ii).
In order to prove iii), the same construction done in (6.23)-(6.26) is valid for arbitrary v > u ≥ t >
s ≥ 0 applied to any real numbers x , y such that:

P
{
W (t)−W (s) ≤ x ,W (v)−W (u) ≤ y

}
= P

{
W (t)−W (s) ≤ x

}
· P
{
W (v)−W (u) ≤ y

}
.
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6 From random walks to Brownian motion

If suitably manipulated, Theorem 6.7 can be transformed into the following result:

Theorem 6.8. On any bounded interval, the sequence (Bm) almost surely uniformly converges as
m→∞ and the limit process is Brownian motion W . For any C > 1, and for any K > 0 and m ≥ 1
such that K22m ≥ N2(C ), we have

P
{

sup
0≤t≤K

|W (t)− Bm(t)| ≥ 27CK 1/4
∗ (log∗K )3/4m3/42−m/2

}
≤ 6

1− 41−C (K22m)1−C ,

where K∗ = max{1,K} and log∗(x) = max{1, log(x)}

Now, using the Borel-Cantelli lemma we get that for any fixed K > 0 there is a constant
cK = 28K 1/4

∗ (log∗K )3/4 (taking C = 1 + 1
27 , say) such that almost surely,

lim sup
m→∞

m−3/42m/2 sup
0≤t≤K

|W (t)− Bm(t)| < cK (6.27)

Similarly, for any fixed m ≥ 1, there is a constant cm = 55m3/42−m/2 such that, almost surely,

lim sup
K→∞

K−1/4(log(K ))−3/4 sup
0≤t≤K

|W (t)− Bm(t)| < cm (6.28)

Since K 1/4(log(K ))3/4 and for any ω ∈ Ω, sup
0≤t≤K

|W (t)−Bm(t)| are non-decreasing, it is enough to

see that:
lim sup
K→∞

n−1/4(log(n))−3/4 sup
0≤t≤n+1

|W (t)− Bm(t)| < cm (6.29)

when n only takes integer values. To prove it, it suffices to apply the Borel-Cantelli Lemma with
C = 2 + 1

27 in the previous theorem.

As a conclusion of this part of the section, we have developed an elementary construction of
random walks that converge to Brownian motion. Although the construction might seem simple
apparently, there are many technical details needed to prove the convergence. It might be possible
to approach Brownian motion through other simple, symmetric random walks sequences, but this
particular construction will allow us in the following sections to tackle other classical problems using
these approximations.
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7. Brownian local time
How can we measure the time that a Brownian motion or a more general stochastic process spends
at a certain level or state? It is possible to show that this occupation times are absolutely continuous
measures, so that their densities are a viable measure for the time spend at a level a up to time t or
equivalently, in the time interval [0, t]. This section will lead us to an important result, the so-called
Trotter’s theorem, which will not only be valuable by its central role in local time theory of Brownian
motion, but also because a non-typical argument, so far, will be provided as the main tool to proceed
with the proof. We will use random walk approximations to a Brownian motion. The approximation
will be done via the twist and shrink construction seen in section 6. In this section the results will
be basically the ones given by [8], and for the last part of it, we will follow results already obtained
by [9].

7.1 Brownian local time at zero
We start considering a Brownian motion {B(t) : t ≥ 0}. Our mission is to measure the amount of
time spend at 0. It is possible to prove that the zero set has 1

2 Haussdorf dimension, e.g. see in [8],
but the proof is out of the scope of this project. Anyway, the Haussdorf dimension of this set does
not provide nontrivial information.
One way to tackle local time problem is through the study of downcrossings of a sequence of nested
subintervals. More precisely, given a < b, and a Brownian motion {B(t) : t ≥ 0}, we define τ0 = 0
and for j ≥ 1:

σj = inf {t > τj−1 : B(σj) = b} and τj = inf {t > σj : B(σj) = a}

Then, we to define the downcrossings:

B(j) : [0, τj − σj ]→ R, B(j)(s) = B(τj + s)

for the j-th downcrossing of the interval [a, b], and for the number of downcrossings, we donote:

D(a, b, t) = max{j ∈ N : τj ≤ t}

From the definition, D(a, b, t) is almost surely finite, as Brownian motion is absolutely continuous
on any compact interval [0, t]. The final result we want to prove is the following one.

σ1 τ1 σ2

a

b
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7 Brownian local time

Theorem 7.1. (Downcrossing representation of the local time at zero) There exists a nontrivial
stochastic process {L(t) : t ≥ 0} called the local time at zero such that for any sequences an ↑ 0
and bn ↓ 0, almost surely

L(t) := lim
n→∞

2(bn − an)D(an, bn, t)

for every t ≥ 0. Moreover this process is γ-Hölder continuous for any γ < 1
2

This theorem is the objective of the chapter. Some technical details must be introduced and devel-
oped.

Lemma 7.2. Let a < m < b and suppose {B(t) : 0 ≤ t ≤ T} is a Brownian motion stopped at
time T when it first hits a given level above b. Let :

• D be the number of downcrossings of the interval [a, b]

• Dl be the number of downcrossings of the interval [a,m]

• Du be the number of downcrossings of the interval [m, b]

Then, there exist two sequences of random variables X0,X1, ... and Y0,Y1, ... of independent non
negative random variables and independent of D, such that for j ≥ 1:

• Xj ∼ Geom( (b−a)
(m−a))

• Yj ∼ Geom( (b−a)
(b−m))

and the following equalties hold:

Dl = X0 +
D∑
j=1

Xj and Du = Y0 +
D∑
j=1

Yj

For a proof, see e.g. [8, Lemma 6.3] based on [8, Theorem 2.45].

Definition 7.3. A stochastic process {Xn : n ≥ 0} is a martingale with respect to a filtration
(Fn : n ≥ 0) if:

• Xn is measurable with respect to Fn

• E|Xn| <∞

• E(Xn+1|Fn) = Xn

Additionally, if E(Xn+1|Fn) ≥ Xn, then {Xn : n ≥ 0} is a submartingale and if E(Xn+1|Fn) ≤ Xn,
then {Xn : n ≥ 0} is a supermatingale.

36



7 Brownian local time

Lemma 7.4. For any two sequences an ↑ 0 and bn ↓ 0 with an < bn, the discrete stochastic process

{2(bn − an)D(an, bn,T ), n ∈ N}

is a submartingale with respect to the filtration (Fn : n ∈ N).

