NORM ESTIMATES FOR THE HARDY OPERATOR IN TERMS OF B_{p} WEIGHTS

SANTIAGO BOZA AND JAVIER SORIA

Abstract

We study the explicit dependence of the B_{p}-constant of the weight, $[w]_{B_{p}}$, in the estimates of the norm of the Hardy operator acting on non-increasing functions in $L^{p}(w)$ or $L^{p, \infty}(w)$.

1. Introduction

The study of the sharp dependence on the class of weights characterizing the boundedness of some important operators in classical and harmonic analysis has received a lot of attention in the very recent years. In this sense we can mention the contributions of [3], [11] or [12], dealing with the Hardy-Littlewood maximal operator, and [15], [16] or [10] for the case of Hilbert, Riesz transform or general Calderón-Zygmund operators, respectively.

To establish the kind of results that we are referring to, let us consider the case of classical Hardy-Littlewood maximal operator defined by

$$
M f(x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}|f(y)| d y,
$$

where the supremum is taken over all cubes $Q \in \mathbb{R}^{n}$ containing x. Let w be a weight, that is, a positive locally integrable function, and, for a given measurable set E, let $w(E)=\int_{E} w(x) d x$, and for $p>1$, set $\sigma=w^{-1 /(p-1)}$. We say that w satisfies the A_{p} condition if

$$
[w]_{A_{p}}=\sup _{Q} \frac{w(Q) \sigma(Q)^{p-1}}{|Q|^{p}}<\infty .
$$

For $p=1$, the class A_{1} of weights is characterized as those for which, for all cubes Q,

$$
\frac{w(Q)}{|Q|} \leq C \inf _{x \in Q} w(x)
$$

and the best constant C in the above inequality it is denoted by the $[w]_{A_{1}}$ constant.
In [13], B. Muckenhoupt proved the following fundamental result: the maximal operator M is bounded on $L^{p}(w), 1<p<\infty$, if and only if $w \in A_{p}$. S. Buckley (see [3]) proved the sharp dependence of $\|M\|_{L^{p}(w)}$ on $[w]_{A_{p}}$ in the following result (from now on, in all the paper, the notation \simeq or \lesssim preceding $[w]_{C_{p}}^{\alpha}$ will denote quantities depending linearly on $[w]_{A_{p}}^{\alpha}$ up to constants independent on the weight w belonging to some class C_{p} depending on p).

[^0]Theorem 1.1. Let $1<p<\infty$. Then $\|M\|_{L^{p}(w)} \lesssim[w]_{A_{p}}^{1 /(p-1)}$, and the exponent $1 /(p-1)$ is the best possible.

Also in [3], the sharp constant in the weak-type boundedness of M on $L^{p}(w)$ was studied and it was obtained that, for $1 \leq p<\infty$

$$
\|M\|_{L^{p}(w) \longrightarrow L^{p, \infty}(w)} \simeq[w]_{A_{p}}^{1 / p} .
$$

We remark here that, as a consequence of this last inequality and in combination with Theorem 1.1, we obtain the following

$$
\begin{equation*}
[w]_{A_{p}}^{1 / p} \lesssim\|M\|_{L^{p}(w)} \lesssim[w]_{A_{p}}^{1 /(p-1)} \tag{1}
\end{equation*}
$$

due to the embedding $L^{p}(w) \hookrightarrow L^{p, \infty}(w)$.
Also in the work [3], Buckley proves that for decreasing power weights defined on $\mathbb{R}^{n}, w_{\alpha}(x)=|x|^{\alpha},-n<\alpha<0,\left[w_{\alpha}\right]_{A_{p}} \simeq \frac{n}{n+\alpha}$ independently of $p \geq 1$. This fact joint with the estimate $\|M\|_{L^{p}(w)} \lesssim[w]_{A_{1}}^{1 / p}$, valid for any $w \in A_{1}$ and which can be easily obtained by the use of Marcinkiewicz interpolation theorem, implies

$$
\|M\|_{L^{p}\left(w_{\alpha}\right)} \lesssim\left[w_{\alpha}\right]_{A_{p}}^{1 / p} .
$$

This observation combined with (1) shows that for this family of non-increasing weights $\|M\|_{L^{p}\left(w_{\alpha}\right)} \simeq\left[w_{\alpha}\right]_{A_{p}}^{1 / p}$.

Since the family of weights w_{α} is such that $\lim _{\alpha \rightarrow-n^{+}}\left[w_{\alpha}\right]_{A_{p}}=\infty$, this proves that the exponents $1 / p$ and $1 /(p-1)$ are sharp in (1).

