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Abstract

Topology Optimization of Nonlinear Structures has become a great challenge over the last
decade. This technique looks for the optimal design of continuum and discrete structures
under a set of boundary conditions and external loads. Nonlinear Solid Mechanics, studies the
behaviour of structures when either the relation between strains and displacements become
nonlinear or when the material behaviour must be considered nonlinear or both of them.

There are several techniques to perform Topology Optimization. Among others, the most
popular ones are: the SIMP (Solid Isotropic Microstructure with Penalization) methods, which
indicates the presence or absence of material through a density function, level-set methods
which keep the interface tracking of the boundary and TSA (Topological Sensitivity Analysis)
approaches, which study the variation of some cost function at any point of the domain.

The Topological Derivative measures the sensitivity of a given functional with respect to
an infinitesimal singular perturbation, such as the insertion of holes, expansions or contraction
of them and it emerges as the most powerful tool to be applied in the TSA methods.

A numerical coupling of two recent methods in shape and topology optimization of struc-
tures is proposed. The Topological Derivative concept is used in combination with a level-set
method to solve the Topology Optimization problem of Nonliner Structures. Therefore, the
coupling of these two methods yields an efficient algorithm which can easily handle boundary
evolution and takes into account the sensitivity of structures towards small perturbations . Un-
like the majority of algorithms for Topology Optimization, the volume constraint is imposed
at each iteration by adding a parameter in the level-set function which will enforce it.

The performance and validation of our methodology are evaluated providing several nu-
merical benchmarks and examples showing proper performance and accurate results.

Keywords:
Topology Optimization; Nonlinear Solid Mechanics; Topological Derivative;
Level-set method; Topological Sensitivity Analysis
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Chapter 1

Introduction

1.1 Preface

Usually, considering a linear relation between deformations and stresses suffices to yield valid
results, especially in engineering problems. In such cases, a simplification of the General The-
ory of Elasticity is considered, the so-popular Linear Theory of Elasticity[21]. However, there
exist several situations in which this linear relation gives inaccurate results. Sometimes, the
material under study presents a nonlinear behavior which translates into a nonlinear relation
between strains and stresses. In other situations, displacements are not small enough to neglect
their high-order terms. When we are facing these problems, Nonlinear Continuum Mechanics
must be applied to ensure a proper description of the solution[5, 6, 22].

The efficient use of materials is clearly an important decision in many different settings.
Topology Optimization (TO) is a branch of a group of methods which looks for the optimal
design of continuum and discrete structures under a set of boundary conditions and external
loads. Unlike other branches, such as size or shape optimization, no prior structural configura-
tion is needed. The optimization of the geometry and topology of structural layouts has widely
evolved in the last decades, thanks to a significant number of developments to design complex
problems. In fact, structural optimization has been identified as one of the most challenging
tasks in structural design.

One of the pioneering methods to deal with the TO problem are the so-called SIMP meth-
ods ( Solid Isotropic Microstructure with Penalization) [24]. The basis of this approach is
to define a density function ρ which indicates the presence (ρ = 1) or absence (ρ = 0) of
material within the reference domain. This allows to determine those regions where material
must be placed . This material distribution TO technique has been applied to a wide range
of different disciplines, such as acoustics, fluid flow, wave propagation, aerospace design and
linear and nonlinear elasticity among others [12, 17, 19, 23].
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Lately, the introduction of level-set methods in the Computational Mechanics context, was
seen as another option to solve the TO problem [3, 10, 15, 27]. This strategy allows to track
the interface of the structure in a easier manner. Although the level-set method makes possible
topology changes during the optimization process, it does not solve the inherent problem of
creating new holes in the middle of a shape. In practice, this basically means that the method
is unable to change the interior of the structure and only permits to modify its boundary, which
in fact, is the one simulated with the level-set function. As a consequence, this approach seems
quite unsuitable to perform the TO analysis on its own.

There exists another family of methods, which studies the variation of some cost function
at any point of the domain to determine its sensitivity, being sensitivity understood as how the
cost function is affected by changes on it. Such methods are referred in the literature as TSA
(Topological Sensitivity Analysis) [1, 7]. The lack of a function to control this sensitivity,
motivated the development of the Topological Derivative (TD) [14, 20]. TD emerges as one of
the most powerful technique to be applied in TSA methods because it measures the sensitivity
of a given functional with respect to an infinitesimal singular perturbation, such as the insertion
of holes, expansions or contraction of them and it is derived from mathematical analysis.
Therefore, TD can be used as a tool to determine where material has to be removed or added
in TSA methods.

The main drawbacks of the already existing codes which deal with TO of Nonlinear Struc-
tures with TD as a TSA function is that they need to remove a given quantity of volume per
iteration. This procedure is quite rigid because those regions where material is removed are
not allowed to be refilled in next iterations. Thus, we are solving a problem in which we
are subtracting bit by bit the material until the volume constraint (final percentage of material
wanted) is reached. Moreover, elements are not allowed to be refilled even though the TD
algorithm points to them .

In this thesis, the concept of TD is applied as a sensitivity function to carry out a TO
algorithm in the context of Nonlinear Solid Mechanics. In particular, the assumption of hy-
perelastic material will be taken into account by considering both Saint Venant-Kirchhoff and
Neohookean constitutive models. In addition, a level-set method will be applied coupled with
the problem to keep a sharp tracking of the interface. Finally, to fulfill the volume requirement
each iteration, a scalar value will be added to the level-set function.

This work is organized as follows. In Chapter 2, the main basis of Nonlinear Continuum
mechanics is introduced, emphasizing the main differences with the linear case. In Chapter
3 the constitutive models which allows us to relate the deformation of the structure with the
stresses suffered by it will be stated. Especial attention to the isotropic hyperelastic mate-
rials is done. Next, Chapter 4 deals with two formulations to discretize the solution of the
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Nonlinear Finite Element problem, the Total Lagrangian Formulation and the Updated La-
grangian formulation. The solution methods and time discretization are presented in Chapter
5. In Chapter 6 the topological derivative-based topology optimization of nonlinear structures
will be studied. An algorithm will be presented to deal with such problems. To verify our
code, some numerical examples are shown in Chapter 7. To end up, several conclusions and
future work are drawn in Chapter 8. Finally, some Appendixes can be found to show some
mathematical laws (Appendix A) and the well-known Voigt Notation (Appendix B).

1.2 FEMUSS: A Finite Element Code

The Finite Element Method has proven to be an effective method for the spatial approximation
of the Topology Optimization of Nonlinear Structures[26]. In this work we plan to implement
both the Nonlinear Continuum Mechanics problem and the Topology Optimization one in an
in-house code of our research group called FEMUSS( Finite Element Method Using Subgrid
Scales).

FEMUSS is a FEM code written in FORTRAN 2003 [13, 25] which deals with several
physics and also coupled problems. It allows parallel implementations, which becomes essen-
tial for calculating large quantity of data or working in large scale problems.

In order to solve a problem using FEMUSS, we can first define our geometry features using
GiD preprocessor developed at CIMNE (International Center of Numerical Methods in Engi-
neering). After this, all the files generated regarding mesh and conditions will be used by
FEMUSS to compute the solution of the problem. Finally, the post-processing stage can be
done using again GiD or any other visualization software such as Paraview.

Figure 1.1: General Structure of FEMUSS: Flowchart

The structure of FEMUSS is based on hierarchical relations between objects (Figure 1.1).
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The main characteristic of this organization is that objects from below in the hierarchy should
not ’know’ about objects which are above them. This is an important feature of the code,
which permits to have a clean programming technique and an agile software development.
The higher level structure in FEMUSS are referred as CASES. In each case, all the processes
which take place on top of the same mesh are grouped. As a consequence, each case has a
MESH, a FILE POSTPROCESSOR and might have several PHYSICAL PROBLEMS. This CASES

are defined in such a way that the code is capable of dealing with, for instance, fluid-structure
interaction problems, where each of the problems is defined in a different computational do-
main. The mesh object takes care of all the geometrical information, i.e., elements, connec-
tivities, coordinates, shape functions, etc. We also have the file postprocessor which contains
objects in charge of writing information to the disk so that the results can be lately visualized.
The final ingredient of this structure is the concept of COMMUNICATION CHANNELS. These
are basically a set of pointers which allow to pass information between entities which are on
the same hierarchical level.



Chapter 2

Nonlinear Continuum Mechanics

2.1 Introduction

Continuum Mechanics deals with the analysis of the kinematics and the mechanical behavior
of materials. In Linear Continuum mechanics an assumption is made that the deformation is
sufficiently small to enable the effect of changes in the geometrical configuration of the solid
to be ignored, whereas in the Nonlinear case the magnitude of the deformation is unrestricted.

There are two sources of nonlinearity in the analysis of solid continua, namely, material
and geometric nonlinearity. The former occurs when the stress-strain behavior given by the
constitutive relation is nonlinear. The latter takes into account the effect on the load deforma-
tion due to changes in geometry.

Despite the obvious success of the assumption of linearity in engineering analysis it is clear
that many situations require consideration of nonlinear behavior. For example, ultimate load
analysis of structures involves material and geometric nonlinearity, and any metal-forming
analysis must include both of them. Structural instability is inherently a geometric nonlinear
phenomenon, as is the behavior of tension structures.

The purpose of this chapter is summarize the Nonlinear Continuum Mechanics that is
needed for Nonlinear Finite Element Methods. It begins with a description of deformation
and motion. Next, the concepts of stress and strain in Nonlinear Continuum Mechanics are
described. Unlike Linear Continuum Mechanics, stress and strain can be defined in many ways
in the Nonlinear case. The conservation equations, which are often called balance equations,
are described next to end this chapter. In our case, conservation of mass and both linear and
angular momentum will be enough to state the problem.
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2.2 Deformation and Motion

2.2.1 Motion

Kinematics is the study of motion and deformation without reference to the cause. We shall see
immediately that consideration of finite deformation enables alternative coordinate systems to
be employed, namely, material and spatial descriptions associated with the names of Lagrange
and Euler respectively.

Consider a body in an initial state at a time t=0 as shown in Figure 2.1 ; The domain of the
body in the initial state is denoted by Ω0 and called the initial configuration. To describe the
motion of the body and deformation, it is also needed a configuration in which various equa-
tions are referred, the reference configuration. The significance of the reference configuration
lies in the fact that motion is defined with respect to this configuration.

Figure 2.1: General Body Motion of a deformable body. From [6]

The domain of the current configuration of the body is denoted by Ω. The boundary of the
domain is denoted by Γ. The position vector of a material point in the reference configuration
is given by the coordinates XXX . The current positions of these particles are defined by the
coordinates xxx, which give the spatial description of the point at time t. The vector variable XXX
for a given material point does not change with time; these variables are called the material
coordinates or Lagrangian coordinates. On the other hand, the variables xxx are named the
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spatial or Eulerian coordinates.
The motion can be mathematically described by a mapping φ between initial and current

particle positions as,
xxx = φ(XXX , t) (2.1)

There are several mathematical restrictions to ensure the existence of this function and its
inverse φ−1(xxx, t):

• φ(XXX ,0) = XXX , By definition, XXX is the position of the particles when the motion starts
(consistency equation)

• φ ∈C1, the function must be continuous but also its derivatives at any point and for any
moment of time.

• φ must be a bijective function. Each element of xxx is paired with exactly one element
of the first XXX . Physically, it means that two particles can not occupy simultaneously the
same point in the space and one particle can not occupy simultaneously two different
points in the space.

• Due to mass conservation (which will be explained later), det
[

∂φ(XXX ,t)
∂XXX

]
> 0. It means

that any differential volume must be positive. In addition, it also allows us to say that
the density of the particles must be always greater than zero.

2.2.2 Eulerian and Lagrangian Description

Two approaches are used to describe the deformation and response of a continuum. A distinc-
tion has to be made between the coordinate systems that can be chosen to describe it. Relevant
properties can be described in terms of where the body was before deformation or where it
is during it. In the first approach, the material coordinates are considered and it is called the
material or Lagrangian description. In the second one, spatial coordinates are chosen and it is
called the spatial or Eulerian description. The duality is similar to that in mesh descriptions.
In the development of Lagrangian finite elements, two approaches are commonly taken:

1. Formulations in terms of the Lagrangian measures in which derivatives and integrals are
taken with respect to the material coordinates XXX , called Total Lagrangian formulation.