Proof. First of all, we suppose without loss of generality that in each step:

either an+1 = an or bn+1 = bn

This can be assumed, because in case neither of them were true in the n-th. step, this step could
be split in two different steps, one step for each sequence, whilst the other remains constant.
Suppose an+1 = an.Using Lemma 7.2 for Dl , the number of downcrossings D(an, bn+1,T ) given Fn,
is the sum of D(an, bn,T ) independent geometric random variables with parameter bn+1−an

bn−an plus a
nonnegetive factor. Thus:

E(2(bn+1 − an+1)D(an+1, bn+1,T )) an+1=an=
= 2(bn+1 − an)E(D(an, bn+1,T ))

≥ 2(bn+1 − an) bn − an
(bn+1 − an)D(an, bn,T ) = 2(bn − an)D(an, bn,T )

(7.1)

Using again Lemma 7.2 for Du, we have that the same relation holds for the case bn+1 = bn, hence
the result follows.

Lemma 7.5. Fix Tb ∈ R large enough. For any two sequences an ↑ 0 and bn ↓ 0 with an < bn the
limit

L(Tb) = lim
n→∞

2(bn − an)D(an, bn,Tb)

exists almost surely and does not depend on the choice of sequences.

Proof. D(an, bn,Tb) is a geometric random variable with parameter bn−an
b−an , hence, its variance can

be bounded by 2( b−an
bn−an )2. Thus,

E((2(bn − an)D(an, bn,Tb))2) ≤ E(2(bn − an)D(an, bn,Tb))2 ≤ 4(b − an)2

Thus the submartingale in lemma 7.4 is L2-bounded and by the submartingale convergence theorem
(see [8]), the limit

lim
n→∞

2(bn − an)D(an, bn,Tb)

exists almost surely, and it is nontrivial, where Tb is a stopping time with b > b1.

It just remains to prove that L(Tb) does not depend on the choice of an and bn, what is also
true, as if we were given sequences with different limits, we could construct a sequence of alternating
intervals that would lead to a limiteless sequence, what can not happen, by this theorem.
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7 Brownian local time

Lemma 7.6. For any fixed time t ≥ 0, the limit

L(t) = lim
n→∞

2(bn − an)D(an, bn, t) exists

Proof. We define an auxiliary Brownian motion {Bt(s) : s ≥ 0} such that Bt(s) = B(t + s). Also,
for any integer b > b1, we denote Dt(an, bn,Tb) the number of downcrossings of the interval [an, bn]
by the auxiliary Brownian motion before it hits b. Then, by previous lemma,

L(Tb) = lim
n→∞

2(bn − an)Dt(an, bn,Tb)

exists almost surely. For t ≥ 0, we fix a Brownian motion such that this limits exists for all b > b1.
Then, picking b so large that Tb > t, define:

L(t) := L(Tb)− Lt(Tb)

Now, by considering the process suitably to avoid t coinciding with a downcrossing time:

D(an, bn,Tb)− Dt(an, bn,Tb)− 1 ≤ D(an, bt , t) ≤ D(an, bn,Tb)− Dt(an, bn,Tb)

Then, multiplying by 2(bn−an) and taking limits, we get L(t) = L(Tb)−Lt(Tb) for both inequalties,
which proves the convergence to L(t).

The next Lemma, which is stated without proof, will give an estimate on the infinitessimal growth
of local times. For a proof, see e.g. [8, Lemma 6.7].

Lemma 7.7. Let γ < 1
2 and 0 < ε < 1−2γ

3 . Then for all t ≥ 0 and 0 < h < 1

P{L(t + h)− L(t) > hγ} ≤ 2e−
1
2h
−ε

Lemma 7.8. Almost surely,

L(t) = lim
n→∞

2(bn − an)D(an, bn, t)

exists for every t ≥ 0.

Proof. We proof it for all 0 ≤ t ≤ 1. Consider the grid:

G =
⋃
m∈N
Gm ∪ {1}, where Gm =

{ k

m
, k ∈ {0, 1, ... ,m − 1}

}
.

We show that convergence holds in the set:⋃
t∈G
{L(t) exists } ∪

⋃
M<m

⋃
t∈Gm

{
L(t + 1

m
)− L(t) >

( 1
m

)γ}
,

which has probability close to one by the previous Lemmas, for M large enough. Given t ∈ [0, 1),
we find t1, t2 ∈ Gm with t2 − t1 = 1

m . We have

2(bn − an)D(an, bn, t1) ≤ 2(bn − an)D(an, bn, t) ≤ 2(bn − an)D(an, bn, t2).

Both of sides converge to L(t1) and L(t2) respectively, and consequently, L(t) exists, since L(t2) −
L(t1) ≤ m−γ . Thus, the proof is complete.
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7 Brownian local time

Lemma 7.9. For γ < 1
2 , almost surely, the process {L(t) : t ≥ 0} is γ-Hölder continuous.

Proof. Again, we only proof it for 0 ≤ t ≤ 1, without loss of generality. We reconsider the set of the
previous lemma and see that γ-Hölder continuity still holds in this set, that is, almost surely. Take
0 ≤ s < t < 1 and t − s < 1

M , then pick m > M such that

1
m + 1 ≤ t − s <

1
m

.

Now, just taking t1 < s such that t1 ∈ Gm and s − t1 <
1
m and t2 > t with t2 ∈ Gm and t2− t < 1

m ,
note that:

L(t)− L(s) ≤ L(t2)− L(t1) ≤ 2
( 1
m

)γ
≤ 2

(m + 1
m

)γ
(t − s)γ ≤ (t − s)γ

These lemmas jointly, complete the proof of the downcrossing representation Theorem.

