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Chapter 1

Introduction

1.1 The need for Molecular Communication (MC)

Communication is one of the most important aspects of modern human so-
ciety, and great technological effort is put in pushing its actual limits as fur-
ther as possible. This is done by improving current communication systems,
making them more efficient and their reach to be expanded, as well as bring-
ing these technologies to face new challenges. Nevertheless, the traditional
methods of communication (electromagnetic, acoustic and optical commu-
nication systems) present some inefficiencies when facing certain problems,
the two main of which are:

• Small dimensions : Recent advances in nano and biotechnology opens
the door to devices adapted to those scales, and communication sys-
tems with them [5]. Nevertheless, it has been demonstrated that for
channels small enough, or with many obstacles in it, EM wave commu-
nication are inefficient to propagate [6].

• Specific environments : In certain environments, such as networks of
tunnels, pipelines, or salty water environments, traditional communi-
cation signals (wave, acoustic, optical) fail to propagate efficiently, due
to the high losses. At sea, for example, the high salinity produces con-
ductivity and therefore attenuation of the sent signal, and optical waves
suffer from scattering [9].

This makes obvious that, for microscale and nanoscale communication,
new devices and methods are needed. One of the options is Molecular Com-
munication (MC); which consists on using chemical signals to carry the in-
formation. This type of communication already happens in nature: A variety
of animals use different kinds of chemicals to communicate, both in macro
and micro-scales, and communications inter and intra-cellular [3], pheromones
are used by members of the same species at long range [1]; this examples can
be looked to as a possible inspiration.

Besides the mentioned advantages in small dimension channels or spe-
cific environments, MC is also a biocompatible method of communication,
as it already is present in nature, requires very little energy and has very low
heat dispersion, being therefore a strong alternative for certain applications.
The study of this field is, still, very novel, as it has only recently started [2].
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1.2 Overview of MC

MC, as any other communication method, transfers information across time
and space, with the three same major components: a signal is generated at
the transmitter and travels across the channel to the receiver, where it is
decoded.

The signal is made up by information particles, typically of few nanome-
ters of size, that can be of very different structure and size, biological or syn-
thetic compounds, and even of some complexity (proteins or liposomes, for
example). The kind of particle will affect the communication, as they affect
the diffusion coefficient and may degrade with time [7].

If in EM communication the channel is a wire or the free space, in MC
these channels, through which the information particles propagate, is typi-
cally an aqueous or gaseous environment.

Micro and macro-scale MC can be differentiated depending on the dis-
tance employed, being from nm to cm and from cm to m, respectively. Both
present different communication properties and methods of propagation,
since physical properties vary with the scales.

The mechanisms through which the signal travels can also vary between
different MC systems. They can be categorized in diffusion based prop-
agation, flow assisted propagation, active transport using molecular mo-
tors and cytoskeletal filaments, bacterial assisted propagation, and kinesin
molecular motors moving over immobilized microtubule (MT) tracks [5].

As to decode the received signal, micro and macro-scale communications
can be differentiated, since in macro scale communication single particles
may be too difficult to detect, and the concentration is the focus in order to
have a detectable signal. Any measurable parameter can serve to decode:
Presence or abscence of molecules, levels of concentration (threshold), type
of particles arriving at the receiver, time of arrival,... Choosing any of these
will depend on the characteristics of the environment and the purpose of
communication.

The focus of this project will lay in diffusion based MC, or Molecular
Communication via Diffusion (MCvD).

1.2.1 Molecular Communication via Diffusion (MCvD)

Also referred as Brownian motion, it is the random motion of a particle due
to collisions with other particles, causing a group of particles to propagate
to its surroundings, and diffuse to it. When the number of particles is high
enough, as in actual MCvD systems, this diffusion allows a detectable signal
to propagate.

Diffusion based MC is the most simple, energy efficient and lacks of exter-
nal force. It is important to notice that the particles propagate uncontrolled,
or at least only partially controlled, in the medium.

A typical MCvD environment in a free space is depicted in Fig. 1.1.
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Figure 1.1: MCvD environment: transmitter (TX), receiver (RX) and
molecules.

1.3 Current state of the art

MC has only recently been started to be investigated, as the need for a smaller
size communication devices and the unsuitability of traditional electronic or
electromagnetic devices, miniaturized, for such tasks became apparent.

Some of the proposed applications to its use is to build nanonetworks
that connect nano-machines, set of molecules able to perform simple tasks
[2]. Their interconnection enables a group of nano-machines to perform tasks
more complex than those a single one is able to.

Underwater wireless communications are actually needed for tasks such
as remote control in off-shore oil industry, pollution monitoring in environ-
mental systems and collection of scientific data [9].

Analytical solutions for simple MCvD might be found, for example, for
perfect absorbent spheric receiver [10], or reversible absorption receiver [4],
but for more complex topologies the use of simulations are needed.

Due to the complexity of many of the aspects of a big enough MC sys-
tem, Machine Learning techniques have been used in order to obtain useful
models [8].

1.4 Project objectives and overview

This project has as a main objective to develop an alternative simulation
solver for MCvD, computationally less expensive than particle-based sim-
ulations, which can be, for big enough simulations, too expensive. The alter-
native that is proposed is a voxel-based simulator.

2D and 3D versions of it are developed, and evaluated its accuracy to
changes in physical parameters of the environment and simulation param-
eters, which are the diffusion coefficient, D, the distance to the receiver, d
and the time step, δt. Specifically, the optimal length, λ, for the voxels is
looked for. Besides this, flow is added to the simulations, to analyze how it
affects the optimal voxel length.

The content of this thesis has been structured in the following way:
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• Chapter 2: Background. The main physical aspects related to MCvD
are explained: Fick‘s law of diffusion and Brownian motion.

• Chapter 3: Development of the work. The methods of the thesis, the
basics of how the simulators work, the two simulation solvers used,
particle-based and voxel-based, are explained, and how these have been
used to obtain the necessary data to analyze them. Also, which tools are
used to analyze this data are exposed.

• Chapter 4: Results and discussion. The results are presented accom-
panied by a discussion of its significance within the study.

• Chapter 5: Conclusions. Some final remarks about the main results of
the project, and some possible future work based on them.
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Chapter 2

Background

2.1 Physical fundamentals

MCvD deals with the random movement of small particles in a fluid medium;
we will take two different approaches to this: Microscopic, taking into ac-
count the particles individually, which follow brownian dynamics , and macro-
scopic, modeling the whole system and its diffusive behavior. The micro-
scopic movements result on the macroscopic ones.

2.1.1 Fick’s law of diffusion

The macroscopic approach focuses on the concentration of particles, their
distribution in space and time, and studies its change. Another important
parameter in the macroscopic theory of diffusion is the flux, which is defined
as the amount of unit particles that crosses a unit surface per unit time.

Fick’s laws of diffusion model and describe relations between this mag-
nitudes in a diffusive system.

It postulates that the flux moves from high to low concentration regions,
in steady state we have that it is linearly proportional to the concentration
gradient. This is Fick’s first law:

J = −D∇C(~r, t) (2.1)

where J is the flux, C(~r, t) the concentration at point~r and time t and D the
diffusion constant. D is a positive constant, and therefore the minus sign
represents that the flux, and particles with it, goes in the direction of decreas-
ing concentration.This equation can be derived taking a particle performing
a random walk, and D = ∆x2

2∆t , which is the definition of the constant.
As to the change with time, this flux forces a change in the spatial dis-

tribution of the concentration, since particles, as seen, move with it, causing
a change in the flux itself: We use the mass conservation equation, which
states:

∂C
∂t

+
∂J
∂x

= 0 (2.2)

From which, using (2.1) and assuming D is a constant (and therefore ∂D
∂x =

0), we can get Fick’s second law:
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∂C(~r, t)
∂t

= D∆C(~r, t) (2.3)

where the Laplacian operator, ∆(= ∇2), generalizes the second spatial deriva-
tive to any dimension.

The first Fick’s law can be seen as a steady state version of the second
one. Fick’s laws can be understood as stating that particles will tend to be
more homogeneously distributed in space: If molecules start spatially con-
centrated one near the other, as time goes on they will move separately from
one another, and fill the space around them, which is the diffusion itself.

This can be seen solving (2.3); with an initial concentration of N particles
in the origin (C(~0, 0) = N) it gives a solution of the form:

C(~r, t) =
N√

4πDt
e−

~r2
4Dt (2.4)

Which is a normal distribution of mean µ = 0 and variance σ =
√

2Dt.
This solution shows, as time increases, how the initial peak of concentration
in ~x =~0 tends to be more and more distributed in space.

-10 -8 -6 -4 -2 0 2 4 6 8 10

x

0

10

20

30

40

50

60

C
(x

,t
)

Concentration normal distribution of mean 0

t = 1

t = 2

t = 10

Figure 2.1: Example of normal distribution

This can be seen in Fig. 2.1, as for larger times the initial distribution
diffuses in space from the initial peak concentrated in x = 0 (values and
units of the figure have no special meaning since it is only an example).

2.1.2 Brownian motion

From a diffusive microscopic point of view, molecules move individually but
still moving away from each other in a certain concentration. Their move-
ments are generated by the interaction between one another, which, for a
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concentration high enough, meaning many interactions between individual
particles, can be taken as random.

Focusing on the particles, a discretized version of the normal distribution
solution (2.4) can be taken as the probability of displacement of the random
motion, meaning that for a unit of time, the particle has moved a random
distance in a random direction, and each of the distances in the axis cho-
sen, therefore, the directions, are taken from a normal distribution, which
depends on the unit of time.
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Chapter 3

Development of the work

3.1 Simulation

MCvD deals with two devices, a transmitter and a receiver, in a fluid envi-
ronment, which is assumed to be unconfined: The information is carried by
the molecules, from the transmitter to the receptor. There are many possi-
bilities for the topology, depending on the transmitter, receiver and the envi-
ronment. Systems may be too complex to obtain an analytical solution, and
simulations become a necessity, especially as the system grows in size.

Time is discretized, with δt being the unit of time: Every time step, parti-
cles move in the environment.

The focus of the simulations will be the concentration arriving at the re-
ceptor, NRx(t), which will constitute the signal and will be dependent on
time: For a given window of time , between a certain time t0 and t1 = t0 + δt,
NRx(t1) will be the number of particles that have arrived to the receptor, start-
ing in t0, in a lapse of time of δt. This, for all time steps of the simulation
duration, will be the received signal.

With C(VRx , ti) being the concentration at a certain volume, or area, VRx ,
occupied by the receiver in its positions, and at a certain time, ti, the signal
in the receiver at this time will be:

NRx(ti+1) = C(VRx, ti+1)− C(VRx , ti) (3.1)

We expect the signal to increase its value, have a certain peak coinciding
with a peak in the concentration at that point, and then decrease as time goes
on and the molecules diffuse in the medium. The receiver is assumed to be
perfectly absorbing, therefore particles that arrive to it are removed from the
environment.

Since C(VRx , ti) depends directly on VRx , N(ti) will depend on the topol-
ogy of the receptor.

The emitter’s topology may also be of certain importance, but for a dis-
tance enough between it and the receptor this effect will not be significant.
For the shake of the simulations, it can be assumed to be a point in space,
where all particles are concentrated before the initiation. As communication
starts, the particles will move in every direction in space, following the laws
of diffusion.

Two simulation approaches can be made:
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• Particle-based: Each particle’s trajectory is simulated individually. The
computational time complexity of this solver depends on the number
of molecules.

• Voxel-based: Space is divided into voxels (squares or boxes in 2D or
3D, respectively) with particles homogeneously distributed in each of
them, and only the number of particles in each voxel is simulated, mak-
ing its computational time complexity independent of the number of
particles, and dependent on the size of the environment simulated.

ΔԦ𝑟

Ԧ𝑟(𝑡)

)ΔԦ𝑟 = (Δ𝑟1, Δ𝑟2, Δ𝑟3

Particle Tracking Cubic Voxel Tracking 

Ԧ𝑟(𝑡 + Δ𝑡)

Figure 3.1: Both simulation approaches for a 3D MCvD system

For the sake of simplicity, interactions between different particles, such as
collisions, are not directly taken into account in any of both the solvers.

For systems big enough, the number of molecules has to increase to deal
with the loses of the medium in order to have a detectable and analyzable
signal, and, considering these two approaches, voxel-based is to consider as
an alternative due to its runtime independence of the number of particles.

3.1.1 Particle-based simulators

Simulating the brownian motion of the particles can be seen as a discretized
version of diffusion. As seen before in (2.4), brownian particles, starting from
a point, diffuse as a Gaussian normal function. For the simulations, the dis-
placement of each particle in the fluid medium, in a certain step of time, of
duration δt, which is random displacement, is taken as Gaussian:

∆x ∼ N(0, σ2) (3.2)

where ∆x represents the increase in the position, x, in a time δt. This is a
normal distribution of mean 0 and variance σ =

√
2Dδt.

For a multidimensional simulation (2D and 3D), two or three independent
random normal displacements are simulated, which constitutes the total dis-
placement of the particle in a time step, ∆~r. In 3D:

∆~r = (∆x, ∆y, ∆z)
~ri = ~ri−1 + ∆~r

(3.3)
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There is no spatial limit to the simulation and, as said before, particles
that reach the receiver are removed from the simulation. This method is a
Martingale process, as a certain step is unrelated to the previous ones.

If flow is added, its contribution should be added to the displacement
vector:

∆ ~r f low = (∆x, ∆y, ∆z) + δt ∗ ~v f low

~ri = ~ri−1 + ∆ ~r f low
(3.4)

where ~v f low is the flow velocity vector. This velocity can be a variable of time
and space, but for the current project it will be taken as a constant.

The signal obtained is the number of molecules arriving at the receptor at
each time, and, therefore, has integers values. Due to the randomness of the
process, the final signal presents some noise.

This simulator is used to verify the proposed models, the voxel based
simulators.

3.1.2 Voxel-based simulators

The environment is divided into voxels (square or cubes, depending on the
dimension) under the assumption that molecules are uniformly distributed
inside each voxel.

At each time step, for each voxel, the probability of staying in that voxel is
evaluated, and the number of molecules that leave the voxel are distributed
to the neighbors. Two versions have been made, depending on the number
of neighbors the particles are able to move to at every step:

• Without diagonals: Only the direct neighbors are used, 4 in 2D and 6
in 3D, which are; in 2D, the voxels to the right, left, up and down, (nh2,
nh4, nh1 and nh3 in Fig. 3.2, respectively), and in 3D the voxels at the
back and at front are added.

• With diagonals: Besides the voxels used in the previous version, also
the diagonals, and corners in 3D, are added, this is; in 2D, the voxels
at the right-up, right-down, left-down and left-up (nh5, nh6, nh7 and nh8 in
Fig. 3.2, respectively), and in 3D also the voxels to the back and to the
front voxels of this ones, which are direct diagonal and corner voxels.

