
NORM ESTIMATES FOR THE HARDY OPERATOR IN TERMS
OF Bp WEIGHTS

SANTIAGO BOZA AND JAVIER SORIA

Abstract. We study the explicit dependence of the Bp-constant of the weight,
[w]Bp

, in the estimates of the norm of the Hardy operator acting on non-increasing
functions in Lp(w) or Lp,∞(w).

1. Introduction

The study of the sharp dependence on the class of weights characterizing the
boundedness of some important operators in classical and harmonic analysis has
received a lot of attention in the very recent years. In this sense we can mention
the contributions of [3], [11] or [12], dealing with the Hardy-Littlewood maximal
operator, and [15], [16] or [10] for the case of Hilbert, Riesz transform or general
Calderón-Zygmund operators, respectively.

To establish the kind of results that we are referring to, let us consider the case
of classical Hardy-Littlewood maximal operator defined by

Mf(x) = sup
Q3x

1

|Q|

∫
Q

|f(y)| dy,

where the supremum is taken over all cubes Q ∈ Rn containing x. Let w be a weight,
that is, a positive locally integrable function, and, for a given measurable set E, let

w(E) =

∫
E

w(x) dx, and for p > 1, set σ = w−1/(p−1). We say that w satisfies the

Ap condition if

[w]Ap = sup
Q

w(Q)σ(Q)p−1

|Q|p
<∞.

For p = 1, the class A1 of weights is characterized as those for which, for all cubes
Q,

w(Q)

|Q|
≤ C inf

x∈Q
w(x).

and the best constant C in the above inequality it is denoted by the [w]A1 constant.
In [13], B. Muckenhoupt proved the following fundamental result: the maximal

operator M is bounded on Lp(w), 1 < p <∞, if and only if w ∈ Ap. S. Buckley (see
[3]) proved the sharp dependence of ‖M‖Lp(w) on [w]Ap in the following result (from
now on, in all the paper, the notation ' or . preceding [w]αCp will denote quantities

depending linearly on [w]αAp up to constants independent on the weight w belonging

to some class Cp depending on p).
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Theorem 1.1. Let 1 < p < ∞. Then ‖M‖Lp(w) . [w]
1/(p−1)
Ap

, and the exponent

1/(p− 1) is the best possible.

Also in [3], the sharp constant in the weak-type boundedness of M on Lp(w) was
studied and it was obtained that, for 1 ≤ p <∞

‖M‖Lp(w)−→Lp,∞(w) ' [w]
1/p
Ap
.

We remark here that, as a consequence of this last inequality and in combination
with Theorem 1.1, we obtain the following

(1) [w]
1/p
Ap
. ‖M‖Lp(w) . [w]

1/(p−1)
Ap

,

due to the embedding Lp(w) ↪→ Lp,∞(w).
Also in the work [3], Buckley proves that for decreasing power weights defined on

Rn, wα(x) = |x|α, −n < α < 0, [wα]Ap ' n
n+α

independently of p ≥ 1. This fact

joint with the estimate ‖M‖Lp(w) . [w]
1/p
A1

, valid for any w ∈ A1 and which can be
easily obtained by the use of Marcinkiewicz interpolation theorem, implies

‖M‖Lp(wα) . [wα]
1/p
Ap
.

This observation combined with (1) shows that for this family of non-increasing

weights ‖M‖Lp(wα) ' [wα]
1/p
Ap
.

Since the family of weights wα is such that lim
α→−n+

[wα]Ap =∞, this proves that

the exponents 1/p and 1/(p− 1) are sharp in (1).

Let us consider Sf(t) = t−1

∫ t

0

f(s) ds, the classical Hardy operator, since (Mf)∗ ≈

S(f ∗), where f ∗ denotes the classical decreasing rearrangement with respect the
Lebesgue measure (see [2] for standard notation and the results involved), the ac-
tion of the maximal operator M on classical Lorentz spaces with respect some weight

w, Λp(w) := {f ; ‖f‖Λp(w) := ((f ∗(t))p w(t) dt)1/p < +∞}, 0 < p < ∞, can be de-
scribed looking at the action of the Hardy operator S on non-increasing functions.