7.2 A random walk approach to the local time process
The previous section will be the basis over which we contruct a more general idea of Brownian local
time. For a given linear Brownian motion {B(t) : t ≥ 0}, let {La(t) : a ∈ R, t ≥ 0} be the local
time at zero of the auxiliary Brownian motion {Ba(t) : t ≥ 0} such that Ba(t) = B(t) − a. The
aim of this section is to study {La(t) : a ∈ R, t ≥ 0}, i.e., the local time as a function of the level
a. We give the following result without proof:

Theorem 7.10. For a Brownian motion {B(t) : t ≥ 0} and for any measurable function g : R→ R
and t ≥ 0: ∫

g(a)dµt(a) =
∫ t

0
g(B(s))ds =

∫ ∞
−∞

g(a)La(t)da

This theorem, in particular, implies that {La(t) : a ∈ R} is the density of the occupation measure
µt , what can be defined as:

µt(A) :=
∫ t

0
1A(B(s))ds

This measure has the property that is absolutely continuous with respect to the Lebesgue measure.
The result that must be shown is the continuity of the density {La(t) : a ∈ R}. In order to study
it, we need to extend the idea of the downcrossing representation theorem, and in this case, we will
use a random walk embedded in a Brownian motion. But, this ones must be done carefully, this is
why we pay especial attention, as this argument or similars will be used more than once to replicate
other Brownian motion results through random walks embeddings, which is one the main goals of
this work. The embedding we will use is the following: we define the stopping times

τk := τ
(n)
k := inf {t > tk−1 : |B(t)− B(τk−1)| = 2−n}

and define the n-th. embedded random walk by:

Xk := X
(n)
k := 2nB(τ (n)

k )

For any time t > 0, the length of the n-th. random walk is defined by:

N := N(n)(t) := max{k ∈ N : t ≤ τk}
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7 Brownian local time

Given a ∈ R, we can choose j(a) ∈ {0, 1, ... } such that j(a)2−n ≤ a < (j(a) + 1)2n. Then, we
denote the number of downcrossings of 2na by:

D(n)(a, t) := #{k ∈ {0, 1, ... ,N(n)(t)} : X (n)
k = j(a) + 1,X

(n)
k+1 = j(a)}

Theorem 7.11. (Trotter’s theorem) Let {B(t) : t ≥ 0} be a Brownian motion and let D(n) be
the number of downcrossings of 2na by the n-th. embedded random walk stopped at time N(n)(t).
Then, almost surely,

La(t) := lim
n→∞

2−n+1D(n)(a, t) exists for all a ∈ R and t ≥ 0

Moreover, for γ < 1
2 the process

{La(t) : a ∈ R, t ≥ 0}
is almost surely locally γ-Hölder continuous.

Remark 7.12. {La(t) : a ∈ R, t ≥ 0} is usally considered a random field, instead of a process, as it
depends on more than one parameter, but the random nature of the process is conserved.

The proof of this theorem is especially important and relevant for this work, since it aims at prov-
ing a classical result of Brownian motion using random walk approximation, but in this case, without
using the approach developed in the previous chapter. Actually, there is a more general result, the
Ray-Knight theorem, which will not be included, but can be found in [8] in which this idea is also used.

Fix γ ≤ 1
2 and a large enough integer N, that determines the stopping time of the Brownian

motion at TN when it hits the level N. Consider the abbreviation D(n)(a) = D(n)(a,TN), then:

Lemma 7.13. Denote by Ω(m) the event that for every n ≥ m:

a) |D(n)(a)− 1
2D

(n+1)(a)| ≤ 2n(1−γ) for all a ∈ [−N,N)

b) |D(n)(a)− D(n)(b)| ≤ 2 · 2n(1−γ) for all a, b ∈ [−N,N) such that |a− b| ≤ 2−n

Then,
lim

m→∞
P(Ω(m)) = 1

Thus, if we are capable of proving the results for the elements satisfying the conditions of Ω(m),
then the results will be valid almost surely, as a consequence of the previous Lemma.

Lemma 7.14. On the set Ω(m) we have that:

La(TN) := lim
n→∞

2−n−1D(n)(a)

for every a ∈ [−N,N)

Proof. The easiest way to proof this lemma is by showing that the sequence 2−n−1D(n)(a) is a
Cauchy sequence and hence, convergent. By definition, on Ω(m), for any a ∈ [−N,N), and n ≥ m,

|2−n−1D(n)(a)− 2−n−2D(n+1)(a)| ≤ 2−nγ

Thus, we have:

sup
k≥n
|2−n−1D(n)(a)− 2−k−1D(k)(a)| ≤

∞∑
k=n

|2−k−1D(k)(a)− 2−k−2D(k+1)(a)| ≤
∞∑
k=n

|2−nγ | n→∞−→ 0
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7 Brownian local time

Lemma 7.15. On the set Ω(m), the process {La(TN), a ∈ [N,N)} is γ-Hölder continuous.

Proof. Fix a, b ∈ [−N,N) with 2−n−1 < |a− b| < 2−n for some n ≥ m. Then, for all k ≥ n,

|2−k−1D(k)(a)− 2−k−1D(k)(b)| ≤ |2−n−1D(n)(a)− 2−n−1D(n)(b)|

+
k−1∑
j=n

|2−j−2D(j+1)(a)− 2−j−1D(j)(a)|+
k−1∑
j=n

|2−j−2D(j+1)(b)− 2−j−1D(j)(b)|

≤ 2−nγ+1 + 2
∞∑
j=n

2−jγ

Now, letting k ↑ ∞,

|La(TN)− Lb(TN)| ≤ (2 + 2
1− 2−γ )2−nγ ≤ (21+γ + 21+γ

1− 2−γ )|a− b|γ

thus, {La(TN), a ∈ [N,N)} is γ-Hölder continuous, as we wanted.

Lemma 7.16. For any fixed t > 0, almost surely, the limit

La(t) := lim
n→∞

2−n−1D(n)(a)

exists for any a ∈ R, and {La(TN), a ∈ R} is γ-Hölder continuous.

Proof. In this lemma, we define an auxiliary Brownian motion {Bt(s) : s ≥ 0} by Bt(s) = B(t + s)
and the number of downcrossing of the auxiliary process D

(n)
t (a). Thus, by the previous Lemma,

almost surely, the limit Lat (TN) := limn→∞ 2−n−1D
(n)
t (a) exists for all a ∈ R and for all N. Taking

N large enough so that TN > t, define: La(t) := La(TN) − Lat (TN), which is γ-Hölder continuous
and:

D(n)(a,TN)− D
(n)
t (a,TN)− 1 ≤ D(n)(a, t) ≤ D(n)(a,TN)− D

(n)
t (a,TN)

Then, multiplying by 2−n−1 and taking limits, we have the convergence desired.

Theorem 7.17. Almost surely,
La(t) := lim

n→∞
2−n−1D(n)(a)

exists for all t > 0 and for every a ∈ R, and {La(TN), a ∈ R} is γ-Hölder continuous.

