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1 INTRODUCTION

1 Introduction

In this project we will deal with the Restricted Three Body Problem (RTBP) which is a simplifica-
tion of the general problem of three bodies where we consider one of them with infinitessimal mass
with respect to the other ones called primaries. Although the RTBP does not perfectly fit the real
astrodynamics and celestial mechanics, it is very useful as a first insight and it is specially important
due to the equilibrium points. There are a lot of applications related to them, such as studying the
orbits of a spacecraft under the gravitational effect of the Earth-Moon system or the movement of
Trojan asteroids in a neighbourhood of the triangular points of the Sun-Jupiter system. In 1978 the
ISEE-3 became the first spacecreaft to fly on a libration point orbit (LPO) and from then on there
have been several more missions, such as ACE, SOHO or WMAP. On the other hand, there exists
an orbit around the equilibrium point Lo in the Earth-Sun system which was proposed to place a
space-based observatory with the goal to detect and analyze extrasolar planets similar to the Earth.

The richness of the dynamics of these points is given by the fact that they are center-center-
saddle equilibrium points. This phenomenon gives rise to invariant unstable and stable manifolds of
the equilibrium points which have been widely studied and there are many works related to them as
for example Barrabés, Mondelo and O11é [1]. On the other hand, also because of this property of the
equilibrium points, there exist periodic orbits around each of them from which emanate invariant
stable and unstable manifolds. Given these facts, our main goal in this project will be to study
numerically the behavior of the invariant manifolds of the periodic orbits around the equilibrium
points and understand how they depend on the mass parameter of the primaries and the orbit from
where they start. Although we will explain how to compute the manifolds of the orbits around any
of the collinear equilibrium points, we will only inspect numerically the orbits around the libration
point Ly, which is placed between both primaries, and we will take a certain range of level of energy
associated to the periodic orbit around it in order to focus on a single case as a first step for a
possible further study considering the other equilibrium points and all the energy levels.

The project will be structured as follows. Section 2 states the conventions followed in the
RTBP, the equations of the system, the computation of the equilibrium points of the problem,
some important properties of the system and the Levi-Civita regularization around the primaries,
basically based on the books Meyer, Hall and Offin [5], Stuart and Humphries [7] and Szebehely
[8]. Section 3 gives the theoretical background to prove the existence of the periodic orbits around
the equilibrium points and their manifolds, taking again as guide the results gathered in [5] and
[8]. Finally in section 4 we develop all the numerical procedures used to compute the orbits and its
invariant manifolds, explain the tools to describe their motion and show the results obtained from
them.
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2 The RTBP

In this section we will explain the basic concepts related to the RTBP. After considering the New-
ton’s laws equations, we will deduct the synodical equations, which are the most commonly used
when we deal with this problem. On the other hand, we will introduce the way how we compute
the equilibrium points of the system and their positions on the (z,y) plane. Then we will work with
Hill’s region, which is a property of the problem that gives us the regions of the (z,y) plane where
we can expect that each trajectory moves. Finally, we will introduce the Levi-Civita regularization,
which is very important because it will allow us to integrate close to the primaries without having
issues with the singularities caused by them.

2.1 Equations of motion

The three-body problem describes the motion of three bodies of mass my, my and mgz which are
under their mutual gravitational attraction. In a reference frame such that the origin point is the
center of mass of the system, which is fixed, the movement equations are

= Gm 5 N Gm N N

r = 32(7’2—7’1)+ 33(7’3—7”1)
T2 713

- Gmy, Gms,,

Ty = —5— (M = T2) + —5 (% — 73) (2.1)
T'12 T'23

i Gmy o Gma o

73 = —5— (1 — 73) + —5— (72 — 73)
13 733

where G is the gravitational constant and 7, 75, 73 € R? are the positions of each body and
ri; = ||7i — 7;|| are the distances between them.

In our case, we only focus on the Restricted Three Body Problem (RTBP), where we consider
two massive bodies, the primaries, and a third one which has an infinitessimal mass in comparison
with the other ones. Considering m; and mso the masses of the primaries, then our movement
equations are

- Gms -

7= —— (2 — 1)
12

- Gmy,,

Ty = —gt (71 — ) (2.2)
12

- Gmy,, . Gmy,,

73 = —5— (1 — 73) + —5— (T2 — 73)
T13 T23

so the third body does not affect on the primaries’ movement. We do two additional assumptions,
which are that the primaries perform a circular orbit and that the third body follows an orbit
contained in plane of rotation of the primaries, giving rise to the Restricted Circular Planar Three
Body Problem (RCPTBP).
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2.2 Synodical coordinates

As the third body’s motion is explained by

- Gmy ., Gmso .,
=73 S(7 — ) + 3 2 (Fy — 73) (2.3)
713 T'23
we separate 73 = (X,Y’), hence:

.. X-X X-X

X = —Gm1T§’1 — GmQTS’Q
Y - Y Y - Y- @4

Y = _GmlTl — sz 2

3
1 RQ

where Ry = /(X — X1)2+ (Y — Y1) and Ry = /(X — X2)? + (Y — Y2)2. Given the fact that the
primaries are rotating following a circular orbit, let’s call n their angular velocity and p; and po
their respective orbit radius (where p; + p2 =) and consider M = m; + mq. Hence we have that

X1 = pircos(nt) Y1 = pasin(nt)
Xo = —paocos(nt)

Ys = —pasin(nt)

Considering complex numbers it it easier. Hence define Z = X + Y and z = x + iy, where the

last ones are the new variables we are going to use. Then we have Z = ze™!, Z; = pje
Zg — 7/)26””

nte
so we finally have

and

Ri= /(X - X1)2 + (Y = Y1)? = [ze" — pre™| = [z — p1| = /(& — p1)? + 32

Ry = /(X = X2)2 + (Y = Y2)2 = [2e" + pae™| = |z + pa| = /(2 + p2)? + ¢
We can also compute the equation (2.4) with complex variables, so on the left hand side we have

Z = ze™ tinze™ = Z = (5 + 2inz — n?z)
and on the right hand side

e e ]
-G mq mo .
|z — p1] |z + p2

so we finally have
54 2ni—n’z=—-G|my — M +m22+p2
|z = p1l |2+ p2|

We can separate the real and the imaginary part giving rise to the following equations

(2.5)

. . T — p1 T+ p2
i —2ny —n?x=—-G|m +m
’ [ W= o+ (@t p0)? +y2>3/21

i+ 2ni —ny = -G

+
(@=p 2+ " (e pa)? + )PP

(2.6)
my Yy Yy ]
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or equivalently

& —2ny —n’r = -G mlx —3p1 + mgx +3p2
1 T3
(2.7)
i+ 2nt —n?y = -G ml% —|—m2y3]
i ra
Let us define a very useful function that will simplify our equations:
2
n ml  m2
P a2+ )
g @) +ET 0
and differentiating
oF -
— =nlr— G[mlm 3p1 +m2$+302]
oz Y s
oF 2 Y Y
o -l <
Oy vy i r3 +m2 rs
so we can write the equation (2.5) as
oF
T —2ny = 7
z
OF (2.8)
Y+ 2nt = —
Ay

Taking these two equations and multiplying the first one by &, the second one by y and adding
both we get

...+..._8F.+3F,_dF

T = 5 8yy_ dt

integrating

where C'x is an arbitrary constant, which is known as the Jacobi integral. These equations are also
converted to dimensionless ones, so we do a change of variables as follows

A A L U R L1
_lan_la - 71_l72_l7/’(‘1_Ma,u/2_M
and then we obtain . _
§—2n =1
o (2.9)
ﬁ+2£:Qn
where the function € is P )
o _ _ 2 2 H1 U2
Q_W_§(£ +77)+E+E

There is a convention to add 2 a constant to make this expression more symmetric

_ 1
Q=0+ Stk
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Taking into account that in these dimensionless variables we have that r? = (£ — p1)? + 7% and
r5 = (£ + p2)® +1?, then we get

1
Q:*N1T%+H2T§+&+B
2 1 ro

Differentiating this expression we get

€ = ) pal€ + pra)

Qe=¢-

anﬂ[l—&—@}

So finally we have the equations

{527795 (2.10)

i+ 26 = Q,
With all these changes the new Jacobi integral is

C'* 1

22 .9
C:W+§M1M2:2Q(§ﬂ7)_§ —n.