The same consideration is also valid in the case of weak-type Lorentz spaces
Λp,∞(w), 0 < p <∞. This space is defined (see [6]) as

Λp,∞(w) = {f ; ‖f‖Λp,∞(w) = sup
t>0

f ∗(t)

(∫ t

0

w(s) ds

)1/p

<∞},

For p > 0, we recall here that a positive and measurable function w ∈ Bp if there
exists a positive constant C > 0 such that

(2) rp
∫ ∞
r

w(x)

xp
dx ≤ C

∫ r

0

w(x) dx.

We observe that the best constant C > 0 appearing in the Bp condition (2)
appears explicitly as a necessary condition to ensure the boundedness of the Hardy
operator restricted to non-increasing functions in Lp(w) (see [1], [14] and also [18]
for results about the action of Hardy operator on monotone functions). Indeed, if
we test the boundedness of S on characteristic functions, f(x) = χ(0,r)(x), we obtain
the following in terms of this optimal constant C

(3)

∫ ∞
0

(∫ r

0

χ(0,x)(t)

x
dt

)p
w(x) dx ≤ (1 + C)

∫ r

0

w(x) dx.
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For this reason it is natural to express the dependence on the Bp condition (2) of
the weight in terms of the quantity

[w]Bp := 1 + sup
r>0

rp
∫ ∞
r

w(x)

xp
dx∫ r

0

w(x) dx

.

Let ‖S‖ denote the weighted norm of Hardy operator S in the following three
cases:

• S : Lpdec(w) −→ Lp(w), 0 < p <∞.
• S : Lp,∞dec (w) −→ Lp,∞(w), 0 < p <∞.
• S : Lpdec(w) −→ Lp,∞(w), 1 < p <∞.

We will use the following notation: ‖S‖p,w,‖S‖(p,∞),w and ‖S‖∗p,w, respectively, for
denoting the norm ‖S‖ in each of the three cases described above.

The finiteness of [w]Bp in any of the three cases, is a necessary and sufficient
condition to ensure that S maps one space into the other.

We remark that for 0 < p ≤ 1, the necessary and sufficient condition for the
boundedness of S : Lpdec(w) −→ Lp,∞(w) is (see [6] and [4]) that the primitive

of the weight W (t) =

∫ t

0

w(x) dx is a p-quasi concave function, that is, for all

0 < s ≤ r <∞,
W (r)

rp
≤ C

W (s)

sp
.

We are interested in the study of sharp bounds for the exponents α and β, for
which the following holds

(4) [w]αBp . ‖S‖ . [w]βBp .

The sharpness of the exponents α and β, respectively, in (4) for the three cases
described, will be determined by an estimate of the following quantities

αp := sup

{
α ≥ 0 : inf

w∈Bp

‖S‖
[w]αBp

> 0

}
,

and

βp := inf

{
β ≥ 0 : sup

w∈Bp

‖S‖
[w]βBp

<∞

}
.

In the case of the strong boundedness of the operator S, E. Sawyer in [18] who
solve the question in a more general context for p > 1, gives an expression of the
explicit norm ‖S‖ based on the so called duality principle. Moreover, his result
implies ([18], Theorem 2) that, for p > 1 and denoting by p′ its conjugate exponent,

‖S‖p,w ' 1 + sup
t>0

(∫ ∞
t

w(x)

xp
dx

)1/p
(∫ t

0

(
W (x)

x

)−p′
w(x) dx

)1/p′

.

In Theorem 2.1 we study the explicit dependence on [w]Bp of this quantity, for all
p > 0. The proof consists in the use of the following result appeared in [6] using the
distribution function of a measurable function f defined as
λf (y) = |{x : |f(x)| > y}|, where |A| denotes the Lebesgue measure of a set A.
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Theorem 1.2. Suppose w is a weight in (0,∞), and 0 < p <∞. Then,∫ ∞
0

(f ∗(t))p w(t) dt = p

∫ ∞
0

yp−1

(∫ λf (y)

0

w(t) dt

)
dy.

