
System for turnkey analysis of
semi-automated genome

annotations

Marc Asenjo Ponce de León

Director: Michael M. Hoffman
Supervisor: Mickaël Mendez

Princess Margaret Cancer Centre, Toronto

Tutor: Maria José Serna Iglesias
Computer Science Department

Bachelor Degree in Informatics Engineering
Computing Specialization

Facultat d’Informàtica de Barcelona
Universitat Politècnica de Catalunya

July 3rd, 2018



Abstract

English

In the bioinformatics field there is a very important concept called a segmentation,
a representation of the genome with differentiated segments being specified for pat-
terns found on some given input data. Biological meaning needs to be assigned to
these segmentations by manually running sets of analyses which may need external
data, and then visualizing the results. While a lot of tools to do so exist, none
of them automate the whole process of analysis and visualization. Furthermore,
all automated visualizations available lack the capacity of making it easier for the
researcher to correlate the results obtained from different analysis.

The objective of this project is to solve many of these issues by developing a soft-
ware capable of doing many of these tasks automatically. It does so by downloading
data, running analysis and summarizing all results in one single visualization that
is easy to read so that researchers can easily conclude biological hypothesis from it.
The tool developed, called Segzoo, is open source Python software available to install
and execute on a Linux machine very easily.
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Català

En el camp de la bioinformàtica existeix un concepte anomenat segmentació que
es refereix a una representació del genoma per segments que presenten un mateix
patró trobat en una sèrie de senyals de dades. A aquestes segmentacions, però, cal
assignar-los un sentit biològic executant una sèrie d’anàlisis que poden necessitar
dades externes, i finalment visualitzant els resultats obtinguts. Encara que moltes
eines existeixen per facilitar aquest procés, no n’existeix cap que automatitzi tot l’an-
àlisi i la visualització. A més, totes les visualitzacions creades automàticament que
existeixen no permeten a l’investigador correlacionar fàcilment els resultats obtinguts
en diferents anàlisis.

L’objectiu d’aquest projecte és solucionar aquests problemes plantejats desenvo-
lupant un software capaç de fer totes les tasques automàticament. Ho fa descarregant
dades externes, executant anàlisis i agrupant tots els resultats en una sola visualitza-
ció que és fàcil d’interpretar per tal que els investigadors puguin extreure’n hipòtesis.
L’eina desenvolupada, anomenada Segzoo, és codi lliure en Python que pot fàcilment
ser instal·lat i executat en una màquina amb Linux.
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Castellano

En el campo de la bioinformática existe el concepto de la segmentación, una repres-
entación del genoma separado en segmentos que presentan un cierto patrón encon-
trado en una serie de señales de datos de entrada. A estas segmentaciones hace falta
asignarles un sentido biológico ejecutando una serie de análisis que pueden necesitar
datos externos, y finalmente visualizando los resultados obtenidos. Aunque existen
muchas herramientas que facilitan este proceso, ninguna automatiza todo el análisis
y la visualización. Además, todas las visualizaciones creadas automáticamente que
existen no permiten al investigador correlacionar fácilmente los resultados obtenidos
en distintos análisis.

El objetivo de este proyecto es solucionar estos problemas planteados desarrol-
lando un software capaz de hacer todas las tascas automáticamente. Lo consigue
descargando datos, ejecutando análisis y agrupando los resultados en una sola visu-
alización que es fácil de interpretar para que los investigadores puedan formular
hipótesis. La herramienta desarrollada, llamada Segzoo, es código libre en Python
que puede instalarse y ser ejecutado fácilmente en una máquina con Linux.
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1 Context

1.1 Introduction

Computational biology and bioinformatics are two fields of study that find them-
selves still very much in development and are constantly making progress towards
understanding all kinds of biological data such as genomic data. For scientists to
make findings in these fields a set of computer tools are necessary to process, analyze,
summarize and compare the data. Typically, when talking about biological data, the
main problem that needs to be faced is its size, which can lead to enormous amounts
of time spent managing it.

The size of the data also means that it is very difficult to analyze manually.
It is because of this that all analysis are mostly made by a computer, but it is a
challenge to represent the results in a way that is readable and understandable by
the researcher. In a way, the tools used need to work as translators so that the
results of the analysis can be useful to the research being done.

In this project all these challenges will need to be faced while developing a tool for
the bioinformatics community. The data to be analyzed and visualized in this case
will be a representation of patterns found in a genome called a segmentation, which
can be obtained with the software named Segway explained in detail on following
sections. This will be done in the Hoffman Lab [1], The Princess Margaret Cancer
Research Tower (PMCRT) in Toronto, Canada, under the direction of Dr. Hoffman.

1.2 Objectives

The main objective of this project is to develop a tool that takes care of a big portion
of the work that currently a bioinformatics engineer must do by himself. This tool
will have to download data, run analysis and plot the results obtained in a compacted
visualization. This plot must be easily readable and allow the researcher to analyze
the obtained results.

The tool to be developed will compete with a lot of current tools that allow to run
this kind of analysis, as we’ll see in section 2 of this document. However, this project’s
objective is to solve some of the issues currently present with available options as
well as further improve them. As a consequence, the following characteristics must
be present in the tool:

• The analysis must be fully automated and the tool easy to use. Most of the
available tools require the scientists to make comparisons or download data by
themselves. The objective of the tool to be developed is to resemble a turnkey
system with some potential customization options for the user.

• The final visualization must be a compact and easy-to-read plot that allows
for cross-result analysis. There are tools available that perform single analysis,
but typically it turns out difficult to compare these analysis’ results with each
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other. In other words, this tool must do a good job at summarizing all the
results in a way that they can be co-related.

While these are the initial main objectives, the main focus of this project is to
create a tool that proves useful for the bioinformatics community, and so the specified
objectives may vary during its development and even more goals may be added.

1.3 Segway

To understand the finality and necessity of this project it is indispensable to first
explain Segway [2, 3]. It consists in a software that generates a genome segmentation
from input data signals. In the following subsections this description will be explained
in more detail by first taking a look at an overview of how it works and why it is
necessary, followed by an example showing how Segway operates.

1.3.1 Overview

Nowadays there’s a lot of genome-wide data sets representing a variety of proper-
ties (see the ENCODE Project [4]) that have been produced by researchers. Con-
sequently, the current representation of the genome is much more than just a sequence
of nucleotides.

A segmentation provides a conceptually simple approach to finding patterns in
genomic data, finding segment boundaries while assigning labels to them. The result
is a partitioned genome into non-overlapping contiguous segments with assignments
to a finite set of labels so that regions sharig the same segment label have in common
certain properties in observed data [2].

Segway is a software that uses a dynamic Bayesian network (DBN) [5] method
to discover patterns in genomic signal datasets, and then transforms these multiple
datasets into a simple segmentation, labeling the best pattern at every position in the
genome. This turns out to be a very useful tool for bioinformatics scientists when
trying to analyze genomic datasets, because it allows for meaningful and simple
visualizations of results, from which it becomes easier to assign biological meaning
to the data. It is able to detect phenomena associated with low signal in a single
dataset that are revealed to be significant when we jointly consider multiple datasets.
Other segmentation software tools exist [6], but they generally fail at doing the job as
good as Segway does either because of performance issues or because of the quality
of the results.