2. Formulations expressed in terms of the Eulerian measures in which derivatives and in-
tegrals are taken with respect to the spatial coordinates xxx, called Updated Lagrangian
formulation.
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The displacement of a material point is given by the difference between its current position
and its original position, so

uuu(XXX , t) = xxx−XXX = φ(XXX , t)−XXX (2.2)

2.2.3 Deformation Gradient

A key quantity in finite deformation analysis is the deformation gradient FFF , which is involved
in all equations relating quantities before deformation to corresponding quantities after defor-
mation. The deformation gradient is defined by,

FFF =
∂xxx
∂XXX

or Fi j =
∂xi

∂X j
(2.3)

The determinant of FFF is denoted by J and called the Jacobian determinant or the determi-
nant of the deformation gradient

J = det(FFF) = det
[

∂φ(XXX , t)
∂XXX

]
(2.4)

The Jacobian determinant gives the volume change as,

dv = J·dV (2.5)

It is also advisable to define the deformation gradient in terms of the displacement field,

FFF =
∂xxx
∂XXX

=
∂ (uuu+++XXX)

∂XXX
=

∂uuu
∂XXX

+
∂XXX
∂XXX

= ∇0uuu+ III (2.6)

where ∇0uuu is the material gradient of the displacement field and I the identity matrix.

2.3 Strain Measures

In contrast to Linear Elasticity, many different measures of strain are used in Nonlinear Con-
tinuum Mechanics.

2.3.1 Right and Left Cauchy-Green Deformation Tensors

The Right Cauchy-Green Deformation Tensor CCC is defined as,

CCC = FFFT FFF (2.7)
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It allows us to find the spatial scalar product dxxx1 ·dxxx2 in terms of the material vectors dXXX1

and dXXX2 as,
dxxx1·dxxx2 = dXXX1 ·CCC·dXXX2 (2.8)

Alternatively the initial material scalar product dXXX1·dXXX2 can be obtained in terms of the
spatial vectors dxxx1 and dxxx2 via the Left Cauchy-Green Deformation Tensor bbb,

bbb = FFFFFFT ⇒ dXXX1·dXXX2 = dxxx1·bbb−1·dxxx2 (2.9)

2.3.2 Green-Lagrange and Almansi Strain Tensors

The Green-Lagrange Strain Tensor EEE is defined by

ds2 −dS2 = 2dXXX ·EEE ·dXXX ⇒ EEE =
1
2
(CCC− III) (2.10)

so it gives the change in the square of the length of the material vector dXXX . The Green
Strain Tensor can also be expressed in terms of displacement gradients by

Ei j =
1
2

(
∂ui

∂X j
+

∂u j

∂Xi
+

∂uk

∂Xi

∂uk

∂X j

)
(2.11)

The same change can be expressed with reference to the spatial elemental vector dxxx thanks
to the Almansi Strain Tensor eee,

ds2 −dS2 = 2dxxx·eee·dxxx ⇒ eee =
1
2
(III −bbb−1) (2.12)

It can also be expressed in terms of displacement gradients,

ei j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi
− ∂uk

∂xi

∂uk

∂x j

)
(2.13)

It is easy to check, that both tensors matches in the Engineering Strain tensor εεε in the
Infinitesimal Strain Theory, where the displacements and their gradients are small enough to
neglect second order terms and the material and spatial coordinates are considered similar
xxx ≈ XXX ,

εi j = ei j = Ei j =
1
2

(
∂ui

∂X j
+

∂u j

∂Xi

)
(2.14)
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2.4 Stress Measures

In Nonlinear problems, several stress measures can be defined. We will consider three mea-
sures of stress:

1. The Cauchy stress, σσσ

2. The First Piola-Kirchhoff stress, PPP

3. The Second Piola-Kirchhoff stress, SSS

While both SSS and PPP are defined in the reference configuration, σσσ is defined in the current
configuration. The stresses are defined by Cauchy’s law

nnn ·σσσdΓ = tttdΓ ⇔ nnn0·PPPdΓ0 = ttt0dΓ0 ⇔ nnn0·SSSdΓ0 = FFF−1ttt0dΓ0 (2.15)

where ttt is the traction in the current configuration and ttt0 in the reference one. See Figure 2.2
to further details.

Figure 2.2: Definition of Stress measures. From [5]

It can be interesting to look for the transformation between stresses. They are interrelated
by functions of the deformation

PPP =JFFF−1·σσσ (2.16)

σσσ =J−1FFF ·SSS·FFFT (2.17)

PPP =SSS·FFFT (2.18)

The above relations between the Piola-Kirchhoff stresses and the Cauchy stress depend
only upon the deformation gradient FFF and the Jacobian determinant J. Thus, if the deformation
is known, the state of stress can always be expressed in terms of any stress tensor.
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2.5 Conservation Equations

One group of fundamental equations of Continuum Mechanics arises from the conservation
laws. These equations must always be satisfied by physical systems. Let us enumerate them
and explain the consequence of their conservation.

2.5.1 Conservation of mass

Mass m(Ω) of a material domain Ω is given by

m(Ω) =
∫
Ω

ρ(XXX , t)dΩ (2.19)

where ρ(XXX , t) is the density. Mass conservation requires that the mass of any material domain
be constant, since no material flows through the boundaries of a material domain. Therefore,
the material time derivative of m(Ω) vanishes,

Dm
Dt

=
D
Dt

∫
Ω

ρdΩ =
∫
Ω

(
Dρ

Dt
+ρ∇ · vvv

)
dΩ = 0 (2.20)

where the last equality comes from the Reynold’s transport theorem, (Appendix A.2). Since
the above equation holds for any subdomain Ω, it follows that

Dρ

Dt
+ρ∇·vvv = 0 (2.21)

When a material is incompressible, the material time derivative of the density vanishes, and it
can be seen from Equation 2.21 that the mass conservation equation becomes

∇·vvv = 0 (2.22)

For Lagrangian descriptions, the mass conservation can be integrated in time to obtain an
algebraic equation for the density ∫

Ω

ρdΩ =
∫

Ω0

ρ0dΩ0 (2.23)
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and taking into account that the Jacobian allows us to relate volume changes, then∫
Ω

ρdΩ =
∫

Ω0

ρJdΩ0 =
∫

Ω0

ρ0dΩ0 ⇔
∫

Ω0

(ρJ−ρ0)dΩ0 = 0 (2.24)

Invoking the smoothness of the integrand, the equation for mass conservation in La-
grangian formulation yields

ρ(XXX , t) · J(XXX , t) = ρ0(XXX) (2.25)

2.5.2 Conservation of linear momentum

The equation emanating from the principle of linear momentum is a key equation in Nonlinear
Finite Element procedures. Linear momentum conservation is equivalent to Newton’s Second
law of motion, which relates the forces acting on a body to its acceleration. We consider an
arbitrary domain Ω with boundary Γ subjected to a body force ρbbb and to a surface traction ttt,
where bbb is a force per unit mass and ttt is a force per unit area. The total force is given by

fff (t) =
∫
Ω

ρbbb(xxx, t)dΩ +
∫
Γ

ttt(xxx, t)dΓ (2.26)

The linear momentum is given by

ppp(t) =
∫
Ω

ρvvv(xxx, t)dΩ (2.27)

where ρvvv is the linear momentum per unit volume.
Newton’s second law of motion states that the material time derivative of the linear mo-

mentum equals the total force.

Dppp
Dt

= fff ⇔ D
Dt

∫
Ω

ρvvv(xxx, t)dΩ =
∫
Ω

ρbbb(xxx, t)dΩ +
∫
Γ

ttt(xxx, t)dΓ (2.28)

Now we can apply Reynold’s transport theorem (Appendix A.2) to the first integrand to
obtain

D
Dt

∫
Ω

ρvvvdΩ =
∫
Ω

(
D
Dt

(ρvvv)+ div (vvv)ρvvv
)

dΩ =
∫
Ω

[
ρ

Dvvv
Dt

+ vvv
(

Dρ

Dt
+ρ div (vvv)

)]
dΩ

(2.29)
where the chain rule has been applied in the last equality. Taking into account the mass
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conservation equation 2.21, the term multiplying the velocity vanishes, giving

D
Dt

∫
Ω

ρvvvdΩ =
∫
Ω

ρ
Dvvv
Dt

dΩ (2.30)

On the other hand, we can use Cauchy’s relation between the Cauchy stress σσσ and traction ttt
in the third integrand for the conservation of linear momentum∫

Γ

tttdΓ =
∫
Γ

nnn ·σσσdΓ =
∫
Ω

∇ ·σσσdΩ (2.31)

where the last equality comes from the Gauss’s theorem (Appendix A.1). Substituting (Equa-
tion 2.30) and (Equation 2.31) into the conservation of linear momentum (Equation 2.28 ) it
gives

∫
Ω

(
ρ

Dvvv
Dt

−ρbbb−∇ ·σσσ
)

dΩ = 0 (2.32)

Since this equation holds for an arbitrary domain Ω,

ρaaa = ρbbb +++ ∇·σσσ (2.33)

where aaa = Dvvv
Dt is the material derivative of the velocity field, that is the acceleration of the

system.

When loads are applied slowly and the inertial forces are very small and can be neglected
then acceleration can be dropped from Equation 2.33 to obtain the so-called Equilibrium equa-
tion

ρbbb +++ ∇·σσσ = 0 (2.34)

Problems in which equilibrium equation can be applied are often called static problems.

2.5.3 Conservation of angular momentum

By taking the cross-product of each term in the corresponding linear momentum principle, the
integral form of the conservation of angular momentum is obtained

D
Dt

∫
Ω

xxx×ρvvv(xxx, t)dΩ =
∫
Ω

xxx×ρbbb(xxx, t)dΩ +
∫
Γ

xxx××× ttt(xxx, t)dΓ (2.35)
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After some manipulations, the condition which follows from this equation yields,

σσσ = σσσ
T (2.36)

In other words, conservation of angular momentum requires that the Cauchy stress be a sym-
metric tensor. Taking into account the transformations between stresses (Equations 2.17 ),

σσσ = σσσ
T ⇔ J−1FFF ·SSS·FFFT =

(
J−1FFF ·SSS·FFFT)T ⇔ J−1FFF ·SSS·FFFT = J−1 ·

(
FFFT)T · (FFF ·SSS)T ⇔

⇔ FFF ·SSS·FFFT = FFF ·SSST ·FFFT ⇔ SSS = SSST (2.37)

which implies that the Second Piola-Kirchhoff stress tensor SSS must be also symmetric. How-
ever, regarding to the First Piola-Kirchhoff stress PPP

SSS = SSST ⇔ PPP ·FFF−T =
(
PPP·FFF−T)T ⇔ PPP·FFF−T =

(
FFF−T)T ·PPPT ⇔ PPP·FFFT = FFF ·PPPT (2.38)

which means that conservation of angular momentum does not require that the First Piola-
Kirchhoff stress tensor PPP be a symmetric tensor. For this reason, in Nonlinear Computational
Mechanics is widely used the Second one.



Chapter 3

Constitutive Model

3.1 Introduction

The response of the material is characterized by a constitutive equation which expresses the
stress in terms of some measure of the deformation history. These relationships obviously
depend upon the type of material under consideration and may be either dependent upon or
independent of time.

Generally, constitutive equations must satisfy certain physical principles. In this chapter
the constitutive equations will be established in the context of a hyperelastic material, whereby
stresses are derived from a stored elastic energy function. Particularly, two models will be
introduced: The Saint Venant-Kirchhoff Material and Neo-Hookean Material.