In [19] necessary and sufficient conditions for the boundedness of the Hardy op-
erator from Lp,∞dec (w) into itself were obtained. The result is the following:

Theorem 1.3. ([19] Theorem 3.1) Let 0 < p <∞ and w be a weight in R+. Then,
the following facts are equivalent

i) S : Lp,∞dec (w) −→ Lp,∞(w).
ii) the weight w satisfies that, for all t > 0,

(5)

∫ t

0

1

W 1/p(s)
ds ≤ C

t

W 1/p(t)
;

iii) w ∈ Bp.

Moreover, if ‖S‖(p,∞),w denotes the norm of the Hardy operator restricted to non-
increasing functions in the weak space Lp,∞(w) into itself, and ‖w‖B̃p is the optimal

constant C in (5), that is,

(6) [w]B̃p := sup
t>0

1

t

(∫ t

0

1

W 1/p(s)
ds

)
W 1/p(t),

then ‖S‖(p,∞),w = [w]B̃p . In Theorem 2.2, lower and upper bounds are established

for the exponents in the [w]Bp constant in comparison with the exact norm of the
operator [w]B̃p .

Remark 1.4. We observe here that there is no weight w for which the operator
S : Lp,∞dec (w) −→ Lp(w) is bounded. Since, if it would be the case, the inclusion
Lp,∞dec (w) ↪→ Lp(w) would be continuous, and it implies (see [5], Theorem 3.3)∫ ∞

0

w(t)

W (t)
dt <∞,

which lead us to contradiction.

Concerning the explicit expression for the norm of S as an operator from Lpdec(w)
into Lp,∞(w), for p > 1, we observe, that again as a consequence of the duality
principle of E. Sawyer (see [18], Theorem 1), we have the following

‖S‖∗p,w = sup
f dec

‖Sf‖Lp,∞(w)

‖f‖Lp(w)

= sup
t>0

sup
f dec

∫∞
0
f(x)χ(0,t)(x) dx∫∞

0
fp(s) w(s) ds)1/p

W 1/p(t)

t

' sup
t>0

(∫ t

0

xp
′−1W (x)1−p′ dx

)1/p′
W 1/p(t)

t
.(7)

In Theorem 2.4, they are established lower and upper bounds for the exponents
in the [w]Bp in comparison with this expression of the norm arising from Sawyer’s
duality principle.

The proofs of the estimates for the norm, in both cases ‖S‖(p,∞),w and ‖S‖∗p,w are
based in the following generalization of a result due to Y. Sagher [17]:

Proposition 1.5. Let m be a positive function and ε a positive number, then:
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i) The existence of two positive constants A and B such that, for every r > 0

Am(r) ≤
∫ r

0

m(s)

s
ds ≤ Bm(r),

implies

Aε+1

εBε

1

mε(r)
≤
∫ ∞
r

1

mε(s)

ds

s
≤ Bε+1

εAε
1

mε(r)
.

ii) Conversely, the existence of two positive constants C and D such that, for
every r > 0

C

m(r)
≤
∫ ∞
r

1

m(s)

ds

s
≤ D

mε(r)
,

implies

Cε+1

εDε
mε(r) ≤

∫ r

0

mε(s)

s
ds ≤ Dε+1

εCε
mε(r).

Proof. We observe that ii) follows from i) applied to the positive function m̃(t) :=
1

m(1/t)
, by a change of variables. So, we will restrict to prove i).