Segway uses a format to store the genomic data it works with called Genomedata
[7]. This format allows for quick random access to the data, which can be of very big
proportions, and also an efficient storage of multiple tracks of numeric data anchored
to a genome, which is exactly the kind of data Segway will be working with. Both
Segway and Genomedata have been highly contributed to by Dr. Hoffman.

Segway uses the The Graphical Models Toolkit (GMTK) [8] to do expectation-
maximization training [9] and Viterbi decoding [10]. The result is a set of learned
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parameters that will be used in this project, which are called the GMTK parameters.
We will now see a brief description of how Segway works.

1.3.2 Operation

The input for Segway is a series of signals that extend throughout all the genome or
those parts of it that are of interest, and can represent many different types of data.
One of the most typical inputs are histone modifications [11] obtained by ChIP-seq
[12]. These signals are called tracks. An example of how 3 tracks can look like is
in Figure 1a. In a Segway run, the user specifies a number of labels, for example
10, and then the software will try to identify this number of most-seen patterns, and
assign them to the segments generated.

(a) Signals that serve as input in a Segway run, called tracks

(b) Segmentation obtained with Segway

Figure 1: Example of a segmentation obtained from three input tracks and three
labels

Segway works as a Neural Network, and so it must go through two procedures:
training and annotating. The training procedure is where the label’s identity is
defined. In Figure 1b we see that label number 0 is associated with low levels of
both the first and the third tracks, while it presents high values for the second
track. This is what that label’s identity is, which actually is represented in the set of
parameters called the GMTK parameters. The training is usually performed using
a small portion of the full length of the tracks.

After each label is assigned to a set of parameters, the annotating procedure is
next. This is what will give the final segmentation, so it is necessary for it to run on
all the genome that is of interest. What this procedure does is both identify the limits
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for the segments and determine the label to annotate them with, so that a specified
likelihood is maximized. The results from this are the ones in Figure 1b, which is
a case for only three labels (0, 1 and 2). These results can afterwards be analyzed
using different tools, some of which are going to be explained in this document.

1.4 Stakeholders

The stakeholders of a project are those collectives or individual people that have a
specific role in it, either from the developing or the receiving end of it. These two
sides are generally always going to be represented in a project that is based on the
development of any kind of tool that can be useful to a collective. This project is no
exception in that regard, and so these are the stakeholders that can be differentiated.

1.4.1 Developer

The main developer of the desired tool. He is the responsible for making most of the
decisions regarding details of the project like, for example, choosing which software
to take advantage of in the development. He is also the one that will need to conduct
all needed research in the field of study to make sure the development of the tool
advances properly. As the name suggests, he will be the one to develop the tool while
listening to the suggestions and feedback of both the director and the supervisor. He
needs to make sure the scheduling suggested is followed, and that all the objectives
are attained in the end. I am the one who is going to take this role in this project.

1.4.2 Director

The role of the director of the project is to ensure the developer has everything he
needs to achieve the objectives specified. He needs to follow the project’s progress
closely and supply advice and help when necessary. He’s responsible of taking the
most important decisions in regards to the project. The director of this project is
Michael M. Hoffman.

1.4.3 Supervisor

The supervisor has a similar role than the director in this case but will work more
closely to the developer. He is the first person the developer should address to for
any kind of problems he is facing with the development of the tool. He can have a
big voice in decisions of importance but in many cases the opinion of the director is
also necessary. The supervisor of this project will be Mickaël Mendez, PhD student
in the Hoffman Lab.
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1.4.4 Community

The computational biology community. This includes the rest of the Hoffman Lab,
which is likely to be interested in this tool once it has been developed, It also includes
all the possible users all around the world that could be interested in the analysis
that will be made more accessible thanks to the tool developed in this project.
However, in this huge, heterogeneous collective we can differentiate two different
kinds of stakeholders:

• Users
As it has been already mentioned, the users of the resulting tool are a very
important stakeholder. Not only is this collective going to use the tool, but it
will also provide a much valuable resource: feedback. The user is the target
collective, and as such it is of interest to apply all the suggestions that can
come up from it, to improve the tool significantly. The potential users for
this project are most probably the current users of Segway or other similar
segmentation methods.

• Developers
From this community, aside from the users, we can distinguish the collective of
the developers. This project will be open source, which will allow for anyone to
not only install and use the tool, but to check how it’s been developed too. The
community that looks into these details will be able to give a different kind
of feedback to the project, more technical than the more ”utility oriented”
feedback from the users. In this collective they can also be considered the
developers and maintainers of all the tools and utilities that will be taken
advantage of in the development of this project.
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2 State-of-the-art

For this project’s purpose in particular it is very important to keep in mind the
actual state-of-the-art. We want to take a step forward in automating analysis and
visualizations, but using existing tools is probably the best solution for most of the
analysis. Furthermore, having an idea of how the current visualizations look like
may proof very helpful in the building of this tool, because it generally is a good
idea to visualize things in a way that researchers are already familiar with. In the
following sections we will first take an overall look at the currently existing methods
to conduct research on segmentations, before taking a closer look at the two tools
that are used the most in the Hoffman Lab and will primarily serve as reference for
this project.

2.1 Existing methods

While the primary existing tool that is going to be used for the project is Segtools,
explained in subsection 2.2, there are many more tools that provide useful ana-
lyses. The University of California, Santa Cruz (UCSC) Genome Browser allows for
researchers to explore the relationships between a segmentation and known annota-
tions but, as mentioned in subsection 2.3, this has some limitations when considering
the scale of a complete genome.

The Galaxy platform [14] and BEDTools [15] are tools that provide useful large-
scale automated analysis, which is the kind of analysis we are interested in for this
project. However, these methods miss some comparisons and don’t plot visualiza-
tions which are critical to understanding the results obtained from the segmentation.
Other utilities like SAMTools[16], which works with the different file format SAM,
help in visualizing and post-processing DNA sequence read alignments.

A series of publications are relevant to the background of this project. Both
‘rapid and reproducible chromatin state StateHub-StatePaintR: evaluation for cus-
tom genome annotation [version 1; referees: 1 approved with reservations]’[17] and
‘Discovery and Characterization of Chromatin States for Systematic Annotation of
the Human Genome’ [13] are good examples on how analysis are done currently.
Specifically, ‘Discovery and Characterization of Chromatin States for Systematic
Annotation of the Human Genome’ is a clear example of many of the different visu-
alization possibilities for representing results and, in particular, the visualization in
Figure 2 is taken into consideration as an example of what wants to be accomplished
in this project. The reason why this figure is of interest is because of its ability
to convey a huge amount of information in one single plot. While this plot has
been computed manually or in a semi-automated manner, the objective is to obtain
something similar to this in a completely automated way.