At every time step, the probability of a transition, Ptrans, is calculated. In
the version with only the direct neighbors are taken into account, in 2D, this
is (in 3D is equivalent):

P2D
trans(nhi) =

1− P2D
stay

4
for i = 1, 2, 3, 4 (3.5)

with nhi a neighbor voxel (in Fig. 3.2) and P2D
stay the probability of staying

in the initial voxel (that will be further explained and calculated in a later
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RXdnh2

nh3

nh4

nh5

nh6nh7

nh8 nh1

Figure 3.2: Neighbors voxels in a 2D MCvD topology.

section). It is divided by 4 as particles are equally distributed between the 4
neighbors: in 3D, the constant dividing would be 6.

Taking into account the diagonal voxels, these are at a different distance
from the center of the initial voxel than the direct ones, and therefore two
possibilities arise for this probability of transition:

P2D
trans(nhi) =

{
α1 (1− P2D

stay) for i = 1, 2, 3, 4
α2 (1− P2D

stay) for i = 5, 6, 7, 8

α1 =
1
4

P2D
direct

P2D
direct + P2D

diagonal

α2 =
1
4

P2D
diagonal

P2D
direct + P2D

diagonal

(3.6)

where P2D
direct and P2D

diagonal are the probabilities of transition to a direct neigh-
bor and to a diagonal one, respectively. The first possible probability, for
i = 1,2,3,4 is for direct neighbors, while the second one, i = 5,6,7,8 for the
diagonal ones (Fig. 3.2) . In the 3D version also the voxels at the corner,
forming a 3x3x3 cube, may be taken into account, resulting in three cases for
the probability of transition, each with its respective αi, with i = 1,2,3, that are
equivalent to the 2D version.

If flow is also taken into account, the probabilities of transition to differ-
ent neighbors will vary; for example, for a flow going in the positive x-axis
direction, to the right, the probability of transitioning to the right neighbor,
P2D

right, should be higher than to the left neighbor, P2D
le f t, since the flow drags

particles with it in that direction, and therefore there are no general P2D
direct or

P2D
diagonal. The flow version of the voxel based in this project does not take

into account diagonal neighbors (this would be justified later in the results).
For a general flow, that can go to any direction, the probability of transitions
would be:



Chapter 3. Development of the work 12

P2D
trans(nhi) =


α1 (1− P2D

stay) for i = 1
α2 (1− P2D

stay) for i = 2
α3 (1− P2D

stay) for i = 3
α4 (1− P2D

stay) for i = 4

α1 =
P2D

up

P2D
up + P2D

down + P2D
right + P2D

le f t

α2 =
P2D

right

P2D
up + P2D

down + P2D
right + P2D

le f t

α3 =
P2D

down
P2D

up + P2D
down + P2D

right + P2D
le f t

α4 =
P2D

le f t

P2D
up + P2D

down + P2D
right + P2D

le f t

(3.7)

The new number of molecules at each voxel after a time step becomes, for
a certain voxel i:

Ni
tj+1

= P2D
stayNi

tj
+

k=neighbors

∑
k=1

P2D
trans(nhi)Nk

tj
(3.8)

The two contributions correspond to the number of molecules that stay in
the voxel and the molecules that, have not left the neighbors voxels, diffuse
to this voxel.

At every time step, after the movement of the molecules, in the voxels that
contain the receptor, the number of molecules proportional to the occupied
area are removed from the environment, and this same number constitutes
the signal in that time step. On the contrary that with the particle-based
solver, in this case the signal of arriving molecules at the receptor is a contin-
uous line, with no noise and taking real values.

Time complexity of this solver is dependent on the number of voxels, in-
dependent of the number of molecules, which allows for very high number
of molecules without an increase in the runtime. This is its main advantage
for big MCvD systems.

The length of the voxel sides (λ) must be optimized to obtain the correct
signal: The optimization of this parameter, depending on the rest of fixed en-
vironment parameters in a certain simulation, will be one of the main focuses
of this project. Particle-based simulations are used as the correct signal and
for a comparison to the signals from voxel-based simulations.
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3.2 Implementation

3.2.1 Voxel Probabilities

3.2.1.1 Probability of stay

To calculate the probability of a certain particle, starting in a certain voxel, to
stay there or travel to one of its neighbor voxels, in an amount of time δt, it is
assumed that the displacement lays within a spatial normal distribution.

(x0,y0)

λ-x0-x0

λ

λ

(a) Displacement in x for staying in the initial
voxel.

(x0,y0)
2λ-x0

λ -x0

λ

λ

(b) Displacement in x for moving to the right
neighbor.

Figure 3.3: From the initial voxel, displacement needed, in the x-axis,
to stay in it or move to the right voxel. In the y-axis it will be equiva-

lent, adapted to each probability.

In 2D, the probability of stay, P2D
stay, is (from Fig. 3.3a):

P2D
stay = P(−x0 6 ∆x 6 λ− x0) and P(−y0 6 ∆y 6 λ− y0)

P(−x0 6 ∆x 6 λ− x0) =
∫ λ−x0

−x0

1√
4πDδt

e
x2

4Dδt dx
(3.9)

Which can be derived from the normal cumulative distribution function,
which is: ∫ x0

0

1√
4πDδt

e
x2

4Dδt dx =
1
2

[
1 + er f

(
x√

4Dδt

)]
(3.10)

with the error function er f (x) = 2√
π

∫ x
0 e−t2

dt.

P(−x 6 ∆x 6 λ− x) =

=
1
2

[
1 + er f

(
λ− x√

4Dδt

)
− 1− er f

(
−x√
4Dδt

)]
=

=
1
2

[
er f
(

λ− x√
4Dδt

)
− er f

(
−x√
4Dδt

)] (3.11)

From where the probability of staying in the initial voxel can be derived
as:
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P2D
stay =

1
λ2

∫ λ

0

∫ λ

0
P(−x0 6 ∆x 6 λ− x0)P(−y0 6 ∆y 6 λ− y0)dx0dy0

(3.12)

3.2.1.2 Neighbor probabilities

To calculate the probability of the particle moving to a neighbor voxel, the
limits are changed. For example, to calculate the probability of moving to
the right neighbor (from Fig. 3.3b):

P2D
right = P(λ− x0 6 ∆x 6 2λ− x0) and P(−y0 6 ∆y 6 λ− y0) =

=
1

λ2

∫ λ

0

∫ λ

0
P(λ− x0 6 ∆x 6 2λ− x0)P(−y0 6 ∆y 6 λ− y0)dx0dy0

P(λ− x0 6 ∆x 6 2λ− x0) =
1
2

[
er f
(

2λ− x√
4Dδt

)
− er f

(
λ− x√

4Dδt

)]
(3.13)

P2D
le f t, P2D

up and P2D
down have all the same value, P2D

direct.
This is evaluated numerically for the simulations, using (3.11).
In 3D this is equivalent, taking into account also depth direction, and

making the integral triple. In this case, there are three different probabili-
ties P3D

direct, P3D
diagonal and P3D

corner, as mentioned before.
For the diagonal neighbors, the calculations are equivalent, only changing

the limits to the displacement. In 2D, all the four diagonals will have the
same probability, P2D

diagonal: As an example, the probability for moving to the
diagonal up-right neighbor would be:

P2D
diagonal = P2D

up−right =

= P(λ− x0 6 ∆x 6 2λ− x0) and P(λ− y0 6 ∆y 6 2λ− y0) =

=
1

λ2

∫ λ

0

∫ λ

0
P(λ− x0 6 ∆x 6 2λ− x0)P(λ− y0 6 ∆y 6 2λ− y0)dx0dy0

(3.14)

If there is flow, probability changes, as the displacement is affected by the
flow, as seen in (3.4). If the flow velocity, as assumed for this project, is a
constant, and therefore independent of space, the probability changes as:

P(λ− x0 6 ∆x f low 6 2λ− x0) = δtvx f low +
1
2

[
er f
(

2λ− x√
4Dδt

)
− er f

(
λ− x√

4Dδt

)]
(3.15)

with vx f low is the flow velocity in the x direction. The probability for dis-
placements in the y-direction will also have a contribution from the flow,
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and the product of both probabilities will be integrated as before. This will
change depending on the direction of the displacement, as the flow veloc-
ity may have different values in different directions. This leads to different
probabilities of traveling to different neighbor voxels.

3.2.2 Software

All the software has been developed in Matlab. Due to the complexity of
the simulators, it has been split into different .m files, corresponding to the
generation of the simulation environment or topology, the different codes for
the simulations (with and without diagonal neighbors), and variations on
them, both for 2D and 3D.

The data obtained has been analyzed also in Matlab, comparing particle
based simulations to voxel based to optimize the latest.

The complete software needed for the simulations appears in the Ap-
pendix A. It has been divided in Topology Generator, Appendix A.1 and
Simulator, Appendix A.2. These are the codes in 2D, which will be the ones
explained in the following sections, since 3D codes are equivalent, adapted
to an extra spatial coordinate.

The units for all the codes in this software are µm for the lengths and
seconds, s, for the time.

3.2.2.1 Topology Generator

The topology of the environment is created, and different parameters are
fixed, related to the environment itself, the transmitter, the receiver, and the
simulation.

For the voxel based, a grid of variable size is created; the size of this grid’s
squares can be chosen, this size being the voxel length, λ, and the total length
of the environment can be fixed to. Each square of the grid represents a voxel
in which the environment is divided, and which the molecules may fill and
diffuse from. Another parameter related to the environment fixed here is the
diffusion coefficient, D.

Positions and size of the transmitter and receiver are also defined here.
As said before, the transmitter is assumed to be punctual and in the center of
the simulation environment (0 0). The transmitter is put at a certain distance
of it, at (d 0), d being the distance in the x-axis.

The intersection area of the transmitter and the voxels in the grid is calcu-
lated and the area ratios saved with the positions of its correspondent voxels.
This is saved in voxel_rx, and will be later used for obtaining the signal: An
example of it is depicted at Fig. 3.4.

As for the simulation parameters, they are the time step, δt, number of
molecules, N and time of simulation, Tend.

All the parameters are introduced in the script board_generate_topology,
Appendix A.1.1: This calls to hby_prepare2D_sim_voxels, Appendix A.1.2, which,
depending on the parameters introduced, creates the grid and the matrix of
the initial state for it, curr_voxel_set_state, with all the molecules in the central
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Figure 3.4: Grid near the center of the MC environment, with the axis
in red, and receiver (red square). The voxels near the receiver are

colored depending on the intersection area with it.

voxel. This state is a representation of the molecules in the environment with
which operations can be made, and diffusion will happen in it. This script
also calculates the intersection areas explained above. As auxiliary scripts it
calls to evl_coords_to_2Dvoxels_idx, Appendix A.1.3, which transforms coor-
dinates of the form [x y] in points in the state matrix, or voxels in the envi-
ronment, and evl_voxel_idx_to_2Dcenter_coords, Appendix A.1.4, which does
the opposite thing, transforms points in the matrix state to usual coordinates.

3.2.2.2 Simulators

hby_simulate2D_particles , Appendix A.2.1 is used as the particle based solver.
Since it tracks each particle, and does not use the grid, the transmitter pa-
rameters (position and size) are used to obtain its limits in the coordinates,
that delimit the perimeter of the transmitter (in 2D, this would be maximum
and minimum x and maximum and minimum y). Particle positions are rep-
resented by a 2xN matrix, N being the number of particles, with the two
columns representing the two spatial coordinates, and each row an individ-
ual particle.

It initializes with all particles at the origin, and at every time step gener-
ates a Gaussian random displacement in another 2xN matrix, as seen before
in (3.3), each representing the displacement of one particle. After moving
them, using the limits of the parameters obtain before, it is evaluated if the
new positions of the particles lay inside of the receiver and, if so, the number
of them is added to the signal (hit_timeline) and they are removed from the
environment, causing the matrix containing the positions of the particles, ini-
tially of size 2xN, to decrease. An example of the trajectory for one particle,
in this case that does not reach the receiver, for a simulation with D = 100, d
= 7, Tend = 2 and δt = 10−4 can be seen in Fig. 3.5.

This kind of trajectory is typical for the Brownian motion. Even though
the evident randomness of the motion, there is a total displacement in space,
as the final point is separated from the initial one. This would happen for all
the particles in every direction.

The voxel based simulator, not taking into account diagonal neighbours,
hby_simulate2D_voxels, Appendix A.2.2, uses the matrices generated with the
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Figure 3.5: Trajectory of one particle for the particle based simulator.

topology, curr_voxel_set_state, of the same size as the grid, as the current state
of the environment in which it stores the number of molecules in each voxel.

The probability of a certain molecule to stay in its initial voxel, named
voxel_reside_prob, is evaluated by evl_pstay2D, Appendix A.2.6; this is made
by the numerical integration defined in (3.12). With it, also the probability of
leaving can be evaluated, voxel_leave_prob, as 1− voxel_reside_prob. All this
is calculated before beginning the loop, as this values remain constant.

Once inside the loop, at each time step, δt, the state matrix is divided into
two matrices, voxel_set_after_exit and voxel_set_exit_molecules, corresponding
to the staying molecules and the leaving molecules, respectively, using the
probabilities defined before.

To simulate the diffusing particles moving from each voxel to its direct
neighbors, the leaving particle states, voxel_set_exit_molecules, is shifted in
different directions, corresponding to the directions towards the neighbors,
leaving, in 2D, with four shifted versions, up, down, right and left. Since par-
ticles are assumed to distribute themselves equally in every direction, having
4 neighbors receiving the leaving particles, these shifted matrices are divided
by 4. Doing this, with each shift a column or a row is lost, since the last col-
umn of row of the side towards the shift falls out of the environment, and
therefore one column or row of zeros needs to be added in the other side.
The entire environment is supposed to be big enough so this doesn’t affect
significantly the signal.

After this, the four shifted matrices and the one with the remaining molecules,
voxel_set_after_exit, are added. This represents a step in the diffusion.

The scheme for this, for a simple matrix of 5x5 with initially 5 voxels
occupied by molecules, is depicted in Fig. 3.6.
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curr_set_state_voxel (ti)

voxel_set_exit_molecules

voxel_set_after_exit

shift_down

shift_up

shift_leftt

shift_right

curr_set_state_voxel (ti+1)

* voxel_leave_prob

* voxel_reside_prob

* 1/4

+

+

Figure 3.6: One step of voxel based diffusion, only diffusing to direct
neighbors.

After every diffusion, the number of molecules that reach the receiver are
evaluated with the intersecting areas in voxel_rx, and in each voxel reaching
molecules are evaluated proportionally to the are ratio. The total number
of molecules reaching at a certain time step will constitute the signal at that
time step, hit_timeline(t). This molecules are removed from the environment
matrix, curr_voxel_set_state.