For r > 0, let us define ϕ(r) =

∫ r

0

m(s)

s
ds. We observe that, as a consequence

of the hypothesis, lim
r→∞

ϕ(r) =∞. The second inequality in the hypotheses can be

written in the form

ϕ(s)

s
≤ B

m(s)

s
= Bϕ′(s),

then, since ϕ(∞) =∞, it follows∫ ∞
r

1

mε(s)

ds

s
≤ Bε

∫ ∞
r

1

ϕε(s)

ds

s
≤ Bε+1

∫ ∞
r

sϕ′(s)

ϕε+1(s)

ds

s

=
Bε+1

ε

1

ϕε(r)
≤ Bε+1

εAε
1

mε(r)
,

where this last inequality is a consequence of the first inequality in the hypothesis.
To check the first inequality of the statement i), we proceed similarly by using, in

this case

ϕ′(s) =
m(s)

s
≤ ϕ(s)

A s
,

then ∫ ∞
r

1

mε(s)

ds

s
≥ Aε

∫ ∞
r

1

ϕε(s)

ds

s
≥ Aε+1

∫ ∞
r

ϕ′(s)

ϕε+1(s)
ds

=
Aε+1

ε

1

ϕε(r)
≥ Aε+1

εBε

1

mε(r)
,

and the proof is complete. �
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2. Main results

Although not explicitly written in a quantitative form, the results concerning the
dependence on the Bp constant (2) of the weight w in the boundedness of the Hardy
operator S : Lpdec(w) −→ Lp(w) are contained in the following (see [7] Proposition
2.6 for the case 0 < p ≤ 1 and also [7] Theorem 4.1 for p > 1).

Theorem 2.1. Let p > 0 and w a weight in R+, the Hardy operator S is bounded
from Lpdec into Lp(w) if and only if w ∈ Bp and then:

a) For 0 < p ≤ 1

‖S‖p,w ' [w]
1/p
Bp
.

That is, in this case, αp = βp = 1/p.
b) For p > 1

[w]
1/p
Bp
≤ ‖S‖p,w ≤ [w]Bp .

In this case, 1/p ≤ αp ≤ 1 and βp = 1.

Proof. Case 0 < p ≤ 1.
The inequality on the left hand side and the necessity condition follows by testing

the boundedness of the operator on characteristic functions χ(0,r).
To check the right hand side inequality, let us take f a non-increasing function

the use of Theorem 1.2, the embedding Λ1(1) ↪→ Λp(yp−1) for 0 < p ≤ 1 (see [5]
Theorem 3.1), and formula (3)∫ ∞

0

(Sf(x))p w(x) dx =

∫ ∞
0

(∫ ∞
0

∫ λf (y)

0

χ(0,x)(t)

x
dtdy

)p

w(x) dx

≤ p

∫ ∞
0

(∫ ∞
0

yp−1

(∫ λf (y)

0

χ(0,x)(t)

x
dt

)p

dy

)
w(x) dx

. [w]Bp

∫ ∞
0

(∫ λf (y)

0

w(x) dx

)
yp−1 dy

' [w]Bp

∫ ∞
0

fp(x) w(x) dx.

Case p > 1.
Clearly, as in the case 0 < p ≤ 1, to prove the necessity condition and the left

inequality is enough to apply the hypothesis to f = χ(0,r).
Conversely, let us observe that(∫ x

0

f(t) dt

)p
= p

∫ x

0

(∫ t

0

f(s) ds

)p−1

f(t) dt

= p

∫ x

0

(
1

t

∫ t

0

f(s) ds

)p−1

f(t) tp−1 dt.

Let us consider, then, the nonincreasing function g(t) = Sf(t)p−1f(t). Hence,

(8) ‖Sf‖p,w = p1/p

(∫ ∞
0

(∫ x

0

g(t)tp−1 dt

)
x−p w(x) dx

)1/p

.
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We use the distribution function formula included in Theorem 1.2 and obtain that
the inner integral in this last expression is∫ x

0

g(t)tp−1 dt =

∫ ∞
0

∫ λg(r)

0

χ(0,x)(t) t
p−1 dt dr =

1

p

(∫ g(x)

0

xp dr +

∫ ∞
g(x)

λpg(r) dr

)
.