Finally, the publication ‘Reproducible genomics analysis pipelines with GNU
Guix’[18] describes PiGx [19], a platform that hosts many reproducible bioinformat-
ics pipelines that present some similarities with what we want to accomplish with this
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Figure 2: ”Chromatinstate definition and functional interpretation”. [13] Visualiz-
ation for each label (y-axis) of the parameters assigned to each track (left) and a set
of attributes of interest (right)

project. This article puts special emphasis on the reproducibility of thee pipelines.
Typically bioinformatics tools tend to present a lot of dependencies and these can
make it difficult to make an analysis automatic. While they use GNU Guix packages
to take care of these problems, it will be necessary for the development of this project
to consider possible alternatives to solve this issue.

2.2 Segtools

Also contributed to by Michael M. Hoffman, Segtools [20, 21] is a software toolkit
that facilitates the exploratory analysis of genomic segmentations. It is designed to
provide segmentation-centric summary statistics and visualizations, in a manner that
is scalable and easy to use [20]. This tool can run a series of analysis on the obtained
segmentation and obtain visualizations that allow the researcher to interpret the
results and assign biological meaning to them. All these utilities are available both
through command line commands and a Python API. In the following subsections
we describe the most relevant tools to this project.

10



2.2.1 GMTK parameters

The GMTK parameters are learned by Segway during the training phase and are
afterwards used to segment and annotate the genome, obtaining the final segment-
ation. These parameters represent the values for each of the input tracks that are
related to each one of the labels.

Figure 3: Heatmap of the GMTK parameters obtained in training. The color
represents the mean value and the size of the black square, the standard deviation

For example, in the heatmap of Figure 3 we can see that label 1 is associated
with high values of H3K4me3, H3K27ac and H3K4me1 (represented in red) while
it presents low values for H3K27me3 and CTCF. This means that a region in the
input that represents these levels for each of the 5 tracks mentioned will likely be
annotated as label 1. So we can conclude that, in a way, the GMTK parameters
define what each of the labels of the segmentation represent.

This tool also outputs information about the transitions between label segments.
A heatmap is plotted showing how often a label’s segments comes after another label’s
segment. This can be useful to deduce biological meaning of a label from another’s.
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2.2.2 Length distribution

This tool allows to better understand how the segmentation results look like. It
specifies statistic information regarding the length and the number of segments for
each label. From executing this tool two visualizations are obtained, as seen in
Figure 4.

(a) The length distribution of the seg-
ments obtained

(b) Representation of the segment sizes
by label

Figure 4: Visualizations resulting from the tool length distribution

In Figure 4a we observe the distribution for the lengths of the segments of each
label. In this case we can see that the mean value for each label, represented with a
black dot, is of the same order of magnitude, but higher for label 1. Note that the
x-axis has a logarithmic scale. This information can be useful to see whether each
label is associated to longer or smaller segments.

In Figure 4b we can see the percentage of total segments and of total base pairs
that each of the labels cover. This is useful to better understand what each label
represents by knowing how prevalent they are in the segmentation. In this case we
can see that label 8 takes up most bases, because of some long segments that we can
see in Figure 4a too. Combining this information with the one in Figure 3, we can
deduct that label 8 represents areas without input signal for all the tracks, or areas
with very low signal, and that the studied genome presents very large segments of
this kind.

2.2.3 Aggregation

This is one of the most versatile tools in Segtools. The command looks at the
aggregate occurrence of segment labels around and within a set of annotations. The
necessary inputs for this command are the segmentation obtained with Segway and
an annotation file, that specifies annotations for some regions of the genome. One
clear example is that of genes. The annotation file must contain information on where
genes and exons are found in the genome. If this is the case, then the aggregation
is done using an idealized gene model of 3 exons and 3 introns, plus the flanking
regions, which consist in a number of base pairs before and after the gene. All these

12



Figure 5: Graphs of the enrichment of each labels’s segments with the different
features of an idealized gene

regions are called components. The results resemble those in Figure 5. For each label
and component a graph of the enrichment is shown.

This tool is very useful when trying to assign biological meaning to each label.
When using it in the gene mode that has been described, some interesting conclusions
can be drawn, like that a certain label is only found in the initial components of a
gene, like the case of label 1 in Figure 5. It can also be observed whether the
label’s segments are found more frequently in exons or in introns. While this is the
functionality that is more relevant for this project, as it has mentioned before this
tool is very versatile. The annotation used can consist on many different things that
can prove interesting for the analysis.
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2.2.4 Feature distance

This tool takes a segmentation and one or more annotation files and prints the
distance from each segment to the nearest annotation entry, called a feature, in each
file [21]. The way this command works is similar to the aggregation, because it also
compares the segmentation with another annotation. In this case, the output is a
distance to the feature, which could be a gene for example. If this distance is zero,
it means that the segment is overlapped with one of the features. A histogram of
these distances is shown per label in a simple visualization when executing this tool.

2.2.5 Other tools

Other tools exist, but they either are less used overall or not relevant for this project
right now. An extra utility is given in Segtools, which consists in generating an
HTML file with all the different results from all the already executed tools. These
results are presented one after another in different sections, after some basic inform-
ation regarding the segmentation used. This summary has its limitations, as it is not
easily readable and the results from the different tools cannot be easily compared
with each other.

Segtools does not present any way to automatically generate all the analysis
results. They all need to be run one by one and, furthermore, all necessary data
must be downloaded manually beforehand. Also, as mentioned previously, there’s
no way of visualizing all the results at once in a way that makes them easy to
correlate. These are all issues this project will be trying to solve. As stated in
‘Exploratory analysis of genomic segmentations with Segtools’, ”Segtools analyses
are easy to perform, script, and incorporate into existing analysis pipelines, making
them useful for both manual and automated exploration”. Due to our interest in
running automated exploration, the use of Segtools for our project can prove useful.

2.3 UCSC Genome Browser

While Segtools is very useful in obtaining summarizing analysis of different sorts, it
may be sometimes useful to look at specific positions of the genome for the segment-
ation and compare it to other annotations, just like segtools aggregation does. If this
kind of analysis is desired, the UCSC Genome Browser [22, 23] provides it. This tool
consists on a web interface that allows the user to upload the obtained results from
the segmentation and that has access to different datasets of annotations [24].

The results obtained from using this tool tend to look like in Figure 6. The first
5 signals shown are the tracks used as input for the Segway run, that in this case are
histone modifications signals obtained by ChIP-seq. Following them, the segment-
ation is shown, with every segment from a different label being colored differently.
From this point, all sorts of annotations can be added to the visualization, like genes,
exons or transcript sites. This allows the user to manually move throughout the gen-
ome and compare the segmentation and the input tracks to all sorts of information,
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Figure 6: Snippet of the results obtained from the Genome Browser

being able to come up with deductions like a label being present mostly at the start
of the genes (promotor regions).