3.2 HyperElasticity

Materials for which work is independent of the load path are said to be hyperelastic materials.
These materials are said to satisfy automatically the second law of Thermodynamics. Let
us state the local form of the second law of Thermodynamics through the Clausius-Duhem
inequality

Ξ =−ψ̇ −ηθ̇ +SSS : ĖEE − 1
θ

qqq0 ·∇θ ≥ 0 (3.1)

where ψ is the internal specific energy or strain energy function, η is the specific entropy,
qqq0 is the heat flux vector, θ the temperature and Ξ is the dissipation of the system. This
expression states that the dissipation of the system must be always greater than or equal to zero.
Considering purely deformative processes where temperature and entropy remain constant,
equation 3.1 yields

Ξ =−ψ̇ +SSS : ĖEE ≥ 0 (3.2)
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Taking into account that hyperelastic materials are considered with a reversible character in
their loading process, the dissipation of the system must be null.

Ξ =−ψ̇ +SSS : ĖEE = 0 ⇔ ψ̇ = SSS : ĖEE (3.3)

The material derivative of the stored energy function is defined as

ψ̇ =
∂ψ (EEE)

∂EEE
:

∂EEE
∂ t

(3.4)

Thus,

ψ̇ = SSS : ĖEE = SSS :
∂EEE
∂ t

=
∂ψ (EEE)

∂EEE
:

∂EEE
∂ t

⇔ SSS =
∂ψ (EEE)

∂EEE
(3.5)

This procedure allows us to state that, given a material of which stresses can be defined
through a stored energy function satisfying equation 3.5 and considering purely deformative
processes, the second law of Thermodynamics will be automatically satisfied. These materials
can be characterized also with the Right-Cauchy tensor CCC:

SSS = 2
∂ψ (CCC)

∂CCC
=

∂ψ̂ (EEE)
∂EEE

(3.6)

Note that potential can be expressed as a function of either the Right Cauchy-Green Defor-
mation Tensor CCC or the Green strain EEE. A consequence of the existence of a stored energy
function is that the work done on a hyperelastic material is independent of the deformation
path.

The relationship between SSS and either EEE or CCC given by equation 3.6 will invariably be
nonlinear. Within the framework of a Newton-Raphson solution , the relationship will need to
be linearized. The relationship between the directional derivatives of SSS and EEE is expressed as:

ṠSS = C ::: ĖEE (3.7)

where C is the tangent modulus known as the Lagrangian or material elasticity tensor. It can
be obtained from the stored energy function ψ ,

C=
∂SSS
∂EEE

= 2
∂SSS
∂CCC

= 4
∂ 2ψ

∂CCC∂CCC
(3.8)

Recalling that the Deformation power in a material subdomain can be defined through the
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work conjugates,

W D =
∫
Ω

σσσ : ddddΩ =
∫

Ω0

PPP : ḞFFdΩ0 =
∫

Ω0

SSS :
1
2

ĊCCdΩ0 (3.9)

and by replacing Equation 3.8 on it,

W D (t) =
∮

SSS :
1
2

ĊCCdt =
∮

2
∂ψ (CCC)

∂CCC
:

1
2

ĊCCdt =
∮

∂ψ (CCC)

∂CCC
: ĊCCdt = 0 (3.10)

Therefore, the existence of this stored energy function implies that our model is thermody-
namically consistent and there is no necessity in checking it.

3.2.1 Isotropic HyperElastic Materials

Isotropy is defined by requiring the constitutive behavior to be identical in any material direc-
tion. This implies that the relationship between the stored energy function ψ and CCC must be
independent of the material axes chosen and, consequently, ψ must only be a function of the
invariants of CCC as,

ψ (CCC(XXX),XXX) = ψ (ICCC, IICCC, IIICCC,XXX) (3.11)

where the invariants of CCC are defined here as,

ICCC = trace CCC =Cii

IICCC =
1
2

{
(trace(CCC))2 − trace

(
CCC2
)}

=
1
2

{
(Cii)

2 −Ci jC ji

}
(3.12)

IIICCC = det CCC = J2

3.2.1.1 Saint Venant-Kirchhoff Material

Many engineering applications involve small strains and large rotations. In these problems the
effects of large deformation are primarily due to rotations. The response of the material may
then be modeled by a simple extension of the linear elastic laws by replacing the Cauchy stress
σσσ by the Second Piola-Kirchhoff stress SSS and the engineering strain εεε by the Green strain EEE.

Therefore, the tensor C is defined as,

Ci jkl = λδi jδkl +µ
(
δikδ jl +δilδ jk

)
, C= λ III ⊗ III +2µIII (3.13)

where λ and µ are the Lamé constants. The stress-strain relation for an isotropic Kirchhoff
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material may therefore be written as

Si j = λEkkδi j +2µEi j = Ci jkl ·Ekl, SSS = λ trace(EEE) III +2µEEE (3.14)

Recall that the Lamé constants can be expressed in terms of other constant which are more
closely related to physical measurements, the bulk modulus K, Young’s modulus E and Pois-
son’s ratio ν , by

µ =
E

2(1+ν)
, λ =

νE
(1+ν)(1−2ν)

, K = λ +
2µ

3
(3.15)

This material is quite easy to be implemented. However, it presents several inconsistencies.
On the one hand, in large strains deformation the model becomes useless. On the other hand,
it does not satisfy the so-called growth conditions. Growth conditions check that the stored
energy function of the model goes to infinity when the Jacobian goes to 0. Physically, it means
that, as it is impossible to obtain J = 0 because it would imply that the domain has been
removed, the energy needed to do such a process would be infinity. For these inconsistencies
among others, this model is not applied normally in NonLinear Computational Mechanics
when large strains are involved.

3.2.1.2 Neo-Hookean Material

The Neo-Hookean material model is an extension of the isotropic linear law (Hooke’s law)
to large deformation. This material exhibits characteristics that can be identified with the
familiar material parameters found in Linear Elastic analysis. The stored energy function for
a compressible Neo-Hookean material is

ψ (CCC) =
1
2

λ ( ln J)2 −µ ln J+
1
2

µ ( trace CCC− trace III) (3.16)

From Equation 3.6, the stresses are given by differentiating the stored energy function with
respect to the Right Cauchy tensor,

Si j = λ ln JC−1
i j +µ

(
δi j −C−1

i j

)
, SSS = λ ln JCCC−1 +µ

(
III −CCC−1

)
(3.17)

Letting λ
′
= λ and µ

′
= µ − λ ln J and using equation 3.8, the elasticity tensor (tangent

moduli) yields, in component form,

Ci jkl = λ
′
C−1

i j C−1
kl +µ

′
(

C−1
ik C−1

jl +C−1
il C−1

k j

)
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To end this chapter, it is easy to verify that this model satisfies the growth conditions before
explained. When J → 0 , then ln J → ∞ and therefore ψ (CCC)→ ∞.





Chapter 4

Lagrangian Finite Elements
Discretization

4.1 Introduction

In Lagrangian meshes, both nodes and elements move with the material. Boundaries and inter-
faces remain coincident with element edges, so that their treatment is simplified. Constitutive
equations are always evaluated in the same quadrature points. For these reasons, Lagrangian
meshes are widely used for Solid Mechanics.

Finite Element discretizations with Lagrangian meshes are commonly classified as Up-
dated Lagrangian formulations and Total Lagrangian formulations . This chapter begins
stating the Updated Lagrangian formulation. The momentum equation is discretized and ex-
pressed in terms of the spatial coordinates and the Cauchy stress σσσ . The principle of virtual
work will be stated which is the weak form of the momentum equation.

The Total Lagrangian formulation is shown next. In this formulation, the Second Piola
Kirchhoff stress SSS is used. As a measure of strain we will use the Green strain tensor EEE
which is the work conjugate of SSS. Also the principle of virtual work will be stated for this
formulation.

It is not the goal of this chapter to develop all the process behind the final formulations.
We refer to [5, 6] for more details on the formulation.
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4.2 Updated Lagrangian Formulation

First of all, we state the principle of virtual work which is the weak form of the momentum
Equation 2.33, ∫

Ω

δviρ üidΩ+
∫
Ω

∂ (δvi)

∂x j
σ jidΩ =

∫
Ω

δviρbidΩ+
∫

ΓN

δviti (4.1)

where δvi is a test function such that δvi ∈ V0,

V0 =
{

δvi | δvi ∈C0(XXX),δvi = 0 on ΓD
}

(4.2)

where ΓD is the Dirichlet part of the boundary, where displacements are prescribed and ΓN

the Neumann part of the boundary, where tractions are prescribed. On the other hand, the
displacement trial functions ui live in the space given by

ui ∈ U , U =
{

ui | ui ∈C0(XXX),ui = ui on ΓD
}

(4.3)

The current domain ΩΩΩ is subdivided into elements Ωe so that the union of the elements
comprises the total domain, Ω =

⋃
Ωe. The nodal coordinates in the current configuration

are denoted by xiI, I = 1to nn. Lower case subscripts are used for components, upper case
subscripts for nodal values. The nodal coordinates in the undeformed configuration are XiI .

The motion xxx(XXX , t) is approximated by,

xi (XXX , t) = NI (XXX)xiI(t) (4.4)

where NI (XXX) are the shape functions and xiI(t) are the nodal values of the node I. In a La-
grangian mesh, nodes remain coincident with the material points.

Displacement field is defined as,

ui (XXX , t) = xi (XXX , t)−Xi = uiI(t)NI (XXX) (4.5)

where uiI(t) are the nodal displacements. The discrete form of the principle of virtual work
yields, ∫

Ω

∂ (NI)

∂x j
σ jidΩ

︸ ︷︷ ︸
fff int

+
∫
Ω

NIρ üidΩ

︸ ︷︷ ︸
MMMaaa

=
∫
Ω

NIρbidΩ+
∫

ΓN

NItidΓ

︸ ︷︷ ︸
fff ext

(4.6)

For a better physical interpretation, it is worthwhile to define each term in the above equation.
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The Mass matrix is defined as:

Mi jIJ = δi j

∫
Ω

ρNINJdΩ (4.7)

and accelerations are obtained by taking the second material time derivative of the displace-
ments, giving

üi (XXX , t) = üiI (t)NI (XXX) (4.8)

Defining the BBBI matrix associated with the node I such that

BBBI =


∂NI
∂x 0
0 ∂NI

∂y
∂NI
∂y

∂NI
∂x

 in 2D and BBBI =



∂NI
∂x 0 0
0 ∂NI

∂y 0

0 0 ∂NI
∂ z

∂NI
∂y

∂NI
∂x 0

∂NI
∂ z 0 ∂NI

∂x
0 ∂NI

∂ z
∂NI
∂y


in 3D (4.9)

The BBB matrix is defined as

BBB =
[

BBB1 BBB2 BBB3 · · · BBBm

]
where m is the number of nodes in that element.

We are able to define the Internal nodal forces in Voigt Notation( Appendix B) as:

fff int
I =

∫
Ω

∂ (NI)

∂x j
σ jidΩ =

∫
Ω

BBBT
I {σσσ}dΩ (4.10)

4.3 Total Lagrangian Formulation

First of all, we state the principle of virtual work which is the weak form of the momentum
equation 2.33, ∫

Ω0

δuiρ0üidΩ0

︸ ︷︷ ︸
Maaa

+
∫

Ω0

∂Fi jPjidΩ0

︸ ︷︷ ︸
fff int

=
∫

Ω0

δuiρ0bidΩ0 +
∫

Γ0N

δuit0
idΓ

︸ ︷︷ ︸
fff ext

(4.11)

where δuiis the test function such that δui ∈ U0,

U0 =
{

δui | δui ∈C0(XXX),δui = 0 on ΓD
}

(4.12)
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and ui ∈ U the displacement trial functions.