Taking into account diagonals, hby_simulate2D_voxels_diagonal Appendix
A.2.3, the diffusion is similar, only the different probabilities for direct or
diagonal neighbors should be taken into account. The different probabili-
ties are evaluated using evl_pstay2D_diag Appendix A.2.7. In this case leav-
ing molecules are not equally distributed in every neighbor voxel: Two con-
stants, voxel_aligned_prob and voxel_diagonal_prob, are calculated with each
probability, defined as in (3.6). Besides the previous shifted states, that are
multiplied by voxel_aligned_prob, also the diagonal shifted states are calcu-
lated, multiplied by voxel_diagonal_prob, and added to the previous ones.
After this, the rest of the simulation remains the same.

3.2.2.3 Adding flow

If a flow is added to the simulation, for particle based simulations, called
hby_simulate2D_particles_flow, Appendix A.2.4, the flow contribution is di-
rectly added to the displacement in each time step, as in (3.4).

For voxel based, hby_simulate2D_voxels_flow, Appendix A.2.5, the diffu-
sive molecules at a certain time step have different probabilities for different
directions, and therefore the leaving molecules from a voxel do not distribute
themselves equally between all neigbors. The code for the different proba-
bilities are evaluated in eval_pstay2D_flow, Appendix A.2.8 , using (3.15), and
the leaving molecules, this is, the shifted matrices, are, in each direction, pro-
portional to the probability of that direction, as appears in (3.7).

3.2.2.4 Example of one run

The type of signals obtained by this software, for particle and voxel based
(without diagonals) appear in Fig. 3.7.
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(a) Received signal versus time for particle
based.
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(b) Received signal versus time for voxel
based.

Figure 3.7: Runs of a) particle based and b) voxel based solvers, for
D = 100, d = 7, dt = 10−4, Tend = 2, N = 105 and voxel length, λ =

0.2338.

The differences between both approaches are clear, as particle based gen-
erates a signal with a lot of stochastic noise, due to its random behavior, and
only of integer values, while voxel based signal arriving at the receiver is a
continuous function. In an optimum run, with voxel based simulator opti-
mized, this signal should appear a version with no noise of the particle based.

During this project, particle based signals will be the average of many
signals in order to minimize the noise, typically 25, 50 or 100.

3.3 Obtain data

All the simulations of this project have been run using Matlab, in a i9 com-
puter. Due to the complexity of the simulations and the number of it neces-
sary to analyze certain aspects, the runtime for voxel based simulations was
very long, specially in 3D, as the increase in the voxels, cubes in this case,
was quadratic respect to 2D solvers.

For all simulations Tend has been fixed at 2s as the peak was observed to
happen around 0.2 ∼ 0.5s, and therefore a total time of 2s was enough for
the signal to decay.

Being the main objective of the project to optimize the voxel based sim-
ulations, different voxel lengths, λtrial, were tried for each set of parameters
and for the variations in them, in order to, using the particle-tracking signals,
averaged, compare them and obtain the optimum, λOPT. The same was done
for simulations adding flows of different directions and absolute values.

The number of simulations needed may reach 200 for studying some as-
pects. In order to shorten as much as possible the runtime of the simulations,
when they allowed for it, parallel computing has been used, using the mat-
lab loop comand parfor, which functions similarly to the usual for loop, but
executes the statements in it on a parallel pool of workers. The number of
parallel workers available in the computer used was of 10, therefore allow-
ing to 10 different simulations to run at the same time.
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This was done first for the 2D codes, and then for 3D. The latter being a
much bigger system to compute, as multidimensional arrays, of dimension
3, were used for the 3D grid, as the state of the system, the runtime increased
considerably, and the number of parameter values had to decrease in order
to have acceptable results in the tests.

3.3.1 Changes in the parameters

During this project it has been analyzed the changes in λOPT under changes
in the diffusion coefficient, D, the distance to the receiver, d, and the time
step, δt.

The motivation under choosing this change of the parameters lays under
the form of the Fick’s second law (2.3) which, in his discretized version and
rearranging can be written as:

∆C
δt

= D∆C2

∆C =
1

δtD

(3.16)

where ∆C is the increment in the concentration in a time step δt, as the dis-
cretization of the derivation appearing in the original equation. The inverse
of the product of δt and D has a linear relation with the increment in the
concentration.

Both neighbor models, considering and not considering diagonal neigh-
bors, were used, to analyze if there is a significant improvement using diag-
onal neighbors, and if there is some change in the λOPT of both models for
the same simulation parameters.

It is important also to consider the runtimes of both models for the λOPT,
which will be discussed later.

3.4 Analysis of the data

Particle-based simulations were compared to different realizations of voxel-
based, in order to obtain which of the voxel lengths of the last fits better with
the particle based. Two different tests will be used for this comparison; Nor-
malized Mean Square Error (NMSE) and Kolmogorov-Smirnov test (KS
test).

3.4.1 NMSE

From two realizations, one of the particle-based simulator and the other of
the voxel-based, the Normalized Mean Square Error between the signals,
hit_timeline, of both populations is:
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NMSE =
||hit_timeline_voxel − hit_timeline_particle||2
||hit_timeline_voxel|| ∗ ||hit_timeline_particle|| (3.17)

hit_timeline_voxel and hit_timeline_particle being the received signal from the
voxel-based and particle-based simulators, respectively.

It is of our interest to have a better fit in the peak of the signal than in
the tail, since it constitutes the part of the signal with which we may work to
encode the information. In practical MCvD systems, the tail is the remain-
ing of molecules after sending a symbol of information, and these remaining
molecules affect the next symbol since they remain in the environment; this
has been studied and techniques have been developed in order to avoid this
effect [10].

The signal in the receiver has more noise in the peak than in the tail. This
can be seen doing the difference between a single realization and the average
of many realizations, which will smooth the noise, as in Fig. 3.8a, where the
average has been done with 100 realizations. It can be seen how the absolute
value of this difference starts growing with the initial time, has its maximum
around time 0.1, and then decreases. This maximum coincides with the peak.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time (s) 104

0

5

10

15

E
rr

or

(a) Different between one realization particle
based and the average of 100 realizations.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time (s) 104

0

50

100

150

200

S
qu

ar
e 

er
ro

r

(b) The square of the difference between one
realization particle based and the average of
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(d) Zoom in the peak of the received signals:
It is clear that λ2 fits it, as the other two fail

to.

Figure 3.8

In (3.17), this difference appears to the square, meaning it will give more
weight to greater differences: The NMSE will have a greater values as both
signals differ in the peak, and smaller if they are closer. This increase in the
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error around the peak with respect to the tail error due to the square can be
seen in Fig. 3.8b.

The square of the difference has probed to be enough to weight the error
in order to make the fit to focus more in the peak: Using different methods
to inflate this weight, such as multiplying by the signal itself, that, due to its
form, makes the difference in the peak higher, and then renormalizing, the
results for the λOPT did not change, neither by multiplying by the signal with
certain exponents.

As an example of the NMSE, in Fig. 3.8c and Fig. 3.8d, which is just a
zoom of the previous in the are of interest, the peak, appears an averaged
particle based simulation and three different realizations of the voxel based
simulator for three different voxels. It can be seen how the three of them fit
very similarly in the tail, but differ in the peak, one, λ1, higher, another, λ2,
seeming to fit and the last, λ3, which is smaller. Looking to the NMSE values
of this three realizations:

NMSE
λ1 0.0568
λ2 0.0010
λ3 0.0490

The NMSE of λ2 is small enough to consider it a good fit, while the other
two clearly fail, specially compared to the previous value.

Comparision of the NMSE of different realizations, for different λs, will
be one of the main tools in this project, as it has been seen that it seems to
predict the signals that fit better with the expectations.

3.4.2 KS test

The Kolmogorov-Smirnov test is a null hypothesis test for two samples, this
hypothesis being that there is no relation between this samples. It will be
used to confirm if the voxel-tracking is a good fit for the particle-tracking
signal, if the hypothesis is rejected, and, therefore, both samples are related
and may come from the same system: this will mean the voxel-tracking sim-
ulation is a good enough approximation for the MCvD system, and there is
no need for particle based simulations.

The two-sample KS test is used for this project, which can be done by a
command in Matlab, kstest2(...). This test determines if two random samples
(particle and voxel based signals) are drawn from the same population. It
returns two values: P-value, which is higher as the samples are more likely
to come from the same system, and H-value, which is equal to 0 if the null
hypothesis is not rejected, this is, if both samples actually may come from the
same population, and equal to 1 if the may not. The significance level for the
H-value by default is set to 0.05.

For the same simulations as before, in Fig. 3.8c, the KS gives a H-values
and P-values as following:
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KS H-value KS P-value
λ1 0 0.0126
λ2 0 0.3817
λ3 0 0.000128

This is additional to the NMSE values of the previous table, and, in the
case of λ2, it confirms the goodness of test as its H-value is 0 and its P-value
high enough, rejecting the null hypothesis. The other two λ fail the test.

One problem for the used script arose when using the averaged signal, as
the original software for the KS test only worked with integers (non zero) for
the particle-tracking signal. This problem can be solved by rescaling, using
directly the sum of all the signals previously averaged, which are originally
integers and so will be their sum, and multiplying the voxel-tracking signal
by the number of summed signals, so the test will have the same meaning.

For this project, NMSE values will be used in order to obtain the opti-
mum voxel length value, λOPT, and KS test as an additional confirmation (or
rejection) of this value as a good enough fit.
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Chapter 4

Simulation results and discussion

4.1 2D MCvD systems

First, we will consider a 2D MCvD system and analyze under variations of
the environment parameters and neighbors model the optimization of the
voxel-tracking simulator, using the tools explained in the previous chapter.

Since 3D systems take much longer to simulate, we might use some of the
2D results in order to save simulation time.

4.1.1 Neighbor models

For comparing both neighbor models, the one considering diagonal neigh-
bors as well as the direct ones and the one without them, three different sce-
narios are run, with different diffusion coefficients, D, and distance to the
receiver, d. Simulation parameters appear in Table 4.1: For the voxel length,
35 different values equally spaced between the values listed are tried, λtrial,
in order to obtain for which the NMSE between the particle-tracking and
voxel-tracking (of this specific λ) is optimum. The particle based signal is
one for each scenario and is done by the averaging of 100 realizations. We
can see this results in Fig. 4.1.

Table 4.1: Simulation parameters

Parameter Value
Distance (d) {7, 9}µm
Diffusion coefficient (D) {100, 225}, µm2/s
Simulation time step (δt) 0.0001 s
Number of released molecules (NTx) 100 000
Voxel length (λtrial) 0.1 ∼ 0.45 µm , ∆λ = 0.01

It can be clearly seen that the NMSE results, for all the three scenarios in
both models has a clear minimum, and it grows as the λtrial go away from it,
to higher and lower values. The λOPT for these simulations appear in Table
4.2. λOPT values considering diagonal neighbors, λwith

OPT, are smaller than in
the version without diagonals λwout

OPT .
The KS test for these simulations doesn’t give results precise enough, as

for the used λs the resolution is not as small as it is needed for this kind of
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Figure 4.1: NMSE for 2D MCvD systems with different parameters,
for both neighbor models.

Table 4.2: λOPT and its NMSE value for both neighbor approaches

Scenario (D,d) = (µm2/s,µm) λNMSE
OPT (µm) NMSE

Without diagonals
D = 100, d = 7 0.2388 0.001773
D = 225, d = 7 0.3574 0.00124
D = 225, d = 9 0.3574 0.00124

With diagonals
D = 100, d = 7 0.1926 0.002407
D = 225, d = 7 0.2956 0.000931
D = 225, d = 9 0.2956 0.0009899

tests. Therefore, a second group of simulations were realized, in this case
with different λs around the previously obtained λOPT, with smaller separa-
tion between values, and also 35 different values for each separation. These
values, for each scenario and model, appear in Table 4.3.

Table 4.3: λ values tried for each scenario.

Scenario Voxel length (λ), ∆λ = 0.0029

Without diagonals
D = 100µm2/s, d = 7 µm 0.18 ∼ 0.28 µm
D = 225µm2/s, d = 7 µm 0.31 ∼ 0.41 µm
D = 225µm2/s, d = 9 µm 0.31 ∼ 0.41 µm

With diagonals
D = 100µm2/s, d = 7 µm 0.15 ∼ 0.25 µm
D = 225µm2/s, d = 7 µm 0.25 ∼ 0.35 µm
D = 225µm2/s, d = 9 µm 0.25 ∼ 0.35 µm

The NMSE and KS test values, in this case both P and H-values, are in
Fig. 4.2. P-value and the NMSE, even though its respective values having
different meanings, have been represented for each case in the same plots, as
from both a single optimum voxel length can be obtained.
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considering diagonal neighbors.
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Figure 4.2: NMSE and KS test P and H-values for both neighbor mod-
els, for the same three scenarios as the previous.

Results for λOPT from this data is represented in Table 4.4. For the NMSE,
the values are similar, slightly corrected respect to the previous version, and
in the plots it is also clear that there is one single minimum and as λ values
move away from it their correspondent NMSE grow.

The Gaussian total variance for this simulations is
√

4Dδt, which, for the
current simulations, with δt = 1e − 04s has values 0.2 and 0.3 for D =
100µm2/s and D = 225µm2/s, respectively. We can see the λOPT values
are close to them, specially for the version with diagonal neighbors.

The P-values, which is higher as both samples are more likely to be re-
lated, has peaks and a clear higher value, which will give the λOPT. In the
table we can see how for the same scenario and model the λOPT given by
highest P-values are slightly higher that those chosen with the lowest NMSE.

For the H-values, with default significance level giving the KS test as posi-
tive for any P-value higher than 0.05, there is a window of values which pass
the test, and both λNMSE

OPT and λKS
OPT lay in the acceptance regions, meaning

both optimum values are acceptable for this significance level.
In Fig. 4.3 the peak of the particle-tracking signal and the voxel-tracking

signals for λNMSE
OPT and λKS

OPT is represented, for both neighbor models and
the three scenarios. As stated before, fitting the peak should be the main
focus of this studies. Although it varies between the six plots, it is clear that
the λNMSE

OPT fits better to the particle-tracking, as it seems to be similar to a
version of it with no noise, while the λKS

OPT fails, being a little bit too high in
all cases.
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Table 4.4: λOPT from NMSE and KS tests, for both neighbor ap-
proaches

Scenario (D,d) = (µm2/s,µm) λNMSE
OPT (µm) NMSE λKS

OPT(µm) P-value

Without diagonals
D = 100, d = 7 0.2388 0.001035 0.2447 0.4968
D = 225, d = 7 0.3600 0.000864 0.3718 0.7194
D = 225, d = 9 0.3541 0.001125 0.3776 0.6064

With diagonals
D = 100, d = 7 0.1971 0.001075 0.2029 0.5325
D = 225, d = 7 0.2971 0.000885 0.3088 0.6631
D = 225, d = 9 0.2941 0.00112 0.3147 0.5877
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(b) D = 100µm2/s, d = 07µm, considering
diagonal neighbors.
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(c) D = 225µm2/s, d = 07µm, not consider-
ing diagonal neighbors.
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(d) D = 225µm2/s, d = 07µm, considering
diagonal neighbors.
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(e) D = 225µm2/s, d = 09µm, not consider-
ing diagonal neighbors.
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(f) D = 225µm2/s, d = 09µm, considering
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Figure 4.3: Peaks of the received signal for particle based and voxel
based, both λNMSE

OPT and λOPT PKS.
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In Fig. 4.4 we can see the runtime of different simulations versus the
number of particles released during each: The simulations are particle based
and voxel based in each neighbor model. These simulations are for a MCvD
environment with D = 100, d = 7 and δt = 1e − 04, and for each voxel
neighbor model its λOPT has been chosen from Table 4.4; 0.2338 for without
diagonal neighbors and 0.1971 when considering diagonal neighbors.
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Figure 4.4: Runtimes of three simulators, for MCvD 2D system with
D = 100, d = 07 and δt = 1e− 04.