The limitations in this case are different from those of Segtools. The UCSC
Genome Browser already possesses all necessary data for the comparison, however
this one must be done manually by the user, and that way only a certain portion of
the genome can be analyzed at once. This can be useful in specific cases where a
very specific kind of comparison must be made and in a certain area of the genome.
Nevertheless, the tool we are looking to develop has as an objective to summarize
as much as possible the results in order to make it easy for the user to extract
conclusions from it.
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3 Scope and methodology

3.1 Scope of the project

One challenge in creating any software toolkit is to define the scope of the project,
treading a line between solving many problems and solving a few of problems well.
As mentioned in the objectives in subsection 1.2, the finality of this project is to
design and implement Python software in a Linux environment to further automate
exploratory analysis of semi-automated segmentations. Segtools can perform many
of the individual comparisons and analysis needed but identifying, downloading and
pre-processing appropriate independent annotations is currently left up to a user.
Not only this, but currently there’s no good automated way to visualize all the
obtained results in a way that they can be correlated. This tool to be developed will
need to perform three main tasks, explained in the following sections, in a totally
automated way. Figure 7 is a representation of the workflow to be executed.

Figure 7: Worfklow that the developed tool will need to go through. Squares represent
data (files) while circles represent actions (executed scripts or code)

3.1.1 Downloading

The first step to run the analysis is to download all necessary data for it. For
example, the software will download external annotations such as gene models and
datasets on gene expression, mutation prevalence, and conservation. All these data
must be obtained from a known, trustworthy source in an automated way so that if
new versions of the data are uploaded, those are downloaded instead by the software.
We don’t want any hard-coded information like links or paths in the code so that all
possible changes in the database don’t affect the tool, or that at least they represent
a minimum change needed in it.

Once the source to get this data from is decided, there’s one more thing to care
about. which is the location where this data is going to be downloaded to, and
the possible processing it may need. While this tool will ideally be used multiple
times by a researcher using different segmentations as an input, most of the data
downloaded will be valid for more than one segmentation. For example, a given
human genome assembly, which contains all the genome’s base pairs of nucleotides,
will be useful for all the segmentations that are using that version of the human
genome. Consequently, most of these data will need to be stored in a shared space
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where all the runs of the software can find it so that it’s not downloaded all over
again.

3.1.2 Processing and analysis

The next step for the software is to use the downloaded data and the given segment-
ation to produce the results for the wanted analysis. To do that, the software will
run other known software like Segtools to compare annotations and datasets to a
researcher’s semi-automated genome annotation of interest and to obtain other sorts
of results that we want to be shown in the final plot like, for example, the GMTK
parameters. Some of the data will probably need to be processed before this step to
match the inputs necessary for each software used.

After running all the required analysis, the result will be a set of outputs. These
outputs, however, may or may not be what we need, and so will require a post-
processing. The data will be computed into tables of the shape that is of interest for
the final visualization. All these data will be stored in a local path from where the
tool has been executed, so that it doesn’t interfere with other analysis that need to
be run in the future.

The software that is going to be executed will primarily be Segtools because of
the fact that it can already produce many of the analysis that can be of interest. To
take care of all the processing of the data Python libraries and utilities will be used.

3.1.3 Plotting of a visualization

The final step for this tool is to compute a summary of all the results obtained.
This may actually be the most important step, because the way this visualization
is presented will determine whether or not this tool can be useful for the scientists
for more than just running a bunch of analysis automatically. One of the main
objectives from this project is to make this final result from the workflow an easy-
to-read visualization that makes it easy to correlate different results.

It will be necessary to decide which information is displayed and how, maybe
allowing for customization from the user to some extend. There are many ways to
plot a visualization of this sort but, as stated before, it is best to follow already es-
tablished standards to make it easier for scientists to interpret the results. Examples
like the one of Figure 2 will be heavily considered when taking decisions as they are
a representation of what is established right now as a good visualization of results
of this kind.

3.1.4 Availability

To obtain the feedback desired from the community this tool will need to be available
online. There are many ways to share a project like this, so a decision will have to
be made on the approach to take. The tool will be developed using Pyhton, so the
initial objective is for it to be a Python Package and available for installation online.
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Moreover, a documentation will need to be produced for the tool. The extent of
it will be decided during the development of the project, but the guidelines that
will be followed are those from ‘Creating great documentation for bioinformatics
software’ [25].

3.2 Methodology

While the objectives of the project are very clear, there are many things that are
still to be decided during the development of the project. Knowing this and that
the amount of time available for it is very limited, the best approach for the project
is to follow an agile methodology. Agile methodologies provide a lot of flexibility to
a project and allow to obtain good results in low amounts of time. While not all
the main characteristics from agile development are applicable to the project we will
now see those that do.

3.2.1 Characteristics

In this project there will be a weekly meeting with the director to constantly update
the current goals. This iterative approach makes it much easier to keep in mind the
current state of the project. By doing this it will be possible to closely follow the
schedule proposed and apply changes to it immediately if necessary. However, small
updates to the goals will be continuously made throughout the week when they are
mandatory.

To support the method described every decision, update to the goals or progress
will be documented into a diary-like document called the Lab Notebook. With one
entry per week, all progresses and obstacles encountered will be written, as well as
including links to scripts and images that are related. At the end of each entry,
a special Next section will be included in which the current goals being worked on
are specified. With the help of the notebook it will be easy to keep track of all the
progress and the goals achieved.

Related to the idea of having a short development cycle is the concept of iterative
programming. This concept refers to the method of developing a program by creating
a first functional version of it before trying to add all future functionality. By doing
so, one can make sure that the first version is working before moving on to adding
more things to it. This is much safer and easier than trying to develop the final
version from scratch and, because of the fact that debugging it proves to be much
easier, it can even be quicker. Not only the goals will be set in an iterative way but
the development will be too.

Finally, the concept of client feedback from agile methodologies is also applicable.
As mentioned in subsection 1.4 the feedback from both the users and developers will
be crucial once a first version of the tool is available online. In this case, moreover,
this feedback will also be reflected in the director and the supervisor’s feedback
because of them being part of said community, which will make this concept even
more present in this project.
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3.2.2 Tools to be used

The main programming language for this project will be Python, with occasionally
some Shell scripting. Going beyond that, it will be useful to take advantage of
existing tools and libraries for most part of the development of the tool.

The first one is Snakemake [26, 27], a Python tool to easily develop workflows.
It uses a Python-based language which is easy to read, and most importantly, takes
care of all the file dependencies in a workflow. By specifying inputs and outputs for
different rules, and a code to run when executing the rule, Snakemake takes care of
all the rest. When requesting a file, it will automatically calculate which files are
missing for it to be created and the way to obtain them, recursively. This way, if the
workflow is specified correctly, only the necessary files will be created and so only the
necessary code will be run. Furthermore, Snakemake takes care of parallelization and
optimization of the workflow. It is a known tool in the bioinformatics community
where it is widely used, which ensures that support for it won’t be dropping any time
soon. It can be executed from the command-line but it also presents a Python API.
A second option that was considered to develop the workflow is BPipe [28], which
does a similar job making it easy to identify errors and restart jobs and in making
the pipeline more robust. However, it is based on shell scripts which makes it less
adequate for this project.

