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Abstract 

In this thesis different techniques are evaluated to recognize and match footwear 
impressions, using reference and real crime scene shoeprint images. Due to the 
conditions in which the shoeprints are found (partial occlusions, variation in shape) a 
translation, rotation and scale invariant system is needed. A VLAD (Vector of Locally 
Aggregated Descriptors) encoder is used to clustering descriptors obtained using 
different approaches, such as SIFT (Scale-Invariant Feature Transform), Dense SIFT or 
Triplet CNN (Convolutional Neural Network). These last two approaches provide the best 
performance results when the parameters are correctly adjusted, using the Cumulative 
Matching Characteristic curve to evaluate it.   
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Resum 

En aquesta tesi s'avaluen diferents tècniques per reconèixer i aparellar impressions de 
calçat, utilitzant imatges de referència i d'escenes reals de crim. Degut a les condicions 
en què es troben les impressions (oclusions parcials, variació de forma ) es necessita un 
sistema invariant davant translació, rotació i escalat. Per això s'utilitza un codificador 
VLAD (Vector of Locally Aggregated Descriptors) per agrupar descriptors obtinguts en 
diferents enfocaments, com SIFT (Scale-Invariant Feature Transform), Dense SIFT o 
Triplet CNN (Convolutional Neural Network). Aquests dos últims enfocaments 
proporcionen els millors resultats un cop els paràmetres s'han ajustat correctament, 
utilitzant la corba CMC (Characteristic Matching Curve) per realitzar l'avaluació.  
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Resumen 

En esta tesis se evalúan diferentes técnicas para reconocer y emparejar impresiones de 
calzado, utilizando imágenes de referencia y de escenas reales de crimen. Debido a las 
condiciones en que se encuentran las impresiones (oclusiones parciales, variaciones de 
forma) se necesita un sistema invariante ante translación, rotación y escalado. Para ello 
se utiliza un codificador VLAD (Vector of Locally Aggregated Descriptors) para agrupar 
descriptores obtenidos en diferentes enfoques, como SIFT (Scale-Invariant Feature 
Transform), Dense SIFT o Triplet CNN (Convolutional Neural Network). Estos dos 
últimos enfoques proporcionan los mejores resultados una vez los parámetros se han 
ajustado correctamente, utilizando la curva CMC (Characteristic Matching Curve) para 
realizar la evaluación.   
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1. Introduction 

Shoeprints are a valuable forensic evidence often found at crime scenes. It has been 
estimated that more than 30% of all burglaries provide usable shoeprints that can be 
recovered from the crime scene [25]. Because of the pattern of repeated offences, rapid 
classification of such shoeprints would enable investigating officers not only to link different 
crimes, but to identify potential suspect. Unfortunately, this process for thousands of 
images is highly time-consuming to be done manually. For that reason, in order to support 
the forensic experts, an automatic retrieval of the most likely matches is desired. 
Different techniques in computer vision have been demonstrated useful in the object 
recognition field, especially since the increasing power of the processors in the last years 
[26]. In this project, we will focus on some of the most popular techniques nowadays, 
such as SIFT descriptors and VLAD encoder. Also, a convolutional neural network 
approach is evaluated.  
 
The project main goals are do a literature research in this field, learning and familiarizing 
with the Python environment and the different frameworks, to design and implement a 
machine learning system by looking at the state of the art and adapting it to the specific 
problem of matching footwear impressions. A depth evaluation using available datasets 
will be done, comparing the different raised approaches and fitting the parameters to 
evaluate the best working. 
 

1.1. Forensic Shoeprints 
A shoeprint is a mark made when the tread of a shoe comes into contact with a surface. In 
forensic investigation, the shoe print is typically digitized either by photography or by lifting 
it from the ground with a sticky gel foil which is subsequently scanned. Real shoeprints are 
very often partial or incomplete prints resulting from incomplete contact between the shoe 
sole and the surface. 