Let us consider $S f(t)=t^{-1} \int_{0}^{t} f(s) d s$, the classical Hardy operator, since $(M f)^{*} \approx$ $S\left(f^{*}\right)$, where f^{*} denotes the classical decreasing rearrangement with respect the Lebesgue measure (see [2] for standard notation and the results involved), the action of the maximal operator M on classical Lorentz spaces with respect some weight $w, \Lambda^{p}(w):=\left\{f ;\|f\|_{\Lambda^{p}(w)}:=\left(\left(f^{*}(t)\right)^{p} w(t) d t\right)^{1 / p}<+\infty\right\}, 0<p<\infty$, can be described looking at the action of the Hardy operator S on non-increasing functions.

The same consideration is also valid in the case of weak-type Lorentz spaces $\Lambda^{p, \infty}(w), 0<p<\infty$. This space is defined (see [6]) as

$$
\Lambda^{p, \infty}(w)=\left\{f ;\|f\|_{\Lambda^{p, \infty}(w)}=\sup _{t>0} f^{*}(t)\left(\int_{0}^{t} w(s) d s\right)^{1 / p}<\infty\right\}
$$

For $p>0$, we recall here that a positive and measurable function $w \in B_{p}$ if there exists a positive constant $C>0$ such that

$$
\begin{equation*}
r^{p} \int_{r}^{\infty} \frac{w(x)}{x^{p}} d x \leq C \int_{0}^{r} w(x) d x \tag{2}
\end{equation*}
$$

We observe that the best constant $C>0$ appearing in the B_{p} condition (2) appears explicitly as a necessary condition to ensure the boundedness of the Hardy operator restricted to non-increasing functions in $L^{p}(w)$ (see [1], [14] and also [18] for results about the action of Hardy operator on monotone functions). Indeed, if we test the boundedness of S on characteristic functions, $f(x)=\chi_{(0, r)}(x)$, we obtain the following in terms of this optimal constant C

$$
\begin{equation*}
\int_{0}^{\infty}\left(\int_{0}^{r} \frac{\chi_{(0, x)}(t)}{x} d t\right)^{p} w(x) d x \leq(1+C) \int_{0}^{r} w(x) d x \tag{3}
\end{equation*}
$$

For this reason it is natural to express the dependence on the B_{p} condition (2) of the weight in terms of the quantity

$$
[w]_{B_{p}}:=1+\sup _{r>0} \frac{r^{p} \int_{r}^{\infty} \frac{w(x)}{x^{p}} d x}{\int_{0}^{r} w(x) d x}
$$

Let $\|S\|$ denote the weighted norm of Hardy operator S in the following three cases:

- $S: L_{\text {dec }}^{p}(w) \longrightarrow L^{p}(w), 0<p<\infty$.
- $S: L_{\text {dec }}^{p, \infty}(w) \longrightarrow L^{p, \infty}(w), 0<p<\infty$.
- $S: L_{d e c}^{p}(w) \longrightarrow L^{p, \infty}(w), 1<p<\infty$.

We will use the following notation: $\|S\|_{p, w},\|S\|_{(p, \infty), w}$ and $\|S\|_{p, w}^{*}$, respectively, for denoting the norm $\|S\|$ in each of the three cases described above.

The finiteness of $[w]_{B_{p}}$ in any of the three cases, is a necessary and sufficient condition to ensure that S maps one space into the other.

We remark that for $0<p \leq 1$, the necessary and sufficient condition for the boundedness of $S: L_{\text {dec }}^{p}(w) \longrightarrow L^{p, \infty}(w)$ is (see [6] and [4]) that the primitive of the weight $W(t)=\int_{0}^{t} w(x) d x$ is a p-quasi concave function, that is, for all $0<s \leq r<\infty$,

$$
\frac{W(r)}{r^{p}} \leq C \frac{W(s)}{s^{p}}
$$

We are interested in the study of sharp bounds for the exponents α and β, for which the following holds

$$
\begin{equation*}
[w]_{B_{p}}^{\alpha} \lesssim\|S\| \lesssim[w]_{B_{p}}^{\beta} . \tag{4}
\end{equation*}
$$

The sharpness of the exponents α and β, respectively, in (4) for the three cases described, will be determined by an estimate of the following quantities

$$
\alpha_{p}:=\sup \left\{\alpha \geq 0: \inf _{w \in B_{p}} \frac{\|S\|}{[w]_{B_{p}}^{\alpha}}>0\right\}
$$

and

$$
\beta_{p}:=\inf \left\{\beta \geq 0: \sup _{w \in B_{p}} \frac{\|S\|}{[w]_{B_{p}}^{\beta}}<\infty\right\}
$$