The complete proof of this Theorem can be found in [8, Lemma 6.26]. This ends the proof of
Theorem 7.11.The most important fact of it is that it ensures the well-definition and non-vanishing
property of the process. This can be surprising as the level sets have zero Lebesgue measure, but
taken to limit it results in such process.
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7 Brownian local time

7.3 Local time approach through twist and shrink random walks
Retriving the twist and shrink construction of random walks that converge to the Wiener process,
we aim to give the approximation of random walks to the local time process. So far, Brownian local
time has been looked from a downcrossing and upcrossing point of view, but this must be refined in
order to define the successive random walks.
We define the local time of the random walks S̃m(k) at a point x ∈ Z at time k ∈ B as lm(0, x) = 0
and

lm(k , x) = #{j : 0 ≤ j < k , S̃m(j) = x}
The local time of the m-th approximation Bm at a point x ∈ 2−mZ at time t ∈ 2−2mN is defined
as: L(t, x) = 2−mlm(t22m, x2m). The extension of L(t, x) to arbitrary t ∈ R+ and t ∈ R is done by
linear interpolation, resulting in a continuous process. One can define the one-sided up and down
local times l±(k , x) in the following way:

l±m (t, x) = #{j : 0 ≤ j ≤ k : S̃m(j) = x , S̃m(j + 1) = x ± 1} (k ≥ 1)

As we know that the distribution of the local time l̃ of the simple, symmetric random walks, it follows
that:

P {̃l(2k) = j} = P {̃l(2k + 1) = j} = 1
22k−j

(
2k − j

k

)
Hence, the Moivre-Laplace theorem gives the assymptotic approximation of its distribuition:

P {̃l(2k) = j} ∼
√

2
πk

exp
(
− j2

2k
)

whenever k → ∞ and for any 0 ≤ j ≤ Kk = o(k2/3). Then, for any sequence uk → ∞, such that
uk = o(j1/6). We obtain the following inequalty:

P
{ l±(k, x)√

k
≥ uk

}
≤ P

{ l(k, x)√
k
≥ uk

}
≤ exp

(
− u2

k

2
)

, (7.2)

if k is large enough, i.e.,k ≥ k0, for some k0.

Lemma 7.18. For any C > 1 and for any K > 0 and m ≥ 1such that K22m ≥ N(C ), we have:

P
{
sup
j∈Z

sup
0≤tk≤K

|Lm+1(tk , xj)− Lm(tk , xj)| ≥ 6CK 1/4
∗ (log∗(K ))3/4m3/42−m/2

}
≤ 12(K22m)1−C

where tk = k2−2m and xj = 2−m.

Lemma 7.19. For any C > 1 and for any K > 0 and m ≥ 1 such that K22m ≥ N(C ), we have:

P
{
sup
r≥1

sup
(t,x)∈[0,K ]xR

|Lm+r (t, x)−Lm(t, x)| ≥ 79CK 1/4
∗ (log∗(K ))3/4m3/42−m/2

}
≤ 15

1− 41−C (K22m)1−C

where K∗ = max{1,K}.

Theorem 7.20. On any strip [0,K ]xR the sequence (Lm(t, x)) almost surely converges as m→∞
and the limit process L(t, x) is jointly continuous in (t, x), the local time of the Brownian motion
W (t).

Proof. It is a direct consequence of the previous Lemma, we just need to apply the Borel-Cantelli
Lemma.
Thus, there is uniform convergence to L(t, x) and, since the functions are continuous, the limit is
also jointly continuous in (t, x)
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8. Approximation to the Black-Scholes
model

In financial mathematics, if there has been a breakthrough in recent times, this is the model used in
option pricing introduced by Black, Scholes and Merton in 1973, which is outlined in [2], was awarded
with an Economics Nobel prize. It definitely gave an expression which both counterparts should agree
with to buy and sell options on an underlying, what was a revolution at that point. Naturally, further
studies were done to to exploit the via ignited, but we will not go deeper in details in this work. In
this chapter we aim at giving a brief description of the model, its assumptions and a strong discrete
approximation of it using suitable nested sequence of simple, symmetric random walks. This approx-
imation can be extended to stock prices, replicating protfolios and the greeks. However, we will only
focus on the model, although some comments will be necessarily done to reference other applications.

We aim at finding the formula for the price of basic financial instruments such as European calls
and puts. The pricing must be objective, meaning that both counterparts would agree to buy and
sell, respectively, knowing that a fair price has been set for the option. To this extent, fair must
be contextualized: it would be absolutely nonsense to give a ubiased price without the risk-neutral
probabilities, that is, neglecting any market view subject to uncertain considerations. Under this
measure, we know the discounted prices and the value of a portfolio with risky and riskless assets
behave as a martingale with respect to a filtration.

We will construct a random walk approximation that leads us to the same results obtained using
the Black-Scholes model. In other words, using random walks will allow us replicate some results,
which will only be a discrete version of the model, which taken to limit will retieve it most known
formulas for european options.

8.1 Remark on changes of measure and the Cameron-Martin-Girsanov
theorem

Consider a space (Ω,A), where A is a σ-algebra and two equivalent probability measures on A, P,Q.
Let W (t) be a Brownian motion under P. How does W (t) looks for Q? Will the change of measure
affect W (t)? The relation between the measures is given by the Radon-Nikodym derivative:

Definition 8.1. Suppose P and Q two equivalent measures, that is, they produce the same null-
measure sets. Given a random process X : Ωx [0,∞) −→ R adapted to the filtration {Ft}t≥0. Let ω
be a path and an ordered mesh {t1, t2, ... tn}, we define xi to be W (ti ,ω) and the Radon-Nikodym
derivative dQ

dP up to time tn = T is defined to be the limit of the liklihood ratios:

dQ
dP

= lim
n→∞

f nQ(x1, ... , xn)
f nP (x1, ... , xn)

as the mesh becomes dense in [0,T ]. This continuous time derivative satisfies:

(a) EQ(XT ) = EP(dQdPXT )

(b) EQ(Xt |Fs) = ζ−1
s EP(ζtXt |Fs)

where ζt = EP(dQdP |Ft), which is called the Radon-Nikodym process.
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8 Approximation to the Black-Scholes model

The example we are interested in is given by the following definition of the derivative:

dQ
dP

= exp{−γWT −
1
2γ

2T}

By using the moment generating function of normal random variables or an identification criteria it
is possible to prove that, under the probability Q, W (t) is a Brownian motion with constant drift
−γ. Hence, defining

W̃ (t) = W (t) + γt

we have that the process W̃ (t) is a Brownian motion under Q.
The generalization of the generation of new Brownian motions under different measures using a drift
is given in [4], and essentially the theorem that underpins the previous results is:

Theorem 8.2. (Cameron-Martin-Girsanov) If W (t) is a P-Brownian motion and γt is a Ft mea-
surable function satisfying the condition EP

(
exp(1

2
∫ T

0 γ2
t dt)

)
< ∞, then there exists a measure Q

such that:

a) Q is equivalent to P

b) dQ
dP = exp

(
−
∫ T

0 γtdWt − 1
2
∫ T

0 γ2
t dt
)

c) W̃ (t) = W (t) +
∫ t

0 γsds is a Q-Brownian motion.