By substitution of this last expression in (8) and using Fubini’s theorem, we get

‖Sf‖pp,w =

∫ ∞
0

(∫ g(x)

0

xp dr +

∫ ∞
g(x)

λpg(r) dr

)
w(x)

xp
dx

=

∫ ∞
0

(∫ λg(r)

0

w(x) dx+

∫ ∞
λg(r)

w(x)

xp
dx

)
λpg(r) dr

≤ [w]Bp

∫ ∞
0

∫ λg(r)

0

w(x) dx dr = [w]Bp

∫ ∞
0

g(r)w(r) dr

= [w]Bp

∫ ∞
0

Sf(t)p−1f(t)w(t) dt

≤ [w]Bp‖Sf‖p/p
′

p,w ‖f‖p,w,

where the last inequality is a consequence of Hölder’s inequality.
The optimality of the inequality in the right hand side follows by considering the

family of weights wα(x) = xα, −1 < α < p− 1, then (see [9])

‖S‖Lp(wα) =
p

p− α− 1
= [wα]Bα .

We observe that since limα→(p−1)− [wα] = ∞, the sharpness in the upper bound of
the statement holds. �

Looking at the result contained in Theorem 1.3 it is natural to ask for the exactly
dependence of ‖S‖(p,∞),w on the constant [w]Bp . In other words, how the constants
[w]Bp and [w]B̃p are related. The following theorem gives an answer to this question:

Theorem 2.2. For 0 < p <∞ and w weight in Bp, then

[w]
1/(p+1)
Bp

≤ ‖S‖(p,∞),w ≤ [w]
(p+1)/p
Bp

.

Hence, we conclude that, in this case, 1/(p+ 1) ≤ αp ≤ βp ≤ (p+ 1)/p.

Proof. Let w such that S : Lp,∞dec (w) −→ Lp,∞(w) is bounded, that is, as a conse-
quence of Theorem 1.3, ∫ t

0

1

W 1/p(s)
ds ≤ [w]B̃p

t

W 1/p(t)
.

Then, since

t

W 1/p(t)
≤
∫ t

0

1

W 1/p(s)
ds ≤ [w]B̃p

t

W 1/p(t)
,

the function m(r) =
r

W 1/p(r)
satisfies the hypothesis of statement i) in Proposi-

tion 1.5 with constants A = 1 and B = [w]B̃p , respectively. Then, the use of the
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Proposition for ε = p implies

(9)

∫ ∞
t

W (s)

sp+1
ds ≤

[w]p+1

B̃p

p

W (t)

tp
.

On the other hand, Fubini’s theorem implies that, since w ∈ Bp

p

∫ ∞
t

W (s)

sp+1
ds =

∫ ∞
t

w(s)

sp
ds+

W (t)

tp
≤ [w]Bp

W (t)

tp
.

And, hence

(10)
1

p

W (t)

tp
≤
∫ ∞
t

W (s)

sp+1
ds ≤

[w]Bp
p

W (t)

tp
.

This inequality combined with (9) proves that

[w]Bp ≤ [w]p+1

B̃p
,

which gives the left inequality in the statement.
To complete the proof, we consider the positive function m(r) = rp

W (r)
then, equa-

tion (10) shows that the conditions of Proposition 1.5 ii) holds for this m with
C = 1/p and D = [w]Bp/p. Then, taking ε = 1/p, Proposition 1.5 ii) implies that∫ t

0

1

W 1/p(s)
ds ≤ [w]

(p+1)/p
Bp

t

W 1/p(t)
,

and, hence, taking into account that [w]B̃p is the best constant C in the inequality

(5), this implies that

[w]B̃p ≤ [w]
(p+1)/p
Bp

.

�

Remark 2.3. Let us observe here that for power weights in the Bp class, wα(t) = tα

−1 < α < p− 1, we can explicitly (6) and obtain

‖S‖(p,∞),wα =
p

p− α− 1
= [wα]Bp .

Hence, in the case of the optimal exponents αp and βp in Theorem 2.2, we obtain
the following 1/(p+ 1) ≤ αp ≤ 1 ≤ βp ≤ (p+ 1)/p.