In the case of the strong boundedness of the operator S, E. Sawyer in [18] who solve the question in a more general context for $p>1$, gives an expression of the explicit norm $\|S\|$ based on the so called duality principle. Moreover, his result implies ([18], Theorem 2) that, for $p>1$ and denoting by p^{\prime} its conjugate exponent,

$$
\|S\|_{p, w} \simeq 1+\sup _{t>0}\left(\int_{t}^{\infty} \frac{w(x)}{x^{p}} d x\right)^{1 / p}\left(\int_{0}^{t}\left(\frac{W(x)}{x}\right)^{-p^{\prime}} w(x) d x\right)^{1 / p^{\prime}}
$$

In Theorem 2.1 we study the explicit dependence on $[w]_{B_{p}}$ of this quantity, for all $p>0$. The proof consists in the use of the following result appeared in [6] using the distribution function of a measurable function f defined as $\lambda_{f}(y)=|\{x:|f(x)|>y\}|$, where $|A|$ denotes the Lebesgue measure of a set A.

Theorem 1.2. Suppose w is a weight in $(0, \infty)$, and $0<p<\infty$. Then,

$$
\int_{0}^{\infty}\left(f^{*}(t)\right)^{p} w(t) d t=p \int_{0}^{\infty} y^{p-1}\left(\int_{0}^{\lambda_{f}(y)} w(t) d t\right) d y
$$

In [19] necessary and sufficient conditions for the boundedness of the Hardy operator from $L_{\text {dec }}^{p, \infty}(w)$ into itself were obtained. The result is the following:

Theorem 1.3. ([19] Theorem 3.1) Let $0<p<\infty$ and w be a weight in \mathbb{R}^{+}. Then, the following facts are equivalent
i) $S: L_{\text {dec }}^{p, \infty}(w) \longrightarrow L^{p, \infty}(w)$.
ii) the weight w satisfies that, for all $t>0$,

$$
\begin{equation*}
\int_{0}^{t} \frac{1}{W^{1 / p}(s)} d s \leq C \frac{t}{W^{1 / p}(t)} \tag{5}
\end{equation*}
$$

iii) $w \in B_{p}$.

Moreover, if $\|S\|_{(p, \infty), w}$ denotes the norm of the Hardy operator restricted to nonincreasing functions in the weak space $L^{p, \infty}(w)$ into itself, and $\|w\|_{\widehat{B_{p}}}$ is the optimal constant C in (5), that is,

$$
\begin{equation*}
[w]_{\widehat{B_{p}}}:=\sup _{t>0} \frac{1}{t}\left(\int_{0}^{t} \frac{1}{W^{1 / p}(s)} d s\right) W^{1 / p}(t) \tag{6}
\end{equation*}
$$

then $\|S\|_{(p, \infty), w}=[w]_{\widetilde{B_{p}}}$. In Theorem 2.2, lower and upper bounds are established for the exponents in the $[w]_{B_{p}}$ constant in comparison with the exact norm of the operator $[w]_{\widetilde{B_{p}}}$.
Remark 1.4. We observe here that there is no weight w for which the operator $S: L_{\text {dec }}^{p, \infty}(w) \longrightarrow L^{p}(w)$ is bounded. Since, if it would be the case, the inclusion $L_{d e c}^{p, \infty}(w) \hookrightarrow L^{p}(w)$ would be continuous, and it implies (see [5], Theorem 3.3)

$$
\int_{0}^{\infty} \frac{w(t)}{W(t)} d t<\infty
$$

which lead us to contradiction.
Concerning the explicit expression for the norm of S as an operator from $L_{\text {dec }}^{p}(w)$ into $L^{p, \infty}(w)$, for $p>1$, we observe, that again as a consequence of the duality principle of E. Sawyer (see [18], Theorem 1), we have the following

$$
\begin{align*}
\|S\|_{p, w}^{*}=\sup _{f \operatorname{dec}} \frac{\|S f\|_{L^{p, \infty}(w)}}{\|f\|_{L^{p}(w)}} & =\sup _{t>0} \sup _{f \text { dec }} \frac{\int_{0}^{\infty} f(x) \chi_{(0, t)}(x) d x}{\left.\int_{0}^{\infty} f^{p}(s) w(s) d s\right)^{1 / p}} \frac{W^{1 / p}(t)}{t} \\
& \simeq \sup _{t>0}\left(\int_{0}^{t} x^{p^{\prime}-1} W(x)^{1-p^{\prime}} d x\right)^{1 / p^{\prime}} \frac{W^{1 / p}(t)}{t} . \tag{7}
\end{align*}
$$