The main challenges are deal with the variation in shape and appearance, the partial 
occlusion and the unconstrained noise conditions of the crime scene shoeprints. Therefore, 
due to the conditions in which the real crime shoeprints are found, it is necessary to find 
translation, rotation and scale invariant features that guarantee us an efficient descriptor of 
these images. 

Furthermore, training and testing data are scarce, because usually no or few crime scene 
impressions are available per reference impression. For this project the public FID-300 [1] 
database is used, which contains 1175 different reference images and 300 real crime 
scene labelled images. 

 
Fig 1. Problem statement scheme. [20] 
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These shoeprints tend to follow some patterns like lines, circles or squares (figure 2). 
 
 

                             

                             
Fig 2. Some typical patterns. 

 

1.2. Project Background 
Ideas are in cooperation with the supervisor, Manuel Keglevic from the Computer Vision 
Lab of the Faculty of Informatics, at the TU Wien, Austria. The project is independent but 
frameworks from other projects can be used. 
Computer vision techniques are the basis of the project, using image processing for pattern 
matching of the shoeprints.  Also, a deep learning approach is studied and evaluated. 

A Python 3.5 script is created using the PyCharm Integrated Development Environment 
(IDE) in order to implement the knowledge previously studied and evaluate the results 
obtained according to the chosen parameters. 

 

2. State of the art of the technology used or applied in this 
thesis: 

An intensive search of the related work on footwear impressions matching is crucial to 
understand the state of the art in shoeprint pattern matching. Several investigations in this 
field have been done, showing good results using only the reference images or 
synthetically computer-generated images with noise, rotations and partial occlusions [2,3, 
4,5,7,8]. However, one key challenge of real data is that the noise is unconstrained and 
therefore cannot be simulated by such simple noise distributions. Our purpose is to use 
real crime scene images, in order to obtain results applicable to real situations. 

The firstly works were based on using the Fourier transform [2], being a translational and 
rotational invariant system, but sensitive to noise distortion and incomplete data. They 
report first rank classification results of 65% and 87% for rank 5 on full-prints using a 
database containing 1,276 reference images. For partial prints, a best performance of 55% 
and 78% is achieved, respectively, using computer generated images. These results were 
improved using the Fourier-Mellin transform [3] to produce translation, rotation and scale 
invariant features. Topological and pattern spectra [4] approach was based on repeated 
open operations with increasing size of structuring element, giving a distribution of Euler 
numbers. Describing the image with respect to its axes through Hu-Moment invariants [5] 
achieved good results where optimal performance is attained for images rotated by any 
angle. Also, an approach using fractals [23] to the detection and classification of shoeprints 
was carried out, it is however only working with small variations in the orientation and 
translation. 
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The last researches indicate that the use of local image features as a combination of local 
interest point detectors and SIFT (Scale-Invariant Feature Transform) [21] feature 
descriptors presents good performance. However, the better classification results are often 
obtained by computing the SIFT descriptor over dense grids in the image domain as 
opposed to at sparse interest points as obtained by an interest operator, receiving the name 
of dense SIFT [16].  Using MSER feature detectors and transforming into robust SIFT or 
GLOH descriptors [6] a first rank performance of 85% for full impressions and 84% for 
partial impressions is obtained using a database containing 368 different footwear patterns 
provided by the UK National Shoewear Database. A combination of the Modified Harris-
Laplace (MHL) detector and the enhanced SIFT descriptor [7] is more robust to rotation 
and inverse contrast and is fast but not accurate enough, while a more accurate matching 
strategy based on RANSAC [8] is time-consuming, also only applicable to noiseless data. 
The use of the Wavelet-Fourier transform [9] presents significant improvements using a 
huge private database of more than 200.000 real crime images. One of the newest 
approaches uses convolutional neural networks and a multi-variate cross validation [10]. 
The Vector of Locally Aggregated Descriptors (VLAD) [10,11,13] has proven to be a useful 
low dimensional image descriptor, especially with large image datasets and thereby avoid 
expensive hard disk access. 