This theorem will be very useful in our case. We are interested in finding a measure that ensures
that a certain process, which will be detailed later, is a martingale with respect to a filtration.
Therefore, using this theorem we will have this certainty, and in addtion, Brownian motion in the
model will be drifted suitably, exactly with the drift given by the Cameron-Martin-Girsanov theorem,
with a known parameter γ, so the right Brownian motion is obtained.

8.2 Introduction to the Black-Scholes Model
Let (Ω,F ,P) be a complete probability space, and let (B(t))t≥0, B(0) = 0 be a Brownian motion,
and denote the generated filtration by the stochastic process by (Ft)t≥0. We consider a portfolio
with two type of assets: risky and risk-free assets (bonds), that sum up the values of the portfolio
at time t given by:

V (t) := a(t)S(t) + b(t)β(t) (8.1)

where a(t) and b(t) are deterministic known processes, with no intrinsic random component. S(t)
denotes the price of the risky asset, which the model assumes to be a geometric random walk:

dS(t) = µS(t)dt + σS(t)dB(t), S(0) = S0 > 0 (8.2)

(µ ∈ R,σ > 0) and denote β(t) the price of the riskless asset:

dβ(t) = rβ(t)dt, β(0) = β0 > 0

In general, r could be time-dependent r = r(t) but in this case, for simplicity, we consider it constatnt,
so that the previous equation has the following solution, if β0 = 1: β(t) = ert . Moreover S(t) is the
unique solution of the Stochastic Differential Equation 8.2:

S(t) = S0e
((µ−σ2

2 )t+σB(t)). (8.3)
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8 Approximation to the Black-Scholes model

It is also assumed that the portfolio is self-financing, that is, the change of its value throughout time
is only the consequence of the change of the value of the assets, and any quantity of money can not
be deposited or withdrawn:

dV (t) = a(t)dS(t) + b(t)dβ(t). (8.4)

One of the most important assumptions underpinning the model is the absence of arbitrage or free-
lunch operations. This does not happen in real world, but it is key to assume non-arbitrage markets
and at the same time, not far from reality, as there are not many arbitrage opportunities and they are
necessary for market corrections. This assumption leads to the so-called risk-neutral probability or
pricing, which is a probability measure that ensures absence of arbitrage and, what is more important,
that the discounted prices are martingales with respect to the filtration Ft .
This mearsure on a fixed interval [0,T ], expressed in terms of the Radon-Nikodym derivative is:

dQ
dP

:= exp
( r − µ

σ
B(T )− 1

2
( r − µ

σ

)2
T
)

. (8.5)

Under the probability Q, we have that S(t) satisfies the SDE

dS(t) = µS(t)dt + σS(t)dW (t), S(0) = S0 > 0 (8.6)

where
W (t) := B(t) + µ− r

σ
t, (8.7)

is a Q-Brownian motion, since the condition for γt = µ−r
σ in Theorem 8.2 holds automatically, given

it is a constant function, and the drifted random walk W (t) solves the SDE:

S(t) = S0e
((µ−σ2

2 )t+σW (t)), (8.8)

We will focus on pricing options whose payoff is of the form g(S(T )), where T > 0 is the maturity
of the option and g must satisfy regularity conditions that will be especified later in this chapter.
These are the simplest type of options, since they are neither path-dependent nor barrier options,
which are not in general analytically solvable. For example, for European put options, g(S(T )) =
max{K − S(T ), 0}, where K is the strike price (right to buy/sell at this price at maturity). This
gives a unique answer for the price at maturity, but what about the price at t ∈ [0,T ]?
From the martingale property of the discounted prices of a portfolio under risk-neutral probability,the
answer to the question is the Q-expectation of the discounted claim of the option:

f (t, x) := EQ
(
e−(T−t)g(S(T ))|S(t) = x

)
. (8.9)

Then, after long computations and observations, one obtains the expression for the price of an
European call option:

C (t, x) = xΦ(d+(T − t, x))− e−r(T−t)KΦ(d−(T − t, x)), (8.10)

where:
d±(t, x) := 1

σ
√
T − t

(
log( x

K
) + (r ± σ2

2 (T − t))
)

. (8.11)

Using the general Itô rule for functions of two or more variables and the self-financing condition
on the portfolio, it is possible to deduce that f (x , t) solves the Black-Scholes partial differential
equation:

∂t f (t, x) + rx∂x f (t, x) + 1
2σ

2x2∂xx f (t, x)− rf (t, x) = 0, (8.12)
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8 Approximation to the Black-Scholes model

with the final condition f (T , x) = g(x). Here, f (x , t) is required regulartiy conditions, at least two
times differentiable in space, for instance, which actually, C (t, x) will satisfy. Hence it will solve the
PDE. This PDE can be transformed into the heat equation with some changes of variables, and thus,
as a parabolic equation, initial (or final) conditions must be applied so that we get the price for the
option. Note that in this case, the condition is set at maturity t = T , hence the equation has to be
solved backward in time, as opposite to general methods for parabolic PDEs. The result that aims
at being proved is:

Theorem 8.3. Suppose that g ∈ Cc(R+) and T > 0. As m → ∞, the price fm(t(m), x) of the
option whose payoff is g(Sm(T )) obtained by the above discrete approximation converges to its value
f (t, x) obtained by the Black-Scholes model, uniformly for t ∈ [0,T ] and x > 0:

lim
m→∞

fm(t(m), x) = lim
m→∞

EQm

(
r
bt22mc−bT22mc
m g(Sm(T (m)))|Sm(t(m)) = x

)
=

EQ
(
e−r(T−t)g(S(T ))|S(t) = x

)
= f (t, x),

where t(m) =
⌊
t22m⌋ 2−2m

Plainly, this theorem states that the classical formula for pricing the claim f (t, x) used in BSM
is still valid for approximations, in the limit. Thus the approximations taken will converge to the
model.