In Theorem 2.4, they are established lower and upper bounds for the exponents in the $[w]_{B_{p}}$ in comparison with this expression of the norm arising from Sawyer's duality principle.
The proofs of the estimates for the norm, in both cases $\|S\|_{(p, \infty), w}$ and $\|S\|_{p, w}^{*}$ are based in the following generalization of a result due to Y. Sagher [17]:
Proposition 1.5. Let m be a positive function and ε a positive number, then:
i) The existence of two positive constants A and B such that, for every $r>0$

$$
A m(r) \leq \int_{0}^{r} \frac{m(s)}{s} d s \leq B m(r)
$$

implies

$$
\frac{A^{\varepsilon+1}}{\varepsilon B^{\varepsilon}} \frac{1}{m^{\varepsilon}(r)} \leq \int_{r}^{\infty} \frac{1}{m^{\varepsilon}(s)} \frac{d s}{s} \leq \frac{B^{\varepsilon+1}}{\varepsilon A^{\varepsilon}} \frac{1}{m^{\varepsilon}(r)}
$$

ii) Conversely, the existence of two positive constants C and D such that, for every $r>0$

$$
\frac{C}{m(r)} \leq \int_{r}^{\infty} \frac{1}{m(s)} \frac{d s}{s} \leq \frac{D}{m^{\varepsilon}(r)}
$$

implies

$$
\frac{C^{\varepsilon+1}}{\varepsilon D^{\varepsilon}} m^{\varepsilon}(r) \leq \int_{0}^{r} \frac{m^{\varepsilon}(s)}{s} d s \leq \frac{D^{\varepsilon+1}}{\varepsilon C^{\varepsilon}} m^{\varepsilon}(r)
$$

Proof. We observe that ii) follows from i) applied to the positive function $\widetilde{m}(t):=$ $\frac{1}{m(1 / t)}$, by a change of variables. So, we will restrict to prove i).

For $r>0$, let us define $\varphi(r)=\int_{0}^{r} \frac{m(s)}{s} d s$. We observe that, as a consequence of the hypothesis, $\lim _{r \rightarrow \infty} \varphi(r)=\infty$. The second inequality in the hypotheses can be written in the form

$$
\frac{\varphi(s)}{s} \leq B \frac{m(s)}{s}=B \varphi^{\prime}(s)
$$

then, since $\varphi(\infty)=\infty$, it follows

$$
\begin{aligned}
\int_{r}^{\infty} \frac{1}{m^{\varepsilon}(s)} \frac{d s}{s} & \leq B^{\varepsilon} \int_{r}^{\infty} \frac{1}{\varphi^{\varepsilon}(s)} \frac{d s}{s} \leq B^{\varepsilon+1} \int_{r}^{\infty} \frac{s \varphi^{\prime}(s)}{\varphi^{\varepsilon+1}(s)} \frac{d s}{s} \\
& =\frac{B^{\varepsilon+1}}{\varepsilon} \frac{1}{\varphi^{\varepsilon}(r)} \leq \frac{B^{\varepsilon+1}}{\varepsilon A^{\varepsilon}} \frac{1}{m^{\varepsilon}(r)}
\end{aligned}
$$

where this last inequality is a consequence of the first inequality in the hypothesis.
To check the first inequality of the statement i), we proceed similarly by using, in this case

$$
\varphi^{\prime}(s)=\frac{m(s)}{s} \leq \frac{\varphi(s)}{A s}
$$

then

$$
\begin{aligned}
\int_{r}^{\infty} \frac{1}{m^{\varepsilon}(s)} \frac{d s}{s} & \geq A^{\varepsilon} \int_{r}^{\infty} \frac{1}{\varphi^{\varepsilon}(s)} \frac{d s}{s} \geq A^{\varepsilon+1} \int_{r}^{\infty} \frac{\varphi^{\prime}(s)}{\varphi^{\varepsilon+1}(s)} d s \\
& =\frac{A^{\varepsilon+1}}{\varepsilon} \frac{1}{\varphi^{\varepsilon}(r)} \geq \frac{A^{\varepsilon+1}}{\varepsilon B^{\varepsilon}} \frac{1}{m^{\varepsilon}(r)}
\end{aligned}
$$

and the proof is complete.

2. Main Results

Although not explicitly written in a quantitative form, the results concerning the dependence on the B_{p} constant (2) of the weight w in the boundedness of the Hardy operator $S: L_{d e c}^{p}(w) \longrightarrow L^{p}(w)$ are contained in the following (see [7] Proposition 2.6 for the case $0<p \leq 1$ and also [7] Theorem 4.1 for $p>1$).