We can see how, while both voxel models have a constant runtime as
the number of released molecules grows, which is consistent with the stated
before that this number shouldn’t affect, since only the number of particles in
each voxel is simulated, and not the particles themselves, the particle based
simulator grows with the number of released molecules. Even if for a small
number of released molecules particle-tracking simulators takes less time,
as this number grows, to a number reasonable and even small for certain
MCvD systems, the increase in its runtime, specially compared with both
voxel-tracking models, makes it inconvenient to practical use.

Between both neighbor models, for the same number of released molecules
an with their respective λOPT, taking account diagonal neighbors has a sig-
nificantly larger runtime. This is due to two factors; adding the diagonal
contributions means some extra operations and, the most important one, the
λwith

OPT is smaller than λwout
OPT and, since the total length of the environment is

fixed, it has to simulate a greater number of voxels.

4.1.2 Effect of system parameters

From all the simulations above, we can see how λOPT seems to grow with
the diffusion coefficient, and that with changes in the distance its change is
much less noticeable, if actually there is some.
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To study this in more depth, more simulations were made with varying
D and d, in order to see the relation between its change and λOPT.

The same was done for the time step dt.

4.1.2.1 Variations in D

Simulation parameters appear in Table 4.5. 10 different values for D, between
100 and 400, are selected, and in each of them three different distances to the
receiver are simulated.

In order to obtain the λOPT(D), at every different environment, which in
this case is a set of {D, d}, a number of λtrial are simulated in a voxel-tracking
simulator, 25 particle-based simulation are run and averaged, and the opti-
mum is chosen by the lowest NMSE test. From this optimum value, the next
values for λs for the following D are chosen between some reasonable values,
as λOPT is expected to grow with D.

In order to choose, for every set of parameters, the λNMSE
OPT , no NMSE mini-

mum value above 10−2 have been accepted as correct, which lead to different
simulations until reaching a satisfactory one, that fulfilled this.

Table 4.5: Simulation parameters

Parameter Value
Distance (d) {7, 9, 18}µm
Diffusion coefficient (D) 100 ∼ 400µm2/s, ∆D = 30
Simulation time step (δt) 0.0001 s
Number of released molecules (NTx) 100 000

It is first noticeable how the effect of D in λOPT appears to be approxi-
mately linear, for both neighbor models. A linear fit can be tried following
this idea, shown, with the results, in Fig. 4.5.

Also, from the plots seems that, as far as these results go, the distance does
not affect λOPT, as the variation appears in it while D grows appears to be
the same independently of the distance to the receiver, with some differences
due to the resolution of λtrial for the simulations.

The optimum voxel lengths obtained for the neighbor model that consid-
ers diagonal voxel,λwith

OPT(D), have a smaller value than those from the model
without diagonal neighbors, λwout

OPT (D), and the slope that relates them lin-
early with the diffusion coefficient is also smaller for the λwith

OPT(D). This is a
generalization of the previous results for only three scenarios, that showed
that for the same scenario λwith

OPT was smaller than λwout
OPT . This may be ex-

plained since, not considering diagonals neighbors, particles only reach them
in two time steps instead of one, so, in order to travel the same distance going
diagonal in both models this difference in voxel length is needed.
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Figure 4.5: λOPT(D) versus diffusion coefficient linear fit for both
neighbor models.

4.1.2.2 Variations in δt

Simulation parameters appear in Table 4.6. As with variations in the diffu-
sion coefficient, three distances have been simulated for each time step.

Table 4.6: Simulation parameters

Parameter Value
Distance (d) {7, 9, 18}µm
Diffusion coefficient (D) 225µm2/s
Simulation time step (δt) {0.05, 0.1, 0.25, 0.5, 0.75, 1.0}e− 03s
Number of released molecules (NTx) 100 000

Similarly as the previous result, the changes in the distances doe not cause
any apparent change in the results, and increasing the time step led to a linear
increase in λOPT in both neighbor models, although a curve might be appre-
ciated in both cases. A linear fit could be performed; these results appear in
Fig. 4.6.

Again, λwith
OPT(δt) has smaller values than λwout

OPT (δt), and the slope of the
linear fit is also smaller for the version with diagonal neighbors. It is notice-
able that the proportion of this difference is almost the same for both vary-
ing parameter simulations: for variations in D, the proportion between the

slopes, slopewout
D

slopewith
D

, is equal to 1.2143, while for variations in δt, slopewout
δt

slopewith
δt

, this is

1.2022.
The value of these proportions is also similar to that between the voxel

lengths of each model for the first simulation, whose values appear in Table
4.4: This proportions are listed in Table 4.7.
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Figure 4.6: λOPT(δt) versus δt and linear fit for both neighbor models,
2D MCvD system.

This value being consistent within different simulations suggest the rela-
tion of λOPT with variations in D or δt is independent of the neighbor model
used, as the linearity is the same for both, and the differences in the slope
appearing in the results for both models are due to differences in the λOPT
themselves, and not actually in the linearity.

Table 4.7: Proportion between optimum voxel length for both neigh-
bor models

Scenario (D,d) = (µm2/s,µm) λNMSE,wout
OPT

λNMSE,with
OPT

λKS,wout
OPT

λKS,with
OPT

Without diagonals
D = 100, d = 7 1.2116 1.2060
D = 225, d = 7 1.2117 1.2040
D = 225, d = 9 1.2040 1.1999

4.1.3 Voxel transition probabilities

From the previous results, varying D and dt, the probability of stay, P2D
stay, of

the optimum voxel length, P2D
stay,OPT, can be calculated. This appeared not to

vary between scenarios, as shown, for variations in D, in Fig. 4.7, and for
variations in dt, in Fig. 4.8, both plots with the same simulations parameters
as those from the previous sections.

We can see that between the two neighbor models, when diagonal neigh-
bors are considered, P2D

stay,OPT has a smaller value that when they are not
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Figure 4.7: Probability of stay for λOPT for 2D MCvD system under
variations in the diffusion coefficient.
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Figure 4.8: Probability of stay for λOPT for 2D MCvD system under
variations in the time step.

considered. This is related with the fact, seen in the previous sections, that
λwith

OPT for a certain set of parameters has a smaller value than λwout
OPT , meaning

the central voxel from which this probability is calculated is smaller, and so
should the probability of staying in it, for the same parameters, be.

In any both neighbor models, P2D
stay,OPT has a very similar mean value for

variations in the diffusion coefficient and the time step, which can be consid-
ered a constant related with the optimal voxel length.

This constant value fixes a relation between the diffusion coefficient, the
time step and the voxel length, since the probability only depends on this
three parameters, (3.11) and (3.12). For a certain simulation, if the environ-
ment parameters, D, d and δt, are fixed (the voxel length, λ, is not a parameter
of the environment itself but only of the voxel-tracking simulator), the value
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P2D
stay,OPT and its integral definition allows to find directly the λOPT.

4.2 3D MCvD systems

Based on the 2D results of the previous sections comparing both neighbor
models, we see adding diagonals does not have any significant improvement
in the NMSE test, and, due to the smaller length of its λwith

OPT, its runtime is ac-
tually higher than the one of the version that only considers direct neighbors.
Also, all the results, varying the diffusion coefficient D, the distance to the re-
ceiver d and the time step δt are reproducible in both models, even though
having some values different, the behavior remains the same. Due to this,
and considering that 3D systems take a much higher runtime than 2D for
voxel-tracking simulations, as the number of voxels increase drastically, we
will continue only with the voxel based simulator that does not take into ac-
count diagonal neighbors, as it does not seem that taking into account them
improves the results, while it does consume a lot of computational time.

First, as with 2D environments, simulations for three different 3D MCvD
scenarios, with variations in the parameters of each of them, are done, with
different voxel length, λtrial. Simulation parameters for this appear in Table
4.8, and the results in Fig. 4.9.

Table 4.8: Simulation parameters

Parameter Value
Distance (d) {7, 9}µm
Diffusion coefficient (D) {100, 225}, µm2/s
Simulation time step (δt) 0.0001 s
Number of released molecules (NTx) 100 000
Voxel length (λ) 0.2 ∼ 0.5 µm , ∆λ = 0.0086
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Figure 4.9: NMSE for 3D MCvD three scenarios.
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The NMSE plots are similar to those in 2D, but with different values for
λOPT, which are listed in Table 4.9. There is an increase in its value, related
with the increase in dimensions. However, as before, in order to obtain more
accurate results a second set of simulations, with λtrial around this λOPT were
made. The results for its NMSE and KS test appear in Fig. 4.10, and the value
of λNMSE

OPT and λKS
OPT, with the value of the test for them, for each scenario are

listed in Table 4.10.

Table 4.9: λOPT and its NMSE value for 3D McvD environments.

Scenario (D,d) = (µm2/s,µm) λNMSE
OPT (µm) NMSE

D = 100, d = 7 0.2706 0.003671
D = 225, d = 7 0.4029 0.006129
D = 225, d = 9 0.4029 0.006129

Table 4.10: λOPT from NMSE and KS tests, for 3D MCvD

Scenario (D,d) = (µm2/s,µm) λNMSE
OPT (µm) NMSE λKS

OPT(µm) P-value
D = 100, d = 7 0.2741 0.003596 0.2947 0.249
D = 225, d = 7 0.4041 0.007207 0.3835 0.1618
D = 225, d = 9 0.4012 0.005232 0.3835 0.2167

It is first noticeable that λOPT of each scenario is slightly larger than its
equivalent in 2D. Again, in 3D the Gaussian total variance has the form√

6Dδt, as an extra dimension respect is added respect to 2D. Therefore, this
increase should be expected. The value of this variance is, for D = 100µm2/s
0.2449 and for D = 225µm2/s 0.3674, which again is close to the obtained
λOPT.

In this case the window of values with a positive result in the KS test is
narrower than before, due to the smaller values of the KS test P-values. Also,
while for 2D the λKS

OPT had a value larger than λNMSE
OPT in all three scenarios,

due to a displacement in the peak of the P-values respect to the minimum of
the NMSE, which was always in the same direction, in this case for the two
scenarios with D = 225µm2/s this displacement happens in the opposite
direction, with the peaks of the P-values in a lower voxel length values than
the minimum of the NMSE, causing λKS

OPT to be smaller than λNMSE
OPT for these

two cases.
Also, due to the narrowness of the accepted region, the λNMSE

OPT in all three
scenarios lay, even though near, out of this region. Changing the significance
level, for example to 0.01, the window of accepted values is broader and the
λNMSE

OPT are accepted.
The difference in these results, specially compared to those equivalent in

2D, may be due to particles diffusing in more directions, as they have one
extra direction to diffuse to, and therefore making the signal to be of less
number of molecules for the same released molecules, and cause the KS tests
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Figure 4.10: Results for λ3D
OPT .

not to be so reliable. To have results as precise as in 2D maybe simulations
with more released molecules are needed.

In Fig. 4.11 we can see the received signal in each of the three scenar-
ios studied, for the particle-tracking solver and for the two optimum voxel
lengths, λNMSE

OPT and λKS
OPT: The plots are focused in the peak of the signal.

λNMSE
OPT seems to fit better, while λKS

OPT fails, having values too high in the first
scenario, where its λOPT was higher than the one from the NMSE test, and
being too low in the other two, where its λOPT was too low.

Again, even though the KS test, we are forced to accept as a better fit the
values from the NMSE.
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(b) D = 225µm2/s, d = 07µm.
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(c) D = 225µm2/s, d = 09µm.

Figure 4.11: Particle based compared to voxel based, both λNMSE
OPT and

λKS
OPT , for 3D MCvD three scenarios.

4.2.1 Effect of system parameters

Again, simulations varying the simulation parameters D, d and δt are run.
Due to the computational time required to do this in 3D, we were forced to
reduce the number of different environments in which the λOPT was looked
for, in order to maintain an acceptable resolution between λtrial in every en-
vironment and acceptable standards in the NMSE tests.

4.2.1.1 Variations in D

The parameters for the simulation appear in Table 4.11. To ensure NMSE
values low enough for ensuring an acceptable λNMSE

OPT , the one used in this
simulations, only 4 diffusion coefficients and two distances were simulated.

The results, similarly as in 2D, do not seem to vary with the distance, and
the optimum voxel length presents a linear relation with the diffusion coeffi-
cient. In Fig. 4.12 we can see this results, and the linear fit. The slope is similar
but higher than in 2D, which linear fit for variations in D, not considering, as
here, diagonal neighbors, had a slope of 7.787e− 04. This is consistent with
the fact that the λ3D

OPT had larger values than λ2D
OPT.
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Table 4.11: Simulation parameters

Parameter Value
Distance (d) {7, 9}µm
Diffusion coefficient (D) 100 ∼ 400µm2/s, ∆D = 100
Simulation time step (δt) 0.0001 s
Number of released molecules (NTx) 100 000
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Figure 4.12: λOPT(D) versus the diffusion coefficient and its linear fit
in a 3D MCvD system.

4.2.1.2 Variations in δt

Simulation parameters are listed in 4.12. Results for the λOPT appear in Fig.
4.13: As before, there is no difference between both distances and a linear fit
can be tried.

Table 4.12: Simulation parameters

Parameter Value
Distance (d) {7, 9}µm
Diffusion coefficient (D) 225µm2/s
Simulation time step (δt) {0.05, 0.1, 0.25, 0.5, 0.75, 1.0}e− 03s
Number of released molecules (NTx) 100 000

As for 2D results, the slope for variations in the time step is orders of
magnitude bigger than the one from variations in the diffusion coefficient,
and higher than the same slope for the 2D results, which was 8.538e02 for the
model with no diagonal neighbors.
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Figure 4.13: λOPT(δt) versus the time step and its linear fit in a 3D
MCvD system.

4.2.2 Voxel transition probabilities

The probability of staying in the initial voxel for this λOPT values and each
diffusion coefficient, D, and time step, δt, can be calculated, P3D

stay,OPT, and
again the values remain constant within a certain variations due to the reso-
lution of λOPT(D) and λOPT(δt). This can be seen in Fig. 4.14.
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(a) Varying the diffusion coefficient, D.
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(b) Varying the time step, δt.