Recent work on deep learning has demonstrated that local feature descriptors based on 
convolutional neural networks (CNN) can significantly improve the matching performance. 
Previous work has focused on exploiting pairs of positive and negative patches to learn 
discriminative CNN representations, like the Siamese Network [24] where the network is 
trained to distinguish between similar and dissimilar pairs of examples. The most recent 
investigations indicate that the use of triplets [14,15] of training samples instead of solely 
focusing on pairs shows benefits in terms of performance and speed. 

2.1. Scale-Invariant Feature Transform 
The Scale-Invariant Feature Transform (SIFT) is an algorithm to detect and describe local 
features in images. First, SIFT algorithm creates a scale space, taking the original image 
and generating progressively blurred out images, resizing them to obtain a gaussian 
pyramid (figure 3). Each octave's image size is half the previous one. Then creates the 
difference of gaussians pyramid (approximately equivalent to the Laplacian of Gaussian, 
but computationally faster and also scale invariant) for finding interesting points (key points). 
This task is done by iterating through each pixel of the DOG (Difference of Gaussian) image 
and checking all its neighbours, to find the maxima and minima. A pixel is marked as a key 
point if it is the greatest or least of the neighbouring pixels in the current scale, the scale 
above and the scale below (figure 4).  
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Fig 3. Gaussian pyramid used in SIFT algorithm. [21] 

 

 
Fig 4. Key point search. [21] 

 

Some key points are not discriminative and removing them allows the algorithm to work 
more efficiently and robustly. For removing features located on an edge, a similar Harris 
Corner Detector approach is used. For low contrast features, their intensities are checked. 
After that, an orientation is calculated for each key point, making it rotation invariant. This 
process is done collecting gradient directions and magnitudes around each key point. 

Finally, a unique key point descriptor (feature vector) is created. A 16x16 neighbourhood 
around the key point is taken. Then, it is divided into 16 sub-blocks of 4x4 size. For each 
sub-block, 8 bin orientation histogram is created (a total of 128 bin values are available), 
receiving the name of Histogram of Oriented Gradients (HOG). 

Some examples applied to reference images (figure 5) and their correspondent real crime 
scene shoeprint (figure 6) are shown. 
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Fig 5. Key points in reference images. 

            
Fig 6. Key points in real crime scene images. 

 

The Dense SIFT approach tries to simplify the algorithm using a sliding window and 
computing the descriptor over dense grids in the input image, getting more information than 
corresponding descriptors evaluated at a much sparser set of image points obtained by an 
interest operator. Usually this technique is accompanied with a clustering stage, reducing 
the individual SIFT descriptors to a smaller vocabulary of visual words.  
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2.2. Vector of Locally Aggregated Descriptors 
The VLAD (Vector of Locally Aggregated Descriptors) descriptor encodes a set of local 
feature descriptors extracted from an image, using a dictionary built using a clustering 
method such as Gaussian Mixture Models (GMM) or K-means clustering and produces a 
fixed-length vector representation.  

The idea of the VLAD descriptor is to accumulate for each visual word ci the differences 
x−ci of the vectors x assigned to ci., i.e. by accumulating the residual vectors (the difference 
between the descriptor and the centroid). This characterizes the distribution of the vectors 
with respect to the centre. For the kth cluster centre μk, the corresponding VLAD feature is 
calculated as the sum of the residuals as  

𝑣" =$ 𝛼&"(𝑥& − 𝜇&)
	-

&./
 

where xi is the set of local features from an image and 𝛼&" is the association of data xi to μk. 
In this step, the Approximate Nearest Neighbour (ANN) method is used. It means that each 
descriptor is then assigned to the closest cluster of a vocabulary.  

Finally, various normalizations methods can be applied to the VLAD vectors, for example 
the component-wise mass (each vector vk is divided by the total mass of features 
associated to it), the square-rooting (applies the function sign(x)*0|𝑥|  to all scalar 
components of the descriptor), the component-wise L2 (the vectors vk are divided by their 
norm) or the global L2 normalization (the VLAD descriptor is divided by its norm), which 
was suggested in the original approach. 

The dimension of the VLAD descriptor is KxD, where K is the number of centres used in 
the K-means clustering and D is the size of the local input descriptor (for example, 128 in 
the SIFT case). 