Theorem 2.1. Let $p>0$ and w a weight in \mathbb{R}^{+}, the Hardy operator S is bounded from $L_{\text {dec }}^{p}$ into $L^{p}(w)$ if and only if $w \in B_{p}$ and then:
a) For $0<p \leq 1$

$$
\|S\|_{p, w} \simeq[w]_{B_{p}}^{1 / p} .
$$

That is, in this case, $\alpha_{p}=\beta_{p}=1 / p$.
b) For $p>1$

$$
[w]_{B_{p}}^{1 / p} \leq\|S\|_{p, w} \leq[w]_{B_{p}} .
$$

In this case, $1 / p \leq \alpha_{p} \leq 1$ and $\beta_{p}=1$.

Proof. CASE $0<p \leq 1$.
The inequality on the left hand side and the necessity condition follows by testing the boundedness of the operator on characteristic functions $\chi_{(0, r)}$.

To check the right hand side inequality, let us take f a non-increasing function the use of Theorem 1.2, the embedding $\Lambda^{1}(1) \hookrightarrow \Lambda^{p}\left(y^{p-1}\right)$ for $0<p \leq 1$ (see [5] Theorem 3.1), and formula (3)

$$
\begin{aligned}
\int_{0}^{\infty}(S f(x))^{p} w(x) d x & =\int_{0}^{\infty}\left(\int_{0}^{\infty} \int_{0}^{\lambda_{f}(y)} \frac{\chi_{(0, x)}(t)}{x} d t d y\right)^{p} w(x) d x \\
& \leq p \int_{0}^{\infty}\left(\int_{0}^{\infty} y^{p-1}\left(\int_{0}^{\lambda_{f}(y)} \frac{\chi_{(0, x)}(t)}{x} d t\right)^{p} d y\right) w(x) d x \\
& \lesssim[w]_{B_{p}} \int_{0}^{\infty}\left(\int_{0}^{\lambda_{f}(y)} w(x) d x\right) y^{p-1} d y \\
& \simeq[w]_{B_{p}} \int_{0}^{\infty} f^{p}(x) w(x) d x
\end{aligned}
$$

Case $p>1$.
Clearly, as in the case $0<p \leq 1$, to prove the necessity condition and the left inequality is enough to apply the hypothesis to $f=\chi_{(0, r)}$.

Conversely, let us observe that

$$
\begin{aligned}
\left(\int_{0}^{x} f(t) d t\right)^{p} & =p \int_{0}^{x}\left(\int_{0}^{t} f(s) d s\right)^{p-1} f(t) d t \\
& =p \int_{0}^{x}\left(\frac{1}{t} \int_{0}^{t} f(s) d s\right)^{p-1} f(t) t^{p-1} d t
\end{aligned}
$$

Let us consider, then, the nonincreasing function $g(t)=S f(t)^{p-1} f(t)$. Hence,

$$
\begin{equation*}
\|S f\|_{p, w}=p^{1 / p}\left(\int_{0}^{\infty}\left(\int_{0}^{x} g(t) t^{p-1} d t\right) x^{-p} w(x) d x\right)^{1 / p} \tag{8}
\end{equation*}
$$

We use the distribution function formula included in Theorem 1.2 and obtain that the inner integral in this last expression is
$\int_{0}^{x} g(t) t^{p-1} d t=\int_{0}^{\infty} \int_{0}^{\lambda_{g}(r)} \chi_{(0, x)}(t) t^{p-1} d t d r=\frac{1}{p}\left(\int_{0}^{g(x)} x^{p} d r+\int_{g(x)}^{\infty} \lambda_{g}^{p}(r) d r\right)$.
By substitution of this last expression in (8) and using Fubini's theorem, we get

$$
\begin{aligned}
\|S f\|_{p, w}^{p} & =\int_{0}^{\infty}\left(\int_{0}^{g(x)} x^{p} d r+\int_{g(x)}^{\infty} \lambda_{g}^{p}(r) d r\right) \frac{w(x)}{x^{p}} d x \\
& =\int_{0}^{\infty}\left(\int_{0}^{\lambda_{g}(r)} w(x) d x+\int_{\lambda_{g}(r)}^{\infty} \frac{w(x)}{x^{p}} d x\right) \lambda_{g}^{p}(r) d r \\
& \leq[w]_{B_{p}} \int_{0}^{\infty} \int_{0}^{\lambda_{g}(r)} w(x) d x d r=[w]_{B_{p}} \int_{0}^{\infty} g(r) w(r) d r \\
& =[w]_{B_{p}} \int_{0}^{\infty} S f(t)^{p-1} f(t) w(t) d t \\
& \leq[w]_{B_{p}}\|S f\|_{p, w}^{p / p^{\prime}}\|f\|_{p, w},
\end{aligned}
$$

where the last inequality is a consequence of Hölder's inequality.
The optimality of the inequality in the right hand side follows by considering the family of weights $w_{\alpha}(x)=x^{\alpha},-1<\alpha<p-1$, then (see [9])

$$
\|S\|_{L^{p}\left(w_{\alpha}\right)}=\frac{p}{p-\alpha-1}=\left[w_{\alpha}\right]_{B_{\alpha}} .
$$