Figure 4.14: P3D
stay,OPT for variations in the environment parameters.

In 2D the values for P2D
stay,OPT was similar for both parameters, and the

same should be expected in 3D. In this case, the differences between both
is higher, but still similar, suggesting again a constant value for P3D

stay,OPT: It
is noticeable that the values for variations in the time step have generally
higher variance respect to the mean.

The mean value for any of both simulations, comparing with its equiva-
lent in 2D, which was 0.2990, is smaller. This is related with the extra dimen-
sion particles have to diffuse to and, even though the optimum voxel length
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is larger, the proportion of particles that leave it is higher.
The general accuracy for the 3D results seem lower than 2D, with greater

variance in the results varying the parameters, higher NMSE minimum val-
ues and lower higher P-values: the number of released molecules, as men-
tioned before, seems not to be enough compared with 2D, and the resolution
should be higher. For the current project that has not been possible due to
the computational time it would consume. Results shown here serve as a
first approximation to 3D voxel-based MCvD simulations.

4.3 Flow

Two sets of simulations were done adding the flow: One with a fixed norm
for the added flow and changing its direction, and another with a fixed angle
but different norms of the flow.

As seen in the previous sections comparing both neighbor models for the
voxel-tracking simulations, there was no improvement in the NMSE value
for the λOPT when diagonal neighbors are considered, and, besides, λwith

OPT,
for a certain set of fixed D, d and δt, has a smaller value than λwout

OPT , which
causes its computational time to increase. Therefore, the flow version of the
voxel based simulator has only been implemented not considering diagonal
neighbors, as the same results can be reached with it but in a significantly
smaller time.

To make results for the KS test clearer, the significance level was changed
to 0.01.

4.3.1 Different flow angles

Five equally spaced flow angles between 0 and π angles where simulated,
angle 0 being a flow in the positive x-axis direction, directed to the receiver,
and π directed in the opposite way. All the simulation parameters appear at
Table 4.13.

Table 4.13: Simulation parameters varying the angle of the flow

Parameter Value
Distance (d) 7µm
Diffusion coefficient (D) 100µm2/s
Simulation time step (δt) 0.0001s
li Number of released molecules (NTx) 100 000
Voxel length (λtrial) 0.17 ∼ 0.37µm, ∆λ = 0.0105
Flow angle (norm = 1µm s−1) {0, π

4 , π
2 , 3π

4 , π}rad

Results for λOPT from Fig. 4.15 are listed in Table 4.14. Both λNMSE
OPT and

λKS
OPT give similar results for each flow angle. It is noticeable that for angles

π
2 , 3π

4 and π, for which the flow contribution in the x-axis direction is null or
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(a) NMSE plots for different flow angles.
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(b) P-value from the KS test.
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(c) H-value from the Ks test.

Figure 4.15: Results from the test for MCvD systems with flow at
different angles.

negative, the results give the same values in both test for the three simula-
tions, and also that the P-value, even though passing the test, is smaller than
the other two angles.

Also, in this case λNMSE
OPT gives very similar results for all angles, while

in λKS
OPT there is more variation between values. The region accepted by the

KS test H-values follows this trend, with the ones for π
2 , 3π

4 and π even not
accepting the λNMSE

OPT .
Comparing with the same set of parameters with no flow, Table 4.4, for

which λNMSE
OPT and λKS

OPT were 0.2338 and 0.2447, respectively, adding flow
lowers the λOPT in both cases, for this flow norm and the angles analyzed.

Comparing the received signals for the different λOPT for each flow an-
gle, Fig. 4.16, the one from λNMSE

OPT fits better the peak in all cases, with the
received signal from λKS

OPT being as close as both λOPT values are.
Comparing these signals to those from a simulation with the same of pa-

rameters, not considering diagonals, but no flow, in Fig. 4.3a, the signals does
not differ a lot from it, as the peak happens in both cases around 0.08s and
has a value, in the maximum, between 10 ∼ 12.
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Table 4.14: λOPT from NMSE and KS tests, for varying angle flow.

Flow angle (rad) λNMSE
OPT (µm) NMSE λKS

OPT(µm) P-value
0 0.1959 0.002039 0.2100 0.1877
π
4 0.1982 0.002422 0.1959 0.2605
π
2 0.2006 0.00334 0.1888 0.07199

3π
4 0.2006 0.00334 0.1888 0.07199
π 0.2006 0.00334 0.1888 0.07199
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(e) Flow angle πrad.

Figure 4.16: Received signals for particle based and voxel based
λNMSE

OPT and λKS
OPT for different flow angles.
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4.3.2 Different flow norms

With a fixed angle equal to 0rad, the flow being directed towards the receiver,
four different set of simulations, varying the norm of this flow, were made.
The parameters are in Table 4.15.

Table 4.15: Simulation parameters varying the norm of the flow.

Parameter Value
Distance (d) 7µm
Diffusion coefficient (D) 100µm2/s
Simulation time step (δt) 0.0001s
Number of released molecules (NTx) 100 000
Voxel length (λtrial) 0.17 ∼ 0.37µm, ∆λ = 0.0105
Flow norm (angle = 0rad) {1, 2, 4, 8}µm s−1
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(a) NMSE plots for different flow norms.
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(b) P-value from the KS test.
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(c) H-value from the Ks test.

Figure 4.17: Results from the test for MCvD systems with flow with
different norms.

Result plots can be seen in Fig. 4.17, and the values for λNMSE
OPT and λKS

OPT
for each of the set of simulations appear in Table 4.16.
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In this case, the NMSE minimum gives the same λNMSE
OPT for the four simu-

lations, although the value of the NMSE varies. The difference with the λKS
OPT

are much more notable in this case, with even a difference of 0.04µm for the
last two cases. It is important anyway in this case to notice that the P-value
for these two simulations is very low, and the KS test H-value, which has
only one accepted voxel length, does so due to the change in the significance
level, that has been lowered for this analysis.

Table 4.16: λOPT from NMSE and KS tests, for varying flow norm.

Flow norm (µm s−1) λNMSE
OPT (µm) NMSE λKS

OPT(µm) P-value
1 0.1959 0.002039 0.21 0.1877
2 0.1959 0.001994 0.2147 0.09551
4 0.1959 0.002502 0.2359 0.01013
8 0.1959 0.002502 0.2359 0.01013

Looking at the λKS
OPT, it grows with the flow norm, even if the P-values get

lower, while this is not happening with λNMSE
OPT .

From the accepted region by the H-values for the other two cases, flow
norm 1µm s−1 λNMSE

OPT is the only one accepted by both test.
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(b) Flow norm 2µm s−1.
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(c) Flow norm 4µm s−1.
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Figure 4.18: Received signals for particle based and voxel based
λNMSE

OPT and λKS
OPT for different flow angles.
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From the figures of the received signals, Fig. 4.18, again minimum NMSE
seems to be better at predicting a λOPT that fits better at the peak. Specially
for the last two cases, whose λKS

OPT differed a lot from their λNMSE
OPT , the voxel-

based received signals from λKS
OPT fails to give an acceptable fit at the peak,

thus not being able to predict the signal.
For the λNMSE

OPT , P2D, f low
stay,OPT varying the flow angle gives values between

0.22919 and 0.23734, while for λKS
OPT this goes between 0.2169 for the lower λ

values and 0.25358 for the higher.
Varying the flow norm, P2D, f low

stay,OPT the given by λNMSE
OPT has a value of 0.22919,

which is consistent with the previous results varying the parameters, while
the λKS

OPT give values of 0.25358, 0.26166 and 0.29747, which is much higher.

In both cases λNMSE
OPT being able to fit the peak and having similar P2D, f low

stay,OPT
values reinforces the idea that this is a constant value, near 0.23. In this case,
the addition of flow, although, as seen in the plots, does not affect signifi-
cantly the shape of the particle-based signals, it seems affect more the voxel-
based, lowering the optimal voxel length, which, for results with no flow,
had a value was around 0.299.

4.4 λOPT predictions

From the previous sections, we have seen the optimum voxel lengths ap-
pears related to a constant value for the probability of stay that only varies
with the neighbor model (although it has been seen that the initial model,
with no diagonals considered, is enough) and the dimensions of the MCvD
environment, P2D

stay,OPT and P3D
stay,OPT.

For a certain set of fixed environmental parameters, we could try to pre-
dict which will be the λ

f low
OPT for each of the simulations. We could try to

reproduce, using this result, the λOPT obtained in the previous sections and
its relation with the environment parameters.

As the constant value for P2D
stay,OPT, not considering diagonal neighbors,

we can take the mean between this value in the two previous sections, the
one from variations in the diffusion coefficient and the one from variations
in the time step. This, with the parameter from the table, defines a nonlinear
equation as:

P2D
stay(λOPT)− 0.29918 = 0 (4.1)

That can be solved with the function fsolve() in Matlab, an has a single
defined solution for λ

predicted
OPT . Letting only vary the diffusion coefficient or

the time step, we get function predicting the λOPT, which is not completely
linear, but we could try to perform a linear fit and compare it to the previous
one. This results appear in Fig. 4.19.

It can be clearly seen that the relation between λ2D
OPT is not completely

linear, specially in the case of δt, which was already hinted in the plots ob-
tained before, Fig. 4.5 and Fig. 4.6. For the same set of parameters, the
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Figure 4.19: λ2D
OPT predicted for varying D and δt, and their linear fit.

simulation data gave a linear fit with values, for variations in D, λwout
OPT (D) =

7.787e− 04D + 1.724e− 01, and in δt, λwout
OPT (δt) = 8.538e02δt + 2.852e− 01,

which are also depicted in the plots: The first one approximates very well the
linear fit from the predictions, while the latter shows some displacement. The
reason behind this might be that the actual function is far from linear and the
simulation δt values weren’t equally spaced, as are the ones from these latter
results, causing both fits to differ. Nevertheless, the slopes are very similar.
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Chapter 5

Conclusions

5.1 Overview of the project

This project’s aim was to study and analyze the correctness of a different ap-
proach to MC simulations, voxel based simulations instead of particle based,
that was hoped to been able to reproduce the same results as the latter, but
reducing its runtime for big systems.

Different models for the number of neighbors needed in order to obtain
the correct signal were developed and implemented in Matlab, their results
for the fitness and runtime analyzed separately and compared. Codes have
been implemented for 2D and 3D systems.

Results show the voxel length, λ, is a determinant factor in the fitness
of the received signal from the voxel-tracking approach, the one proposed
in this project. The optimum value for λ has been analyzed with different
tests, and the effect of the environment parameters have on it: Both the dif-
fusion coefficient, D, and the time step, δt, have a similar relation with λOPT,
which for certain window of values can be approximated as linear, while the
distance to the receiver, d, as far as this results go, does not affect it.

Both neighbor models and 3D model λOPT have been shown to repro-
duce the same behavior under parameter changes, but with different values
for λOPT and therefore in their runtime: It has been seen that considering
diagonal neighbors does not lead to any improvement while increases the
computational runtime.

It has been discovered that λOPT is related with a constant value of the
probability of stay in the initial voxel for a certain particle in a time step,
POPT,stay: This value depends on the neighbor model and the dimensions of
the simulator.

This value being a constant allows to, with the environment parameters
fixed, find the voxel length that will give the correct received signal while,
for systems big enough, reducing the runtime significantly.

The effect of adding flow in a 2D MC environment has also been stud-
ied, but further simulations and analysis in that topic may be needed, as the
results are not as accurate and conclusive as the previous.

The main results of this project have been submitted to European View
on Molecular Communications, Elsevier Nano Communication Networks,
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under the title Voxel-Based Simulation Approach for Molecular Commu-
nication via Diffusion, authoring of Dr.H. Birkam Yilmaz, and co-authoring
of Dr. Ilker S. Demirkol and Xabier Gutiérrez.

5.2 Future work and perspective

Reducing the runtime of the code may be an objective, since it is something
that, besides the idea for the voxel based approach, has not been studied
further in this project, and the codes may be improved.

Some of the results of this project, the addition of flow and simulations
in a 3D environment, might be analyzed more deeply and with greater accu-
racy, more complex topologies for the MC environment and bigger systems
can be implemented and, with the tools developed during this project, ana-
lyze their fitness, the effect they have on λOPT and how this can be different
from the results showed in this thesis.
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Appendix A

Simulation software

A.1 Topology generator

A.1.1 board_generate_topology

%% Create 2D ENV and V i s u a l i z e
env_params . D_inMicroMeterSqrPerSecond = 1 0 0 ;
env_params . voxel_len_inMicroMeter = 0 . 5 ;
env_params . hal f_voxel_ len_inMicroMeter = env_params . voxel_len_inMicroMeter /2;
env_params . env_len_at_each_dir = 1 0 0 ;

trx_params . t x _ c e n t e r _ p o i n t s = [0 0 ] ;
trx_params . r x _ c e n t e r _ p o i n t s = [7 0 ] ;
trx_params . rx_props . type_name = " square " ; % Not used , j u s t f o r human r e a d a b i l i t y
trx_params . rx_props . type = 1 ;
trx_params . rx_props . side_inMicroMeter = 4 ;

sim_params . d e l t a _ t = 10^−4;
sim_params . num_molecules = 1 0 0 ;
sim_params . tend_inSeconds = 2 ;

% Create VOXEL ENV
voxel_sim_vars = hby_prepare2D_sim_voxels ( env_params , trx_params , sim_params ) ;

A.1.2 hby_prepare2D_sim_voxels

func t ion [ voxel_sim ] = hby_prepare2D_sim_voxels ( env_params , trx_params , sim_params )
% @@ GET INP VARIABLES −−START
d e l t a _ t = sim_params . d e l t a _ t ;
num_molecules = sim_params . num_molecules ;

D = env_params . D_inMicroMeterSqrPerSecond ;
voxel_ len = env_params . voxel_len_inMicroMeter ;
h a l f _ v o x e l _ l e n = env_params . hal f_voxel_ len_inMicroMeter ;
env_len_at_each_dir = env_params . env_len_at_each_dir ;

t x _ c e n t e r _ p o i n t s = trx_params . t x _ c e n t e r _ p o i n t s ;
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r x _ c e n t e r _ p o i n t s = trx_params . r x _ c e n t e r _ p o i n t s ;
rx_props = trx_params . rx_props ;
% @@ GET INP VARIABLES −−DONE

step_sigma = s q r t (2∗D∗ d e l t a _ t ) ;

num_voxel_at_each_dir = 2 ∗ round ( env_len_at_each_dir/voxel_ len ) + 1 ;

num_txs = s i z e ( t x _ c e n t e r _ p o i n t s , 1 ) ;
% num_rxs = s i z e ( rx_center_points , 1 ) ; % ToDo : Multi RX LATER