Recently a multi-VLAD approach has been proposed, investigating the benefits of 
combining multiple vocabularies, instead of solely representing the image by a single VLAD. 
Also using PCA (principal component analysis) and whitening to decorrelate a low 
dimensional representation presents significant improvements without noticeably 
impacting its accuracy. 

 

2.3. Convolutional Neural Networks and Triplets 
Convolutional Neural Networks (CNN) are deep artificial neural networks consists of a 
number of convolutional and subsampling layers followed by fully connected layers (see 
figure 7. These images are processed as tensors, matrices of numbers with additional 
dimensions (width, height and depth). Its effectiveness has been proven in areas such as 
image recognition and classification [27].  
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Fig 7. Example of Convolutional Neural Network. [19] 

The convolutional layer computes the output of neurons that are connected to local regions 
in the input, each computing a dot product between their weights and a small region they 
are connected to in the input volume. The ReLU (rectified linear units) layer applies an 
elementwise activation function, which is f(x)=max(0,x), setting any negative element to 0. 
The pool layer performs a down sampling operation along the spatial dimensions (width, 
height). Finally, the fully connected layer computes the class scores, resulting in volume of 
size [1x1xN], where each of the N numbers correspond to a class score. To guide the 
training process of a neural network the loss function is used. 
A typical approach on deep learning of feature descriptors is based on the siamese 
networks (figure 8, top), which consist of two CNNs which accept two parallel inputs and 
share parameters across networks. The loss function is optimized based on the output of 
the two networks according to their distinct inputs.  

A more recent approach using three parallel inputs has been investigated [14,15], where 
two of them are positive patches from two views of the same point in the 3D space, and 
the third one is a negative patch extracted from a different point in space. They receive the 
name of triplets (figure 8, bottom). 

 
Fig 8. Difference between siamese and triplet architecture. [15] 
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In this approach, the three instances have the same feed-forward network and share 
parameters. The triplet network is fed with three inputs, which we can define as x+, x- and 
the reference x. Both x and x+ pertains to the same class, while x- pertains to another 
different class. Two outputs are obtained, which are the encoded pair of distances between 
each of x+ and x− against the reference x. 
 

3. Methodology / project development:  

Firstly, a pre-processing is applied to the images in order to facilitate the task of 
classification and to make the features more stable, transforming the colour space from 
RGB to greyscale (colours have no meaning for us) and optionally applying a binary 
threshold with the Otsu algorithm (choose the optimal threshold value). Then, the train 
images (which corresponds with the reference shoeprints database) are analyzed, 
searching for the key points in each one. In this step, the implemented methods depend on 
the approach we focus on, extracting the SIFT descriptors as is described in [21], using the 
approach in [16] to implement the Dense-SIFT algorithm or using the Triplets to create a 
Convolutional Neural Network as is shown in [15]. All these descriptors are normalized. 

With these descriptors the VLAD is trained and the vocabulary is created, forming the 
different clusters using the K-means technique, as is described in [11].  

The next step is to calculate the descriptors for each test image (which corresponds with 
the real crime scene shoeprints database), and encode it using the previous trained VLAD 
encoder to obtain the VLAD features vector, which have fixed length for all the images. In 
this process, the difference between the prediction and the centre of the clusters is added. 
A power normalization is applied to the resulting vector. 

Then, the Euclidean distance between the VLAD features of each crime scene image and 
each reference image is calculated. These distances are sorted and ranked to obtain the 
list of most likely matchings, arranged in a matrix of dimension NxM where N is the number 
of test images (crime scene prints) and M the number of train images (references). 

In order to evaluate the precision of the system, the Cumulative Matching Characteristics 
(CMC) curve is calculated to determinate the rank at which a true match occurs. For it is 
necessary to create the ground truth matrix, where for each test image, all the elements 
are zero except the correct one, which is a one. Then, we perform a cumulative sum of the 
good matchings through all the database. An example of the most likely matching matrix 
and the ground truth matrix are shown in the table 1.  