We define a Lagrangian mesh with the same properties as described in Section 4.2. To
define the Internal nodal forces in Voigt Notation it is of little use to write the nodal forces in
terms of PPP since it is not symmetric. Therefore, we will write the internal force term in terms
of the Second Piola-Kirchhoff stress SSS. Using the transformation PPP = SSS ·FFFT , the expression
for the internal forces becomes

f int
jI =

∫
Ω0

∂Fi jPjidΩ0 =
∫

Ω0

∂NI

∂X j
FjkSikdΩ0 (4.13)

Defining a BBB0 matrix such that

B0
ikjI = sym

(i,k)

(
∂NI

∂Xi
Fjk

)
(4.14)

The BBB0
I matrix associated to the node I yields,

BBB0
I =


∂NI
∂X

∂x
∂X

∂NI
∂X

∂y
∂X

∂NI
∂Y

∂x
∂Y

∂NI
∂Y

∂y
∂Y

∂NI
∂X

∂x
∂Y + ∂NI

∂Y
∂x
∂X

∂NI
∂X

∂y
∂Y + ∂NI

∂Y
∂y
∂X

 in 2D (4.15)

and

BBB0
I =



∂NI
∂X

∂x
∂X

∂NI
∂X

∂y
∂X

∂NI
∂X

∂ z
∂X

∂NI
∂Y

∂x
∂Y

∂NI
∂Y

∂y
∂Y

∂NI
∂Y

∂ z
∂Y

∂NI
∂Z

∂x
∂Z

∂NI
∂Z

∂y
∂Z

∂NI
∂Z

∂ z
∂Z

∂NI
∂X

∂x
∂Y + ∂NI

∂Y
∂x
∂X

∂NI
∂X

∂y
∂Y + ∂NI

∂Y
∂y
∂X

∂NI
∂X

∂ z
∂Y + ∂NI

∂Y
∂ z
∂X

∂NI
∂X

∂x
∂Z + ∂NI

∂Z
∂x
∂X

∂NI
∂X

∂y
∂Z + ∂NI

∂Z
∂y
∂X

∂NI
∂X

∂ z
∂Z + ∂NI

∂Z
∂ z
∂X

∂NI
∂Y

∂x
∂Z + ∂NI

∂Z
∂x
∂Y

∂NI
∂Y

∂y
∂Z + ∂NI

∂Z
∂y
∂Y

∂NI
∂Y

∂ z
∂Z + ∂NI

∂Z
∂ z
∂Y


in 3D (4.16)

Finally the BBB0 can be built as :

BBB0 =
[

BBB0
1 BBB0

2 BBB0
3 · · · BBB0

m

]
where m is the number of nodes in that element.

We are now able to define the internal nodal forces in Voigt Notation( Appendix B) as:

fff int
I =

∫
Ω0

∂NI

∂X j
FjkSikdΩ0 =

∫
Ω0

(
BBB0

I
)T {SSS}dΩ0 (4.17)
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The Mass matrix is defined as:

Mi jIJ = δi j

∫
Ω0

ρ0NINJdΩ0 (4.18)

And the discrete form of the principle of virtual work ends up yielding,∫
Ω0

NIρ0üidΩ0

︸ ︷︷ ︸
Maaa

+
∫

Ω0

(
BBB0

I
)T {SSS}dΩ0

︸ ︷︷ ︸
fff int

=
∫

Ω0

ρ0bidΩ0 +
∫

Γ0
N

t0
idΓ

︸ ︷︷ ︸
fff ext

(4.19)





Chapter 5

Linearized Equations and Solution
methods

5.1 Introduction

Once NonLinear Finite Element Discretizations have been stated, it is time to describe the
solution methods. For transient problems, it is needed to implement some kind of time in-
tegration scheme. In our case, implicit time integration has been chosen, particularly the
Newmark β -method. To solve the discrete equations, the application of a nonlinear method
will be needed, such as Newton-Raphson method. As it will be seen, Newton method may not
converge in some special problems and line search methods must be invoked.

A critical step in the solution of the Nonlinear Solids problem is the linearization of the
governing equations. Linearization procedures are described later in this chapter.

To be able to combine both the transient and the static problem, let us write the discrete
momentum equation at time step n+1 as:

sDMMMaaan+1 + fff int

(
dddn+1, tn+1

)
− fff ext

(
dddn+1, tn+1

)
= rrr
(

dddn+1, tn+1
)
= 0 (5.1)

where sD is a switch parameter such that

sD =

 0 for a static (equilibrium) problem

1 for a dynamic (transient) problem

The column matrix rrr
(

dddn+1, tn+1
)

is called a residual. Note that when the solution has been
achieved, the residual vanishes. The discrete equations are nonlinear algebraic equations in
the nodal displacements, dddn+1.
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5.2 Implicit Time Integration Scheme: The Newmark β -
equations

The Newmark β -method is a well-known class of time integrators. For this time integrator,
the updated displacements and velocities are given by

dddn+1 = d̃dd
n+1

+β∆t2aaan+1 where d̃dd
n+1

= dddn +∆tvvvn +
∆t2

2
(1−2β )aaan (5.2)

vvvn+1 = ṽvvn+1 + γ∆taaan+1 where ṽvvn+1 = vvvn +(1− γ)∆taaan (5.3)

where ∆t is the time interval between time at step n+ 1 and time at step n, ∆t = tn+1 − tn .
The scheme is fully dependent on the parameters β and γ . The parameter γ controls artificial
viscosity, a damping introduced by the numerical method. When γ > 1

2 then artificial damping
is added.

Regarding to the stability of the method, it is unconditionally stable for values β and γ

such that:
β ≥ γ

2
≥ 1

4
(5.4)

It is easy to see that γ must be greater than or equal to 1
2 to ensure that the method is uncondi-

tionally stable. However, when γ > 1
2 the method is adding artificial damping. Therefore, the

best value for the parameter γ is 1
2 . With respect to β , it must be greater than or equal to 1

4 for
the optimal value of γ . Particularly, when β = 1

4 the undamped trapezoidal rule is applied. Let
us underline, that when β = 0 then we recover the explicit central difference method. For this
thesis, we are going to consider only implicit schemes, so that β > 0.

By using equation 5.2 we can isolate the acceleration at time step n+1.

aaan+1 =
1

β∆t2

(
dddn+1 − d̃dd

n+1)
(5.5)

and substituting this expression into the discrete momentum equation 5.1, it gives

sD

β∆t2 MMM
(

dddn+1 − d̃dd
n+1)

+ fff int

(
dddn+1, tn+1

)
− fff ext

(
dddn+1, tn+1

)
= rrr
(

dddn+1, tn+1
)
= 0 (5.6)

so the discrete problem for both the transient and the static problem states per each time step:
find dddn+1so that rrr

(
dddn+1, tn+1

)
= 0.
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5.3 Newton’s method

When one wants to solve nonlinear system of algebraic equations the most widely used and
most robust method is Newton’s method. The solution of the system by Newton’s method is an
iterative procedure. The iteration number is indicated as i. So that dddn+1

i would be the solution
at time step n+1 for the iteration number i. To begin the iterative procedure, a starting value
for the unknown must be chosen; usually the solution dddn from the last time step is selected,
so dddn+1

0 ≡ dddn. In dynamic problems, when working with the Newmark β -method, a better

starting value is d̃dd
n+1

.

If we consider a Taylor expansion of the residual about the current value of the nodal
displacement dddn+1

i and setting the resulting residual equal to zero:

rrr
(

dddn+1
i , tn+1

)
+

∂ rrr
(

dddn+1
i , tn+1

)
∂ddd

∆ddd +O
(

∆ddd2
)
= 000 (5.7)

The matrix AAA =
∂ rrr(dddn+1

i ,tn+1)
∂ddd is called the system Jacobian matrix. Dropping higher-order

terms, Equation 5.7 gives
rrr+AAA∆ddd = 000 (5.8)

The increment in the nodal displacements in the Newton iterative procedure is obtained by
solving a system of linear algebraic equations

AAA∆ddd =−rrr
(

dddn+1
i , tn+1

)
(5.9)

Once the increments in nodal displacements have been obtained, they are added to the previous
iterate

dddn+1
i+1 = dddn+1

i +∆ddd (5.10)

The process is repeated until convergence is met. The Jacobian matrix must be computed.
From equation 5.6 we can write the Jacobian for the Newmark integrator as

AAA =
∂ rrr
∂ddd

=
∂

∂ddd

(
sD

β∆t2 MMM
(

dddn+1 − d̃dd
n+1)

+ fff int − fff ext

)
=

sD

β∆t2 MMM+
∂ fff int
∂ddd

− ∂ fff ext
∂ddd

(5.11)

The Jacobian of the internal nodal forces is called the tangent stiffness matrix and will be
denoted as KKKint. The Jacobian of the external nodal forces is called the load stiffness matrix
and is denoted as KKKext. Therefore, the final form of the Jacobian matrix yields

AAA =
sD

β∆t2 MMM+KKKint −KKKext (5.12)
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To find out expressions for the tangent stiffness matrix KKKint and the load stiffness matrix
KKKext it will be needed to linearize both expressions. Both KKKint and KKKext will be explained in
the following section 5.4.

To end this section, let us introduce the flowchart for solving the nonlinear problem by
considering the Newmark β -method as the time integrator scheme:

Algorithm 1: Flowchart for Newton-Raphson scheme with Newmark β -method

1. Introduce initial conditions for both the velocity vvv0, and displacement ddd0 . Stresses σσσ0

must be computed according with the constitutive equation. Also, the parameters which
control the time step n = 0 and the time itself t = t0need to be initialized.

2. It is important to see that even though our initial parameters can be considered zero, the
initial forces may not vanish for the initial state. Therefore, both the external and the
internal ones must be computed according to the expressions (4.6) or (4.19) depending
on the formulation considered,

fff 0 = fff
(

ddd0, t0
)
= fff ext

(
ddd0, t0

)
− fff int

(
ddd0, t0

)
3. Compute the initial accelerations of the system according to

aaa0 = MMM−1 fff 0

where the mass matrix MMM is computed according to (4.7) and (4.18) depending on the
formulation considered.

4. It is time to estimate our solution. For the transient problem, dddn+1
0 = d̃dd

n+1
where d̃dd

n+1
is

computed according to Equation (5.2). For the static problem we will consider dddn+1
0 =

dddn. We consider here any time step n and its corresponding time tn. We compute the
time step at n+1 as tn+1 = tn +∆t

5. Here, we start the iterative Newton procedure for time step n+1, iteration i

(a) We need to compute the forces for our estimate solution,

fff n+1
i = fff

(
dddn+1

i , tn+1

)
= fff ext

(
dddn+1

i , tn+1

)
− fff int

(
dddn+1

i , tn+1

)
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(b) Thanks to the Newmark β -equations we can compute an estimation of both the
velocity and the acceleration at time step n+1

aaan+1
i =

1
β∆t2

(
dddn+1

i − d̃dd
n+1)

, vvvn+1
i = ṽvvn+1 + γ∆taaan+1

i

Let us recall that both d̃dd
n+1

and ṽvvn+1 only depends upon the estimation at the
beginning of the time step so that they must not be updated each Newton iteration.

(c) We can compute now the residual for this iteration as:

rrrn+1
i = MMMaaan+1

i − fff n+1
i

(d) Compute the Jacobian AAA
(

dddn+1
i

)
will be also needed according with expression

(5.12).

(e) It is time to consider essential boundary conditions and modify AAA
(

dddn+1
i

)
when

needed.

(f) We can solve the linear system of equations given by:

∆ddd =−AAA−1
(

dddn+1
i

)
· rrrn+1

i

(g) Update the solution for the next iteration dddn+1
i+1 = dddn+1

i +∆ddd

(h) Check convergence criterion. In our case, we compute rrrn+1
i+1 and compare it with a

tolerance value. If this value is not met, then we start another Newton iteration by
repeating the procedure from step 5.

6. Once convergence criterion is met, we update the displacements for step n+1 as dddn+1 =

dddn+1
i+1 , and we update the values of the time step n+ 1 → n and tn+1 → tn. We start the

next time step by repeating the procedure from step 4.