From now on we assume that pu; + pus = 1, so we can write them as p1 = 1 — p and po = p where
i € [0,0.5]. By doing so the massive body is on the right of the center of gravity and their positions
are pp at (u,0) and po at (u— 1,0). Just to use the typical notation we call z and y the new
variables instead of ¢ and 7. Summarizing our results, the equations of motion of the third body

are
P -2 =Q,
(2.11)
i+ 24 = Q,

where the function 2 is

+

1—u ﬂ}
™ T2

1
Q:i[(l—u)rf—i-ur%—&-

and the distances to both primaries are 11 = \/(z — p)2 +y2 and 2 = \/(z —p+1)2+32. In
addition, we have the Jacobi integral

C =20(z,y) — i — ¢* (2.12)

which is a very useful property when integrating numerically trajectories of the third body because
we can see if it is following properly the trajectory by checking that this value remains constant.

Furthermore, it is important to keep in mind a very useful property of the problem, which is
the well known symmetry
(x7y7i;7y>t) — (.T, Y, _x7y7_t) (213)

This implies that for each solution of the equation (2.11), there also exists another one, which is
seen to be symmetric with respect to y = 0 in configuration space. This symmetry can be easily
proved by simply assuming that (z,y, 4, y) is a solution and then substituting the symmetric values
in the synodical equations we get that it is also a solution of the system.
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2.3 Equilibrium points of the RTBP

Taking the equations of motion in synodical coordinates, we have:

i— 2=,
i+ 2i = Q,

Doing a simple change of variable such that y; = x, y2 = vy, y3 = & and y4 = ¥, we get a first order
ODE system as follows:

Y1 = Y3
Yo = Y4
Yz = 2y2 + le

y4 = —291 + ng

Our goal in this section is to compute the different equilibrium points of the RTBP, which is
equivalent to require that £ =y =0 and
{ Q, =0
Q, =0

Using again the (z,y, ¢, y) notation, we then have

Q,=0 - I A
(- 13- )

{Qm:o - i - 3

Where 71 = \/(z — p)2 + 2 and ro = /(2 — g + 1)2 + y2 are the distances to both massive bodies.
As we see in the second equation, we can differentiate between two cases depending on the value
of y:

e If y = 0: these are the collinear equilibrium points Ly, Ly and Ls, which are aligned with the
two primaries.

o If y # 0: these are the values associated to the points Ly and Ls. In this it is well known that
these points are symmetric with respect to the x-axis and are placed at (u— 1/2,4£v/3/2), see
Szebehely [8].

In figure (2.1) we plot the location of L;, i = 1,...,5 on the (z,y) plane for u = 0.2.

From now on we will only take into account the collinear equilibrium points. As usual, we
consider Ly, Lo and L3 such that zy, < p—1 <z, <p < 2r,. Before explaining how to compute
them, we may introduce a very useful theorem for our purpose:

Theorem 2.1 (Descartes’ Theorem). Given a polynomial agz™ + - -+ + an—12 + ay, the number of
positive roots is less or equal to the number of changes of sign of the coefficients ag, ..., an.
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Figure 2.1: Position of the equilibrium points and the primaries on the (z,y) plane for pu = 0.2

2.3.1 Equilibrium point L,

As y = 0, it’s accomplished that €, = 0, so we only need to focus on the first equation. As
p—1<uazn, <p, wecan use ¢ = p— 1+ &, where &, € (0,1). Using that r, = 1 — &, and
ro = &1, we get

00(20,,0) = 0 4= L6y, — P = e 6, —(B-)eh, + (32006, €, +2Er, =0

(1—¢&0,)* &,

which is the so called Euler quintic polynomial equation. Notice that in the last step we have
multiplied the whole equation by &7 (1 —£&r,)%. If we call the last polynomial as Py (£), we then
have that P;(0) = —pu < 0 and Pi(1) =1 — p > 0, so at least there exists a root of this polynomial
in the interval (0, 1) because of Bolzano’s theorem. In addition, Pj(§) > 0 V¢ € (0, 1), so we arrive
to the conclusion that 3¢, € (0,1) such that P;({z,) = 0. Instead of trying to find the zero of
this polynomial, we can handle its expression in order to reach the following expression:

_ p(l = §)? /3
=Gz g O

So we have changed our goal from finding the zero of Pi(£) to finding a fix point f;(£). Using as

1/3
ﬁ) , see Szebehely [8], we will be able to find the fix point by
defining a succession of values (£,)nen such that & = f1(£—1) for i > 0 and we compute until we
reach |& — f1(&—1)| < &, where € is a the tolerance required.

first approximation &y = (
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2.3.2 Equilibrium point L,

Using the same reasoning as before, x5, < g — 1 so we have xy, = p— 1 — & where & € (0,00).
Using this notation we have that 1y =1+ & and o = &3, so we have:

R el N
(=1+¢1,)% &7,

Calling P»(&) the last polynomial, we have that P»(0) = —u < 0 and P2(1) = 7—7u > 0 so as before
we have at least a root of P in the interval (0, 1). If we take into account the Descartes’ theorem,
we then have that there is a single change of sign so eventually we only have a positive root of
the polynomial, which belongs to the previous interval. Again, we can manipulate the polynomial
expression so we get the following equality:

_ p(1+6)? s
&= (3—2u+£(3—u+§)) = f(8)

Qu(21,,0) =0 = p—1-E1,— = & +(B—p)&l,+(3-2u)E], —pél, 20, —pn =0

After this transformation, we have another fix point problem to be solved the same way as before

1/3
and in this case we use the same initial approximation £, = (ﬁ) .
— K

2.3.3 Equilibrium point Lj

The last equilibrium point to be computed is Ls, the one placed at xr, > u, so we define it as
Tr, = p+EL,, s0r1 =&, and 1o = 1+ £1,. Then we have:
1—p 2

3 Ls

=G+, + (28, — (L — &, —2(1— ), —(L—p) =0

This last polynomial is called from now on as P3(§), which accomplishes that P3(0) = -1+ u <0
and P5(1) = 7u > 0 so we have (at least) a root of this polynomial in the interval (0,1). In addition,
because of the Descartes’ theorem we have that there is at most one positive root of the polynomial,
so we eventually conclude that 3¢, € (0,1) such that Ps3(¢r,) = 0. After a little manipulation, we
get the following equivalent expression:

(e s
¢= (1+2u+§(2+u+§)) =t f3(¢)

Hence, we need to find the fix point of the function f3(£) in order to compute the equilibrium point
L3 and we take as initial value {&g =1 — % 1, see Szebehely [8], and do the same procedure that we
have already seen with the previous equilibrium points.

Finally we provide in figure (2.2) the x coordinate of L;, i = 1,2, 3, depending on u € (0,1/2]
and the corresponding values of the Jacobi integral C; = C(L;), i = 1,2, 3.



2.4 Hill’s regions 2 THE RTBP

4.4 T T T 1:5
— —L4
= L2 B — L2 ]
4.2+ Ls — —L, [ I s ety
=
al
0.5
B
3.8
2
E = x 0
s -
) il -
g3 7
] /A //
// s 05
) //
35| / // 1
| S
[ A =
s//
3 ! | . 15 | | |
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

1 "

Figure 2.2: Jacobi integral and x coordinate of the equilibrium points depending on .

2.4 Hill’s regions

The RTBP has another important property: Hill’s regions. Taking a look to the expression of the
Jacobi integral we have that
20(z,y) — C=i* +9*> >0 (2.14)

Hence, for a certain level C' we can define the Hill’s region as
R(C) = {(z,y) € R? | 2Q(x,y) > C} (2.15)

and the boundary of R(C) which is 2Q(z,y) = C (equivalently & = ¢ = 0) is called the zero veloc-
ity curve. This property implies that for given initial condition (zo, yo, o, Jo) with Jacobi integral
C, we know that whatever the trajectory does, it will never cross the boundary of Hill’s region R(C)).

Defining C; = C(L;), i = 1,...,5, we plot it in figure (2.3) the Hill’s region for a given value

for values of C' greater than C5, which are the values that we want to study. We remark how the
topology of the regions changes whenever C crosses a value C;, i =1, ..., 5.