The second tool is Go Get Data (GGD) [29], which has an Anaconda [30] channel
that houses conda [31] recipes for genomic data. GGD will be what we use to obtain
the data we want to download in the first stage of the workflow. Automated tests
ensure data quality and fidelity to the specified genome and build, which refers to
the version of the genome used (hg19, hg38...). It is possible to add new recipes
to the channel, which essentially is like adding data to a database. When wanting
to download a specific file you can just execute a conda shell command that will
do so. This makes it easy to automate the download while having some variables
like the genome build used, which is what is of interest for this project. Another
possibility was considered for this functionality too, GenomePy [32]. It supports both
command-line instructions and a Python API, and is very easy to use. However, the
source from which the data is retrieved is not as trustworthy and is limited.

Aside from these two fundamental tools, various Python libraries will be needed
when dealing with the data. Pandas [33], Seaborn [34] and Matplotlib [35] can prove
useful for both data manipulation and the visualization aspects of the project.

As monitoring tools, BitBucket [36] will be used with Mercurial [37] for the
development of the main tool, under the hoffmanlab team. For other purposes,
GitHub [38] and Git [39] will be used for the same reasons. Both Mercurial and
Git are revision-control tools that allow the developer to document all changes to
a project in a short term way and keep those changes tracked to be able to revert
them if needed. BitBucket and GitHub provide remote repositories with integrated
issue tracking systems and more utilities to make it easy for the user to track the
project’s progress.
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3.3 Possible obstacles and solutions

For the methodology to be completely defined it is important for it to cover all pos-
sible obstacles found. In the best case, a solution must always be defined which either
prevents or acts on the issues found along the project. In the following subsections
different obstacles will be described along with the solution suggested for each of
them.

3.3.1 Scheduling

Some months may look like a lot of time, but without good scheduling the project will
never achieve its objectives. The weekly meetings with the director will substantially
help in ensuring that the projects keeps the set schedule or that, if needed, the correct
changes are applied to it in case of something unexpected affecting the project.
Furthermore, the closer supervision of the supervisor will ensure that the weekly
objectives are achieved.

3.3.2 Bugs

This project’s main objective is the development of a tool, which also means devel-
oping software. As with all software, bugs will be appearing during the process. The
problem of finding this bugs will be solved by running a series of tests each time a
new version of the software is finished, which will consist basically in running the
software completely or partially and check the results obtained, comparing them to
the theoretical results. However, most of the bugs encountered will probably cause
the software to crash instead of giving wrong results. To correctly identify these bugs
a set of debugging tools will be used, like the addition of breakpoints and watchpoints
to the code.

3.3.3 Optimization

While this is not the most important characteristic for this project, the software
must be optimized. because of the large size of the data it will be working with, the
difference between the software being optimized or not could mean a very significant
difference in execution time and/or space occupied. By running constant tests and
always having in mind the need of this optimization it should be possible to, little
by little, change the code into an optimized version of it.

3.3.4 Compatibilities

Many different software will be executed by the developed tool so there will be a lot of
dependencies. These dependencies will bring further dependencies in a recursive way,
which may cause trouble regarding all the software being compatible. The most basic
and probably the most important compatibility issue that may be found because of
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the development in Python will be the difference between Python 2 and Python 3.
To deal with these issues, a clear list of dependencies must be kept updated and,
if possible, the tool should be made compatible with all of them. If this is not the
case, some dependencies may have to be dropped and other solutions may have to
be found.

3.3.5 Third party issues

As mentioned, a lot of third party software will be needed for this project. While
most of the tools used are well-known and supported by a large community, some
issues may be found within them. All these issues that are not related specifically
to the software of this project will be considered as third party issues. To deal with
them, the first thing to do if possible is to contact the responsible for that software
to try and fix the problems. If it is of maximum importance, the pertinent changes
may be done directly by me. If none of these are possible, it may be necessary to
find workarounds to the issue or even drop the need of that software.
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4 Project planning

Having a good planning is essential to any project. It facilitates always knowing
which is the current state of the project compared to the objectives stated, which
at the same tame allows for a more efficient repartition of time for each task to
do. In this section we will see what is the schedule planned for this project, with a
description of all the tasks to accomplish and an analysis of the time needed for them.
Alternatives will be studied in case issues are found in the way of the development.

4.1 General guidelines

The staring date for this project was 14th of February, while it’s deadline is the 21th
of June. The estimated length of the project is about 4 months, considering 8 hours
of work a day 5 days a week, but the start and end dates are those of the stay in
PMCRT in Toronto, Canada. Consequently, this is the time period in which the
project length can move and vary.

While the initial estimated duration is of 4 months, the fact that agile method-
ologies techniques are used means that this duration is subject to change due to the
constant updates on objectives for the project. Furthermore, the possible obstacles
found in the way, even if surpassed, may mean a delay in the finalization of the
project. An important concept to have in mind from agile methodologies is that the
final state of the project may change because of the time constraint. This means that
if, due to different factors, the initial objectives of the project can not be achieved,
it may be decided to work on finalizing and perfecting some of the aspects of the
project instead of new ones.

4.2 Task description

This project can be divided into 9 different tasks that will need to be accomplished
for the final objectives to be fully achieved. A description for each of them is provided
in this section so that the reach of the project can be better understood.

4.2.1 Define tools to use

The first thing to consider for this project is what tools will be primarily used to
develop the desired tool. As mentioned in the methodology, there are many sections
of this project that require the use of external tools to facilitate the development and
also for optimization reasons. A tool that allows for easy development of a workflow
is needed, as it is complex to deal with a file system from scratch. Another tool
for the downloading section of the tool is needed to ensure the automation and the
veracity of the downloaded files. Other tools and libraries may be needed to take
care of other sections of the project, like dealing with big amounts of data, processing
it and visualizing it. For this task the only resources needed are a computer and
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internet, like with the rest of tasks described, and the developer as a human resource
to look for the best solutions.

4.2.2 Test tools and first workflow

Once the tools that will be used are defined, Segtools [26] and GGD [29] in this case,
the first step is to build a simple workflow to test both of them. The workflow will be
written using Snakemake, while one of the rules that it specifies will be downloading
a file using GGD. For this first version of the workflow a single analysis will run. Said
analysis will be segtools-aggregation (seen in subsection 2.2), because it requires an
external annotation file that needs to be downloaded, and it is one of the most useful
tools in Segtools and will likely be present in the final visualization for this project.
With this workflow we want to make sure all the software we want to use works
correctly and that the first results obtained are also correct. The human resources
are for the developer to develop the workflow and the director and supervisor to help
with decisions.

4.2.3 Add analysis

When a first version has been tested and debugged, we can add more functionality to
the workflow. It will be in this stage that more analysis, developed by other Segtools
tools or external software, will be added to the workflow. It will be necessary to
decide which information we want to obtain next that may be useful for the final
visualization. The addition of more analysis will likely require the addition of more
external data which will be downloaded using GGD. No other resources are needed
than those specified in the last task.