5.4 Linearization

Let us separate the linearization of the internal nodal forces and the external ones.
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5.4.1 Linearization of internal nodal forces

First of all let us recall the expression of the internal nodal forces in the Total Lagrangian form
given by

fff int =
∫

Ω0

∂NI

∂X j
PjidΩ0 (5.13)

Taking the material time derivative gives

∂ fff int
∂ t

= ḟff int =
∫

Ω0

∂NI

∂X j
ṖjidΩ0 (5.14)

To obtain KKKint, stress rate ṖPP will be expressed in terms of the nodal velocities through the
constitutive equation and the strain measure. However, constitutive equations are expressed in
terms of the Second Piola-Kirchhoff stress rate ṠSS when working in Total Lagrangian formu-
lation, so it is worth to change the rate in function of PPP by the rate of SSS. The material time
derivative of SSS can be related to the one of the nominal stress PPP through the transformation
PPP = SSS ·FFFT

ṖPP = ṠSS·FFFT +SSS·ḞFFT (5.15)

Substituting this expression in Equation 5.14 it gives

ḟff int =
∂ fff int

∂ t
=

∂ fff int
∂ddd

∂ddd
∂ t

=KKKintḋdd =
∫

Ω0

∂NI

∂X j
ṖjidΩ0 =

∫
Ω0

∂NI

∂X j

(
Ṡ jrFir +S jrḞir

)
dΩ0 := ḟff mat+ ḟff geo

(5.16)
The above equation shows that the rate of the internal nodal forces consists of two parts:

1. On the one hand, a first part which involves the rate of the Second Piola stress tensor
and thus depends on the material response, ḟff mat. Note that here the current deformation
gradient is being considered, so the geometric changes are not present in this expression.
Only the current deformation state plays a role in it.

2. On the other hand, a part which involves the current state of stress and accounts for
geometric effects of the deformation, ḟff geo.

The idea is to develop expressions for both the geometric and the material rate of the internal
forces .
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5.4.1.1 Material Tangent Stiffness

According with the expression of the rate of internal force, and the definition of the material
rate of them,

ḟff mat =
∫

Ω0

∂NI

∂X j
Ṡ jrFirdΩ0 =

∫
Ω0

BBBT
0
{

ṠSS
}

dΩ0 (5.17)

where the definition of BBBT
0 (Equation ??) has been applied and Voigt Notation (Appendix

B) is considered. Taking into account the constitutive equation in rate form

Ṡi j = Ci jklĖkl or
{

ṠSS
}
= {C}

{
ĖEE
}

(5.18)

It can be easily shown that BBB0 relates the rate of Green strain ĖEE to the node velocities by{
ĖEE
}
= BBB0ḋdd (5.19)

Therefore, {
ṠSS
}
= {C}

{
ĖEE
}
= {C}BBB0ḋdd (5.20)

and including this expression into Equation 5.17 it gives

ḟff mat =
∫

Ω0

BBBT
0
{

ṠSS
}

dΩ0 =
∫

Ω0

BBBT
0 {C}BBB0ḋdddΩ0 =


∫

Ω0

BBBT
0 {C}BBB0dΩ0

︸ ︷︷ ︸
KKKmat

 ḋdd := KKKmatḋdd (5.21)

So the Material Tangent Stiffness KKKmat, is the tensor which allows us to relate the material
rate of internal nodal forces with the rate of nodal displacements.

To convert this expression to Updated Lagrangian formulation we have to transform the
current configuration to be the reference one. By doing this, it is obtained that BBB0 → BBB, SSS → σσσ

and the domain Ω → Ω0. So the expression of KKKmat in Updated formulation emerges as

KKKmat =
∫
Ω

BBBT {C}BBBdΩ0 (5.22)

where now C is the constitutive tensor which relates the Cauchy stress σσσ and the Almansi
strain tensor eee. The expression of BBB can be found in Equation 4.9.



34 Linearized Equations and Solution methods

5.4.1.2 Geometric Stiffness

First of all, let us recover the expression of the geometric rate of the internal nodal forces,

ḟff geo =
∫

Ω0

∂NI

∂X j
S jrḞirdΩ0 (5.23)

Let us study the rate of the deformation gradient FFF :

Ḟir =
∂

∂ t
(Fir)=

∂

∂ t

(
∂xi(XXX , t)

∂Xr

)
=

∂

∂ t

(
∂NI(XXX)xIi(t)

∂Xr

)
=

∂NI(XXX)

∂Xr
· ∂

∂ t
xIi(t) := β

0
IrḋiJ (5.24)

where the approximation of the nodal coordinates has been applied. A new matrix has been
defined, βββ

0 which includes the directional derivatives of the shape functions with respect to
the material coordinates:

βββ
0
I =

[
∂NI
∂X
∂NI
∂Y

]
in 2D and βββ

0
I =


∂NI
∂X
∂NI
∂Y
∂NI
∂Z

 in 3D (5.25)

The βββ
0 matrix is built by adding each one of the submatrices βββ

0
I per each node of the element

such that

βββ 0 =
[

βββ
0
1 βββ

0
2 βββ

0
3 · · · βββ

0
m

]
where m is the number of nodes in that element.

Coming back to the definition of the geometric rate of the internal nodal forces, it is obtained

ḟff geo =
∫

Ω0

∂NI

∂X j
S jrḞirdΩ0 =

∫
Ω0

β
0
I jS jrβ

0
rJ ḋiJδikdΩ0 =


∫

Ω0

β
0
I jS jrβ

0
rJdΩ0δik

︸ ︷︷ ︸
KKKgeo

 ḋiJ := KKKgeoḋdd

(5.26)
where the delta Kronecker δik must have been applied to match indexes. Finally, the Geometric
Stiffness KKKgeo emerges as the tensor which allows us to relate the geometric rate of internal
forces with the rate of nodal displacements. The inditial expression of KKKgeo is

KKKgeo = III
∫

Ω0

(
βββ

0
)T

SSSβββ
0dΩ0 (5.27)
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To obtain the expression of KKKgeo for the Updated Lagrangian formulation it is only needed
to convert again the current configuration into the reference one. In this case, βββ 0 → βββ , the
stresses SSS → σσσ and the domain Ω0 becomes Ω. The just defined βββ matrix is defined exactly
in the same way as βββ

0 but it accounts the derivatives with respect to the spatial coordinates
rather than the material ones. The Geometric Stiffness for the Updated formulation yields,

KKKgeo = III
∫
Ω

(βββ )T
σσσβββdΩ (5.28)

At the end of this procedure, the expressions to compute the tangent stiffness matrix KKKint

have been obtained,
∂ fff int
∂ddd

= KKKint = KKKmat +KKKgeo

5.4.2 External load stiffness

In several geometrically nonlinear problems there are some external loads which vary with
changes of the body configuration. They are called follower loads. These loads vary during
the movement of the solid and changes the external nodal forces. The external load stiffness
KKKext takes into account these effects in the Jacobian matrix.

KKKext is the tensor which relates the rate of the external nodal forces to the rate of nodal
displacements. In this work these forces are not going to be considered KKKext = 000 but it is
worth to name them to know about their function.

5.5 Line Search method

Let us recover the iterative procedure scheme with Newton-Raphson method,

AAA∆ddd =−rrr
(

dddn+1
i , tn+1

)
−→ dddn+1

i+1 = dddn+1
i +∆ddd (5.29)

It means that Newton method finds out a direction ∆ddd and it applies a factor 1 to this
direction. Line search methods try to find the optimal value ξ by minimizing a measure of the
residual along the direction found by Newton scheme ∆ddd:

dddn+1
i+1 = dddn+1

i +ξ ·∆ddd (5.30)

When the process of finding this optimal value ξ is cheaper than computing a new direction
by using a new Jacobian, this methods are quite useful and the effectiveness of Newton method
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is increased. Line search methods are considered as a powerful tool to insert in the iterative
Newton scheme to work together.

At the minimum, the residual rrr must be orthogonal to the direction of advance ∆∆∆ddd. This
condition can be expressed as a scalar equation for ξ :

R(ξ ) = ∆dddT · rrr
(

dddn+1
i +ξ ·∆ddd

)
= 0 (5.31)

In addition, when the system is conservative, if we consider that at the end of the iteration the
total potential energy W is minimized in the direction of ∆ddd then,

∂W
∂ξ

=
∂W
∂ddd

∂ddd
∂ξ

= rrrT
∆ddd = 0 (5.32)

Thus, finding the minimum of the potential energy with respect to the ξ -parameter is equiv-
alent to find the value ξ that verifies equation 5.31. One of the long term goals of this work
is end up studying Fluid-Structure Interaction. In this kind of problems, transient problem
is considered in the solid domain and the problem is not conservative anymore. So we are
interested in using a Line search method which can be applied in non-conservative systems.

First of all, Working only with descent directions is wanted , in our case it means that,

R(0) = ∆dddT ·rrr
(

dddn+1
i +0 ·∆ddd

)
< 0

Thus, if the scalar function R(0)> 0 for a given direction ∆ddd, we are going to flip the direction
∆ddd =−∆ddd to enforce our direction to be a descent one.

Due to the extreme nonlinearity of the scalar function R(ξ ), finding a solution of problem
5.31 is very expensive and it is sufficient to obtain a value of ξ such that,

| R(ξ ) |< ρ | R(0) | (5.33)

where a typical value of ρ = 0.5 is selected.
When the value of standard Newton-Raphson (ξ = 1) does not satisfy this condition, we

can apply the following method:
It is convenient to approximate R(ξ ) as a quadratic function in ξ . We know the value of

the function when ξ = 0,

R(0) = ∆dddT ·rrr
(

dddn+1
i +0 ·∆ddd

)
= ∆dddT ·rrr

(
dddn+1

i

)
(5.34)

which is computed with the value already calculated of the residual in the already converged
state. Moreover, we can easily relate the value of the derivative of this function with respect
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to ξ when ξ = 0,

dR
dξ

(0) =
d

dξ

{
∆dddT ·rrr

(
dddn+1

i

)}
= ∆dddT

∂ rrr
(

dddn+1
i

)
∂ddd︸ ︷︷ ︸

AAA(dddn+1
i )

∆ddd =

= ∆dddT AAA
(

dddn+1
i

)
∆ddd︸ ︷︷ ︸

−−−rrr(dddn+1
i )

=−∆dddT rrr
(

dddn+1
i

)
=−R(0) (5.35)

As we want to implement a quadratic function, A third information about the function R(ξ ) is
needed, typically the value of the function when ξ = 1 is computed,

R(1) = ∆dddT ·rrr
(

dddn+1
i +1 ·∆ddd

)
= ∆dddT ·rrr

(
dddn+1

i +∆ddd
)

(5.36)

The quadratic approximation is obtained as:

R(ξ )≈ (1−ξ )R(0)+R(1)ξ 2 (5.37)

Figure 5.1: Quadratic Interpolation Line Search. From [6]

From the value α = R(0)
R(1) we are able to split the solution in two situations:

• When α < 0 (Left plot in Figure 5.1) the square root is real and the solution emerges

ξ
′ =

α

2
+

√(
α

2

)
−α (5.38)

• Alternatively, when α > 0 (Right plot in Figure 5.1) there is no solution. However, ξ ′
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can be easily obtained as the value that minimizes the quadratic function, which is

ξ
′ =

α

2
(5.39)

This procedure is repeated by substituting the value ξ = 1 by the new value ξ ′ and using
R(0), dR

dξ
(0) and R(ξ ′) to obtain the next quadratic approximation of R(ξ ) until equation 5.33

is satisfied.



Chapter 6

Topological Derivative-based Topology
Optimization of Nonlinear Structures

6.1 Introduction

The structural design problem can be addressed from different problems such as Sizing op-
timization, Shape optimization or Topology optimization. When the goal of our problem is
to find the thickness of a known domain that minimizes (or maximizes) a physical quantity
we are dealing with Sizing optimization. Alternatively, shape optimization tries to look for
the optimum shape of one domain. On the other hand, Topology optimization involves the
optimization of material layout within a given space. The design can attain any shape within
the design space, instead of dealing with predefined configurations as the previous ones.