 
Table 1. Most likely matching matrix (left) and ground truth matrix (right) example. 

 

Test image Reference image 

1 30 145 8 1 72 

2 44 2 203 55 13 

3 3 83 100 94 22 

Test image Ground truth 

1 0 0 0 1 0 

2 0 1 0 0 0 

3 1 0 0 0 0 
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4. Results 

To illustrate the performance of the different studied approaches, an empirical research is 
presented in this section. The experiments have been carried out on an Intel Core i5-4690 
and a GeForce GTX 980 (only in the deep learning approach). 

4.1. SIFT using OpenCV 
In this first approach the image features are extracted using the OpenCV (Open Source 
Computer Vision Library) [12] methods to obtain the SIFT descriptors. For each image, we 
obtain a different number of key points (it depends on the difference of gaussians and the 
gradients, some images have more points of interest), but all the descriptors have 128 
dimension. We train the VLAD with 50 centres, obtaining fixed feature vectors of length 
6400 (128 x 50) per image. 

The results are shown in the figure 9. The blue line represents the matching score in a 
random case and the red line shows the current results. As we can see, these results are 
not useful enough, slightly better than in the random situation.  

 
Fig 9. CMC using SIFT descriptors + VLAD with 50 centres 

 

Aiming to improve the performance of the system, the number of centres in the VLAD 
encoder is doubled to 100, obtaining a fixed feature vectors of length 12800. This change 
increases the processing time but it hardly improves the results, as we can see in the figure 
10. Therefore, this algorithm seems not to be effective, taking key points without real 
interest for our objective.  
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Fig 10. CMC using SIFT descriptors + VLAD with 100 centres 

 

4.2. Dense SIFT using VLFeat 
In this second approach the image features are extracted using the VLFeat (Vision Lab 
Features Library) [17] adaptation to Python (CyVLFeat) [18]. A different version of SIFT is 
used, called Dense SIFT. The main difference is that the descriptors are not calculated 
through an algorithm in all the key points of the image but are calculated through a sliding 
window at every location. This method allows us to control the window size and the sliding 
steps, and also is supposed to be faster. 

For a first attempt, we select a window size of 10 and a step size of 3. The VLAD encoder 
is set with 50 centres, due to as we have observed in the previous experiment, increasing 
the number of centres seems to increase the processing time without improving the 
performance of the system. The results in this case are shown in the figure 11. As we can 
see, the obtained results are a better than the obtained in the first try using normal SIFT 
descriptors, but not good enough. 
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Fig 11. CMC using Dense SIFT (window size 10) descriptors + VLAD 

 

Aiming to improve the results, the window size is doubled to 20, but keeping the step size 
of 3. The results are shown in the figure 12. In this case, the results are improved 
considerably except for some images. It will be useful to investigate these images to know 
the cause of the problem and identify which type of patterns and shapes are difficult to 
match. 

 
Fig 12. CMC using Dense SIFT (window size 20) descriptors + VLAD 



 

 21 

Analysing the ~20% of the test dataset that presents difficulties to match properly the crime 
scene shoeprints and also the correspondent reference images, some patterns likely to 
produce faults are found. Particularly striking are the footwear impressions in the snow 
(figure 13), which always have a low recognition rank. Probably this fact is due to the 
remarkable difference between the original reference (or, in general, the rest of shoeprint 
crime scenes) and this type of shoeprint with depth component. 

 

 
Fig 13. Snow shoeprints. 

 

An interesting analysis is to check, for this crime scene shoeprints, which reference 
footwear impressions have the highest probability of matching, trying to know why the 
system does not recognize the patterns correctly. For some crime scene prints, we show 
the chosen five more probably by the system (figure 14). As we can observe, the system 
tries to match the first two shoeprints following a granular pattern, with points or little circles. 
It could be due to the structure of the snow, producing matching errors. In the last shoeprint 
this does not happen, and the matched reference images are more similar than in the 
previous impressions, probably due to the contrast. 
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Fig 14. References with highest probability of matching. 