10
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C>C Cc=C

-
-

®

1Y D
~4 _

9

02<C<C 5 c=C

| 4 e | 4

Figure 2.3: Hill’s region for different values of C' > C3. The shaded area is the permitted one, the rounded points
locate the primaries and the cross points the equilibrium points.

2.5 Levi-Civita regularization

The synodical coordinates are the most natural ones when trying to understand the dynamics be-
hind the equations as they do not involve nothing but basically fixing a rotating reference system
and proportional magnitudes from the Newton equations. The main problem of the synodical co-
ordinates is that there appear two singularities at (u,0) and (# — 1,0). This implies that it is
impossible to inspect numerically when we are close to these points because our methods would not
be accurate, so we must find a way to compute the solutions of the system in a neighbourhood of
the primaries without losing accuracy.

A possible solution is considering the Levi-Civita regularization, which consist of a regularization

for each of the primaries such that we avoid its singularity and there only exists a singularity in
the transformed system of ODE which is placed at the other primary. Taking the expression of the

11
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RTBP in synodical coordinates we have:

T—2y=Q,
> 2+ 2iz = grad,§) (2.16)
42 =9,
d
where Z = d—i, z = x + iy and grad.Q) = Q, +iQ),. Because of the definition of €, if r; — 0

or 1o — 0 then the equations become singular (there is a collision with either of the primaries).
So the goal of this section is to find a regularization of these equations such that we avoid these
singularities. Hence, we consider two transformations

2= f(w)
(2.17)
& glw) = 1 )P

where w = u+iv. We must notice that this transformation involves both time and position. Before
arriving to our equations, we must introduce a proposition which needs some lemmas to be proved.

Proposition 2.1. (i) The equation (2.16), after the transformation (2.17), becomes
w" + 2i| |20’ = | f')2grad,Q + [w*F I
7
with Q(z,y) = Qz(u,v), y(u,v)) = Qu,v).
(ii) Defining U = Q — € and using that C = 2Q(z,y) — (i? + §*) we obtain
W 420 Pl = grad, @7

Proof.
dduds
dw ds dt
5:f 8-|-f” ’sws—i—f’w”s2 —f'w’§+(f”w’2+f'w”)é2
Let us transform grad,Q.
Lemma 2.1. ., ~
f grad,Q = grad,

where grade =Q, +iQ,

Proof.
. df  of . af
= = = > — — =Ty w = — =
s=atiy = f(w) = fup) = ==L oy iy, = -2
From Cauchy-Riemann equations we know that =, = y, and x, = —y, so we have

gradwfl = Qu + in = Qux, + nyu + Z(szv + nyv) = Qpay + nyu + i(_szu + nyu) =
= (zy — W) (Qp +182y) = ?/gradZQ

12
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Hence, equation (2.16) reads
1 -
fw's + (ffw” + f'w)é% + 2if'w's = f,grade

Dividing by f’52 and placing each term properly, we obtain

g ) 2w/ w/2f// 1
w”—i—w’é—Q—i—z : :—T—i— e s grad,, (2.18)
Let us compute = 3=
.1 1 1
S 2= g
g |f I'f s
g . .9 §? g
Lemma 2.2.
. f f//w/
g ?l + ]('/
Proof.
—/ —=/!
d —/ 1,/
_f/i_‘rf/f_(ff—/_kffl/ /) ff/llu_'_ffrl/’u
where in the first equality we have used that
df'  df’ dwds "o
& “dwdsd Y
.,
A _ T _ G dvds
dt dt dwds dt
1
while in the second one we use that § = —;. O

/

So equation (2.18) becomes

e 1", 12 1 B
'LUI/*U}/ ffrl/U +f w +21|f/|2w/:*w f +|f’|2gradwﬂ
7 I I
or equivalently
—r
" e 2,0 | f)2 ) ‘w/‘Zf .
w” + 2| f'*w" = |f'|*grad,Q + —=— =: RT (2.19)

s (i) proves. Let us focus now on the second part of the proposition. We use U = Q- % SO
radwﬁ = grad,,U. Then, from the Jacobi integral

) - w'|?
2P =20 - C =2U <= 2U = |f'P|w'[?s? = ||f,||2 = |[w']*=2/f'PU

13
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So

2 /12 —I B
RT = |7/ Pgradyt + 2L LU pgrad, v + 28 F'0

Now we use the following lemma
Lemma 2.3. If g;(w), go2(w) are real analytic functions of a complex variable w, then:
1. grady(g192) = grgrady,gs + gagrad, g
2. If G(w) is an analytic complex function of a complex variable, then grad,|G(w)|?| = 2G%

Proof. 1.

grady(9192) = (9192)v +i(9192)v = 91,92 + 9192, + 191,92 + ig192, =
= 91(92, +1ig2,) + 92(91, +1i91,) = g1grad,gz + gagrad, g
2. Calling G = R + il then we have
|G|? = R? + I? = grad,|G|* = 2RR, + 211, +i(2RR, + 2I1,)
QG% =2(R+iI)(R, —il,) = 2[RR, + II, +i(—RI, + IR,)] = grad,|G|?

where in the last equality we use Cauchy-Riemann (R, = I,, R, = —1,,).

Therefore,
grady(U|f']?) = Ugrady (| f']?) + | f'Pgrad,U = U2f'F" + |f'*grad,,U = RT

where in the first equality we have used the first part of the lemma and in the second equality the
second part. So finally we have reached our goal because

w4 2l P’ = gradu (U]7'P)
and the proposition is proved. O

When working with the RTBP we must consider the singularities at (u,0) and (u— 1, 0), which
are the position of the primaries, so we will consider a transformation for each of them:

(a) For (u,0) we take z = f(w) = p + w?
(b) For (u —1,0) we take z = f(w) = p — 1 + w?

dt

where z = z + iy and w = u + 9v. So in both cases we have o |f/(w)]? = 4(u® + v?). These
S

transformations will give us the Levi-Civita equations. Hence, using the previous proposition and

these functions, we have in both cases that the movement equations are

u” 40" + 8i(u? +v?) (U + i) = (AU (u? 4+ v?))y +i(4U (u? + v?)), =

14
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u” —8(u? + v = (4U(u? + v?)),
V" + 8(u? + v?)u' = (4U (u? + v?)),

So we only have to take into account that in each case the expression of U is different and that
the equivalence of the w-coordinates with the z-coordinates are not the same. It is also remarkable
that U depends on the Jacobi integral.

As we re-scale the time, we must take into account the change of variables of the velocities

dx uu’ — vv’

5o dz d _df dwds 2uww'’ wu' —ov, w4+ vu! dt  2(u? +0v?2)

= — = — = — = = =
dt dt( (w) dw ds dt  4(u®+v?)  2(u? +0v?) —H2(u2 + v?) dy — w' +ou
dt — 2(u? + v?)

On the other hand, if we want to do the inverse change

uu’ — vv’

B 2(u? + v?) 23 (u? +v?) = uu/ — v’
<~ —
_ow' 4ou! 29(u? + v?) = wv’ + vu'
2(u2 +0v2)
2(u? +v?)(du + yv) = (u? +v*)u’ u' = 2(du + o)
2(u? + v?)(—av + gu) = (u? + v2)v’ v =2(—zv 4 gu)

where both u and v depend on the primary around which we are.

2.5.1 Regularization around (u,0)

As we have already said, we consider z = f(w) = pu + w? and % = 4(u? + v?), where z = x + iy
and w = u + tv. Hence we have

r=p+u?—v?
8 \/x—u+\/(w—u)2+y2
u==x 3
Yy = 2uv
v==2—z+ p+u?
Cwd - T
2(u? + v?) u' = 2(zu + gv)
. w o
y_Z(u2+v2) v = 2(—dv + Ju)

Using this change of variables, the new coordinates of the primaries and the origin point are
z1=p—w; =0

Zo=p—1— wog =21
0.=0-— 0, ==xi\/p
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f ‘ e . 5] f

Figure 2.4: Representation of the change of variables from synodical coordinates on the (x,y) plane (left) and
Levi-Civita coordinates around mi on the (u,v) plane (right). The point called O is the origin point in synodical
coordinates while mj; and mg correspond to the primaries. Characters a-f represent the segments of the x-axis or
the vertical line { = p}. On the other hand, sectors 1-4 make reference to the regions delimited by the z-axis and
{z = p} (left) or the regions delimited by the diagonals and the axis (right).