When developing topological optimization of continuous structures, there exist two ap-
proaches: the material and the geometrical approaches. The most known method of material
approach is the SIMP methods ( Solid Isotropic Microstructure with Penalization) [24]. In
this method, a density field is considered ρ(XXX) ∈ [0,1] as the design variable so that in those
areas where no material would be needed, we would find small values of ρ . One of the most
used techniques for geometrical approach, we shall mention the ESO methods (Evolutionary
Structural Optimization) [26] and the TSA methods (Topology Sensitivity Analysis) [1]. The
line of action of both methods is to consider a cost function and measure the sensitivity, mean-
ing, the variation of the cost function when some variation is induced in the geometry. The
former methods make an approximation of the sensitivity based on finite differences when an
element is removed in the mesh. The latter ones calculate the sensitivity when a small hole is
created in the domain of the problem. The sensitivity of the cost function is described through
a function which can be evaluated at any point of the geometry and is called the topological
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derivative.

To develop a Topology optimization, there are several approaches which derive from dif-
ferent basis such as density approaches, level-set methods, phase-field methods, evolutionary
methods, topological derivative among others and some of them can work together. In this
work, we are interested in Topological Derivative-based Topology optimization which mea-
sures the sensitivity of a given shape functional with respect to an infinitesimal singular do-
main perturbation, such as the insertion of holes, inclusions or source-terms, mixed with a
level-set method.

6.2 Topological Derivative

First of all let us comment that the expression of the topological derivative will be obtained
in Total Lagrangian Formulation. For the sake of simplicity, let us neglect subscript 0 in this
chapter.

As mentioned before, the topological derivative measures the sensitivity of creating a small
hole for any point of the domain. Let Ω ⊂ Rd with (d = 2 or d = 3) be an open bounded
domain. The boundary of Ω, Γ is considered smooth enough to define almost everywhere
nnn the unit normal vector. Let us now define the perturbed domain, Ωε ⊂ Rd , defined as the
resulting domain of the extraction of a hole in the unperturbed domain Ω, Ωε = Ω − Bε .
Bε = Bε ∪∂Bε is the ball of radius ε centered on the point X̃XX(Figure 6.1) . Considering a cost
function ψ , the topological derivative is written as [14]:

Figure 6.1: Original Topological Derivative concept. From [1]

DT (X̃XX) := lim
ε→0

ψ(Ωε)−ψ(Ω)

f (ε)
(6.1)

where f (ε) is a function that decreases monotonically so that f (ε) → 0 with ε → 0. Let
us remark that when the hole is created. there is no way to establish an homeomorphism
between the perturbed and unperturbed domain. Therefore, the derivative cannot be obtained
in a conventional way.
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It is then proposed in [1] to start the problem with a hole Bε already created and study the
sensitivity of perturbing this hole with a small perturbation δε so that the hole Bε becomes
a different one Bε+δε . Clearly, this perturbation allows us to define the remaining domain as
Ωε+δε = Ω−Bε+δε (Figure 6.2).

Figure 6.2: Modified Topological Derivative concept. From [1]

Moreover, it is also demonstrated in [7] that the topological derivative can be redefined as:

DT (X̃XX) := lim
ε→0

{
lim

δε→0

ψ(Ωε+δε)−ψ(Ωε)

f (ε +δε)− f (ε)

}
(6.2)

The advantage of the novel definition for the topological derivative is that the whole math-
ematical framework developed for the shape sensitivity analysis can be used, from now on,
to compute the topological derivative. This action of increasing the hole can be interpreted
as a sequence of configurations denoted by a parameter τ . This allows us to redefine the per-
turbation as a smooth and invertible mapping ϒ (XXX ,τ) such that ϒ (XXX ,τ = 0) gives exactly the
coordinates of the initial hole. In this way, we can define both domains Ωε and Ωε+δε in
terms of τ as Ωε+δε → Ωτ and Ωε → Ωτ=0. Moreover, for small values of τ the mapping
XXXτ =ϒ (XXX ,τ) is written as

XXXτ = XXX + τVVV (XXX) (6.3)

where XXX are the material coordinates of the initial hole. The shape design change is defined
by VVV (XXX) = ∂ϒ (XXX ,τ)

∂τ
. In fact, it can be proved that only the normal direction to the boundary

Γε gives meaningful results, Vn, [7]

XXXτ = XXX + τVnnnn (6.4)

Taking into account that the perturbation δε is given by ∥ XXXτ −XXX ∥ we can relate it with the
parameter τ ,

δε =∥ XXXτ −XXX ∥=∥ τVnnnn ∥= τ |Vn | (6.5)

The definitions of the original topological derivative (Equation 6.1) and the modified one
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(Equation 6.2) are normalized as

DT (X̃XX) =
1

|Vn |
lim
ε→0

1
f ′(ε)

dψ(Ωτ)

dτ
(6.6)

The analytic form of the topological derivative for Nonlinear Solid Mechanics is still miss-
ing in the literature. In fact it is not possible to obtain an analytic solution for the problem as
mentioned in [1]. However, [7] ,according with some papers, proposes to find a numerical ex-
pression for the topological derivative by running several interesting tests. In the paper, they
manage to achieve the expression of the topological derivative as:

DT (X̃XX) =− lim
ε→0

1
f ′(ε)

∫
∂Bε

(
1
2

SSS : EEE −bbb ·uuu
)

d∂Bε (6.7)

With the absence of body forces bbb === 000 , they realized that:

DT (X̃XX) = lim
ε→0

dT (X̃XX) where dT (X̃XX) =− 1
f ′(ε)

∫
∂Bε

(
1
2

SSS:EEE
)

d∂Bε (6.8)

This equation represents the analytic expression of the topological derivative except for the
limit when ε → 0. As mentioned before, this limit becomes impossible to solve analytically.
However, an alternative procedure based on numerical experiments for the calculation of the
limit is adopted. They consider a rectangular mesh with a hole placed in the center of it,
and they compute numerically the value of dT (X̃XX) while decreasing the radius of the hole. It
is observed that this integrand behaves as a constant in relation to the radius of the hole, so
finally the topological derivative can be approximated up to a constant as

DT (X̃XX)≈ K ·SSS : EEE (6.9)

Therefore, it is obtained an easy way to compute the topological derivative in any point
of the mesh. The value of the constant K does not matter because we are only interested in
seeing where the topological derivative becomes higher or smaller. Even though expression
6.9 does not give us the analytic expression for the topological derivative, it gives a numerical
approach which fits perfectly in our purposes.
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6.3 Topology Optimization applied to Nonlinear Solid Me-
chanics

Let Ω be the design or reference domain, Ω ⊂ Rd with (d = 2 or d = 3) a bounded Lipschitz
domain. The reference domain Ω is chosen so as to allow for a definition of the applied
loads and boundary conditions. The boundary of Ω is decomposed into two disjoint parts
∂Ω := Γ = ΓN ∪ ΓD. The static non-linear elastic problem emerges as

−∇.σσσ (ddd (XXX , t)) = ρ [bbb(XXX , t)−aaa(XXX , t)] in Ω

ddd (XXX , t) = ddd onΓD

σσσ (ddd (XXX , t)) ·nnn = ttt (XXX , t) on ΓN

(6.10)

where ddd is the displacement field and unknown of the problem which depends on the material
coordinates XXX and may depend upon time. σσσ is the Cauchy Stress tensor, bbb the body forces
and ttt the surface ones, and nnn the unit outward normal vector to Γ.

Let us deal the problem with Total Lagrangian formulation, for that purpose , let us define
the problem for the Second Piola-Kirchhoff stress tensor SSS and use the Green strain EEE as a
measure of strains: 

−∇.
[1

J FFFSSSFFFT ]= ρ [bbb(XXX , t)−aaa(XXX , t)] in Ω

ddd (XXX , t) = ddd onΓD

1
J FFFSSSFFFT ·nnn = ttt (XXX , t) on ΓN

(6.11)

where transformation 2.17 has been considered. Thanks to the constitutive relation between
the rate of stresses and the rate of strains we can relate them :

ṠSS = C ::: ĖEE (6.12)

where C is the fourth order constitutive tensor already explained.

In the topology optimization problem, the reference domain is split into two different
subdomains Ω+ and Ω− such that Ω+∩ Ω− = Ø and Ω+∪Ω− = Ω . Ω+ represents a stiff
material whereas Ω− symbolizes a soft material. This subdivision into subdomains is easily
represented trough a characteristic function χ such that:

χ (XXX , t) =

1 XXX ∈ Ω+

0 XXX ∈ Ω−
(6.13)
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This function allows us to rewrite the constitutive tensor C in all the reference domain as

C= χC++(1−χ)C− (6.14)

where C+ and C− are the constitutive tensors of the stiff and the soft material respectively.
When simulating the soft material as void (absence of material in the areas where soft material
should be placed) is wanted, the constitutive tensor C− is considered as:

C− = δ ·C+ (6.15)

where δ is a scalar parameter small enough to ensure that the soft material has almost no
influence in the structure.

According with previous chapters, the discretization of the above problem yields for each
time step n:

sD

β∆t2 MMM
(

dddn+1 − d̃dd
n+1)

+ fff int

(
dddn+1, tn+1,χ

)
− fff ext

(
dddn+1, tn+1,χ

)
= rrr
(

dddn+1, tn+1,χ
)
= 0

(6.16)
where equation 6.16 depends upon the characteristic parameter χ due to the effect of this
parameter in the constitutive tensor C (Equation 6.14). The Topological Optimization problem
tries to find the optimal domain such that it minimizes the structural compliance defined by
the external forces Wfff ext

(χ). Thus, the Topological Optimization problem is formulated as
follows:

min
χ∈ΩL

J(χ) =Wfff ext
(χ)

such that rrr
(

dddn+1, tn+1,χ
)
= 0, (6.17)

where ΩL is the feasible domain restricted to a volume constraint denoted as a fraction 0 <

L < 1 of the whole reference domain Ω, whose volume is denoted as | Ω |,

ΩL =

χ,
∫
Ω

χdΩ = L | Ω |

 (6.18)

In order to solve problem 6.17 as commented previously, we use the topological derivative
concept together with a level-set method to advance iteratively to the optimal solution. To do
that, a new function must be defined, which will be called the signed topological derivative,
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such that:

DT (XXX ,χ) =

+SSS:EEE in XXX ∈∈∈ Ω+

−SSS : EEE in XXX ∈∈∈ Ω−
(6.19)

To understand the sense of this function, we have to analyze the problem. Once the optimal
value of the characteristic function is reached, it means, the value which satisfies equation
6.17, as the value of the topological derivative is always greater or equal than zero, the signed
topological derivative must satisfy,

DT (XXX ,χ)≥ DT (YYY ,χ) ∀XXX ∈ Ω
+, ∀YYY ∈ Ω

− (6.20)

This property of the signed topological derivative leads us naturally to construct a level
set function ω (XXX ,χ) which will be able to differentiate between Ω+ and Ω−. In order to
ensure that the volume restriction in the optimal topology is fulfilled, a scalar α ∈ R must be
introduced in the definition of ω ,

ω (XXX ,χ) = DT (XXX ,χ) + α (6.21)

Thus, the value α must be computed in such a way that it allows us to fulfill the volume
constraint. To do that, we can use the Heaviside step function to impose that:∫

Ω

H (ω (XXX ,χ))dΩ = L | Ω | (6.22)

where H(ω) is the Heaviside function, defined as

H(ω) =

1 if ω ≥ 0

0 if ω < 0
(6.23)

It is easy to see with equation 6.13 that, for the value χ which satisfies equation 6.17,

χ = H(ω) (6.24)

6.4 Iterative Topology Optimization Algorithm

According with Section 6.3, we are able to introduce an iterative approach to solve the Topol-
ogy Optimization problem applied to Nonlinear Solid Mechanics (Equation 6.17). To start the
iterative procedure, an initial value for the level-set function ω0 is needed to be set . Let us



46 Topological Derivative-based Topology Optimization of Nonlinear Structures

take a unit initial value for the whole domain, considering that the whole domain is composed
only by stiff material.