 

Other shoeprints that present recognition difficulties are shown in the figure 15. As is 
observed, these footwear impressions present highly unconstrained noise and low contrast 
conditions, making the task of recognition difficult. 
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Fig 15. Shoeprints with low recognition rank. 

Another interesting analysis is to check which reference images usually present 
complications to be matched. In the figure 16 are shown the shoeprints with the lowest 
probability of recognition. At first sight, we can find some similarities between the three 
shoeprints on the right, showing a likeness that could cause system problems. It is 
important to remember the limitation of the database, where there are no real crime scene 
images for each reference image. Therefore, it is difficult to draw conclusions about which 
patterns are less likely to be recognized from the available resources.  

 
Fig 16. Reference images with low recognition rank. 

To reinforce the system is intended to create a new database division, introducing some 
real crime scene shoeprints in the training set and also reference images in the test set, 
obtaining two 50-50 sets. The division is carried out in such a way that all the real shoeprints 
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in the test set have the corresponding matching in the training set, where only the real 
crime scenes are evaluated. The experiment is repeated using the Dense SIFT with a 
sliding window of size 20, obtaining the results shown in the figure 17. As is observed, the 
results are slightly better using this mixed dataset, but they can vary depending on the 
initial random split. 

 
Fig 17. CMC using Dense SIFT (window size 20) descriptors + VLAD in a mixed dataset 

 

4.3. Triplet using PyTorch 
In this third approach the image features are extracted using PyTorch [22], a deep learning 
framework that provides a tensor computation with strong GPU acceleration. As has been 
explained, a Convolutional Neural Network (pre-trained on photo tour dataset [28]) is used 
to extract the image features which will be encoded with the VLAD encoder. As it has been 
explained, the number of centres in the VLAD is set to 50 due to the compromise between 
performance and processing time. 

In the first attempt a window of size 16 is used, obtaining the results shown in the figure 18. 
As is observed, using such a small patch size the results are almost random and therefore 
are not useful for our purpose.  
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Figure 18. CMC using Triplets (window size 16) + VLAD 

 

In the second attempt the window size is doubled to 32, trying to improve the results and 
check if the Convolutional Neural Network needs a larger patch size to identify correctly 
the pattern of the shoeprint. These results are shown in the figure 19, where we can 
observe how an improvement has occurred. Even so, the use of deep learning techniques 
has not improved significantly the effectiveness of the system. 

 
Figure 19. CMC using Triplets (window size 32) + VLAD 

 

In the third attempt the window size is doubled again to 64, aiming to check if bigger is 
better or if the previous size is the optimal to get the best performance. As we can see in 
the figure 20, the results are worse in comparison to the previous attempt, demonstrating 
that this patch size is too big to produce a good pattern matching. 
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Figure 20. CMC using Triplets (window size 64) + VLAD 

 

As in the previous experiment, the database is split in two new sets containing both 
reference and crime scene images, aiming to improve the performance and to obtain a 
more robust system. 

The experiment is repeated using the Triplet CNN with a window size of 32, which we have 
observed is the optimal value to obtain a good performance. The results are shown in the 
figure 21, where we can observe that are very similar to the obtained in the original 
database, meaning that can not properly cope with different looking images. 

 

Fig 21. CMC using Triplets (window size 32) + VLAD in a mixed database 
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5. Conclusions and future development:  

In this project we have implemented different techniques aiming to evaluate the work of a 
pattern matching system, focused on the recognition of footwear impressions. The project 
is applied to real crime scene shoeprints, a field without an excessive previous work and 
therefore, with a wide margin of improvement and future study. 

The main techniques used to carry out the project have been the SIFT descriptors, the 
VLAD encoder and the triplet CNN. All these methods accept variations in the parameters, 
allowing modifications in the performance and originating different results, sometimes more 
significant than other times, as we had observed and we will discuss. 

A summary of all the obtained results, expressed in form of Cumulative Match 
Characteristic curve, is shown in the figure 22. 

 
Fig 22. CMC with all the evaluated results. 