In figure (2.4) we represent the transformation between both system of coordinates and we can
understand more properly how each region of the plane (x,y) is transformed in the (u,v) plane.
We must notice that actually each point in synodical coordinates (z,y, &, ¥y) have two associated
points in Levi-Civita coordinates (u, v, u’,v") and (—u, —v, —u’, —v’). As we = +i and we only want
an bijective change of variables, we only consider the upper plane in Levi-Civita coordinates (i.e.
v > 0).

As we have seen in the previous proposition, the regularized equation is
w” +2i| f'[Pw’ = grad, (U|f'?)

so we need to express U in terms of v and v.

- C 1 1—p w C
U=0—- = =2[(1 - 2 2 Ll
B 2[( pry + pra] + " + 2
1 1—p 1 C
— 21— 4 1 212 _Y_
21 (l—u)(u2+02)2+u[(u2—v2+1)2+4u2vz]}+ Lo p + K ¢
2 w?+v? (-2 +1)2 + 4up? 2

because 71 = |w?| and ro = |1 + w?|. Hence, after handling properly the expressions, we get that
Ulf')? = 4U(u® + %) =

4p(u? 4+ v?)
V(w2 =02 +1)2 + 4u20?

=2(u® +0°)* +dp(ut — o)+ 2(u — O)(w® + %) + A(1 = p)
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Derivating this expression with respect to u and v, on one hand we get

Spu(u? — 3v? + 1)

n2y _ 2 2\2 3 _
Uf'1%)u = 12u(u® + v°)* + 16pu” + 4(p — C)u + (@@ — 0 + 1)° + L2o?)3/?

while on the other hand we have

8uv(3u? —v? + 1)
(2 — 02 1 1)2 + 4u202)3/2

(U|f’|2)v = 12v(u2 + 112)2 — 16;w3 +4(p—Cv+

Because of these last two expressions, the only points where there exists a singularity are wy = +1,
which correspond to the second primary and its symmetric point with respect to {v = 0}.
2.5.2 Regularization around (p — 1,0)

On the other hand, if we focus now on the regularization around (x — 1,0), as we said we consider

dt
2= f(w)=p—1+w? and Is = 4(u? +v?), where z = x + iy and w = u + iv. Hence we have
s

r=pu—1+u?—0?
8 \/Iu+1+\/(x,u+1)2+y2
u==
2
Yy = 2uv
v=t/—zx+p—1+4+u?
. uu — v —
= —s—ps
2(u® +v?) u = 2(iu+ yv)
. wv’ + vu’
Y= o2 +02) v = 2(—dv + gu)

As in the previous case, we have two associated Levi-Civita points to each of the synodical ones.
In this case we have w; = %1, so we only consider v > 0 and as before we decide the sign of v
depending on the sign of y. Using this change of variables, the new coordinates of the primaries
and the origin point are

71 =p— wy ==x1

Zo=p—1—we =0

0,=0—0,=x/u—-1

As we have seen in the previous proposition, the regularized equation is
w!" 420l '[P’ = grady (U1 ?)

so we need to express U in terms of v and v.

- C 1 1l—p w C
veo_%_Liq_ .2 2 r Y
=Sl L LS
1 1—p I C
— 17 2712 4 [ — —_— =
2[( p)|w "+ plwl™] + lw? — 1| + w2| 2
1 1—p I C
=2 |(1 = w)[(u? — v = 1)? + 4u0? ? “] )
5 (1= wl(u” —v" = 1)7 + du0"] + p(u” + 07) +\/(1;2_1;2_1)24—4@421;2JruQ+112 2

17



2.5 Levi-Civita regularization 2 THE RTBP

because 71 = |w? — 1| and 75 = |w?|. Hence, after handling properly the expressions, we get that

Ulf'|? = 4U(u? + %) =
41— p)(w? +07)

=2(u® + %) —4(1 — p)(u* = v") +2(1 — p = O)(u® +2*) + V(w2 =02 —1)2 4 4u20?

Derivating this expression with respect to u and v, on one hand we get

8(1 — p)u(—u? + 302 +1)
((u? —v2 — 1)2 + 4u2v2)3/2

(U130 = 12u(u® +v?)? = 16(1 — p)u® +4(1 — p — O)u +

while on the other hand we have

8(1 — pw)v(—3u? + v +1)

112 _ 2 2 3
(UIf'7)e = 120(u” +v7) +16(1 — p)v° +4(1 — p — C)v + (w2 =02 —1)2+ 4u2U2)3/2

Because of these last two expressions, the only points where there exists a singularity are w; = +1,
which correspond to the first primary and its symmetric point with respect to {u = 0}.
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3 Periodic orbits around the equilibrium points

Our aim is to find a way to explain the behavior of the manifolds emanating from the periodic
orbits around the equilibrium points. Even though we will do it by numerical inspection, it must
have an analytic justification behind it. In this section we introduce the theorems and definitions
related to the invariant manifolds, its existence and more particularly for our purpose, which are
widely explained in Meyer, Hall and Offin [5] and in Stuart and Humphries [7]. As all of them are
classical results, they are not proven in this project but they appear in many standard textbooks.

Definition 3.1. Let @ = f(x), with f smooth, be a system with an equilibrium point x*. Then we
call this equilibrium point elementary if all the exponents are non-zero.

Definition 3.2. Let & = f(x), with f smooth, be a system with a T-periodic solution ¢p(t,x*). If
the monodoromy matriz has 1 as eigenvalue of multiplicity one for the general case or multiplicity
two if the system has a first integral then the periodic solution is called to be elementary.

Theorem 3.1 (The cylinder theorem). An elementary periodic orbit of a system with a first integral
that lies in a smooth cylinder of periodic solutions parameterized by the integral.

This implies that the orbits around the equilibrium points will be paramaterized by the Jacobi
integral. But before that we must prove the existence of these orbits. Taking the synodical equations
of the RTBP, the differential matrix of the system is

0 0 10
0 0 0 1
Df = Qo Dy 0 2 (3.1)
Quy Qyy —2 0
where ” 2 ) ” )2 )
x—p)?—y x—p+1)*—y
wa:1+(1_u) 5 +/’6 5
1 T2
1—p)(x— r—p+1
me3y<< W=y | pla = ))
1 &
292 — (xz — p)? 2y? — (x — p+1)2
ny:1+(1_ﬂ) (5 ) T ( 5 )
1 ra
and the characteristic polynomial of Df is

Focusing on the collinear equilibrium points, as y = 0 then we have

L—p  p
Qm|y_0=1+2< = +r3>>0

1 2

wa\y:o =0

<0

1—
e
T [

Q| y=0 — 3
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3 PERIODIC ORBITS AROUND THE EQUILIBRIUM POINTS

The first inequality is obvious as r1,79 > 0 and the last one can be easily proved. As we have that

1- - - 1 1-
Qm:xf( u)gx M)iﬂ(ﬂf §L+ ),thenrestrictedtoy:OwehaveQm| 0=%— 2#7%
1 Ty y= 71 T3
and particularly for the equilibrium points as €2, |, = 0 they accomplish
L—p 2
=z — . 3.3
r? . 3 (3.3)

Now focusing on Lo, it accomplishes that x = p — r1, so then the previous equation is equivalent
11—
to 2“ =—pu+r — % So eventually we get
1 2

1 7 L
QL) =1——(r —p-L)-% 3.4
wy(l2) r (Tl # r%) r3 (3.4)

which after being simplified it can be expressed as
n 1
yy( 2) " rg (3.5)

As for Ly we have ro < 1, hence it implies that €2, < 0. The cases of L; and L3 can be proved
using a similar procedure, so they will not be proven in this project as they do not introduce any
interesting result.

Q, Q,
Let us define f; =2 — Saa T 3yy

polynomial evaluated at the collinear equilibrium points can be expressed as

and 5 = —Q,,Q,, > 0, then the roots of the characteristic

pe(A) =M +280° - B3 =0 (3.6)
and equivalently
A= =B +/BF+ B3

Hence the roots are A = +a and A = £iy with a,y € R, meaning that these equilibrium points are
saddle-center. In order to prove that there exist symmetric periodic orbits around the equilibrium
points, we may introduce Lyapunov Center Theorem.