ω
0 (XXX ,χ0)= ω

0 = 1 in Ω (6.25)

where the subscript indicates iteration number. As we state in equation 6.24, for the charac-
teristic function which satisfies the Topology Optimization problem, this equation allows us
to relate it with the level-set function. In order to achieve an iterative procedure, the value
of the characteristic function is chosen to be fixed with the level-set function of the previous
iteration,

χ
i(XXX) = H

(
ω

i−1 (XXX)
)

(6.26)

Once the characteristic function is defined for iteration i, we are able to solve the Nonlinear
Solid Mechanics problems 6.16 taking into account that the constitutive tensor is now split as a
function of χ i. Straightaway we compute the numerical approach of the topological derivative
Di

T (XXX ,χ i) stated at equation 6.9(without taking into account the constant K) and the signed
topological derivative Di

T (XXX ,χ i) according with expression 6.19.

Expression 6.21 allows us to compute the value of the level-set function for iteration i.
However, due to convergence aspects, it is needed to introduce a relaxation scheme to compute
an intermediate function, π i(XXX ,χ i) such that

π
i(XXX ,χ i) = κ

i
PPPh

(
Di

T (XXX ,χ i)
)

∥ PPPh

(
Di

T (XXX ,χ i)
)
∥
+
(
1−κ

i) PPPh

(
Di−1

T (XXX ,χ i−1)
)

∥ PPPh

(
Di−1

T (XXX ,χ i−1)
)
∥

(6.27)

where PPPh is the projection onto the finite element space and can be computed by using a
lumped mass matrix approach for computational efficiency. The parameter κ i is a relaxation
parameter and it must be computed every iteration [18]. In this work, A heuristic approach
which uses an oscillation indicator among iterations is considered ,

ξ
i(XXX ,χ i) = sign

(
π̃ i(XXX ,χ i)−π i−1(XXX ,χ i−1)

π i−1(XXX ,χ i−1)−π i−2(XXX ,χ i−2)

)
(6.28)

where π̃ i(XXX ,χ i) =
PPPh

(
Di

T (XXX ,χ i)
)

∥PPPh

(
Di

T (XXX ,χ i)
)
∥

is the normalized value of the projection of the signed topo-

logical derivative which will allow us to predict the behaviour of the method with respect to
the previous iterations.

Thus, the indicator becomes 1 when the iterative procedure behaves monotonically with
the two previous iterations and it turns −1 when there exists an oscillation among previous
iterations. According with [18], if there are oscillations

(
ξ i(XXX ,χ i) =−1

)
then the relaxation
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parameter κ i must be decreased according with the previous ones whilst when
(
ξ i(XXX ,χ i) = 1

)
no oscillations are presented and the value for κ i can be increased up to a maximum of 1. The
scalar value of κ i is then computed as:

κ
i = min

[(∫
Ω

(
µ i(XXX ,χ i)

)cc dΩ∫
Ω
(µ i(XXX ,χ i))dΩ

)−cc

,1

]
(6.29)

where µ i(XXX ,χ i) is a function which depends upon the oscillations

µ
i(XXX ,χ i) =

caκ i−1 if ξ i(XXX ,χ i) = 1

cbκ i−1 if ξ i(XXX ,χ i) =−1
(6.30)

where ca ≥ 1, cb ≤ 1 and cc ≤ 1 are algorithmic parameters which make the relaxation
parameter κ i decrease or increase up depending upon the oscillations with the previous iter-
ations. Once κ i is computed, the intermediate function π i(XXX ,χ i) is easily reckoned and the
level-set function for iteration i can be defined as

ω
i (XXX ,χ i)= π

i(XXX ,χ i)+α
i (6.31)

where the scalar parameter α i is computed with a secant method to fulfill the volume con-
straint through equation 6.22. The iterative procedure stops when after several iterations the
functional to be minimized, the structural compliance defined by the external forces Wfff ext

, has
not changed a certain percentage of its value.

To end up this section let us write down the algorithm for the Topology Optimization
problem of Nonlinear Solid Mechanics:

Algorithm 2: Flowchart for Topological-Derivative based Topology Optimization of Non-
linear Structures

1. Set all the constant values and initial variables,

(a) Algorithmic parameters, ca,cb,cc.

(b) Level-set function, ω0 = 1.

(c) Relation between soft and stiff material, δ .

(d) Desired fraction for the final volume of the structure, L.

(e) The projection onto the finite element space PPPh which in our work is computed as
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a lumped mass matrix

PPPh ≃ MMMlumped = Mi jIJ = δi j

∫
Ω

ρNINIdΩ

2. Here it starts the iterative procedure for the topological optimization, iteration i

(a) Compute the characteristic function χ i by using the Heaviside function H(ω),
equation 6.23.

χ
i(XXX) = H

(
ω

i−1 (XXX)
)

(b) Compute the split constitutive tensor, taking into account that the soft material
behaves simulating absence of material (Equation 6.15) and the stiff material con-
stitutive tensor comes from the Constitutive model considered, Section 3.

C= χ
iC++(1−χ

i)C−

(c) Now it is needed to solve the Nonlinear Solid Mechanics problem. We refer to
Algorithm 1 to solve it with a Newton-Raphson procedure and using the Newmark
β -method as time integrator if a transient problem is considered.

(d) It is time to reckon the signed topological derivative for the already converged
structure,

DT (XXX ,χ i) =

+SSSi:EEE i if χ i = 1

−SSSi : EEE i if χ i = 0

(e) To figure out the level-set function, we need to split among the first two time steps
and the other ones

i. If i < 3 then

A. The relaxation parameter is fixed as one, κ i = 1, and the intermediate
function is computed only as a function of the characteristic value of iter-
ation i

π
i(XXX ,χ i) = κ

i
Ph

(
Di

T (XXX ,χ i)
)

∥ Ph

(
Di

T (XXX ,χ i)
)
∥

B. Solve with the secant method, the following equation∫
Ω

H
[
ω

i (XXX ,χ i)]dΩ =
∫
Ω

H
[
π

i(XXX ,χ i)+α
i]dΩ = L | Ω | =⇒

secant method
α

i
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C. The level-set function emerges as

ω
i (XXX ,χ i)= π

i(XXX ,χ i)+α
i

ii. If i ≥ 3 then

A. Compute the oscillator indicator

ξ
i(XXX ,χ i) = sign

(
π̃ i(XXX ,χ i)−π i−1(XXX ,χ i−1)

π i−1(XXX ,χ i−1)−π i−2(XXX ,χ i−2)

)
B. Reckon function µ i as,

µ
i(XXX ,χ i) =

caκ i−1 if ξ i(XXX ,χ i) = 1

cbκ i−1 if ξ i(XXX ,χ i) =−1

C. The relaxation parameter emerges as

κ
i = min

[(∫
Ω

(
µ i(XXX ,χ i)

)cc dΩ∫
Ω
(µ i(XXX ,χ i))dΩ

)−cc

,1

]

D. And the intermediate function is now easily computed with the signed
topological derivative of both this iterations and the previous one

π
i(XXX ,χ i) = κ

i
PPPh

(
Di

T (XXX ,χ i)
)

∥ PPPh

(
Di

T (XXX ,χ i)
)
∥
+
(
1−κ

i) PPPh

(
Di−1

T (XXX ,χ i−1)
)

∥ PPPh

(
Di−1

T (XXX ,χ i−1)
)
∥

E. Solve with the secant method, the following equation∫
Ω

H
[
ω

i (XXX ,χ i)]dΩ =
∫
Ω

H
[
π

i(XXX ,χ i)+α
i]dΩ = L | Ω | =⇒

secant method
α

i

F. The level-set function emerges as

ω
i (XXX ,χ i)= π

i(XXX ,χ i)+α
i

(f) Check convergence criterion. In our case, we compute the structural compliance
and compare it with the previous one. If this value is not close enough (with regards
to a tolerance value), then we start another Topology Optimization iteration by
repeating the procedure from step 2.





Chapter 7

Numerical Examples

7.1 Validation

In order to check the correctness of our implementation to see wether our method is capable
of reproducing correct results, it is wanted to perform some numerical examples found in the
literature to obtain similar results. Let us show two benchmark examples in the Topology
Optimization field.

7.1.1 Clamped Clamped Beam

In this example a Clamped Clamped Beam under plane stress state is considered. The initial
beam considered ( Reference Domain) is defined by the rectangular domain shown in Figure
7.1 where L = 20 mm. A punctual force F = 30 N is applied in the middle of the lower bound.

Figure 7.1: Clamped Clamped Beam Initial Domain. From [7]

As a Constitutive Model, the Saint Venant-Kirchhoff Material is considered. Thus, mate-
rial properties are properly defined with a Young Modulus E = 30 N

mm2 and a Poisson’s coeffi-
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cient ν = 1
3 . The same example is performed in [2, 7, 16]. A mesh of 29.392 linear elements

is built to perform the analysis. As a final volume ( area in this case) a 0.2 of the initial volume
is imposed.

Let us show the evolution of the optimal structure for this load case,

(a) Iteration 1

(b) Iteration 2

(c) Iteration 10

(d) Iteration 30
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(e) Iteration 55

(f) Iteration 100

Figure 7.2: Evolution of the Optimal Clamped Clamped Beam with the iterative Topology
Optimization algorithm

Figure 7.2 displays the evolution of the optimal structure. As expected the maximum val-
ues of the topological derivatives appear in the loading point and the areas where the structure
is clamped. The problem is left to be running up to iteration 100 to show that the structure
has achieved a stable solution which satisfies the volume constraint and the topology remains
almost constant from iteration 55.

As commented previously, this example was also run by [2, 7, 16] obtaining the following
final topology:

Figure 7.3: Final Optimal Structure for the Clamped Clamped Beam found by [7, 16]. From
[7]

Both solutions are practically identical, so we can validate our code. Regarding to the
difference among our algorithm and the iterative procedure proposed by [2, 7, 16], they remove
a percentage of the volume at each iteration and do not allow an element to change between
stiff material or soft material once the element has been removed. In our case, we impose the
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volume constraint at each iteration by adding a scalar in the level set function and the method
allows elements to freely change its properties untill convergence is achieved.

To end up this example, let us show the displacement field for the final structure,

Figure 7.4: Displacement Field for the Final Structure

In figure 7.4 it can be seen the displacement magnitude for the final structure. As expected,
maximum values appear where the force is applied. The areas which are in contact with the
lateral boundaries present null displacement due to the clamped boundary condition. To end
up, let us remark that the displacements represent more or less 20% of the minor length, which
ensures us that the large displacements region has been surpassed.

7.1.2 Cantilever Beam

In this example, the aim is to obtain the optimal structure of a Cantilever Beam with a force
F = 7500 N applied on the free end large enough to cause large rotations on the structure. As
an initial Reference Domain it is taken also a rectangular domain . The upper and lower part
of the left boundary are considered clamped while the rest is free. The rest of the boundaries
remains also without restrictions. Figure (7.5) shows the initial configuration of the problem.
L = 50 mm and a = 5 mm.

Figure 7.5: Cantilever Beam Initial Domain. From [7]
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As a Constitutive Model, it is also considered the Saint Venant-Kirchhoff Material. Thus,
material properties are properly defined with a Young Modulus E = 210 ·103 N

mm2 and a Pois-
son’s coefficient ν = 0.25. The same example is performed in [2, 7, 16]. A mesh of 17182
linear elements is built to perform the analysis. As a final volume ( area in this case) a 0.32 of
the initial volume is imposed.

Let us show the evolution of the optimal structure for this load case,

(a) Iteration 1

(b) Iteration 2

(c) Iteration 10
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(d) Iteration 20

(e) Iteration 40

(f) Iteration 60

(g) Iteration 100

Figure 7.6: Evolution of the Optimal Cantilever Beam with the iterative Topology Optimiza-
tion algorithm
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Figure 7.6 shows evolution of the cantilever beam to the optimal structure according with
our iterative algorithm. As expected the maximum values of the topological derivatives appear
in the loading point and the areas where the structure is clamped. The problem is left to be
running up to iteration 100 to show that the structure has achieved a stable solution which
satisfies the volume constraint and the topology remains almost constant from iteration 60.