We observe that since $\lim _{\alpha \rightarrow(p-1)^{-}}\left[w_{\alpha}\right]=\infty$, the sharpness in the upper bound of the statement holds.

Looking at the result contained in Theorem 1.3 it is natural to ask for the exactly dependence of $\|S\|_{(p, \infty), w}$ on the constant $[w]_{B_{p}}$. In other words, how the constants $[w]_{B_{p}}$ and $[w]_{\widehat{B_{p}}}$ are related. The following theorem gives an answer to this question:
Theorem 2.2. For $0<p<\infty$ and w weight in B_{p}, then

$$
[w]_{B_{p}}^{1 /(p+1)} \leq\|S\|_{(p, \infty), w} \leq[w]_{B_{p}}^{(p+1) / p} .
$$

Hence, we conclude that, in this case, $1 /(p+1) \leq \alpha_{p} \leq \beta_{p} \leq(p+1) / p$.

Proof. Let w such that $S: L_{\text {dec }}^{p, \infty}(w) \longrightarrow L^{p, \infty}(w)$ is bounded, that is, as a consequence of Theorem 1.3,

$$
\int_{0}^{t} \frac{1}{W^{1 / p}(s)} d s \leq[w]_{\widetilde{B_{p}}} \frac{t}{W^{1 / p}(t)}
$$

Then, since

$$
\frac{t}{W^{1 / p}(t)} \leq \int_{0}^{t} \frac{1}{W^{1 / p}(s)} d s \leq[w]_{\widetilde{B_{p}}} \frac{t}{W^{1 / p}(t)}
$$

the function $m(r)=\frac{r}{W^{1 / p}(r)}$ satisfies the hypothesis of statement i) in Proposition 1.5 with constants $A=1$ and $B=[w]_{\widetilde{B_{p}}}$, respectively. Then, the use of the

Proposition for $\varepsilon=p$ implies

$$
\begin{equation*}
\int_{t}^{\infty} \frac{W(s)}{s^{p+1}} d s \leq \frac{[w]_{\stackrel{B_{p}}{p+1}}^{p} \frac{W(t)}{t^{p}} . . . ~}{\text {. }} \tag{9}
\end{equation*}
$$

On the other hand, Fubini's theorem implies that, since $w \in B_{p}$

$$
p \int_{t}^{\infty} \frac{W(s)}{s^{p+1}} d s=\int_{t}^{\infty} \frac{w(s)}{s^{p}} d s+\frac{W(t)}{t^{p}} \leq[w]_{B_{p}} \frac{W(t)}{t^{p}} .
$$

And, hence

$$
\begin{equation*}
\frac{1}{p} \frac{W(t)}{t^{p}} \leq \int_{t}^{\infty} \frac{W(s)}{s^{p+1}} d s \leq \frac{[w]_{B_{p}}}{p} \frac{W(t)}{t^{p}} \tag{10}
\end{equation*}
$$

This inequality combined with (9) proves that

$$
[w]_{B_{p}} \leq[w]_{\widetilde{B_{p}}}^{p+1},
$$

which gives the left inequality in the statement.
To complete the proof, we consider the positive function $m(r)=\frac{r^{p}}{W(r)}$ then, equation (10) shows that the conditions of Proposition 1.5 ii) holds for this m with $C=1 / p$ and $D=[w]_{B_{p}} / p$. Then, taking $\varepsilon=1 / p$, Proposition 1.5 ii) implies that

$$
\int_{0}^{t} \frac{1}{W^{1 / p}(s)} d s \leq[w]_{B_{p}}^{(p+1) / p} \frac{t}{W^{1 / p}(t)}
$$

and, hence, taking into account that $[w]_{\widehat{B_{p}}}$ is the best constant C in the inequality (5), this implies that

$$
[w]_{\widehat{B_{p}}} \leq[w]_{B_{p}}^{(p+1) / p} .
$$

Remark 2.3. Let us observe here that for power weights in the B_{p} class, $w_{\alpha}(t)=t^{\alpha}$ $-1<\alpha<p-1$, we can explicitly (6) and obtain

$$
\|S\|_{(p, \infty), w_{\alpha}}=\frac{p}{p-\alpha-1}=\left[w_{\alpha}\right]_{B_{p}} .
$$

Hence, in the case of the optimal exponents α_{p} and β_{p} in Theorem 2.2, we obtain the following $1 /(p+1) \leq \alpha_{p} \leq 1 \leq \beta_{p} \leq(p+1) / p$.