Theorem 3.2 (Lyapunov Center Theorem). Let & = f(x), with f smooth, be a system with a first
integral and an equilibrium point x*, with characteristic exponents £iw, A3, ..., Ay, where jw # 0 is
pure imaginary and the exponents accomplish ﬁ ¢ 7 forj=3,..,m.
Then, there ezists a one parameter family of periodic orbits emanating from x*. Furthermore, the
period of these orbits tend to 5 when approaching to z*.

Taking our equilibrium points, all of them accomplish the assumptions of the theorem and we

consider the Jacobi integral as the integral mentioned, so around each of them there exists a one
parameter family of periodic orbits which are elementary and parameterized by the Jacobi integral.

Let us consider the flow of the RTBP system ¢,(x), which is the point after integrating for time
t with initial point . Hence, we know that for each point g of the T-periodic orbit around L; it

20



3 PERIODIC ORBITS AROUND THE EQUILIBRIUM POINTS

accomplishes that ¢r(xg) = g, so all the points of the periodic orbit are fixed points of the map
x — ¢r(x). Actually it is true for any ¢ = mT where m € Z. In order to prove the existence of
the manifolds of the periodic orbits, we introduce the following definition and theorems:

Definition 3.3. For a linear map x — Bz we define the stable and unstable subspaces as
E® = span{ns (generalized) eigenvectors whose eigenvalues have modulus < 1}

E* = span{n,, (generalized) eigenvectors whose eigenvalues have modulus > 1}

Definition 3.4. Let us consider the map G : R — R"™ with an hyperbolic fized point . Then we
define its local stable and unstable manifolds as

We.={xe€U|G"(z) — T asn — o0 and G"(z) € U ¥n > 0}

Wi, ={z€U|G™"(x) — Z asn — o0 and G "(x) € U VYn > 0}
where U is a neighbourhood of T.

Theorem 3.3 (Hartman-Grobman). Let G : R™ — R" be a (C*t) diffeomorphism with a hyperbolic
fized point . Then there exists a homeomorphism h defined on some neighbourhood U on T such

that h(G(€)) = DG(Z)h(E) for all€ € U.

Theorem 3.4 (Stable Manifold Theorem for a Fixed Point). Let G : R® — R" be a (C1) dif-
feomorphism with a hyperbolic fixed point T. Then there are local stable and unstable manifolds
We (&), WY (Z), tangent to the eigenspaces ES, EY of DG(Z) at T and of corresponding dimen-
sions. W _(Z) and W _(Z) are as smooth as the map G. Hence, we can define the global stable
and unstable manifolds as

We(z) = | G (Wie(2))

n>0

w(z) = J 6" (Wis(2)).

n>0

In our case, we are working with G = ¢r(x) so we have to compute the monodromy matrix
at time T (which is the matrix DG of the theorem). It is known that the monodromy matrix of
an ODE system with a first integral has a double multiplicity eigenvalue 1 (see Meyer, Hall and
Offin[5]). As in the RTBP we have the Jacobi integral then the monodromy matrix will have two
eigenvalues 1. Actually, the monodromy matrix of the RTBP has the set of eigenvalues {1,1,1/\ A}
with A > 1. Hence, when restricting to C' constant the significant eigenvalues are 1/\ and A so we
can apply the previous theorem because all the fixed point (points of the orbit) are hyperbolic. So
finally we have proved that the stable and the unstable manifolds of the periodic orbits exist and
we can start our study with the proper background.
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4 Numerical simulations

The existence of symmetric periodic orbits around the collinear equilibrium points, which give rise
to invariant manifolds from them, has been proved in the previous section from the theoretical
point of view. Once we have reached this result, a natural continuation is to find them numerically.
Hence, our goal in this section is to study the behavior of the invariant manifolds of these orbits
around the collinear equilibrium points. We must take into account that it depends on the value
of u and the Jacobi integral associated to each orbit, so we must compare the behavior obtained in
each case by varying these constants.

We can separate the stable manifold (WW*) and the unstable manifold (WW*) into two different
branches which can be denoted as:

o W"/* abranch that tends (backward/forward) to the orbit from the lower half region {y < 0}.

) Wf/ * a branch that tends (backward/forward) to the orbit from the upper half region {y > 0}.

Despite the fact that there are four branches associated to each orbit we do not need to study the
four of them because of the symmetry of the problem, see figure (4.1). So we will only focus on the
behavior of W} and W*, which have the same interpretation that W2 and W7y, respectively.

0.5
0.1

0.05 [

-0.05

-0.15

1 1
-0.9 -0.85 -0.8 -0.75 0.7 -0.65 -0.6

Figure 4.1: The Lyapunov periodic orbit (PO) and its stable (green) and unstable (red) branches of W*:5(PO),
case of the orbit around L for p = 0.2 and C' = C3. The symmetry is clearly seen in the picture.
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4.1 Computation procedure

In order to avoid numerical problems due to the singularities of the problem, we use three different
systems of coordinates which have been widely explained in the previous section:

e For points where r1, 72 > ¢ we use synodical coordinates.
e For points where r; < e we use Levi-Civita coordinates around (u, 0).
e For points where ry < ¢ we use Levi-Civita coordinates around (u — 1,0).

where ¢ > 0 is the tolerance chosen (during our study we have used e = 1073) and r; and ro are
the distances to each primary using synodical coordinates. As it is more intuitive using synodical
coordinates than Levi-Civita coordinates, we only use Levi-Civita when we are integrating close
to one of the primaries but after having integrated we compute the equivalent points in synodical
coordinates so all the points are expressed in these coordinates. This procedure is a key part of the
project and must be clearly understood by the reader as it ensures that the whole study remains
accurate and does not give false behaviors.

Although considering these change of coordinates avoids the singularities of the primaries, a very
important issue is to keep the accuracy during the whole integration whichever are the coordinates
we are using, so the best way is to check for every step of the integration if the Jacobi integral
remains constant as it is an inherent property of the RTBP from the analytic point of view.

The procedure to compute the periodic orbits around the equilibrium points is nothing more
than a problem of a zero of a function. We are looking for the symmetric orbit with respect to the
x-axis in the (z,y) plane around L; with Jacobi integral C, so actually we just need to find half
of the orbit. Due to this symmetry, both the initial and the final points must accomplish & = 0
and y = 0, which means that we cut perpendicularly {y = 0} at ¢ = 0 and ¢t = T/2, where T
is the period of the symmetric orbit. Using the initial value zy > zr, then from the initial point
(20,0,0,90), where g9 = —1/2Q(zo,0) — C because of the expression of the Jacobi integral and
the retrograde movement of the orbit, we integrate until we cut {y = 0} so we have the point
(xf,0,%7,97). Hence, we are looking for a suitable initial value such that &; = 0 when y = 0,
which is the perpendicularity condition, so it will provide an initial condition (zg,0,0, %) of the
symmetric periodic orbit.

It is very important to find the best approximation of the orbit, so the accuracy must be as
precise as possible because it is the first step of the whole study. To do so, and in order to compute
the family of periodic orbits, we start by finding the periodic associated with C; — AC, where C;
is the Jacobi integral at the point L; and given AC. Once we have the suitable initial condition,
we consider a new value C; — 2AC and obtain the corresponding initial condition of the associated
periodic orbit an so on. With this procedure we obtain a family of periodic orbits parametrized by
C' in a certain range of values C. In figure (4.2), we plot some periodic orbits around L;, i = 1,2,3
for y =0.2 and C = C; — 0.05k, k= 1,...,10.
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Figure 4.2: For p = 0.2 we take 10 symmetric orbits around the collinear equilibrium points with C' = C; — k-0.05
with k=1,...,10.