8.3 Discrete random walk approximation of BSM
This is the main part of the section. We want to construct the approximation of Brownian motion
using tools already seen in chapter 6, but towards the obtention of the change of measure that is
required for an arbitrage-free derivative pricing, using the risk-neutral probability. From here, we will
be able to obtain a general formula valid for any claim that will be applied, in particular, for the case
of plain vanilla options, such as calls and puts.
In order to be clear in the approximations we need some notation. For every m = 0, 1, ... we fix
∆t = 2−2m and ∆x = 2−m and tk = k∆t. Random walks will be denoted by Bm(tk) and the time
filtration used is denoted by (Fm

tk
)t≥0.

Recall that from [9], we know that twist and shrink construction through random walks converge to
a Brownian motion, and more precisely:

Theorem 8.4. The sequence of twist and shrink random walks Bm uniformly converge to Brownian
motion B on bounded intervals, almost surely. For all T > 0, as m→∞:

sup
0≤t≤T

|B(t)− Bm(t)| = O(m
3
4 2−

m
2 ). (8.13)

Let a(tk) and b(tk) be the processes defined in the beginning of the section, which should be
measurable over the period [tk , tk+1) with respect to the filtration Fm

tk
for each k ≥ 1. Thus the

market value of a portfolio like in ( 8.1) is given by:

Vm(tk) := am(tk)Sm(tk) + bm(tk)βm(tk). (8.14)

Recall again that one of the assumptions of the model, that actually simplifies the solution of the
SDE seen in 8.6, is that both µt (drift) and σt (volatility) are linear with respect the risky asset
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8 Approximation to the Black-Scholes model

price St , that is in discrete notation: µ(tk) = µS(tk) and σ(tk) = σS(tk). Thus, increments of price
of risky asset can be written as:

∆Sm(tk+1) = µSm(tk)∆t + σSm(tk)∆Bm(tk+1), Sm(t0) = S0 > 0. (8.15)

Hence, we deduce the recursion of Sm in terms of time indexes:

Sm(tk+1) = Sm(tk)(1 + µ∆t + σ∆Bm(tk+1)) (k ≥ 0), (8.16)

where the Brownian motion should be interpreted as infinitessimal steps of a fair coin toss, i.e.,

Xm(tk+1) := 2m∆Bm(tk+1) = ±1, (8.17)

Lemma 8.5. Denoting

S̃m(t) := S0exp
((
µ− σ2

2
)
t + σBm(t)

)
(t ≥ 0),

we obtain for any m ≥ 0 that:

sup
0≤tk≤T

|Sm(tk)− S̃m(tk)| ≤ c1(µ,σ,T )2−m, c1 ≥ 0,

where Sm is the solution of (8.16).

Proof. Using the Taylor expansion of the exponential function:

∆S̃m(tk+1) := S̃m(tk+1)− S̃m(tk) = S̃m(tk){exp((µ− σ2

2 )∆t + σ∆Bm(tk+1))− 1}

= S̃m(tk)
{

(µ− σ2

2 )∆t + σ∆Bm(tk+1) + 1
2((µ− σ2

2 )∆t + σ∆Bm(tk+1))2
}

,

where 0 < |t| < (µ− σ2

2 )2−2m + σ2−m. Thus,

|∆S̃m(tk+1)− S̃m(tk)(µ∆t + σ∆Bm(tk+1))| ≤ C ′12−3m

and recursively, it implies the statement of the lemma.

For the riskless asset we will use the most natural approximation, given r(t) = r > 0 and β0 = 1:

βm(tk) = (1 + r∆t)k and βm(t) = (1 + r∆t)b
t

∆t c, (t ≥ 0). (8.18)

Then, it holds that for any m ≥ 0:

sup
0≤t≤T

|β(t)− βm(t)| = sup
0≤t≤T

|ert − (1 + r2−2m)bt22mc| ≤ c2(r)2−2m. (8.19)
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8 Approximation to the Black-Scholes model

We have seen the approximation to the Brownian motion using the same twist and shrink con-
struction than in the section 6. However, one of the key points that underpines the results is the use
of the so-called risk-neutral measure or probability. We have already introduced it for the continous
case for the filtration Ft , but we need a definition for the discrete case of the filtration Fm

tk
. Based

on (8.16) and (8.18) we set:
rm := 1 + r∆t = 1 + r2−2m

um := 1 + µ2−2m + σ2−m

dm := 1 + µ2−2m − σ2−m,

and the risk neutral probabilities q±m corresponding to the up or down move of the price of an
underlying asset (or commonly explained through a coin toss whose outcomes are head or tail):

q+
m = rm − dm

um − dm
= 1

2 + 1
2
r − µ
σ

2−m

q−m = 1− q+
m = 1

2 −
1
2
r − µ
σ

2−m.

Recall that the returns given in the discrete model are um with probability q+
m and dm with probability

q−m. Then, we define the probability measure Qm with its Radon-Nikodym derivative on the filtration
(Fm

tk
)k≥0:

dQm

dP
=
(q+

m
1
2

)#Heads(T)(q−m
1
2

)#Tails(T)

Now, using that the number of heads/tails up to time T (sum of up/down moves) for a random
walk in terms is given by the realtion of the Brownian motion that equals the difference of up/down
moves. So:

#Heads(T) = 1
2(T22m + Bm(T )2m) and #Tails(T) = 1

2(T22m − Bm(T )2m)

Also, using the Taylor expansion of the logarithm, we obtain:

log(2q±m) = log(1± r − µ
σ

2−m) = ± r − µ
σ

2−m − 1
2
( r − µ

σ

)2
2−2m +O(2−3m)

Finally, we obtain:

dQm

dP
= exp

{ r − µ
σ

Bm(T )− 1
2
( r − µ

σ

)2
T +O(2−m)

}
(8.20)

Lemma 8.6. a) The process

Λ(tk) := (2q+
m)

1
2 (tk22m+Bm(tk )2m)(2q−m)

1
2 (tk22m−Bm(tk )2m) (8.21)

is a positive P-martingale with respect to (Fm
tk

)k≥0 with expectation 1.

b) For the total variation distance between the probabilities Qm and Q, we have:

lim
m→∞

sup
A∈F
|Qm(A)−Q(A)| = 0 (8.22)

c) If we consider a random walk Bm constructed with the twist and shrink process, plus a suitable
drift:

Wm(tk) := Bm(tk) + µ− r

σ
tk (8.23)

then Wm(tk) is a Qm-martingale with respect to (Fm
tk

)k≥0
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8 Approximation to the Black-Scholes model

d) Extending Wm by linear interpolation to arbitrary t ∈ R+, for any T > 0, we have:

sup
0≤t≤T

|W (t)−Wm(t)| = O(m
3
4 2−

m
2 ) (8.24)