% We add one more voxel to have c e n t e r a t coordinate ( 0 , 0 )
center_voxe l_ idx = f l o o r ( ( num_voxel_at_each_dir−1)/2 ) + 1 ;

% Create 2D Environment
c u r r _ v o x e l _ s e t _ s t a t e = zeros ( num_voxel_at_each_dir , num_voxel_at_each_dir ) ;

% Evaluate Duration f o r Homogenous Voxel ( Rough C a l c u l a t i o n )
t ime_stp_shift_for_homogenous_Tx_voxel = round ( ( h a l f _ v o x e l _ l e n /step_sigma ) ^ 2 ) ;
t ime_val_shift_for_homogenous_Tx_voxel = round ( ( h a l f _ v o x e l _ l e n /step_sigma ) ^ 2) ∗ d e l t a _ t ;

% Prepare TX( s ) and c u r r _ v o x e l _ s e t _ s t a t e f o r Voxel−based Sim
tx_voxel_rows = zeros ( num_txs , 1 ) ;
t x _ v o x e l _ c o l s = zeros ( num_txs , 1 ) ;
f o r i i =1 : num_txs

tx_voxe l_ idxs = evl_coords_to_2Dvoxel_idxs ( t x _ c e n t e r _ p o i n t s ( i i , : ) , center_voxel_ idx , voxel_ len ) ;
tx_voxel_rows ( i i ) = tx_voxe l_ idxs . row ;
t x _ v o x e l _ c o l s ( i i ) = tx_voxe l_ idxs . c o l ;
c u r r _ v o x e l _ s e t _ s t a t e ( tx_voxel_rows ( i i ) , t x _ v o x e l _ c o l s ( i i ) ) = num_molecules ;

end

% Prepare RX f o r Voxel−based Sim
% ToDo : Multi RX LATER (ASSUME Si ng le Rx )
i f ( rx_props . type == 0)

f p r i n t f ( 1 , "\n NOT IMPLEMENTED YET " ) ;
%voxel_rx = prepare_CIRCLE_RX ( rx_center_points , rx_props , center_voxel_ idx , voxel_ len ) ;

e l s e i f ( rx_props . type == 1)
voxel_rx = prepare_CUBE_RX ( rx_center_points , rx_props , center_voxel_ idx , voxel_ len ) ;

e l s e
f p r i n t f ( 1 , "\n UnSopported RX Shape Type " ) ;

end

% @@ PREPARE/SAVE OUPUT VARIABLES −−START
voxel_sim . env_params = env_params ;
voxel_sim . sim_params = sim_params ;
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voxel_sim . t x _ c e n t e r _ p o i n t s = t x _ c e n t e r _ p o i n t s ;
voxel_sim . r x _ c e n t e r _ p o i n t s = r x _ c e n t e r _ p o i n t s ;
voxel_sim . rx_props = rx_props ;
voxel_sim . voxel_rx = voxel_rx ;

voxel_sim . num_voxel_at_each_dir = num_voxel_at_each_dir ;
voxel_sim . center_voxe l_ idx = center_voxe l_ idx ;
voxel_sim . c u r r _ v o x e l _ s e t _ s t a t e = c u r r _ v o x e l _ s e t _ s t a t e ;

voxel_sim . step_sigma = step_sigma ;

voxel_sim . t ime_stp_shift_for_homogenous_Tx_voxel = time_stp_shift_for_homogenous_Tx_voxel ;
voxel_sim . t ime_val_shift_for_homogenous_Tx_voxel = time_val_shift_for_homogenous_Tx_voxel ;
% @@ PREPARE/SAVE OUPUT VARIABLES −−DONE
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
funct ion [ voxel_rx ] = prepare_CUBE_RX ( rx_center_points , rx_props , center_voxel_ idx , voxel_ len )
% ( 0 , 0 ) i s the c e n t e r of the c e n t e r voxel
r x _ s i d e _ l e n = rx_props . side_inMicroMeter ;

rx_center_x_coord = r x _ c e n t e r _ p o i n t s ( 1 ) ;
rx_center_y_coord = r x _ c e n t e r _ p o i n t s ( 2 ) ;

rx_min_x_coord = rx_center_x_coord − r x _ s i d e _ l e n /2;
rx_max_x_coord = rx_center_x_coord + r x _ s i d e _ l e n /2;
rx_min_y_coord = rx_center_y_coord − r x _ s i d e _ l e n /2;
rx_max_y_coord = rx_center_y_coord + r x _ s i d e _ l e n /2;

corner_NW_coord = [ rx_min_x_coord , rx_max_y_coord ] ; % TopLeft Corner
corner_SE_coord = [ rx_max_x_coord , rx_min_y_coord ] ; % BottomRight Corner

c_NW_voxel_idxs = evl_coords_to_2Dvoxel_idxs ( corner_NW_coord , center_voxel_ idx , voxel_ len ) ;
c_SE_voxel_idxs = evl_coords_to_2Dvoxel_idxs ( corner_SE_coord , center_voxel_ idx , voxel_ len ) ;

voxel_rx . rows = [ ] ;
voxel_rx . c o l s = [ ] ;
voxel_rx . a r e a _ r a t i o s = [ ] ;
f o r c u r r _ c o l = c_NW_voxel_idxs . c o l : c_SE_voxel_idxs . c o l

f o r curr_row = c_SE_voxel_idxs . row : c_NW_voxel_idxs . row
voxel_ idxs . row = curr_row ;
voxel_ idxs . c o l = c u r r _ c o l ;
voxel_center_coords = evl_voxel_ idxs_to_2Dcenter_coords ( voxel_idxs , center_voxel_ idx , voxel_ len ) ;

voxel_min_x = voxel_center_coords ( 1 ) − voxel_ len /2;
voxel_max_x = voxel_center_coords ( 1 ) + voxel_ len /2;
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voxel_min_y = voxel_center_coords ( 2 ) − voxel_ len /2;
voxel_max_y = voxel_center_coords ( 2 ) + voxel_ len /2;

% Now CONSIDER i n t e r s e c t i o n AREA ( ht tps :// stackoverf low . com/quest ions /4549544/ t o t a l−area−of−i n t e r s e c t i n g−r e c t a n g l e s )
in tsc t_area_min_x = max( rx_min_x_coord , voxel_min_x ) ; % l e f t = max( r1 . l e f t , r2 . l e f t )
intsc t_area_max_x = min ( rx_max_x_coord , voxel_max_x ) ; % r i g h t = min ( r1 . r ight , r2 . r i g h t )
in tsc t_area_min_y = max( rx_min_y_coord , voxel_min_y ) ; % bottom = max( r1 . bottom , r2 . bottom )
intsct_area_max_y = min ( rx_max_y_coord , voxel_max_y ) ; % top = min ( r1 . top , r2 . top )

i n t s c t _ a r e a = ( intsct_area_max_x−in tsc t_area_min_x ) ∗ ( intsct_area_max_y−in tsc t_area_min_y ) ;

c u r r _ a r e a _ r a t i o = i n t s c t _ a r e a / voxel_ len ^2;

% Append these values to output
voxel_rx . rows = [ voxel_rx . rows ; curr_row ] ;
voxel_rx . c o l s = [ voxel_rx . c o l s ; c u r r _ c o l ] ;
voxel_rx . a r e a _ r a t i o s = [ voxel_rx . a r e a _ r a t i o s ; c u r r _ a r e a _ r a t i o ] ;

end
end

end

A.1.3 evl_coords_to_2Dvoxels_idxs

func t ion [ voxel_ idxs ] = evl_coords_to_2Dvoxel_idxs ( point2Dcoords , center_voxel_ idx , voxel_ len )
% ( 0 , 0 ) i s the c e n t e r of the c e n t e r voxel
x_coord = point2Dcoords ( 1 ) ;
y_coord = point2Dcoords ( 2 ) ;

sh i f t_row = round ( y_coord/voxel_ len ) ;
s h i f t _ c o l = round ( x_coord/voxel_ len ) ;

voxel_ idxs . row = center_voxe l_ idx + shi f t_row ;
voxel_ idxs . c o l = center_voxe l_ idx + s h i f t _ c o l ;
end

A.1.4 evl_voxel_idx_to_2Dcenter_coords

func t ion [ center_coords2D ] = evl_voxel_ idxs_to_2Dcenter_coords ( voxel_idxs , center_voxel_ idx , voxel_ len )
% ( 0 , 0 ) i s the c e n t e r of the c e n t e r voxel
idx_dif f_row = voxel_ idxs . row − center_voxe l_ idx ;
i d x _ d i f f _ c o l = voxel_ idxs . c o l − center_voxe l_ idx ;

center_x = i d x _ d i f f _ c o l ∗ voxel_ len ;
center_y = idx_dif f_row ∗ voxel_ len ;
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center_coords2D = [ center_x , center_y ] ;
end

A.2 Simulator

A.2.1 hby simulate2D particles

func t ion [ h i t _ t i m e l i n e ] = hby_s imulate2D_part ic les ( env_params , trx_params , sim_params )
f p r i n t f ( 1 , " \nRUNNING P a r t i c l e Based Simulator " ) ;

i f trx_params . rx_props . type == 1
f p r i n t f ( 1 , " \ n∗∗∗ Rx ShapeType = SQUARE " ) ;
h i t _ t i m e l i n e = sim2d_particle_SquareRX_point_src_RUNNER ( env_params , trx_params , sim_params ) ;

e l s e i f trx_params . rx_props . type == 0
f p r i n t f ( 1 , "\nNOT IMPLEMENTED YET : RX ShapeType = CIRCLE " ) ;

e l s e
f p r i n t f ( 1 , "\nUNSOPPORTED RX Shape Type " ) ;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
funct ion [ h i t _ t i m e l i n e ] = sim2d_particle_SquareRX_point_src_RUNNER ( env_params , trx_params , sim_params )
% @@ GET INP VARIABLES −−START
D = env_params . D_inMicroMeterSqrPerSecond ;

t x _ c e n t e r _ p o i n t s = trx_params . t x _ c e n t e r _ p o i n t s ;
r x _ c e n t e r _ p o i n t s = trx_params . r x _ c e n t e r _ p o i n t s ;
rx_props = trx_params . rx_props ; % FOR SQUARE
r x _ s i d e _ l e n = rx_props . side_inMicroMeter ;

d e l t a _ t = sim_params . d e l t a _ t ;
tend_inSeconds = sim_params . tend_inSeconds ;
num_molecules = sim_params . num_molecules ;
% @@ GET INP VARIABLES −−DONE

% Note : HERE 2D Assumption
rx_min_X = r x _ c e n t e r _ p o i n t s ( 1 ) − r x _ s i d e _ l e n /2;
rx_max_X = r x _ c e n t e r _ p o i n t s ( 1 ) + r x _ s i d e _ l e n /2;
rx_min_Y = r x _ c e n t e r _ p o i n t s ( 2 ) − r x _ s i d e _ l e n /2;
rx_max_Y = r x _ c e n t e r _ p o i n t s ( 2 ) + r x _ s i d e _ l e n /2;

% Find the number of s imulat ion s teps
sim_step_cnt = round ( tend_inSeconds / d e l t a _ t ) ;
ha l f_s im_s tep_cnt = round ( sim_step_cnt / 2 ) ;
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% Records the number of molecules a t RECEIVER at each time step
h i t _ t i m e l i n e = zeros ( 1 , s im_step_cnt ) ;

% Standard devia t ion of s tep s i z e of movement N( 0 , sigma )
sigma = (2∗D∗ d e l t a _ t ) ^ 0 . 5 ;

% Each molecule s t a r t s a t Tx Loc ( d e f a u l t i s 0 ,0 in 2D)
mol_posit ion1 = repmat ( t x _ c e n t e r _ p o i n t s , num_molecules , 1 ) ;

f p r i n t f ( 1 , " \ nStep :%d/%d " , 1 , s im_step_cnt ) ;
f o r t =1: s im_step_cnt

i f ( t == hal f_s im_s tep_cnt )
f p r i n t f ( 1 , " \ nStep :%d/%d " , t , s im_step_cnt ) ;

end
% propagate the molecules via d i f f u s i o n
mol_displace = normrnd ( 0 , sigma , s i z e ( mol_posit ion1 , 1 ) , 2 ) ; %2D
mol_posit ion2 = mol_posit ion1 + mol_displace ;

% CHECK RECEPTION
inside_RX_mask = eval_inside_RX_mask ( mol_posit ion2 , rx_min_X , rx_max_X , rx_min_Y , rx_max_Y ) ;

% re c ep t i on ( h i t ) count
h i t _ t i m e l i n e ( t ) = h i t _ t i m e l i n e ( t ) + nnz ( inside_RX_mask ) ;

%keep the ones i n d i c a t e d by the outs ide membrane mask
mol_posit ion2 = mol_posit ion2 (~ inside_RX_mask , : ) ;

mol_posit ion1 = mol_posit ion2 ;
end % END< f o r t =1: sim_step_cnt >
f p r i n t f ( 1 , " \ nStep :%d/%d\n " , sim_step_cnt , s im_step_cnt ) ;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
funct ion [ inside_RX_mask ] = eval_inside_RX_mask ( mol_posit ion2 , rx_min_X , rx_max_X , rx_min_Y , rx_max_Y )
x_min_mask = mol_posit ion2 ( : , 2 ) > rx_min_X ;
x_max_mask = mol_posit ion2 ( : , 2 ) < rx_max_X ;

y_min_mask = mol_posit ion2 ( : , 1 ) > rx_min_Y ;
y_max_mask = mol_posit ion2 ( : , 1 ) < rx_max_Y ;

inside_RX_mask = x_min_mask & x_max_mask & y_min_mask & y_max_mask ;
end

A.2.2 hby simulate2D voxels

func t ion [ h i t _ t i m e l i n e , snapshot_voxe l_s ta tes ] = hby_simulate2D_voxels ( voxel_sim_vars , snapshot_times )
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% @@ GET INP VARIABLES −−START
env_params = voxel_sim_vars . env_params ;
sim_params = voxel_sim_vars . sim_params ;

d e l t a _ t = sim_params . d e l t a _ t ;
tend_inSeconds = sim_params . tend_inSeconds ;

D = env_params . D_inMicroMeterSqrPerSecond ;
voxel_ len = env_params . voxel_len_inMicroMeter ;

c u r r _ v o x e l _ s e t _ s t a t e = voxel_sim_vars . c u r r _ v o x e l _ s e t _ s t a t e ;
voxel_rx = voxel_sim_vars . voxel_rx ;

t ime_shif t_4homogeneity = voxel_sim_vars . t ime_stp_shift_for_homogenous_Tx_voxel + 1 ; % PLUS 1 f o r a f t e r homogeneity
% @@ GET INP VARIABLES −−DONE

i f ( numel ( snapshot_times ) == 0)
snapshot_times = [ 0 . 1 0 . 2 0 . 4 0 . 8 1 ] ∗ tend_inSeconds ;

end

voxel_res ide_prob = evl_pstay2D ( voxel_len , D, d e l t a _ t ) ;
voxel_leave_prob = 1 − voxel_res ide_prob ;

rx_indxs = sub2ind ( s i z e ( c u r r _ v o x e l _ s e t _ s t a t e ) , voxel_rx . rows , voxel_rx . c o l s ) ;