Once we have the orbit around L; we can start computing its invariant manifolds. Let us assume
that g is a point of the orbit and T is the period of the orbit and by definition if we call the flow
of the orbit as ¢.(x¢), it accomplishes that ¢r(xg) = xg. Here is important the role played by the
variational equations of the system, which are

Y = A()Y, Y(0) = Id (4.1)

where Y = D, ¢, and the matrix A(t) is

0 0 1 0
0 0 0 1
AO=1 a0, 0, 0 2
Quy Dy 2 0

For each point xy of the orbit we integrate the variational equations and its trajectory both at
the same time for ¢ € [0,7] so we finally have the monodromy matrix Y (T), which has the set
of eigenvalues {), %, 1,1} where A > 1 and its eigenvectors give the direction of the perturbations
that will give rise to the stable and the unstable manifold. The first eigenvalue is associated to the
unstable manifold and the second one to the stable manifold, so let us call v, and v4 the unitary
eigenvectors associated to these eigenvalues and we take the orientation of the eigenvector such

that the second coordinate of the vector is positive. Once we have these vectors we can compute
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the invariant manifolds as follows: from a given point p of the periodic orbit, we take as initial
condition of the associated orbit in the manifold p + s - v where s = 107% and v is the eigenvector
chosen depending on the manifold we want to compute and the sign refers to which branch of the
manifold we want to study. Hence, in our case we take p + s - v, for W} and p — s - v, for W*.
Although this procedure can be done with any point of the orbit we only choose a finite number
of initial conditions in the linear approximation of the manifold. A posteriori, we check that this
approximation is good enough for our purpose. We integrate forward in time each initial condition
giving rise to a trajectory on the corresponding branch W*. Taking a finite set of initial conditions,
we will obtain a finite set of trajectories on W™.

4.2 Dynamical behavior of the invariant manifolds

In this section it has been described how to find the periodic orbits around the collinear equilibrium
points from a general point of view so the procedure explained would be valid for any of the three
collinear points. In this project we focus our attention on L; and consider the range of values
C € [Cs,C1). As we have seen in section 2, the manifolds of the orbit around L; are enclosed inside
the area defined by the Hill’s region of that level of C, which contains both primaries and L; but
neither it contains Lo (except for the case C' = Cy where Lo belongs to the boundary of the region)
nor L3, so they will have no effect on the manifolds’ behavior.

Let us fix a value of y and a value of C. Let us consider the T-periodic orbit around L; and
we call its initial point when we compute it as xg = (20,0, 0,90) with 2o > zr,. Then each point
&, that belongs to the orbit will be identified with the number § = % € [0, 1] where ¢ is the time
needed to reach &y starting from xg. From now on we will refer to the value 6 as the normalized
time of the point x.

A very important remark is that we parametrize the set of initial conditions of W (or W) by
0 in the sense that for each 6 we consider the corresponding initial condition of the orbit on W* as
a perturbation perturbation of the point Zg, as explained above.

Once we have a periodic orbit around L;, we want to study the behavior of the associated
manifolds W*?. To do so, as we have already said, we will take a finite number of trajectories
on W* (by symmetry on W*¢) so we take a finite number of points of the periodic orbit, and the
corresponding suitable initial conditions of the orbits on W*. We will integrate forward in time
each orbit until we reach a certain condition.

In order to have a first intuition of the dynamics of the invariant manifolds, we compute W* and
W2 up to the second cut with the sections {x = p} and {2 = p— 1} respectively for different values
of y and C. In figure (4.3) we plot W and W* for particular values of y and two specific values of
the Jacobi integral C = Cy and C = (Cy + C3)/2 and we notice that for these two levels of C' the
most remarkable difference is that for the smaller value of C the pipe created by the manifolds is
wider than in the greater value case as the periodic orbit describes a bigger trajectory from L;. On
the other hand, when we vary the mass parameter p we can see more important changes. When p
is small, because of the proximity of the small primary to L1, W} gets really close to the primary
while W* stays further from the massive primary. Then, as p increases the figures show us that

1 gets further but W* gets closer, basically because the distance to each primary increases and
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decreases respectively. At first sight it may be surprising that for W* we get closer to m; because
for small values of u there exists a huge difference of masses so we would expect that this manifold
would tend much more to the massive body.

£=0.001 C=§.0396142 £=0.001 C=3.040281
0.5 \\%‘ 0.5
> 0 > 0 o x
-0.5 -0.5
2 -1 0 1 2

0.4 0.4
0.2 0.2
> 9 > ol x )
02 -0.2
-0.4 -0.4
1
0.6 0.6
04 0.4
.. 02 > 02
0 0fx x
0.2 0.2
1
X
1=0.5 C=3.9783981
0.4 0.4 PN
0.2 0.2 Z N
> 0 > 0 3 x
-0.2 -0.2
-0.4 -0.4
1 0.5 0 0.5 1 1 0.5 0 0.5 1
X X

Figure 4.3: W (red) and W (green) up to the second cut with sections {x = pu} and {z = pu — 1} respectively for
different values of p and C = C2 (first column) or C' = (Cq + C2)/2 (second column).

After having a first insight of the problem, let us consider the section minimum distance
X, ={ri=0,7 >0} (4.2)

where r; is the distance to the massive primary if ¢ = 1 or the small primary if ¢ = 2, depending on
with respect to which body we want to study the distance. For each trajectory on W*, we integrate
forward in time up to the m-th cut with the section, so for each initial point of the orbit, identified
by a number 6 from 0 to 1 as explained before, we will have m points of minimum distance. Plotting
0 versus the distance of the minimum then we will understand how each trajectory on W* behaves
and how close to the body it gets. Moreover, it would be interesting to detect the collisions with
the primaries, so we consider the cross product

which will give us information about how the trajectory moves with respect to the primary when
we cut the section ¥,,. We will overlap the plot of the distance and the cross product of the cuts
with the section so when we have a distance really close to zero and the value of the cross product
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cuts the x-axis, at that point there will exist a collision with the primary.

When we use the section ¥,, we have to take into account that we must distinguish which
branch we are studying and with respect to which primary, so eventually we have four cases. Once
we started to compute the intersection with 3,, we noticed that we detected minimum distance
points when the trajectories were still in a neighbourhood of the periodic orbit that caused disconti-
nuity issues due to the fact that depending on the initial point of the orbit we detected a minimum
near one of the intersections of the orbit with the x-axis or the other. Hence, we decided to create
an initial region where we do not consider the minimum points of a trajectory until it has crossed
the boundary of this region. Let us assume that z,,;, and x4, the minimum and the maximum
value of the x-coordinates of the points of the orbit and 4., and Ymqe, the minimum and maximum
values of y. Then we define Ax = Zpaz — Timin and AY = Ymaz — Ymin- Lhen we chose arbitrarily
the initial region as {(x,y) € R? | Zpmin — AT < T < Tinax + AL, Ypmin — BAY < Y < Ymax + Ay},
where we have generally used a = 8 = 0.5, although we must adapt these values to each case. In
figure (4.4) we can see an example of the initial region where we have used & = 0.5 and g =1 for
the case = 0.05 and C' = Cs.

0.8
0.6

0.4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

Figure 4.4: W up to the second cut with X,.; for the case of 4 = 0.05 and C = C>. The crosses locate the minimum
distance points of each trajectory. The shaded area is the initial region where we do not gather the minimum distance
points. In this case we have used a = 0.5 and 5 = 1.

Once we have all the previous considerations stated we can start to compute the invariant
manifolds, considering the plots up to the first cut with X,,. As W is pointing to m;, we consider
the first intersection with 3,, for C' = Cy and C = (C; 4 Cs)/2 for different values of p.
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Figure 4.5: First intersection of W* with 3, . We overlap r; (red) with the cross product r1 x 71 (blue) for
different values of p. The first column refers to C' = C3 and the second one to C' = (C1 + C2)/2.
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Figure 4.6: Zoom of the first intersection of W* with ¥,,, p = 0.5 and C = C2. We appreciate collisions with m1
for 61 = 0.692 and 62 ~ 0.907. We plot r; (red) and the cross product r1 X 71 (blue).

As we see in the figure (4.5), it follows the behavior seen in figure (4.3), where as p increases
we get closer to my. Furthermore, ;. = 0.5 is the only value where the difference between the two
levels of C' is remarkable because for C' = Cy we detect two collisions at normalized time 6; ~ 0.692
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and 6, ~ 0.907 as the function r; X 7 crosses the x-axis and the distance function is numerically
0, as it can be seen in figure (4.6).

An important fact that we start to notice in this figure is that for 4 = 0.5 there appear jump
discontinuities for both levels of C'. The discontinuity of C' = Cs is produced at normalized time
0 ~ 0.407 and the discontinuity of C' = (Cy + C3)/2 is produced for a small interval of normalized
time 6 € [0.522,0.526]. These discontinuities will be explained later in this section with more details.