4.2.4 Process results

Once a good amount of data is already being obtained by the workflow, the next
step is to process it to convert it into readable data that can be used directly by the
visualization. Some standardization of the results will be necessary, so it will have to
be decided how all these data is finally stored for the visualization to be created from
it. A first approach is to create, for each of the analysis, a table that summarizes the
results. In most of the cases these results will have the labels either on the y-axis
or the x-axis, so the selection between these two will also need to be standardized.
To complete this stage some other tools will be needed, for example Pandas [33], a
Python library to easily manage data. No other resources are needed.

4.2.5 First visualization

Finally, after making sure all the data is being obtained automatically and correctly
when running the tool, a first visualization can be developed with said data. The
contents of this initial plot will depend on the decisions taken regarding the analysis
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to be included in the workflow. It is important to state that this stage does not
intend to obtain a final version of the visualization so, to stick with the schedule, it
is not necessary to expend too much time trying to optimize it yet. In order to do this
new tools may be needed, like Seaborn [34], a Python library to create visualizations
and plots that also uses Pandas. The same human resources apply here too.

4.2.6 Upload Python package

After all the completed stages a first version of the tool will already be usable. Once
this point is reached, the first priority is to make it available online for download and
installation. The first step to achieve this will be to create a Python package that
contains the developed workflow and scripts and runs them when executing some
command, for example using the command-line interface. Once this package has
been tested locally and works fine, it will then be uploaded to PyPi [40], a repository
of Python packages that allows users to install them by running the command pip
install package-name. The human resources needed here are for the developer to
do what has been described.

4.2.7 Bioconda upload

Bioconda [41] is a channel from Anaconda [30] where bioinformatics recipes are
stored. Uploading the tool here has several advantages. This will add more visibility
to the tool, while also helping with the requirements handling of the tool, making it
even easier for the user to install and use the tool. Once this stage is completed, it will
be possible to download the tool by using conda install -c bioconda package-
name on the command-line. No other resources are needed than those for the Python
packaging.

4.2.8 Finalize workflow and visualization

When the tool is available already to install online easily and feedback can already
be obtained, it is the time to do some final tweaks to the workflow if needed and
implement all the useful feedback obtained. Regarding the visualization, now it is the
moment to complete it and make sure that it accomplishes all the stated objectives
in subsection 1.2. Because of this, the amount of time needed for this stage could
vary largely depending on the feedback obtained and the state the tool was left at
before starting the packaging and uploading stages. The human resources needed
are the same as in all the development stages.

4.2.9 Optimize code

Finally, the pipeline created will need to be optimized both in execution time and
disk space occupied. That said, the optimization must have been taken into account
during all the development, and so the only things left to do in this stage should be
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minor tweaks to the tool. While it would be ideal to have this stage, this is the only
one which is not necessary to accomplish the objectives for this project, and thus it
can be left out if necessary by the agile methodology used. The human resource in
this case is the developer’s work.

4.3 Estimated time

In Table 1 an estimation of the number of hours dedicated to each task is shown.
The total amount of days available for the development of the tasks described is 90,
which adds up to 720 h available. We can observe that the estimated total time for
the project is lower so it is feasible.

Task Estimated duration (h)
Define tools to use 30
Test tools and first workflow 100
Add analysis 30
Process results 50
First visualization 100
Upload Python package 150
Bioconda upload 50
Finalize workflow and visualization 100
Optimize code 50
Final stage 30
Total 690

Table 1: Estimated time needed for each task described

4.4 Gantt chart

Figure 8 shows the planning of the different tasks of the project in a Gantt chart.
Aside from the tasks mentioned before, the writing of the final report and the final
presentation have been added to the graph.
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Figure 8: Initial Gantt chart of the project

4.5 Alternatives and action plan

There are already two factors that take care of potential changes in the scheduling.
The first one is the agile methodology applied, which should allow for quick and
efficient decision making and change of the goals. The second one is the estimated
times used, which also include an extra margin for possible unexpected obstacles
that may appear. However, it is necessary to have a more accurate planning in place
for each of the possible obstacles so that the response to it is faster and more efficient
whenever they appear.

Most of the basic issues and how to handle them have been specified in subsec-
tion 3.3. All these obstacles should be possible to overcome during the time margin
applied to each task’s estimated time. However, the compatibility issues and the
third party issues can turn out to be more difficult to solve than previously stated.
Dropping the dependencies may not always be an option, and so it may be necessary
at some point to invest a big amount of time in solving this kind of issues. If this
is the case, the final optimization stage, as it has been mentioned before, can be
skipped as it is not necessary for the objectives of this project to be fulfilled.

Another possible issue that may be encountered is the time needed for the pack-
aging and upload of the tool. This stage comes with a bit of learning with it and,
furthermore, the speed of it may ultimately depend on third parties. This could be
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caused by two main reasons: the first one, that uploading to Bioconda means getting
a repository pull request accepted, which is done by the Bioconda team; and second,
these uploads are only viable if all the dependencies are right, which ties to the issue
mentioned before. If this was the case, the order of the planning proposed could be
a little bit modified. While it’s optimal to have the tool available online as fast as
it works properly, the second development stage could be started before. This way,
once the upload can be done the current version in development could be uploaded,
and then the development could continue further.

With all this, it is important to keep in mind the agile methodology concepts to
make sure that the main objectives are achieved in the end, while maybe having to
prioritize them over other things occasionally.
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5 Budget and sustainability

5.1 Budget

Although no money will be explicitly invested into the development of this project,
the resources used must also be taken into account, and so a budget is necessary for
this project’s definition. In this section different sorts of budgets will be studied to
obtain a final budget that will need to be kept at the end of the project.

5.1.1 Direct budget

In Table 2 and Table 3 the direct budgets mentioned in subsection 4.2 are estimated.
For software and hardware budgets the useful life of the product is taken into account,
and so is the amortization of the product during the duration of the project. Notice
all the software used is open source and therefore it presents a null price.

Product Price (€) Units Useful life Amortization (€)
Hardware

HP Personal Laptop 1.200 1 5 years 85
DELL PRECISSION T3610 1000 1 5 years 71
DELL LCD monitor 200 1 6 years 12

Software
Python 0 1 – 0
Conda 0 1 – 0
CentOS 0 1 – 0
Mercurial 0 1 – 0
Bitbucket 0 1 – 0
PyCharm Community Edition 0 1 – 0
LATEX 0 1 – 0
TeXstudio 0 1 – 0
Total 2.400 168

Table 2: Hardware and software budgets. Useful life estimates from cnet [42]

For the human resources presented in Table 3, three roles needed for the project
are used as reference. These three roles will be taken partially in some way by the
stakeholders for this project, mainly the developer. The total hours used for this
project, which are 720, are divided into these roles.
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Role Hours €/hour Salary (€)
Project Manager 100 38,8 3.880
Software Developer 400 20,2 8.080
Software Tester 220 20 4.400
Total 720 16.360 €

Table 3: Human resources budget, salaries from payscale [43], specifying the search
to the city of Toronto

The attribution of these budgets to the tasks of the project can be considered
proportional the hours estimated for them. This can be assumed because both three
roles defined will have a similar weight in all the tasks, because all will need to be
managed and directed, developed and tested.