Proof. a) First we need a little computation that will be used after:

EP
(
(2q+

m)
1+Xm(tk+1)

2 (2q−m)
1−Xm(tk+1)

2
)

= (2q+
m)1

2 + ((2q+
m)(2q−m))

1
2

1
2

= q+
m + (q+

mq
−
m)

1
2 = 1

2 +
√

1
4 = 1

2 + 1
2 +O(2−m) = 1, (8.25)

Now, using the expression (8.25) and ∆t = 2−m and ∆Bm(tk) = 2−2m:

EP(Λm(tk+1)|Fm
tk

) = EP
(
(2q+

m)
(tk+∆tk )2−2m+(Bm(tk )+Xm(tk+1))2−m

2 (2q−m)
(tk+∆tk )2−2m+(Bm(tk )+Xm(tk+1))2−m

2
)

= Λm(tk)EP
(
(2q+

m)
1+Xm(tk+1)

2 (2q−m)
1−Xm(tk+1)

2
)

= Λm(tk) (8.26)

since Λ(tk) is Fm
tk
-measurable, and where Xm(tk+1) is defined as in (8.17).

b) By Scheffé’s theorem, e.g., see [1], it is enough to prove that dQm
dP converge to dQ

dP , which is clear
from (8.20).

c) It is enough to show that Λm(tk)Wm(tk) is a P-martingale with respect to Fm
tk
:

EP(Λm(tk+1)Wm(tk+1)|Fm
tk

) = EP
{(

Wm(tk) + Xm(tk+1)2−m + µ− r

σ
2−2m

)
Λm(tk)(2q+

m)
1+Xm(tk+1)

2 (2q−m)
1−Xm(tk+1)

2 |Fm
tk

}
= Λm(tk)Wm(tk) (8.27)

since Wm(tk) and Λ(tk) are Fm
tk
-measurable random variables.

d) It follows from (8.7),(8.13) and (8.23).

We return to the model describing the evolution of risky assets, that under the risk-neutral
probabilities Qm results into the following expression:

∆Sm(tk+1) = rSm(tk)∆t + σSm(tk)∆Wm(tk+1). (8.28)

Until now, we have been introducing the random walk approximation to the Wiener process and
seeing how to establish the relations between them and all the properties from Brownian motion that
can be extrapolated to these approximations. The next step is to prove that this property still hold
we approximate the process through random walks.
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8 Approximation to the Black-Scholes model

Lemma 8.7. The disocunted price process r−mSm(tk) and the discounted value of the portfolio
r−km Vm(tk) are Qm-martingales with respect to the Fm

tk
.

Proof. We will mainly use the fact that Wm(tk) is a Q-Brownian motion and 8.28.

EQm(r−(k+1)
m Sm(tk+1)|Fm

tk
) = EQm(r−(k+1)

m (Sm(tk) + ∆Sm(tk+1))|Fm
tk

)
= r−(k+1)

m Sm(tk) + EQm(r−(k+1)
m (rSm(tk)∆t + σSm(tk)∆Wm(tk+1))|Fm

tk
)

= r−(k+1)
m Sm(tk) + r−(k+1)

m Sm(tk)EQm(r∆t + σSm(tk)∆Wm(tk+1))|Fm
tk

)
= r−(k+1)

m Sm(tk)(1 + r∆t) = r−km Sm(tk).

Then, since βm(tk) = rkm, we have:

EQm(r−(k+1)
m Vm(tk+1)|Fm

tk
) = r−(k+1)EQm(am(tk+1)Sm(tk+1) + bm(tk+1)rk+1

m )|Fm
tk

)
= r−(k+1)EQm(am(tk)Sm(tk+1) + bm(tk)rk+1

m )|Fm
tk

)
= r−km am(tk)Sm(tk) + bm(tk) = r−km Vm(tk),

using the self-financing condition and (8.28).

In the next step we will give an arbitrage-free price of the claim g(Sm(T )) at maturity T > 0.
By the completeness of our models, we know that it is always possible to hedge the claim g(Sm(T ))
of value fm(tk) at any moment tk ∈ [0.T ] with a replicating self-financing portfolio Vm(tk) of the
claim. Thus, using the previous lemma:

Corollary 8.8. The arbitrage-free price of an option at time tk ∈ [0,T ] whose claim is g(Sm(T ))
with maturity T = N∆t is:

fm(tk) = Vm(tk) = EQm(rk−Nm g(Sm(T ))|Fm
tk

),

where Vm(tk) is the value of the replicating portfolio of the claim at tk .

This corollary gives an explicit way of computing the claim g(Sm(T )) using the discrete model.
Note that fm(tk) includes implicitly the depedence on the price x up to tk in the filtration condition
of probability. Following with the notation um and dm for up/down moves of the stock prices with
probabilities q±m. Every step is independent of the other ones, which gives Sm the structure of a
discrete-time Markov chain, and thus, the valuation of the claim is only influenced by the value of
the stock price at maturity. More formally:

fm(tk , x) = rk−Nm EQm(g(Sm(T ))|Sm(tk) = x)

= rn−Nm

N−k∑
i=0

(
N − k

i

)
(q+

m)i (q−m)N−k−ig(xuimdN−k−i
m ). (8.29)

For the case of an European call, g(Sm(T )) = (Sm(T )− K )+ and consequently:

Cm(tk , x) = rn−Nm

N−k∑
i=0

(
N − k

i

)
(q+

m)i (q−m)N−k−i (xuimdN−k−i
m − K )+.

So, the first term that adds something to the sum must satisfy:

xuimd
N−k−i
m − K > 0⇐⇒ i >

log(Kx )− (N − k)log(dm)
log(umdm )
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8 Approximation to the Black-Scholes model

Thus, taking im,k = d log(K
x

)−(N−k)log(dm)
log( um

dm
) e, we have:

Cm(tk , x) = xBin(jm,k ,N − k , q̃+
m)− rk−Nm Bin(jm,k ,N − k , q+

m), (8.30)

where q̃+
m = um

rm
q+
m and Bin(j , n, p) =

∑n
i=j

(n
i

)
pi (1− p)n−i

The same argument for put options would lead to a similar formula and, if wanted, using the put-call
parity, the price for a foward claim would also be obtained.