On the other hand we consider W with respect to mg using 3,,. As figure (4.7) shows, there is
not a significant difference on the general behavior of the manifold when varying C' apart from the
fact that we have collisions for C = C3. We detect four different collisions with ms, two of them
for u = 0.1 and the other two for ;1 = 0.5 while for the other value of C we have not detected any
collision for these cases at the first minimum distance.

The main difference obtained has been when varying p. For the smallest values we see that all
the minimum distance points are quite close to my while for greater p there are points which get
further from it but other ranges of points get so close that there even exist collisions for the two
greater values studied.

It is also remarkable the discontinuity found for 4 = 0.1 and C' = Cy, which is equivalent to the
ones of = 0.5 and C = (Cy + C2)/2. As before, it will be explained later for another particular
case. In addition, we must notice that the graphics for u = 0.5 are like the ones obtained for W*
but with a translation on the normalized time value of 0.5 (meaning half orbit), which is quite
obvious due to the fact that both primaries have the same mass so their attraction is equal.
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Figure 4.7: First intersection of W} with X,,. We overlap r2 (green) with the cross product r2 x 72 (blue) for
different values of p. The first column refers to C' = C and the second one to C' = (C1 + C2)/2.
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Figure 4.8: Zoom for the first intersection of Wﬁ with ¥,,, 4 = 0.1 and C = Ca. Collisions with ma for 61 ~ 0.333
and 02 ~ 0.455. We plot 72 (green) and the cross product r2 x 72 (blue).

In figure (4.8) we see the collisions with mg for the case = 0.1 and C = C5. The collisions of
the case u = 0.5 and C' = C5 are not plotted because they are equivalent to the ones seen in the
other branch of the manifold as we have explained before.

On the other hand, we can consider the second cuts of these manifolds with each section. As
we can see in the figures (4.9) and (4.10), in the second cut there start to appear important discon-
tinuities issues which have to be studied one by one and does not let us study properly the general
behavior of the manifolds. Also due to these discontinuities, it is quite difficult to interpret the
cross product r; x 7; overlapped with the distance to the primary, so in these cases we will not plot it.

In figures (4.9) and (4.10), specially in the second one, we see a lot of discontinuities. In part
because of them, we appreciate that some of the distance values are close to 1 or even greater than
it, so we suspect that maybe these trajectories have escaped to the other primary. When doing
this justification we must take into account the shape of Hill’s region for C' = (5 as it can be seen
in figure (2.15). Thanks to this property of the RTBP we can claim that if the trajectory is at
distance 1 or greater, it must be close to the other primary.

Except for the case p = 0.5, the invariant manifold W* keeps almost the same distances with
respect to my than for the first intersection. Actually for small values of p this manifold keeps
rotating around m; for much greater number of intersections, which is justified by the more im-
portant attraction caused by the massive primary with mass m; = 1 — p. On the other hand the
invariant manifold W} does not behave so well, appearing much more issues than for the other
branch, justified again by the difference of masses between both primaries which causes that m,
has more attraction than msy.
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Figure 4.9: Distance of W to mi at the second cut with ¥,,. The first column refers to C' = C2 and the second
one to C = (C1 + C2)/2.
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Figure 4.10: Distance of Wﬁ to mao at the second cut with X,,. The first column refers to C' = C2 and the second
one to C = (C1 + C2)/2.
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Let us focus on the crossed cases where we consider W* with respect to my and W} with
respect to mi. As we are trying to find the minimum distance points with respect to the pri-
mary where we are not pointing there appear discontinuities on the first cut with the minimum
distance section as we can find trajectories that initially go to the primary where they are pointing
and then tend to the other primary before finding the first minimum distance point while other
really close points of the orbit start its trajectory and stay near the primary where they are pointing.

5 14=0.001, C=3.0396142 o 14=0.001, C=3.040281
B v 1 0 L L L L L £ L L
S N T .
- ‘ ‘ ] i i I 01 02 03 —67 05 O 08 09
[ 01 82—03 04 05 06 07 Us—69
1 05
3 £1=0.01, C=3.1642195 i £1=0.01, C=3.1708804
05f ] | e TCTEY N B R L oo
ol %1 02 O 5 0 Or 08 03 01 02 03 04 05 06 07 08 09
05 ] 05 1
=3 4
Ak i
15
5 £1=0.1, C=3.5566844 5 p=0.1, C=3.6218188
it _—
" 0T [} 03 (3 05 06 0.7 08—09 o 0.1 0.2 03 o x:3 05 06 07 08 —B9—|
2t /_\ - 2t R S S S ——
4 4
5 £1=0.5, C=3.7067962 B 1=0.5, C=3.9783981
[—e+—e» 03 04 05 06 07 08 09—
0 T T T - T T T - T =
,—OT_ 02 03 07 o3 06 o7 —os—TT—]
4t ] ) / 1
6k . =

Figure 4.11: First intersection of W* with X,,. We overlap r1 (red) with the cross product » x 7 (blue) for different
values of p. The first column refers to C' = C2 and the second one to C = (C1 + C2)/2.
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Figure 4.12: Zoom for the first intersection of W* with X, for u = 0.5. We overlap r1 (red) with the cross product
r X 7 (blue) for different values of u. We appreciate two collisions for C = Cs at normalized time 6; ~ 0.451 and
02 ~ 0.458. The case C' = (C1 + C2)/2 does not show collisions.

As we see in figure (4.11) we do not detect any collision with the primary for the three first
values of p as we are studying W* with respect to mo but we detect some discontinuities that will
be studied deeper later. Although the first three values of i does not give us much more information
than what we already knew, the last one gives us a surprising behavior as for both values of values
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we detect an interval of values of normalized time such that the branch gets very close to mo while
the other ones stay further. In addition we see in figure (4.6) that actually we detect two collisions
with the primary for normalized time 6, ~ 0.951 and 03 ~ 0.958 for p = 0.5 and C' = C while for
the case where C = (C1 + C3)/2 we do not detect any collisions.

Comparing it with the results given by figure (4.9), we see that these same interval of values
where we see discontinuities for the first cut of W* with the section ¥,, are the same ones that
gave us discontinuities for the second cut with section %, .

On the other hand, considering the other crossed case where we study W2 with respect to my,
we see again some intervals of discontinuities in figure (4.13) because of the same fact than in the
previous case. In addition we don’t detect any collision for the three first cases but for the last one,
because of the symmetry of the case ;. = 0.5 between both branches, we can use the same reasoning
to justify that there exist two collisions with m, for C' = C5 for 6; ~ 0.951 and 6 ~ 0.958 and for
C = (Cy + C3)/2 we do not detect any collision.
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Figure 4.13: Tirst intersection of W} with X,,. We overlap 72 (green) with the cross product » x 7 (blue) for
different values of p. The first column refers to C' = C3 and the second one to C' = (C1 + C2)/2.

In the previous figures we have only considered up to the first or the second cut with the section
because for greater number of cuts there were too many discontinuities so we couldn’t do a good
general comparison between the different cases. Although the discontinuities may seem like an error
of the procedure or something bad, they hide a very rich and useful meaning behind them. After
studying all the cases we have found three different types of discontinuities:
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1. Problems with the initial region
2. Homoclinic trajectories
3. Detection of progressive minimums

The first case is basically the one that we can see in figures (4.5) and (4.7) for p = 0.5 and
C = (5. There appears a jump discontinuity because the first minimum points of the trajectories
tend to the boundary of the initial area when varying the initial point associated and then we reach
an interval of values which have the first minimum inside the region so we do not detect it even
though by continuity it exists. Hence, whichever initial region we decided we could not avoid this
discontinuity neither for ¥, nor for ¥,.,. As we can see in figure (4.14) where the minimum distance
points (marked with crosses) tend to the initial region until there is a value where the minimum is
inside the region so we do not consider it.

Figure 4.14: Projection on the (z,y) plane of W* up to the first cut with ¥, for p = 0.5 and C = C3. The crosses
mark when the minimum distance is detected.