5.1.2 Other budgets

No unexpected budgets must be specified for this project, because its total duration
will not change. Due to the possibility of adding more analysis to the pipeline and
plots to the visualization, even if the project ends soon it can be continued until the
total duration specified for it has been accomplished. If unexpected obstacles are
found, as it has been mentioned before, the goals of the project will be achieves all
the same and the total duration will not be modified. Other causes for unexpected
budget could be the need of new software or hardware, which will be topped at 500
€. Because of the nature of the project, which is software based, no depreciation
costs will take place.

However, we can specify some indirect costs to the project, which can be found
in Table 4.

Product Price (€) Units Cost (€)
Electricity 0,12 /kWh 550 kWh 66
Internet 40 /month 4,25 months 170
Total 236

Table 4: Indirect costs

No benefits will be obtained from these project, because the tool to be developed
will be open source software available to anyone.

5.1.3 Total budget and monitoring

Taking into account all previously specified budgets, we can see the final results in
Table 5. An extra 5% has been added to the budget to cover any factors that may
not have been considered.
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Concept Estimated Cost (€)
Hardware and Software 168
Human resources 16.360
Unexpected costs 500
Indirect costs 236
Subtotal 17.264 €
Contingency (5%) 863 €
Total 18.127

Table 5: Total project costs

To make sure the final budget is kept within this estimated one the direct and
indirect budgets must be accomplished, as expected, and the unexpected costs must
be kept within the given limit. While the 5% of contingency has been added to the
budget, it is important to keep in mind that this amount is only expected to be
needed as an emergency, so ideally all the budgets must keep within their original
values. To keep track of all this, all possible extra costs will need to be documented
and kept track of, so that they can be added to the final budget in the end.

5.2 Sustainability

In this section we will take a look at the sustainability effect of this project, based
on the sustainability matrix shown in Table 6 and taking into account the online
survey found in goo.gl/kWLMLE. The results obtained show that the project takes
into account many of the sustainability issues it can have an effect on.

PPP Useful life Risks

Environmental
Design

consumption
Ecological
footprint

Environmental
risks

9/10 19/20 -1/-20

Economical Bill Viability
plan

Economical
risks

9/10 19/20 -2/-20

Social
Personal
impact

Social
Impact

Social
risks

9/10 16/20 0/-20
Sustainability

range
27/30 54/60 -3/-60

78/90

Table 6: Sustainability matrix for the project
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5.2.1 Environmental

This project is based on the development of a tool so, at first, it would seem that
no environmental effect will take place. However, there is one form of environmental
effect that is present, which is the electricity consumption needed. During the devel-
opment phases of the project the electricity consumption will be moderate, as not
much demanding software will be run. Once updated to the internet, the installa-
tion and use of the tool should also demand a very low amount of resources. This
is the reason why the consumption is considered to be low, as well as the ecological
footprint. No major environmental risks are presented.

5.2.2 Economical

The specifics regarding the economical effect can be found in subsection 5.1. While
some resources will be used, the estimated budget is not very high. Furthermore, the
tool will allow in the future to reduce costs in segmentation analysis, both in time
and resource consumption. For these reasons the economical section of Table 6 is
also stated as very positive. The plan suggested in this project ensures the viability
of it, and the design and use of tools makes it so the useful life of the project is very
high.

5.2.3 Social

As it has already been mentioned before, this project has the aim to have an im-
portant social impact in the bioinformatics community. The goal of the project is to
make the scientist’s life easier by automating a lot of the work that needs to be done
manually right now. This aspect of the project makes it so it has a positive impact,
allowing the user to spend less time in running analysis and concluding results much
faster. The tool will be available online for anyone to use, so it has a lot of reach
too. No risks are presented whatsoever by this project on the social category.

Finally, from a personal perspective, this project will help me learn a lot of things
about the process of the development of a tool. This will include a variety of skills to
learn and have for the project to succeed. It is also an enrichment by the biological
aspect of it, which will allow me to understand the work of a bioinformatic and learn
a lot from it.
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6 Applicable regulation

In this section all regulations applicable to the project’s environment will be studied.
These can be separated into those related to the policies stated by the organization
where the development will take place, and those related to the distribution of the
software developed.

6.1 UHN Policies

Since this project will be developed under the University Health Network (UHN), all
their policies may apply to it. A variety of policies can be found in the following link
[44]: http://www.uhn.ca/corporate/AboutUHN/Governance_Leadership/Policies.
Because of the general focus for UHN being the research using patient data, most of
the policies revolve around how to manage this sort of information. Other policies
include the ruling on communicating confidential information to the police or to the
media, as well as more general guidelines on how to use technological devices and
resources in UHN or how to ensure the safety and healthiness of all the employees.
While all these policies will be applicable during the stay in the Hoffman Lab, those
won’t be fully explained in this section because they don’t directly apply to the result
of this project, which is the tool we want to develop.

On the other hand, in the University Health Network Policy & Procedure Manual
[45] and more specifically in the Administrative – Intellectual Property Protection &
Commercialization the Intellectual Property (IP) Policy is defined. This project will
be developing software, which is included in the intellectual property definition and,
consequently, the specified policy should apply to this project. It is said that it
applies to all UHN personnel and to all IP developed by them, including research
works and institutional works. Furthermore, it is specified that even if the IP is
developed by individuals affiliated to other medical or educational organizations it
will still be governed by the policy, which is the case of this project with Universitat
Politècnica de Catalunya (UPC). As a result, the following policy can and will be
applied to the IP developed during this project.

Getting to the content of the mentioned policy, it states that ”UHN solely owns
all IP developed by UHN personnel, and any IP otherwise arising through the use of
UHN resources, with the exception of traditional academic works, which remain the
property of the author(s)” [45]. Following this statement, the definition used for the
mentioned traditional academic works is the following: ”Any work created for a schol-
arly purpose, including scholarly papers, books, book chapters, abstracts, present-
ations, whether or not published and whether or not distributed by any means,
including print or electronic media” [45]. As a consequence, all software developed
will be property of UHN while all written documents and presentations and such will
remain my property. However, this doesn’t interfere with the fact that the tool will
be made available as open source software.
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6.2 GNU General Public License

In order to distribute open source software a license to which the distribution is
compliant is needed. For this project the license that will be used is the GNU
General Public License version 2 (GPLv2) [46]. This license, used by many free
software like Segway or Segtools, guarantees the freedom of the user to share and
change free software.

In the context of free software, the word free is referring to freedom and not
price. GPLv2 makes sure that the licensee has the freedom to distribute copies
of the free software and charge for it if he wishes, that the software is accessible
and that it can be changed or incorporated even partially into other free software
projects. All the conditions specified apply not only to the original creator of the
free software, but to all those that have any kind of contact with it, either by using it
or by doing any of the actions specified as legal by the license. Of course, in between
all the freedom it allows, some conditions must apply to protect these rights for
other users. These conditions include that any changes done to the original software
must be documented in some way stating the date of the changes, and that any
incorporation or change must maintain this same license so that the original free
software never loses all these rights.