This problem was also solved by [7] obtaining the following final structure:

Figure 7.7: Final Optimal Structure for the Cantilever Beam found by [7]. From [7]

Comparing both solutions we can conclude that very similar results have been obtained.
Finally, to end up this section, let us show the final displacement field,

Figure 7.8: Displacement Field for the Final Cantilever Beam

In figure 7.8 it can be observed the final displacement field for the proposed Cantilever
Beam. As it was expected, maximum displacements appear where the external force is applied.
It can also be seen that the clamped boundary remains with null displacement. To end up, let
us remark that the maximum displacement corresponds approximately to 20% of the domain
height.
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7.2 Engineering Cases

Once our code has been validated, it is time to apply it to some interesting engineering cases
to develop the optimal structure for a given set of external conditions.

7.2.1 Bridge Design

Let us consider now a bridge design. The reference domain D̃ is given by a rectangle of
size 180 m times 60 m supported on the two opposites bottom corners of equal length a = 9
m. To simulate the traffic loading over the bridge deck it is considered a distributed loading
ggg = (0.0,−4) KN

m applied on the horizontal line in the middle of the reference domain. In
addition it is imposed that the bridge deck is only allowed to move horizontally. See the
sketch in Figure 7.9 .The material properties for a Saint Venant-Kirchhoff Material model are
E = 240 MPa and ν = 0.2.

Figure 7.9: Bridge Design. Initial Domain and boundary conditions.

The final optimal bridge design taking into account a final volume fraction of 40% emerges
as,
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Figure 7.10: Bridge Design.Optimal Design.

7.2.2 L-Bracket Design

Let us now move to a classical structural optimization problem, the L-bracket problem. The
problem consists in considering as a reference domain D̃ as the one shown in figure 7.9. The
lengths of the horizontal and vertical branches are respectively 2 m and 2.5 m. The structure is
clamped at the top edge and a point load g = 40 KN is applied to the above corner of the right
boundary. It is considered E = 12.5 MPa and ν = 0.2 as a material properties of the Saint
Venant-Kirchhoff material model.

Figure 7.11: L-Bracket Design. Initial Domain and boundary conditions.

Considering as a final volume a fraction of 40% of the initial reference domain it is ob-
tained as a final structure,
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(a) Linear Case (b) NonLinear Case

Figure 7.12: L-Bracket Design.Optimal Design.

Figure 7.11 displays the optimal solution for both linear and nonlinear cases. As expected
linear case matches with the ones stated in the literature. Regarding to the Nonlinear case, it
can be seen that a more complex structure than the one obtained for linear elasticity is achieved
due to the extreme nonlinearity of the problem.
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Conclusions

8.1 Final Remarks

In this thesis a new method to perform Topology Optimization of Nonlinear Structures by
means of the Topological Derivative concept has been presented. The application consists in
using the Topological Sensitivity Analysis with the expression for the Topological Derivative
in nonlinear scenarios. Although the analytical expression can not be calculated, a numerical
expression coming from the literature has been applied giving validated results.

With regards to the Topology Optimization process, an iterative computation coupled with
a level set strategy to impose the volume constraint has been explained. The level-set allows
us to keep a sharp tracking of the interface between the stiff and soft material, which in our
case represent those areas with material and those which will be considered void.

As a main differences between this iterative procedure to find the optimal structure and the
ones already performed in the literature, we can highlight :

• Whereas the majority of the iterative procedures apply the volume constraint in a de-
creasing way, our iterative procedure satisfies each iteration the volume constraint
by adding a scalar to the level set method. This scalar will be in charge of ensuring this
condition and must be recomputed each iteration.

• In the iterative Topology Optimization Algorithm presented in this thesis, elements are
allowed to change their material properties, so that they can belong to the stiff mate-
rial and change to soft material in the following iterations and vice versa. Most of the
methods in the literature do not allow this change, so that those elements which become
soft material, will remain soft material for the rest of the procedure.

• It is easy to see that our iterative procedure will need more iterations to converge.
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However, our procedure is always imposing the same volume constraint, which will lead
us to the real solution of the Topological Optimization Problem(6.17).

• To ensure that the code will not become unstable a relaxation scheme must be applied
and the relaxation parameter must be recomputed each iteration according to some al-
gorithmic parameters in order to control how the elements are allowed to change their
material properties. This scheme allows us to see the evolution of the iterations to
identify the presence of oscillations. Depending upon the oscillations, the scheme is
allowed to go faster or slower.

Regarding to the resulting matrix of our iterative procedure, the fact of using a soft constitutive
tensor very small compared with the stiff one makes our matrix to be ill-conditioned. Thus,
it will be necessary to use some kind of preconditioner if it is wanted to use an iterative
solver to solve the algebraic system of equations given by Newton’s method in the Nonlinear
problem.

Several benchmarks have been performed to validate our Topology Optimization algorithm
for Nonlinear Structures obtaining very similar results to the ones given by the literature . To
end up, two engineering cases, have been proposed to see the proper performance of the code
and how powerful and helpful it could be to solve engineering problems.

8.2 Future Work

To end up this section, it is important to show different new research directions which are set
through this work.

• The code is developed for both 2 and 3 dimensions. Thus, it is important to validate the
code also for 3 dimensions.

• Currently, the code only works with Saint Venant-Kirchhoff material model. It would
be important to re-code the procedure to allow the application of other types of
nonlinear elastic models.

• Topology Optimization problem of Nonlinear Structures requires to solve one Nonlinear
problem ( which has to be done iteratively and applying external loads slowly ) per
each Topology Optimization iteration. Therefore, the problem can become huge very
fast when increasing the number of unknowns. Parallelization of the code seems to
be essential to deal with this problem in mid-large scale applications. Fortunately,
FEMUSS runs also in parallel and the iterative procedure shown here can be parallelized.
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Thus, strong and weak scalability tests should be performed to show the behavior of this
algorithm in parallel.

• When the material becomes nearly incompressible, the displacement-based Finite El-
ement Method ends up giving wrong approximations. To deal with this problem, a
mixed formulation must be implemented in which a pressure-like variable is added
to the problem to enforce the incompressible condition. Several mixed formulations
are already stated for nonlinear cases [8, 9] using strains or stresses as unknowns. The
displacement-pressure mixed formulation has been already stated for linear elasticity
[4, 11] whereas it has to be studied for Total Lagrangian Formulation in Nonlinear sce-
narios.

• Once these tasks have been performed, it will be time to expand the Topology Optimiza-
tion a little further, Fluid-Structure Interaction. Be able to find the optimal structure
by means of the Topology Optimization when our structure (which can be considered
either linear or nonlinear) is in interaction with an internal or surrounding fluid flow.
The main objective will be to find the optimal structure which minimizes the work done
by the tractions given by the fluid.
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Appendix A

Mathematical Theorems

A.1 Gauss’s theorem

This theorem relates integrals over a domain to an integral over the boundary of this domain.
The one-dimensional form of Gauss’s theorem is the so-called fundamental theorem of calcu-
lus.

Consider a function f (xxx) piecewise continuously differentiable. That is equivalent to say
f (xxx) ∈C0(xxx), then

∫
Ω

∂ f (xxx)
∂xi

dΩ =
∫

Γ

ni f (xxx)dΓ or
∫
Ω

∇ f (xxx)dΩ =
∫

Γ

nnn f (xxx)dΓ (A.1)

where Ω is the integration domain, Γ is the boundary of this domain and nnn is the outward
normal vector. This theorem holds for any domain, including the reference domain Ω0. The
above theorem also holds for a tensor of any order; for example if we replace the scalar
function f (xxx) by a tensor of first order ggg(xxx), then

∫
Ω

∂gi(xxx)
∂xi

dΩ =
∫

Γ

nigi(xxx)dΓ or
∫
Ω

∇ ·ggg(xxx)dΩ =
∫

Γ

nnn ·ggg(xxx)dΓ (A.2)

which is often known as the divergence theorem. The theorem can be also applied to gradients
of the vector field,∫

Ω

∂gi(xxx)
∂x j

dΩ =
∫

Γ

n jgi(xxx)dΓ or
∫
Ω

∇ggg(xxx)dΩ =
∫

Γ

nnn⊗ggg(xxx)dΓ (A.3)
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A.2 Material time derivative of an integral and Reynold’s
transport theorem

The rate of change of an integral on a material domain is the material time derivative of an
integral. No mass flux occurs across the boundaries due to the fact that the material domain
moves with the material. The material time derivative of an integral is defined by

D
Dt

∫
Ω

f (xxx, t)dΩ = lim
△t→0

1
△t

 ∫
Ωτ+△t

f (xxx,τ +△t)dΩ−
∫

Ωτ

f (xxx,τ)dΩ

 (A.4)

Reynold’s transport theorem states that

D
Dt

∫
Ω

f (xxx, t)dΩ =
∫
Ω

(
D f (xxx, t)

Dt
+ f (xxx, t)

∂vi

∂xi

)
dΩ (A.5)

An alternative form of Reynold’s transport theorem gives

D
Dt

∫
Ω

f (xxx, t)dΩ =
∫
Ω

(
∂ f (xxx, t)

∂ t
+ div (vvv f )

)
dΩ (A.6)

Let us recall that Reynold’s transport theorem can be applied to any tensor order by replacing
the scalar function f (xxx) by the tensor itself.



Appendix B

Voigt Notation

B.1 Voigt rule applied to second-order tensors

In finite element methods, symmetric second-order tensors are often written as column matri-
ces. The Voigt rule depends on whether a tensor is a kinetic quantity, such as a stress, or a
kinematic quantity, such as a strain.

B.1.1 Kinetic Voigt rule

Let us consider a symmetric second order tensor σσσ , the Voigt rule for this kinetic tensor is

σσσ ≡

[
σ11 σ12

sym σ22

]
−→


σ11

σ22

σ12

=


σ1

σ2

σ3

≡ {σσσ} in 2D (B.1)

and

σσσ ≡

 σ11 σ12 σ13

σ22 σ23

sym σ33

−→



σ11

σ22

σ33

σ12

σ13

σ23


=



σ1

σ2

σ3

σ4

σ5

σ6


≡ {σσσ} in 3D (B.2)

Any tensor or matrix converted by the Voigt rule is said to be in Voigt form, and is enclosed
by brackets as shown above.
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B.1.2 Kinematic Voigt rule

Let us consider a symmetric second order tensor εεε , the Voigt rule for this kinematic tensor is

εεε ≡

[
ε11 ε12

sym ε22

]
−→


ε11

ε22

2ε12

=


ε1

ε2

ε3

≡ {εεε} in 2D (B.3)

and

εεε ≡

 ε11 ε12 ε13

ε22 ε23

sym ε33

−→



ε11

ε22

ε33

2ε12

2ε13

2ε23


=



ε1

ε2

ε3

ε4

ε5

ε6


≡ {εεε} in 3D (B.4)

The factor of 2 on the shear strains results from the requirement that the expressions for the en-
ergy be equivalent in Voigt notation and inditial notation. It is easy to verify that the following
expressions are equal:

εεε : σσσ = {εεε}T · {σσσ} (B.5)

where AAA : BBB is the double contraction of two matrices, AAA : BBB = Ai jBi j.

B.2 Voigt Rule applied to high-order tensors

The Voigt rule is particularly useful for converting fourth-order tensors, which are awkward
to implement in programming, to second-order tensors. For example the hyperelastic law in
inditial notation which relates stresses to strains involves the fourth-order tensor Ci jkl:

Si j = Ci jklEkl or SSS = C : EEE

This operation reduces to a matrix-vector product in Voigt form as

SSS = C : EEE −→ {SSS}= {C} · {EEE}

The transformation is made by considering {C}ab −→ Ci jkl where i j → a and kl → b
following the next table.
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{C}ab −→ Ci jkl

i j → a k l → b

1 1 1 1 1 1
2 2 2 2 2 2
1 2 3 1 2 3

{C}ab −→ Ci jkl

i j → a k l → b

1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
1 2 4 1 2 4
1 3 5 1 3 5
2 3 6 2 3 6

Table B.1: Voigt rule 2D (left) and 3D (right)
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