Let us focus now on p = 0.01215, which is the mass parameter of the system Earth-Moon,
and C = (5 in order to explain the different discontinuities with a real case which makes it more
interesting. Although from now on we will study this particular case, this procedure could be done
with other cases because after having done inspections with different values of p and C| the discon-
tinuities found have the same behavior as the ones of the Earth-Moon system, so we will explain
them for this particular one.

As we have seen, the branch W™ has a very good behavior when p is small, so for this particular
case we have inspected up to the fourth cross with ¥,, and the behavior seen is quite uniform
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giving a very well defined shape of the invariant manifold when plotted as we can see in figure
(4.15) and without having neither any discontinuity of the distance function nor any collision with
the primaries for the first four intersections.
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Figure 4.15: Projection on the (z,y) plane of W up to the fourth intersection with %,,. The crosses mark where
the minimum distance points of each trajectory are produced.

The second type of discontinuities that we have mentioned is the case where there exists a point
belonging to the orbit such that its associated trajectory ends up again in the initial orbit. Let
us consider W* up to the second cut with the section ¥,,. This is one of the crossed minimum
detection which give rise to discontinuities even at the first intersection for certain p values.

Focusing on W} with respect to mo and considering up to the second intersection we get the
figure (4.16) plots we can see the second type of discontinuity. Taking a small interval of the
normalized time in a neighbourhood of 8 = 0.092 we realize that after the first minimum distance
with ms, which in some cases is quite close as we can notice, some trajectories get close to the initial
orbit and some of them go back to ms but other ones scape to the other primary, but between them
by continuity we can assure that there exists a trajectory such that after the first minimum point
we go back the initial orbit.
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Figure 4.16: W first (left) and second (right) intersections with X,,. Overlapped r2 (green) and r2 X 2 (blue).
Case of p = 0.01215 and C' = Cs.

In figure (4.17) we can appreciate that the trajectory associated to § = 0.092631 after getting
really close to the initial orbit, it goes back close to mo while the one associated to 8§ = 0.092637
does not stay but it goes to my. Although the second trajectory finally escapes, we see a certain
tendency to follow the shape of the initial periodic orbit around L. Hence, by continuity it must
exist a value 6 € (0.092631,0.092637) such that it creates an homoclinic orbit.
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Figure 4.17: Projection on the (z,y) plane of the trajectories of §; = 0.092631 (blue) and 62 = 0.092637 (orange)
for the case p = 0.01215 and C' = C2. We take up to the second intersection of W} with Zr,.

Finally, we refer to the third type of discontinuities as progressive minimums. We call them
this way because we mean that there exists a range of points of the orbit that reach a minimum
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distance with respect to either of the primaries but other close to this interval does not detect it.
These phenomenon creates a jump discontinuity on the graphic of the distance, but plotting the
graphic of the 7; against the time for a small group of points belonging to a neighbourhood of the
one associated to the discontinuity we can understand why do we detect a minimum only for a
group of points, as we can see in figure (4.20).
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Figure 4.18: W first (left) and second (right) intersections with ¥,,. Overlapped ro (red) and r2 x 72 (blue).
Case of u = 0.01215 and C = Cs.

The discontinuity produced at 6 =~ 0.105 at the right hand side of the figure (4.18) is quite
clear that for smaller values (such as # = 0.104) we detect the second minimum distance point
much sooner than for greater ones (such as § = 0.106). In order to understand it we can take a
look to figure (4.20) where the function 79 associated to 6 = 0.104 crosses the x-axis producing a
minimum point while the other trajectory clearly does not reach a minimum. We must notice that
the minimum distance points are produced when we cross the z-axis from the region {r; < 0} to
{r; > 0} as in this case we will have #; > 0, otherwise we reach a maximum distance point.
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Figure 4.19: Trajectores of the points associated to § = 0.104 (left) and 6 = 0.106 (right) taking the W* branch
up to the second cut with section ¥,,. Marked with crosses the minimum distance points to mo.
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Figure 4.20: Representation of the function 72 with respect with time for the initial points associated to 6§ = 0.104
(blue) and 6 = 0.106 (orange) of W™ for p = 0.01215 and C = C2. Complete evaluation up to the second minimum
distance point (left) and zoom of the function at the reason of the discontinuity (right).

This behavior is intrinsic to the manifolds’ dynamics and it is impossible to avoid, so we must
take into account that when studying the RTBP with section 3,, there can appear these type of
discontinuities. All the other discontinuities of the second intersection of the figure (4.18) are due
to the same fact.

In spite the only way to assure the kind of discontinuity given a plot of the distance to a primary
is to explore it numerically, after having done a lot of inspections we detect a certain tendency that
enable us to distinguish them. If we face discontinuity such that at the edges of the distance function
is quite vertical then we are most probably facing a discontinuity due to an homoclinic trajectory.
In this case, if we could take an infinite number of points we wouldn’t find this discontinuity but
as we are using numerical methods it is not possible so we see it as a discontinuity. In case that we
have a discontinuity where the edges of the interval change does not create this vertical shape, then
we will face a case of a progressive minimum or a problem with the initial region. In case that the
discontinuity is found at the first cut then we will need to inspect it numerically to decide but if it
is for a greater number of cuts then it will be for sure a progressive minimum point. It is important
to keep in mind that once we have a discontinuity for a certain value 6 then all the following cuts
with the section will show a discontinuity at that value.
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5 Conclusions

Despite the fact that this project is mainly numerical, it has been necessary to do a deep study
of the theoretical background related to the RTBP as all the following procedures and results rely
on it, specially important has been the research and work devoted to Levi-Civita regularization
because they avoid having singularities which would have caused that our study was not reliable at
all. On the other hand, once we proved the existence of the periodic orbits and their manifolds we
could start computing them numerically.

The main core of the project has been the one devoted to the numerical study of the problem.
We developed a method to compute the orbits around each of the collinear equilibrium points and
their manfolds, so we could continue this project in the future considering a more general case
where we could take the orbits around Lo and Ls. Our main goal was to describe the dynamics
of W™ of the periodic orbits around L1, so we spent a lot of time and energy trying to find the
best way to describe them graphically. We worked with different sections in order to study the
invariant manifolds, such as {y = 0}, { = p} and {& = p — 1}, and after trying to understand
all the difficulties and taking into account which of them give us more information we decided that
the minimum distance was the one that fitted the best with our purpose. The section ¥,, has the
discontinuities as an inherent property, so we had to adapt to this fact. Thanks to the study of this
section and its discontinuities we have seen collisions with both primaries, homoclinic trajectories
that emanate from the orbit and return to it and the progressive minimums, being able to distin-
guish between the discontinuities graphically almost for any case.

Once we have studied all the different cases, we have found out that a general study of the case is
quite hard to do because when we increase the number of cuts with the section the discontinuities
also increase because if a discontinuity appears at the m-th cut, then for all the greater cuts it
will appear too. Hence the analysis of the results are quite complicated to compare between the
different values of p and C used, so this study might be better done case by case studying each of
them separately so we can discard in each case the discontinuities found and follow the behavior of
the manifold comparing the results found with ¥,, and %,,.

This project has been quite challenging for me, on one hand because of the conceptual difficulty
of the project itself but particularly because it meant to me a big change of mind on how to face
this problem. During the degree we are used to working with a clear path to follow when doing
an exam, a project or any kind of exercise as we usually follow the guide and tips of the professor
who previously has worked on the case and exactly knows what happens, then more or less we
know what results we can expect. In this project we had a clear goal, but not a clear path, we have
worked on the strategy to reach it, we found unexpected problems which surprised us and we solved
them by trying other ways to overcome the situation or taking them with a different perspective
so this issue could become a great result, as it happened with the discontinuities found during our
study. Hence, although the Final Degree Project has given to me knowledge and experience dealing
with the RTBP and the manipulation of numerical procedures, I think that the richest part of the
project has been the one related to learn how to organize, to have the capacity of rethinking the
strategy and how to overcome any difficulty appeared during our work. So finally, step by step, we
leave the academic way of work and we face the real world.
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7 APPENDIX

7 Appendix

For this project, it has been necessary to create programs using Matlab in order to do any necessary
computation. All the scripts can be found in the following link on GitHub:
https://gist.github.com/adriatorrentcanelles/68770a55b2e41884b5{8d9b74¢296dc0.

The main scripts are main.m and main_plots_explicatius.m where most of the computations
illustrated in this project are gathered.
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