% Find the number of s imulat ion s teps
sim_step_cnt = round ( tend_inSeconds / d e l t a _ t ) ;
ha l f_s im_s tep_cnt = round ( sim_step_cnt / 2 ) ;

% Snapshot time i n s t a n c e s
s n a p s h o t _ s i m _ s t e p _ l i s t = round ( snapshot_times / d e l t a _ t ) ;

num_snapshots = numel ( snapshot_times ) ;
curr_snapshot = 0 ;

% Records the molecule d i s t r i b u t i o n at snapshot time i n s t a n c e s
snapshot_voxe l_s ta tes = zeros ( [ s i z e ( c u r r _ v o x e l _ s e t _ s t a t e ) , num_snapshots ] ) ;

% Records the number of molecules a t RECEIVER at each time step
h i t _ t i m e l i n e = zeros ( 1 , s im_step_cnt ) ;

f p r i n t f ( 1 , " \nRUNNING Vortex Based Simulator " ) ;
f p r i n t f ( 1 , " \ nStep :%d/%d " , 1 , s im_step_cnt ) ;
f o r t =t ime_shif t_4homogeneity : s im_step_cnt % s h i f t e d START f o r Homogeneity

i f ( t == hal f_s im_s tep_cnt )
f p r i n t f ( 1 , " \ nStep :%d/%d " , t , s im_step_cnt ) ;

end
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% Evaluate EXITING NumMolecules
v o x e l _ s e t _ e x i t _ m o l e c u l e s = c u r r _ v o x e l _ s e t _ s t a t e ∗ voxel_leave_prob ;

% Remove E x i t i n g Molecules
v o x e l _ s e t _ a f t e r _ e x i t = c u r r _ v o x e l _ s e t _ s t a t e − v o x e l _ s e t _ e x i t _ m o l e c u l e s ;

% Evaluate ENTERING NumMolecules
voxel_set_entering_mask2sum = eval_entering_mask2sum ( v o x e l _ s e t _ e x i t _ m o l e c u l e s ) ;

% Current S t a t e AFTER MOVING/EXITING+ENTERING
c u r r _ v o x e l _ s e t _ s t a t e = v o x e l _ s e t _ a f t e r _ e x i t + voxel_set_entering_mask2sum ;

% CALCULATE RX Molecules
r x _ v o x e l _ s e t _ s t a t e _ b e f o r e _ a b s o r p t i o n = c u r r _ v o x e l _ s e t _ s t a t e ( rx_indxs ) ;
rx_voxel_absorbed = r x _ v o x e l _ s e t _ s t a t e _ b e f o r e _ a b s o r p t i o n .∗ voxel_rx . a r e a _ r a t i o s ;
% Update current s t a t e
c u r r _ v o x e l _ s e t _ s t a t e ( rx_indxs ) = r x _ v o x e l _ s e t _ s t a t e _ b e f o r e _ a b s o r p t i o n − rx_voxel_absorbed ;

% Record the number of NRX molecules
nrx_curr_ t = sum( rx_voxel_absorbed ) ;
h i t _ t i m e l i n e ( t ) = nrx_curr_ t ;

i f ismember ( t , s n a p s h o t _ s i m _ s t e p _ l i s t )
% take snapshot of t h i s s t a t e
curr_snapshot = curr_snapshot +1;
snapshot_voxe l_s ta tes ( : , : , curr_snapshot ) = c u r r _ v o x e l _ s e t _ s t a t e ;

end
end % END< f o r t =1: sim_step_cnt >
f p r i n t f ( 1 , " \ nStep :%d/%d\n " , sim_step_cnt , s im_step_cnt ) ;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
funct ion [ voxel_exit_mask2sum ] = eval_entering_mask2sum ( voxe l_ex i t_molecules )
[ rr , cc ] = s i z e ( voxe l_ex i t_molecules ) ;

s h i f t e d _ r i g h t = [ zeros ( rr , 1 ) voxe l_ex i t_molecules ( : , 1 : end−1)/4] ;
s h i f t e d _ l e f t = [ voxe l_ex i t_molecules ( : , 2 : end)/4 zeros ( rr , 1 ) ] ;

shi f ted_up = [ voxe l_ex i t_molecules ( 2 : end , : ) / 4 ; zeros ( 1 , cc ) ] ;
shifted_down = [ zeros ( 1 , cc ) ; voxe l_ex i t_molecules ( 1 : end− 1 , : ) / 4 ] ;

voxel_exit_mask2sum = s h i f t e d _ r i g h t + s h i f t e d _ l e f t + shi f ted_up + shifted_down ;
end

A.2.3 hby simulate2D voxels diagonal

func t ion [ h i t _ t i m e l i n e , snapshot_voxe l_s ta tes ] = hby_simulate2D_voxels_diagonal ( voxel_sim_vars , snapshot_times )
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% @@ GET INP VARIABLES −−START
env_params = voxel_sim_vars . env_params ;
sim_params = voxel_sim_vars . sim_params ;

d e l t a _ t = sim_params . d e l t a _ t ;
tend_inSeconds = sim_params . tend_inSeconds ;

D = env_params . D_inMicroMeterSqrPerSecond ;
voxel_ len = env_params . voxel_len_inMicroMeter ;

c u r r _ v o x e l _ s e t _ s t a t e = voxel_sim_vars . c u r r _ v o x e l _ s e t _ s t a t e ;
voxel_rx = voxel_sim_vars . voxel_rx ;

t ime_shif t_4homogeneity = voxel_sim_vars . t ime_stp_shift_for_homogenous_Tx_voxel + 1 ; % PLUS 1 f o r a f t e r homogeneity
% @@ GET INP VARIABLES −−DONE

i f ( numel ( snapshot_times ) == 0)
snapshot_times = [ 0 . 1 0 . 2 0 . 4 0 . 8 1 ] ∗ tend_inSeconds ;

end

voxel_res ide_prob = evl_pstay2D ( voxel_len , D, d e l t a _ t ) ;
voxel_leave_prob = 1 − voxel_res ide_prob ;

[ p_aligned , p_diagonal ] = evl_pstay2D_diag ( voxel_len , D, d e l t a _ t ) ;
prop = p_aligned/p_diagonal ;
voxel_al igned_prob = prop /( prop + 1 ) ;
voxel_diagonal_prob = 1/( prop + 1 ) ;

rx_indxs = sub2ind ( s i z e ( c u r r _ v o x e l _ s e t _ s t a t e ) , voxel_rx . rows , voxel_rx . c o l s ) ;

% Find the number of s imulat ion s teps
sim_step_cnt = round ( tend_inSeconds / d e l t a _ t ) ;
ha l f_s im_s tep_cnt = round ( sim_step_cnt / 2 ) ;

% Snapshot time i n s t a n c e s
s n a p s h o t _ s i m _ s t e p _ l i s t = round ( snapshot_times / d e l t a _ t ) ;

num_snapshots = numel ( snapshot_times ) ;
curr_snapshot = 0 ;

% Records the molecule d i s t r i b u t i o n at snapshot time i n s t a n c e s
snapshot_voxe l_s ta tes = zeros ( [ s i z e ( c u r r _ v o x e l _ s e t _ s t a t e ) , num_snapshots ] ) ;

% Records the number of molecules a t RECEIVER at each time step
h i t _ t i m e l i n e = zeros ( 1 , s im_step_cnt ) ;

f p r i n t f ( 1 , " \nRUNNING Vortex Based Simulator " ) ;
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f p r i n t f ( 1 , " \ nStep :%d/%d " , 1 , s im_step_cnt ) ;
f o r t =t ime_shif t_4homogeneity : s im_step_cnt % s h i f t e d START f o r Homogeneity

i f ( t == hal f_s im_s tep_cnt )
f p r i n t f ( 1 , " \ nStep :%d/%d " , t , s im_step_cnt ) ;

end
% Evaluate EXITING NumMolecules
v o x e l _ s e t _ e x i t _ m o l e c u l e s = c u r r _ v o x e l _ s e t _ s t a t e ∗ voxel_leave_prob ;

% Remove E x i t i n g Molecules
v o x e l _ s e t _ a f t e r _ e x i t = c u r r _ v o x e l _ s e t _ s t a t e − v o x e l _ s e t _ e x i t _ m o l e c u l e s ;

% Evaluate ENTERING NumMolecules
voxel_set_entering_mask2sum = eval_entering_mask2sum ( voxe l_se t_ex i t_molecu les , voxel_al igned_prob ) ;

voxel_set_entering_mask2sum_diagonal = eval_entering_mask2sum_diagonal ( voxe l_se t_ex i t_molecu les , voxel_diagonal_prob ) ;

% Current S t a t e AFTER MOVING/EXITING+ENTERING
c u r r _ v o x e l _ s e t _ s t a t e = v o x e l _ s e t _ a f t e r _ e x i t + voxel_set_entering_mask2sum + voxel_set_entering_mask2sum_diagonal ;

% CALCULATE RX Molecules
r x _ v o x e l _ s e t _ s t a t e _ b e f o r e _ a b s o r p t i o n = c u r r _ v o x e l _ s e t _ s t a t e ( rx_indxs ) ;
rx_voxel_absorbed = r x _ v o x e l _ s e t _ s t a t e _ b e f o r e _ a b s o r p t i o n .∗ voxel_rx . a r e a _ r a t i o s ;
% Update current s t a t e
c u r r _ v o x e l _ s e t _ s t a t e ( rx_indxs ) = r x _ v o x e l _ s e t _ s t a t e _ b e f o r e _ a b s o r p t i o n − rx_voxel_absorbed ;

% Record the number of NRX molecules
nrx_curr_ t = sum( rx_voxel_absorbed ) ;
h i t _ t i m e l i n e ( t ) = nrx_curr_ t ;

i f ismember ( t , s n a p s h o t _ s i m _ s t e p _ l i s t )
% take snapshot of t h i s s t a t e
curr_snapshot = curr_snapshot +1;
snapshot_voxe l_s ta tes ( : , : , curr_snapshot ) = c u r r _ v o x e l _ s e t _ s t a t e ;

end
end % END< f o r t =1: sim_step_cnt >
f p r i n t f ( 1 , " \ nStep :%d/%d\n " , sim_step_cnt , s im_step_cnt ) ;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
funct ion [ voxel_exit_mask2sum ] = eval_entering_mask2sum ( voxel_exi t_molecules , voxel_al igned_prob )
[ rr , cc ] = s i z e ( voxe l_ex i t_molecules ) ;

s h i f t e d _ r i g h t = [ zeros ( rr , 1 ) voxe l_ex i t_molecules ( : , 1 : end−1)/4] ;
s h i f t e d _ l e f t = [ voxe l_ex i t_molecules ( : , 2 : end)/4 zeros ( rr , 1 ) ] ;

shi f ted_up = [ voxe l_ex i t_molecules ( 2 : end , : ) / 4 ; zeros ( 1 , cc ) ] ;
shifted_down = [ zeros ( 1 , cc ) ; voxe l_ex i t_molecules ( 1 : end− 1 , : ) / 4 ] ;
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voxel_exit_mask2sum = voxel_al igned_prob ∗ ( s h i f t e d _ r i g h t + s h i f t e d _ l e f t + shi f ted_up + shifted_down ) ;
end

funct ion [ voxel_exit_mask2sum_diagonal ] = eval_entering_mask2sum_diagonal ( voxel_exi t_molecules , voxel_diagonal_prob )
[ rr , cc ] = s i z e ( voxe l_ex i t_molecules ) ;

s h i f t e d _ r i g h t = [ zeros ( rr , 1 ) voxe l_ex i t_molecules ( : , 1 : end−1)/4] ;
s h i f t e d _ l e f t = [ voxe l_ex i t_molecules ( : , 2 : end)/4 zeros ( rr , 1 ) ] ;

s h i f t e d _ r i g h t _ u p = [ s h i f t e d _ r i g h t ( 2 : end , : ) ; zeros ( 1 , cc ) ] ;
shif ted_right_down = [ zeros ( 1 , cc ) ; s h i f t e d _ r i g h t ( 1 : end− 1 , : ) ] ;

s h i f t e d _ l e f t _ u p = [ s h i f t e d _ l e f t ( 2 : end , : ) ; zeros ( 1 , cc ) ] ;
sh i f ted_le f t_down = [ zeros ( 1 , cc ) ; s h i f t e d _ l e f t ( 1 : end− 1 , : ) ] ;

voxel_exit_mask2sum_diagonal = voxel_diagonal_prob ∗ ( s h i f t e d _ r i g h t _ u p + shif ted_right_down+ s h i f t e d _ l e f t _ u p
+ shi f ted_ le f t_down ) ;
end

A.2.4 hby_simulate2D_particles_flow

func t ion [ h i t _ t i m e l i n e ] = hby_simulate2D_part ic les_f low ( env_params , trx_params , sim_params , v_flow )
f p r i n t f ( 1 , " \nRUNNING P a r t i c l e Based Simulator " ) ;

i f trx_params . rx_props . type == 1
f p r i n t f ( 1 , " \ n∗∗∗ Rx ShapeType = SQUARE " ) ;
h i t _ t i m e l i n e = sim2d_particle_SquareRX_point_src_RUNNER ( env_params , trx_params , sim_params , v_flow ) ;

e l s e i f trx_params . rx_props . type == 0
f p r i n t f ( 1 , "\nNOT IMPLEMENTED YET : RX ShapeType = CIRCLE " ) ;

e l s e
f p r i n t f ( 1 , "\nUNSOPPORTED RX Shape Type " ) ;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
funct ion [ h i t _ t i m e l i n e ] = sim2d_particle_SquareRX_point_src_RUNNER ( env_params , trx_params , sim_params , v_flow )
% @@ GET INP VARIABLES −−START
D = env_params . D_inMicroMeterSqrPerSecond ;

t x _ c e n t e r _ p o i n t s = trx_params . t x _ c e n t e r _ p o i n t s ;
r x _ c e n t e r _ p o i n t s = trx_params . r x _ c e n t e r _ p o i n t s ;
rx_props = trx_params . rx_props ; % FOR SQUARE
r x _ s i d e _ l e n = rx_props . side_inMicroMeter ;
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d e l t a _ t = sim_params . d e l t a _ t ;
tend_inSeconds = sim_params . tend_inSeconds ;
num_molecules = sim_params . num_molecules ;
% @@ GET INP VARIABLES −−DONE