On the other hand, in [8] it is proved that only for 1 < p <∞, the Bp condition is
equivalent to the weak boundedness of the Hardy operator S restricted to decreasing
functions. Concerning the explicit relation between the weak-bound of the operator
S and the Bp constant of the weight, we can establish the following:

Theorem 2.4. Let us denote by ‖S‖∗p,w the norm of the Hardy operator S acting
from Lpdec(w) into Lp,∞(w), then for p > 1,

[w]
1/(pp′)
Bp

. ‖S‖∗p,w ≤ [w]Bp .

Hence, we conclude that, in this case, 1/(pp′) ≤ αp ≤ βp ≤ 1.
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Proof. As it was pointed out in the introduction, a consequence of the so called
duality principle of E. Sawyer (see [18], Theorem 1) is the following expression for
weak-type norm

‖S‖∗p,w = sup
f dec

‖Sf‖Lp,∞(w)

‖f‖Lp(w)

= sup
t>0

sup
f dec

∫∞
0
f(x)χ(0,t)(x) dx∫∞

0
fp(s) w(s) ds)1/p

W 1/p(t)

t

' sup
t>0

(∫ t

0

xp
′−1W (x)1−p′ dx

)1/p′
W 1/p(t)

t
.(11)

We obtain then, the following estimates

tp
′

p′W p′−1(t)
≤
∫ t

0

xp
′−1W (x)1−p′ dx . (‖S‖∗p,w)p

′ tp
′

W p′−1(t)
.

From this, applying part i) of Proposition 1.5 to the function m(r) = rp
′
W (r)1−p′

and ε = 1/(p′ − 1), we obtain∫ ∞
t

W (x)

xp+1
dx . (‖S‖∗p,w)pp

′W (t)

tp
.

Using Fubini’s theorem, we can express the integral in left hand side of the inequality
as

(12)

∫ ∞
t

W (x)

xp+1
dx =

1

p

(
W (t)

tp
+

∫ ∞
t

w(s)

sp
ds

)
,

and then we obtain

[w]
1/(pp′)
Bp

. ‖S‖∗p,w.

In order to obtain the second inequality, we observe that again using (12), we obtain,
up to constants depending on p,

W (t)

tp
≤
∫ ∞
t

W (x)

xp+1
dx ≤ [w]Bp

W (t)

tp
.

Another application of part ii) of Proposition 1.5, in this case to the function m(r) =
rp/W (r) and ε = p′ − 1, gives, up to constants depending on p∫ t

0

xp
′−1W (x)1−p′ dx ≤ [w]p

′

Bp

tp
′

W p′−1(t)
.

This inequality implies, as a consequence of the expression (11),

‖S‖∗p,w . [w]Bp .

�

Remark 2.5. In the case of power weights in the Bp class, wα(t) = tα −1 < α <
p− 1, we can explicitly calculate the expression in (7) and obtain

‖S‖∗p,wα '
(

p− 1

p− α− 1

)1/p′

=

(
1

p′

)1/p′

([w]α)1/p′ .

Hence, in the case of the optimal exponents αp and βp in Theorem 2.4, we obtain
the following 1/(pp′) ≤ αp ≤ 1/p′ ≤ βp ≤ 1.
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Remark 2.6. We observe that, unlike what it happens in the boundedness of the
Hardy operator in Lp(w) and was used in Theorem 2.1, if we test the boundedness
of S : Lp,∞dec (w) −→ Lp,∞(w) or S : Lpdec(w) −→ Lp,∞(w) on characteristic funcions
f(t) = χ(0,r)(t), straightforward calculations show that ‖S‖∗p,w or ‖S‖(p,∞),w has, as
a lower bound, the best constant in the p− quasi concave condition of the function
W , that is

sup
0<r<t

r

t

(
W (t)

W (r)

)1/p

.

Acknowledgement. We want to thank Professor Carlos Pérez for his helpful
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