 

After the evaluation of the different methods and some of their parameters, we can 
conclude that the use of Dense SIFT descriptors combined with the VLAD encoder for the 
task of the pattern matching of footwear impressions presents the best results in terms of 
performance but the SIFT approach achieves the fastest performance (the table 2 shows 
processing times). In order to obtain the maximum performance of the Dense SIFT 
algorithm, we suggest to use a window of size 20 and a VLAD encoder with 50 centres, 
because it has not been proven that increase this number improves the results and it only 
increases the processing time. 
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 First attempt Second attempt Third attempt 

SIFT 9225.514826274943 10402.529093477875 - 

Dense SIFT 57081.12756513618 42703.613905509 - 

Triplet 43416.57754942821 45616.72697753692 33722.369546536356 

Table 2. Processing time in seconds. SIFT first attempt (VLAD with 50 centres), SIFT 
second attempt (VLAD with 100 centres), Dense SIFT first attempt (window size 10), 
Dense SIFT second attempt (window size 20), Triplet first attempt (window size 16), 

Triplet second attempt (window size 32), Triplet third attempt (window size 64). 

 

The Triplet Convolutional Neural Network also provides a good performance, with results 
that compete with those obtained in the Dense SIFT approach. After evaluate different 
patch sizes, we can conclude that the optimal value is 32. In the figure 23 we can observe 
the patch obtained with a window size of 16x16, 32x32 and 64x64. As we can see, the use 
of a small window size does not provide enough information about the pattern. In the other 
hand, using a big window size does not define properly the determined pattern, taking more 
information than necessary. 

 

     
Fig 23. Example of patches of size 16 (left), size 32 (centre) and size 64 (right). 

 

A comparison between the Dense SIFT and Triplet approaches is shown in the figure 24, 
in order to evaluate more accurately the two studied methods with best performance in the 
project.  As we can see, the Dense SIFT has a better beginning of the work, recognizing 
faster than the Triplet the first patterns. But it presents problems to match some of the 
shoeprints in the end, decreasing the performance unlike the Triplet approach which is 
more stable even though it has a worse starting. 

Something similar happens when the database is split in two subsets containing both 
reference and real crime scene images, as we can see in the figure 25. In this case, the 
use of the Triplet Convolutional Neural Network provides a more stable system to match 
the footwear impressions. 
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Fig 24. CMC comparison between Dense SIFT and Triplet 

 

 
Fig 25. CMC comparison between Dense SIFT and Triplet in a mixed dataset 

 

To sum up, in this project we have achieved results with room for improvement but quite 
corresponding to the state of the art in the footwear impression matching field. The 
descriptors used in the system are invariant to rotation, translation and scale, which are a 
critical point when we are working on a real crime scene database. The use of the Dense 
SIFT descriptors is comparable to the use of the Triplet Convolutional Neural Networks, 
obtaining in both approaches the best results.   
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To keep working on this topic in the future, one of the most important requirement is to 
continue increasing the available datasets, especially the real crime scene shoeprints 
database because this is one of the biggest limitations to work, making hard the extraction 
of more reliable conclusions. It is important to note that the standard databases used in 
machine learning contain thousands or millions of images. Other techniques to extract the 
main features and obtain the descriptors could be studied and evaluated in detail. Training 
the Convolutional Neural Network with the shoeprints database would be a great start. Also, 
the script could be optimized, evaluating new algorithms in order to improve the processing 
time and the use of the CPU. 
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Glossary 

SIFT: Scale-Invariant Feature Transform 

VLAD: Vector of Locally Aggregated Descriptors 

CNN: Convolutional Neural Network 

MSER: Maximally Stable Extremal Regions 

CPU: Central Processing Unit 

GPU: Graphics Processing Unit 

CMC: Cumulative Matching Characteristic 

ReLU: Rectified Linear Unit 

IDE: Integrated Development Environment 

GMM: Gaussian Mixture Model 

HOG: Histogram of Oriented Gradients 

MHL: Modified Harris-Laplace 

DOG: Difference of Gradients 

RANSAC: Random Sample Consensus 

 

 