Theorem 8.9. Suppose that g ∈ Cc(R+) and T > 0. As m→∞, the price fm(t(m), x) of the option
g(Sm(T )) obtained by the above discrete approximation converges to its value f (t, x) obtained by
the Black-Scholes model, uniformly for t ∈ [0,T ] and x > 0:

lim
m→∞

fm(t(m), x) = lim
m→∞

EQm

(
r
bt22mc−bT22mc
m g(Sm(T (m)))|Sm(t(m)) = x

)
=

EQ
(
e−r(T−t)g(S(T ))|S(t) = x

)
= f (t, x),

where t(m) =
⌊
t22m⌋ 2−2m.

Proof. By (8.13) applied to the case of Sm(t) it is clear that there is uniform convergence of Sm(t)
to S(t) on [0,T ]. Using Lemma 2(b) for the time-homogeneous Markov chains S(t) and Sm(t), we
have:

lim
m→∞

sup
t∈[0,T ],x>0

|Ex
Qm

(
g(Sm(T (m) − tm))

)
− Ex

Q

(
g(S(T − t))

)
| = 0.

This and (8.19) prove the theorem.

Hence we have convergence for the case of Cm(t, x) and Pm(t, x) to C (t, x) and P(t, x), re-
spectively. The convergence of these expressions to the explicit formulas of the Black-Scholes model
is a consequence of the approximation to higher order terms of the normalization of the binomial
distributions of the discrete model.
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A. Remark on normal distributions and
convergence of random variables

In this appendix, the definitions and results will be given for continuous random variables, as the
normal distribution will be of main importance, but the same results could be extended to discrete
random variables.

Definition A.1. Let X be a continuous random variable with density function f (x), then the mean
of X , also the first moment, denoted by E, is defined by:

E(X ) =
∫ ∞
−∞

xf (x)dx

whenever this integral is absolutely convergent.

Definition A.2. In the same conditions, the variance of X is defined by:

Var(X ) = E((X − E(X ))2) = E(X 2)− E(X )2

whenever both moments exist.

Moments of higher order can be also defined, but in general we will only be interested in the two
defined above. However, it will be more explicitly especified, if necessary.

Definition A.3. Two random variables X ,Y defined in the same probability space have a continuous
joint distribution if their joint distribution function F (x , y) = Pr(X ≤ x ,Y ≤ y) can be written as:

F (x , y) =
∫ y

−∞

∫ x

−∞
f (u, v)dudv

for all (x , y) ∈ R2. In this case, we willl say that f (x , y) is the joint density function of (X ,Y )

Proposition A.4. Let (X ,Y ) a random bivariant continuous variable with joint distribution F (x , y)
and density f (x , y). Then, X and Y are continuous random variables withmarginal density function

fX (x) =
∫
R
f (x , y)dy fY (y) =

∫
R
f (x , y)dx

Proposition A.5. For any pair of random variables X and Y defined in the same probability space,
X and Y are independent if and only if

f (x , y) = fX (x)fY (y)

Definition A.6. The random vector (X1, ...Xn) has a non-degenerate normal multivariant distri-
bution, denoted by X ∼ N (µ, Σ) if its density function is

f (x1, ... , xn) = 1√
(2π)n|Σ|

e−
1
2 (x−µ)T Σ−1(x−µ)

where µ ∈ Rn and Σ is a symetric postive definite matrix.
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Theorem A.7. If X ∼ N (µ, Σ), then:

i) E(x) = µ

ii) Σ = (σij) is the variance and covariance matrix of X . In particular, if U1, ...Un are independent
normal random variables N (0, 1), then:

U = (U1, ...Un) ∼ N (0, Idn)

Theorem A.8. A random vector X has a non-degenerate multidimensional normal distribution if
and only if there exists a non-singular matrix A and a vector b such that:

X = AU + b

where U = (U1, ...Un) with Ui ∼ N (0, 1) independent.

Corollary A.9. A marginal distribution of any dimension of a multimensional normal distribution is
also a multidimensional normal.

Corollary A.10. Let X ∼ N(µ, Σ), and a1, ... , an real numbers such that
∑n

i=0 a
2
i > 0, then:

n∑
i=0

aiXi ∼ N(
n∑

i=0
aiµi ,

n∑
i=0

a2
i + 2

∑
i<j

aiajσij)

As a consequence of this corollary, the linear combination of normal distributions is also normal
and the marginal distribution of any joint normal distribution is normal. This behaviour of normal
random varaibles and vector makes it more straight when dealing with normal distributions. The
importance of the normal random variables remains on the fact that they are central variables, that is,
under some conditions, the sum random variables, generally taken independent identically distributed,
tends to distribute as a normal random variable.

Definition A.11. Let X1, ...Xn be a sequence of random variables defined in some probability space.
Then, we say that Xn → X when n→∞ in distribution if:

Pr(Xn ≤ x) n→∞−→ Pr(X ≤ x)

for all x where FX (x) = Pr(X ≤ x) is continuous and it will be denoted by:

Xn
D−→ X

Theorem A.12. (Central Limit Theorem)
Let X1,X2, ... ,Xn independent identically distributed random variables with 0 < V (X1) = σ2 < ∞
and E(X1) = µ. Sigui Sn =

∑n
i=1 Xi , n ≥ 1, then

Sn − nµ√
nσ2

D−→ N (0, 1), when n→∞

Theorem A.13. (Multidimensional Central Limit Theorem)
Let Xi = (Xi1,Xi2 ... ,Xin) with i ∈ N a sequence of random vectors with independent indentically
distributed random variables, and µ = (E(X1),E(X2), ...E(Xn))T and covariance matrix Σ. Then, if
Sn =

∑n
i=1 Xi

Sn − nµ√
n

D−→ N (0, Σ)

54


	Introduction
	Overview of Stochastic Processes
	Markov chains
	Discrete-time Markov Chains
	Hitting times, recurrence and transience
	Random Walks

	Introduction to Brownian motion
	A joint probabilities approach. The Wiener process
	Wiener's theorem
	Time scaling and time inversion
	Nondifferentiability

	The Markov property of Brownian motion
	Markov property and Blumenthal's 0-1 law
	The strong Markov property
	The reflection principle

	From random walks to Brownian motion
	Preliminaries
	Twist and shrink embedding

	Brownian local time
	Brownian local time at zero
	A random walk approach to the local time process
	Local time approach through twist and shrink random walks

	Approximation to the Black-Scholes model
	Remark on changes of measure and the Cameron-Martin-Girsanov theorem
	Introduction to the Black-Scholes Model
	Discrete random walk approximation of BSM

	Bibliography
	Remark on normal distributions and convergence of random variables