On the other hand, in [8] it is proved that only for $1<p<\infty$, the B_{p} condition is equivalent to the weak boundedness of the Hardy operator S restricted to decreasing functions. Concerning the explicit relation between the weak-bound of the operator S and the B_{p} constant of the weight, we can establish the following:

Theorem 2.4. Let us denote by $\|S\|_{p, w}^{*}$ the norm of the Hardy operator S acting from $L_{\text {dec }}^{p}(w)$ into $L^{p, \infty}(w)$, then for $p>1$,

$$
[w]_{B_{p}}^{1 /\left(p p^{\prime}\right)} \lesssim\|S\|_{p, w}^{*} \leq[w]_{B_{p}} .
$$

Hence, we conclude that, in this case, $1 /\left(p p^{\prime}\right) \leq \alpha_{p} \leq \beta_{p} \leq 1$.

Proof. As it was pointed out in the introduction, a consequence of the so called duality principle of E. Sawyer (see [18], Theorem 1) is the following expression for weak-type norm

$$
\begin{align*}
\|S\|_{p, w}^{*}=\sup _{f \operatorname{dec}} \frac{\|S f\|_{L^{p, \infty}(w)}}{\|f\|_{L^{p}(w)}} & =\sup _{t>0} \sup _{f \operatorname{dec}} \frac{\int_{0}^{\infty} f(x) \chi_{(0, t)}(x) d x}{\left.\int_{0}^{\infty} f^{p}(s) w(s) d s\right)^{1 / p}} \frac{W^{1 / p}(t)}{t} \\
& \simeq \sup _{t>0}\left(\int_{0}^{t} x^{p^{\prime}-1} W(x)^{1-p^{\prime}} d x\right)^{1 / p^{\prime}} \frac{W^{1 / p}(t)}{t} . \tag{11}
\end{align*}
$$

We obtain then, the following estimates

$$
\frac{t^{p^{\prime}}}{p^{\prime} W^{p^{\prime}-1}(t)} \leq \int_{0}^{t} x^{p^{\prime}-1} W(x)^{1-p^{\prime}} d x \lesssim\left(\|S\|_{p, w}^{*}\right)^{p^{\prime}} \frac{t^{p^{\prime}}}{W^{p^{\prime}-1}(t)}
$$

From this, applying part i) of Proposition 1.5 to the function $m(r)=r^{p^{\prime}} W(r)^{1-p^{\prime}}$ and $\varepsilon=1 /\left(p^{\prime}-1\right)$, we obtain

$$
\int_{t}^{\infty} \frac{W(x)}{x^{p+1}} d x \lesssim\left(\|S\|_{p, w}^{*}\right)^{p p^{\prime}} \frac{W(t)}{t^{p}} .
$$

Using Fubini's theorem, we can express the integral in left hand side of the inequality as

$$
\begin{equation*}
\int_{t}^{\infty} \frac{W(x)}{x^{p+1}} d x=\frac{1}{p}\left(\frac{W(t)}{t^{p}}+\int_{t}^{\infty} \frac{w(s)}{s^{p}} d s\right) \tag{12}
\end{equation*}
$$

and then we obtain

$$
[w]_{B_{p}}^{1 /\left(p p^{\prime}\right)} \lesssim\|S\|_{p, w}^{*} .
$$

In order to obtain the second inequality, we observe that again using (12), we obtain, up to constants depending on p,

$$
\frac{W(t)}{t^{p}} \leq \int_{t}^{\infty} \frac{W(x)}{x^{p+1}} d x \leq[w]_{B_{p}} \frac{W(t)}{t^{p}}
$$

Another application of part ii) of Proposition 1.5, in this case to the function $m(r)=$ $r^{p} / W(r)$ and $\varepsilon=p^{\prime}-1$, gives, up to constants depending on p

$$
\int_{0}^{t} x^{p^{\prime}-1} W(x)^{1-p^{\prime}} d x \leq[w]_{B_{p}}^{p^{\prime}} \frac{t^{p^{\prime}}}{W^{p^{\prime}-1}(t)} .
$$