% Note : HERE 2D Assumption
rx_min_X = r x _ c e n t e r _ p o i n t s ( 1 ) − r x _ s i d e _ l e n /2;
rx_max_X = r x _ c e n t e r _ p o i n t s ( 1 ) + r x _ s i d e _ l e n /2;
rx_min_Y = r x _ c e n t e r _ p o i n t s ( 2 ) − r x _ s i d e _ l e n /2;
rx_max_Y = r x _ c e n t e r _ p o i n t s ( 2 ) + r x _ s i d e _ l e n /2;

% Find the number of s imulat ion s teps
sim_step_cnt = round ( tend_inSeconds / d e l t a _ t ) ;
ha l f_s im_s tep_cnt = round ( sim_step_cnt / 2 ) ;

% Records the number of molecules a t RECEIVER at each time step
h i t _ t i m e l i n e = zeros ( 1 , s im_step_cnt ) ;

% Standard devia t ion of s tep s i z e of movement N( 0 , sigma )
sigma = (2∗D∗ d e l t a _ t ) ^ 0 . 5 ;

% Each molecule s t a r t s a t Tx Loc ( d e f a u l t i s 0 ,0 in 2D)
mol_posit ion1 = repmat ( t x _ c e n t e r _ p o i n t s , num_molecules , 1 ) ;

% Flow
flow_displace = v_flow∗ d e l t a _ t ;

f p r i n t f ( 1 , " \ nStep :%d/%d " , 1 , s im_step_cnt ) ;
f o r t =1: s im_step_cnt

i f ( t == hal f_s im_s tep_cnt )
f p r i n t f ( 1 , " \ nStep :%d/%d " , t , s im_step_cnt ) ;

end
% propagate the molecules via d i f f u s i o n
mol_displace = normrnd ( 0 , sigma , s i z e ( mol_posit ion1 , 1 ) , 2 ) ; %2D

mol_posit ion2 = mol_posit ion1 + mol_displace + f low_displace ;

% CHECK RECEPTION
inside_RX_mask = eval_inside_RX_mask ( mol_posit ion2 , rx_min_X , rx_max_X , rx_min_Y , rx_max_Y ) ;

% re c e pt i on ( h i t ) count
h i t _ t i m e l i n e ( t ) = h i t _ t i m e l i n e ( t ) + nnz ( inside_RX_mask ) ;

%keep the ones i n d i c a t e d by the outs ide membrane mask
mol_posit ion2 = mol_posit ion2 (~ inside_RX_mask , : ) ;
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mol_posit ion1 = mol_posit ion2 ;
end % END< f o r t =1: sim_step_cnt >
f p r i n t f ( 1 , " \ nStep :%d/%d\n " , sim_step_cnt , s im_step_cnt ) ;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
funct ion [ inside_RX_mask ] = eval_inside_RX_mask ( mol_posit ion2 , rx_min_X , rx_max_X , rx_min_Y , rx_max_Y )
x_min_mask = mol_posit ion2 ( : , 2 ) > rx_min_X ;
x_max_mask = mol_posit ion2 ( : , 2 ) < rx_max_X ;

y_min_mask = mol_posit ion2 ( : , 1 ) > rx_min_Y ;
y_max_mask = mol_posit ion2 ( : , 1 ) < rx_max_Y ;

inside_RX_mask = x_min_mask & x_max_mask & y_min_mask & y_max_mask ;
end

A.2.5 hby_simulate2D_voxels_flow

func t ion [ h i t _ t i m e l i n e , snapshot_voxe l_s ta tes ] = hby_simulate2D_voxels_flow ( voxel_sim_vars , snapshot_times , v_flow )
% @@ GET INP VARIABLES −−START
env_params = voxel_sim_vars . env_params ;
sim_params = voxel_sim_vars . sim_params ;

d e l t a _ t = sim_params . d e l t a _ t ;
tend_inSeconds = sim_params . tend_inSeconds ;

D = env_params . D_inMicroMeterSqrPerSecond ;
voxel_ len = env_params . voxel_len_inMicroMeter ;

c u r r _ v o x e l _ s e t _ s t a t e = voxel_sim_vars . c u r r _ v o x e l _ s e t _ s t a t e ;
voxel_rx = voxel_sim_vars . voxel_rx ;

t ime_shif t_4homogeneity = voxel_sim_vars . t ime_stp_shift_for_homogenous_Tx_voxel + 1 ; % PLUS 1 f o r a f t e r homogeneity
% @@ GET INP VARIABLES −−DONE

i f ( numel ( snapshot_times ) == 0)
snapshot_times = [ 0 . 1 0 . 2 0 . 4 0 . 8 1 ] ∗ tend_inSeconds ;

end

[ p_stay , p_right , p _ l e f t , p_up , p_down] = eval_pstay2D_flow ( voxel_len , D, d e l t a _ t , v_flow ) ;
voxel_leave_prob = 1 − p_stay ;

sum_p = p_r ight + p _ l e f t + p_up + p_down ;

alpha_stay = p_stay/sum_p ;
a lpha_r ight = p_r ight/sum_p ;
a l p h a _ l e f t = p _ l e f t /sum_p ;
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alpha_up = p_up/sum_p ;
alpha_down = p_down/sum_p ;

rx_indxs = sub2ind ( s i z e ( c u r r _ v o x e l _ s e t _ s t a t e ) , voxel_rx . rows , voxel_rx . c o l s ) ;

% Find the number of s imulat ion s teps
sim_step_cnt = round ( tend_inSeconds / d e l t a _ t ) ;
ha l f_s im_s tep_cnt = round ( sim_step_cnt / 2 ) ;

% Snapshot time i n s t a n c e s
s n a p s h o t _ s i m _ s t e p _ l i s t = round ( snapshot_times / d e l t a _ t ) ;

num_snapshots = numel ( snapshot_times ) ;
curr_snapshot = 0 ;

% Records the molecule d i s t r i b u t i o n at snapshot time i n s t a n c e s
snapshot_voxe l_s ta tes = zeros ( [ s i z e ( c u r r _ v o x e l _ s e t _ s t a t e ) , num_snapshots ] ) ;

% Records the number of molecules a t RECEIVER at each time step
h i t _ t i m e l i n e = zeros ( 1 , s im_step_cnt ) ;

f p r i n t f ( 1 , " \nRUNNING Vortex Based Simulator " ) ;
f p r i n t f ( 1 , " \ nStep :%d/%d " , 1 , s im_step_cnt ) ;
f o r t =t ime_shif t_4homogeneity : s im_step_cnt % s h i f t e d START f o r Homogeneity

i f ( t == hal f_s im_s tep_cnt )
f p r i n t f ( 1 , " \ nStep :%d/%d " , t , s im_step_cnt ) ;

end
% Evaluate EXITING NumMolecules
v o x e l _ s e t _ e x i t _ m o l e c u l e s = c u r r _ v o x e l _ s e t _ s t a t e ∗ voxel_leave_prob ;

% Remove E x i t i n g Molecules
v o x e l _ s e t _ a f t e r _ e x i t = c u r r _ v o x e l _ s e t _ s t a t e − v o x e l _ s e t _ e x i t _ m o l e c u l e s ;

% Evaluate ENTERING NumMolecules
voxel_set_entering_mask2sum = eval_entering_mask2sum ( voxe l_se t_ex i t_molecu les , a lpha_r ight , a l p h a _ l e f t , alpha_up , alpha_down ) ;

% Current S t a t e AFTER MOVING/EXITING+ENTERING
c u r r _ v o x e l _ s e t _ s t a t e = v o x e l _ s e t _ a f t e r _ e x i t + voxel_set_entering_mask2sum ;

% CALCULATE RX Molecules
r x _ v o x e l _ s e t _ s t a t e _ b e f o r e _ a b s o r p t i o n = c u r r _ v o x e l _ s e t _ s t a t e ( rx_indxs ) ;
rx_voxel_absorbed = r x _ v o x e l _ s e t _ s t a t e _ b e f o r e _ a b s o r p t i o n .∗ voxel_rx . a r e a _ r a t i o s ;
% Update current s t a t e
c u r r _ v o x e l _ s e t _ s t a t e ( rx_indxs ) = r x _ v o x e l _ s e t _ s t a t e _ b e f o r e _ a b s o r p t i o n − rx_voxel_absorbed ;

% Record the number of NRX molecules
nrx_curr_ t = sum( rx_voxel_absorbed ) ;
h i t _ t i m e l i n e ( t ) = nrx_curr_ t ;
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i f ismember ( t , s n a p s h o t _ s i m _ s t e p _ l i s t )
% take snapshot of t h i s s t a t e
curr_snapshot = curr_snapshot +1;
snapshot_voxe l_s ta tes ( : , : , curr_snapshot ) = c u r r _ v o x e l _ s e t _ s t a t e ;

end
end % END< f o r t =1: sim_step_cnt >
f p r i n t f ( 1 , " \ nStep :%d/%d\n " , sim_step_cnt , s im_step_cnt ) ;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
funct ion [ voxel_exit_mask2sum ] = eval_entering_mask2sum ( voxel_exi t_molecules , a lpha_r ight , a l p h a _ l e f t , alpha_up , alpha_down )
[ rr , cc ] = s i z e ( voxe l_ex i t_molecules ) ;

s h i f t e d _ r i g h t = a lpha_r ight ∗ [ zeros ( rr , 1 ) voxe l_ex i t_molecules ( : , 1 : end−1 ) ] ;
s h i f t e d _ l e f t = a l p h a _ l e f t ∗ [ voxe l_ex i t_molecules ( : , 2 : end ) zeros ( rr , 1 ) ] ;

shi f ted_up = alpha_up ∗ [ voxe l_ex i t_molecules ( 2 : end , : ) ; zeros ( 1 , cc ) ] ;
shifted_down = alpha_down ∗ [ zeros ( 1 , cc ) ; voxe l_ex i t_molecules ( 1 : end− 1 , : ) ] ;

voxel_exit_mask2sum = s h i f t e d _ r i g h t + s h i f t e d _ l e f t + shi f ted_up + shifted_down ;
end

A.2.6 evl_pstay2D

func t ion [ p_stay ] = evl_pstay2D ( L_voxel , D, d e l t a _ t )

sigma = s q r t (2∗D∗ d e l t a _ t ) ;
denumerator = sigma ∗ s q r t ( 2 ) ;

fun = @( x , y ) (1/4) ∗ ( e r f ( ( L_voxel−x )/ denumerator)− e r f (−x/denumerator ) ) . ∗ ( e r f ( ( L_voxel−y)/ denumerator)− e r f (−y/denumerator ) ) ;

p_stay = i n t e g r a l 2 ( fun , 0 , L_voxel , 0 , L_voxel ) / L_voxel ^2;
end

A.2.7 evl pstay2D diag

func t ion [ p_aligned , p_diagonal ] = evl_pstay2D_diag ( L_voxel , D, d e l t a _ t )

sigma = s q r t (2∗D∗ d e l t a _ t ) ;
denumerator = sigma ∗ s q r t ( 2 ) ;

fun_al igned = @( x , y ) (1/4) ∗ ( e r f ( ( 2∗ L_voxel−x )/ denumerator)− e r f ( ( L_voxel−x )/ denumerator ) ) . ∗ ( e r f ( ( L_voxel−y)/ denumerator)− e r f (−y/denumerator ) ) ;

fun_diagonal = @( x , y ) (1/4) ∗ ( e r f ( ( 2∗ L_voxel−x )/ denumerator)− e r f ( ( L_voxel−x )/ denumerator ) ) . ∗ ( e r f ( ( 2∗ L_voxel−y)/ denumerator)− e r f ( ( L_voxel−y)/ denumerator ) ) ;
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p_aligned = i n t e g r a l 2 ( fun_aligned , 0 , L_voxel , 0 , L_voxel ) / L_voxel ^2;

p_diagonal = i n t e g r a l 2 ( fun_diagonal , 0 , L_voxel , 0 , L_voxel ) / L_voxel ^2;
end

A.2.8 eval_pstay2D_flow

func t ion [ p_stay , p_right , p _ l e f t , p_up , p_down] = eval_pstay2D_flow ( L_voxel , D, d e l t a _ t , v_flow )

v_x = v_flow ( 1 ) ;
v_y = v_flow ( 2 ) ;

sigma = s q r t (2∗D∗ d e l t a _ t ) ;
denumerator = sigma ∗ s q r t ( 2 ) ;

fun_stay = @( x , y ) ( v_x ∗ d e l t a _ t + (1/2) ∗ ( e r f ( ( L_voxel−x )/ denumerator)− e r f (−x/denumerator ) ) ) . ∗ ( v_y ∗ d e l t a _ t + (1/2) ∗ ( e r f ( ( L_voxel−y)/ denumerator)− e r f (−y/denumerator ) ) ) ;

fun_r ight = @( x , y ) ( v_x ∗ d e l t a _ t + (1/2) ∗ ( e r f ( ( 2∗ L_voxel−x )/ denumerator)− e r f ( ( L_voxel−x )/ denumerator ) ) ) . ∗ ( v_y ∗ d e l t a _ t + (1/2) ∗ ( e r f ( ( L_voxel−y)/ denumerator)− e r f (−y/denumerator ) ) ) ;

f u n _ l e f t = @( x , y ) ( v_x ∗ d e l t a _ t + (1/2) ∗ ( e r f (−x/denumerator)− e r f ((−L_voxel−x )/ denumerator ) ) ) . ∗ ( v_y ∗ d e l t a _ t + (1/2) ∗ ( e r f ( ( L_voxel−y)/ denumerator)− e r f (−y/denumerator ) ) ) ;

fun_up = @( x , y ) ( v_x ∗ d e l t a _ t + (1/2) ∗ ( e r f ( ( L_voxel−x )/ denumerator)− e r f (−x/denumerator ) ) ) . ∗ ( v_y ∗ d e l t a _ t + (1/2) ∗ ( e r f ( ( 2∗ L_voxel−y)/ denumerator)− e r f ( ( L_voxel−y)/ denumerator ) ) ) ;

fun_down = @( x , y ) ( v_x ∗ d e l t a _ t + (1/2) ∗ ( e r f ( ( L_voxel−x )/ denumerator)− e r f (−x/denumerator ) ) ) . ∗ ( v_y ∗ d e l t a _ t + (1/2) ∗ ( e r f (−y/denumerator)− e r f ((−L_voxel−y)/ denumerator ) ) ) ;

p_stay = i n t e g r a l 2 ( fun_stay , 0 , L_voxel , 0 , L_voxel ) / L_voxel ^2;

p_r ight = i n t e g r a l 2 ( fun_r ight , 0 , L_voxel , 0 , L_voxel ) / L_voxel ^2;
p _ l e f t = i n t e g r a l 2 ( f u n _ l e f t , 0 , L_voxel , 0 , L_voxel ) / L_voxel ^2;
p_up = i n t e g r a l 2 ( fun_up , 0 , L_voxel , 0 , L_voxel ) / L_voxel ^2;
p_down = i n t e g r a l 2 ( fun_down , 0 , L_voxel , 0 , L_voxel ) / L_voxel ^2;
end
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