This inequality implies, as a consequence of the expression (11),

$$
\|S\|_{p, w}^{*} \lesssim[w]_{B_{p}} .
$$

Remark 2.5. In the case of power weights in the B_{p} class, $w_{\alpha}(t)=t^{\alpha}-1<\alpha<$ $p-1$, we can explicitly calculate the expression in (7) and obtain

$$
\|S\|_{p, w_{\alpha}}^{*} \simeq\left(\frac{p-1}{p-\alpha-1}\right)^{1 / p^{\prime}}=\left(\frac{1}{p^{\prime}}\right)^{1 / p^{\prime}}\left([w]_{\alpha}\right)^{1 / p^{\prime}}
$$

Hence, in the case of the optimal exponents α_{p} and β_{p} in Theorem 2.4, we obtain the following $1 /\left(p p^{\prime}\right) \leq \alpha_{p} \leq 1 / p^{\prime} \leq \beta_{p} \leq 1$.

Remark 2.6. We observe that, unlike what it happens in the boundedness of the Hardy operator in $L^{p}(w)$ and was used in Theorem 2.1, if we test the boundedness of $S: L_{\text {dec }}^{p, \infty}(w) \longrightarrow L^{p, \infty}(w)$ or $S: L_{d e c}^{p}(w) \longrightarrow L^{p, \infty}(w)$ on characteristic funcions $f(t)=\chi_{(0, r)}(t)$, straightforward calculations show that $\|S\|_{p, w}^{*}$ or $\|S\|_{(p, \infty), w}$ has, as a lower bound, the best constant in the p - quasi concave condition of the function W, that is

$$
\sup _{0<r<t} \frac{r}{t}\left(\frac{W(t)}{W(r)}\right)^{1 / p} .
$$

Acknowledgement. We want to thank Professor Carlos Pérez for his helpful comments on the paper and, in particular, for making us the observation about the sharpness of the estimate in (1).

References

[1] M.A. Ariño and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320. (1990), 727-735.
[2] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston (1988).
[3] S. M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc. 340 (1993), 253-272.
[4] M.J. Carro, A. García del Amo and J. Soria Weak-type weights and normable Lorentz spaces, Proc. Amer. Math. Soc. 124 (1996), 849-857.
[5] M.J. Carro, L. Pick, J. Soria, and V. Stepanov, On embeddings between classical Lorentz spaces, Math. Inequal. Appl. 4 (2001), 397-428.
[6] M.J. Carro and J. Soria, Weighted Lorentz spaces and the Hardy operator, J. Funct. Analysis 112 (1993), 480-494.
[7] , Boundedness of some integral operators, Canad. J. Math. 45 (1993), 1155-1166.
[8] , The Hardy-Littlewood maximal function and weighted Lorentz spaces, J. London Math. Soc. 55 (1997), 146-158.
[9] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge University Press, 2nd. Edition (1952).
[10] T.P. Hytönen, The sharp weighted bound for general Calderón-Zygmund operators, Ann. of Math.(2) 175 (2012), no. 3, 1473-1506.
[11] T.P. Hytönen, C. Pérez, Sharp weighted bounds involving A_{∞}, Anal. PDE 6 (2013), 777-818.
[12] A. K. Lerner, An elementary approach to several results on the Hardy-Littlewood maximal operator, Proc. Amer. Math. Soc. 136 (2008), 2829-2833.
[13] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal operator, Trans. Amer. Math. Soc. 165 (1972), 207-226.
[14] C. J. Neugebauer, Weighted norm inequalities for averaging operators of monotone functions, Publ. Math. 35 (1991), 429-447.
[15] S. Petermichl, The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical A_{p} characteristic, Amer. J. Math. 129 (2007), 1355-1375.
[16] , The sharp weighted bound for the Riesz transforms, Proc. Amer. Math. Soc. 136 (2008), 1237-1249.
[17] Y. Sagher, Real interpolation with weights, Indiana Univ. Math. J., 30 (1981), 113-146.
[18] E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), 145-158.
[19] J. Soria, Lorentz Spaces of Weak-Type. Quart. J. Math. Oxford 49 (1998), 93-103.

Department of Applied Mathematics IV, EPSEVG, Polytechnical University of Catalonia, E-08880 Vilanova i Geltrú, Spain.

E-mail address: boza@ma4.upc.edu
Department of Applied Mathematics and Analysis, University of Barcelona, Gran Via 585, E-08007 Barcelona, Spain.

E-mail address: soria@ub.edu

[^0]: Key words and phrases. Hardy operator; B_{p}-weights; Sharp bounds.
 Both authors have been partially supported by the Spanish Government grant MTM2013- 40985P and the Catalan Autonomous Government grant 2014SGR289.