As stated by its name, this license is thought for software open to the public
without any specific restrictions, which is what we are looking for in this project
and so the appliance of this license is appropriate. The full license can be found in
the following link: https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.
html.
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7 Design and development

During the course of this project the initial planning defined in section 4 has been fol-
lowed as much as possible. However, because of the methodology used and obstacles
being found, this planning has seen alterations. We will now see the full development
of the project, stage by stage, with all the changes to the original planning explained.
Thanks to the Lab Notebook that was kept updated at all times, all the exact dates
in which stages were completed can be compared to the original planning.

7.1 Initial stage

During the initial stage things like the objectives, the methodology and the scope
must be defined. It is its finality to get everything ready for the development of
the project to begin, having a fixed schedule to follow if possible. This whole initial
stage was completed on schedule without major hold-backs before moving to the first
development stage next.

7.1.1 Getting started

The start date for this project was the 14th of February of 2018. During this start-
ing stage the necessary steps where taken to begin the internship in the University
Health Network (UHN). From creating an account to setting up the computer where
I would be working, all these preliminary tasks where taken care of during this stage.
This includes preparing the space where the Lab Notebook is created, necessary for
the methodology described in subsection 3.2, and also preparing the work space dir-
ectory following the guidelines in A quick guide to organizing computational biology
projects [47].

During and after setting everything up it was necessary to get familiar with some
of the concepts I would be working with during the project. This includes gathering
information, reading papers and trying out some software like Segway and Segtools.
All this is of high importance so that it is possible to better define the objectives of
the project as well as execute its development correctly. In addition all the state-
of-the-art was researched, summarized in section 2. As mentioned before, this step
is specially important for the likes of this project because of having the objective to
create a tool that can be useful for the researchers.

7.1.2 Resources used

Once all the objectives have been well defined, it is necessary to specify which re-
sources are going to be taken advantage of. While many of the options and decisions
were mentioned in subsection 3.2, we will now see some more details on these re-
sources.
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Python
The first thing to decide when beginning to develop any kind of software is the

programming language(s) that is going to be primarily used. In this case, Python
[48] is the one chosen. While this decision was taken from the very beginning, it is
because of very good reasons that this is the language chosen for most bioinformatics
applications.

Python is a language that allows for quick programming and effective integration
of systems. It is a programming language that is very easy to both write and read,
and has a lot of different applications. It counts with a big variety of libraries that
allow for its versatility in many programming areas. Furthermore, it has a packaging
utility that makes it very easy to distribute Python tools, as we will see. Specially in
the bioinformatics community, Python is a very popular language because of all the
characteristics mentioned. Although it is not the best for optimization reasons, most
of the code can be written in Python. The big amount of support for it means that
there is a lot of already developed Python tools and libraries open source. Because of
this and the language’s nature, big amounts of code can be reused which, combined
with the generally excellent documentations for Python modules online, makes it
very easy to develop a new tool using this language.

As mentioned, a big reason why Python is the language chosen for this project
is its popularity in the bioinformatics community. Not only this, but both Segtools
and Segway are also primarily Python software. As we have the intention to use
Segtools for some analysis it may prove useful to use the same language, specially
since Segtools has a Python API as an addition to the command line tool. Most of
the other resources that will be used during the development of this project will be
related to Python so, logically, this was the first decision needed to be made.

Snakemake
In subsection 3.2 we saw that Snakemake [26] is the option that proved to be

best fitted for this project’s pipeline building. As stated in the documentation,
Snakemake’s workflow management system is a tool to create reproducible and scal-
able data analyses. These characteristics are specially important in bioinformatics
software, which is what this tool is primarily used for.

We saw that, being a Python tool, the language it uses to write workflows is very
similar to that of Python. This is illustrated in Figure 9. This language is based on
rules, which specify how to obtain certain output files from certain input files. In
Figure 9 we can see how they are specified. First, the keyword ”rule” is used followed
by its name, and then the inputs and outputs can be specified by their file names
separately. To specify how to obtain the outputs there are many keywords available.
The most notable two of them are shell and run, which are followed respectively by
command line calls or Python code.

Next we will see the concept of variables in Snakemake. First of all, many of
the values specified under keywords like input or output are considered like variables
that are accessible by calling the structure {keyword}, like it is used in the shell call
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rule targets:
input:

"plots/dataset1.pdf",
"plots/dataset2.pdf"

rule plot:
input:

"raw/{dataset}.csv"
output:

"plots/{dataset}.pdf"
shell:

"somecommand{input}{output}"

Figure 9: Example of a workflow using Snakemake, from its documentation [26]

in the rule ”plot” in Figure 9. Calling the structure is equivalent to adding all its
contents, but just one element can be chosen by assigning names to them or using
a list-like indexation. Aside from these, there is one concept called wildcards. These
are variables that don’t have a specific value, so they act as placeholders. They don’t
need to be initiated, and they are called by using the similar notation {wildcard}.
These are useful to make a rule be able to run on many different input files that
follow a pattern in their path.

To execute a workflow, which is stored in a file called Snakefile, a rule can be
specified or, if not, the rule that is found on top of the file will be the one targeted.
Consequently, all the rules needed to obtain the inputs for the target to be executed
will also be run. Going back to the workflow shown in Figure 9, if the workflow is
executed the rule ”target” will try to be run, and as a consequence the two input
files will be needed. To obtain them, the rule ”plot” can be run two times, with
{dataset} = dataset1 and {dataset} = dataset2 respectively. Snakemake knows this
by comparing the needed input files to all the outputs obtainable and seeing if, for
some value of the wildcards, they match. In this case, if ”raw/dataset1.csv” and
”raw/dataset2.csv” are found, then they will both be used to obtain the needed
intermediate files, and the rule ”targets” will be completed, as no action or outputs
are specified. If these two files are not found, the pipeline will exit with an error, as
there is no rule currently specifying how to obtain them.

As mentioned before, this ”rule” management of the workflow makes it easily
scalable, with the use of wildcards specially. This makes it so an iterable approach
to the development of the tool is the perfect solution, which is what was decided in
subsection 3.2. A first version of a workflow that obtains some results can be created
because the future addition of more analysis is facilitated by Snakemake.

Finally, there are many more keywords that can be specified in a rule. Some
examples of them are params which allows to declare variables accessible from the
shell or run scopes, threads which specifies the maximum number of cores to be used
for the execution of the rule, or script which allows for the execution of a separate
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script with Python code instead of having it directly in the Snakefile using the run
keyword. Some of these may be needed for the development of the tool.

Go Get Data
As also stated in subsection 3.2, the tool that was selected to take care of down-

loading the necessary data to run the analysis wanted was Go Get Data (GGD)
[29]. It consists on a platform that houses conda [31] recipes for genomic data.
The whole list of packages it contains can be found either on their GitHub or in
their Anaconda [30] channel, ggd-alpha [49]. The fact that all these packages are
stored in the Anaconda cloud means that the data can be downloaded by running
the command conda install -c ggd-alpha package_name on the Terminal. The
”package_name” is the identifier for the recipe, the leftmost section seen in Fig-
ure 10. What this will do is run the recipe specified in that package which, in this
case, will download a genomic data file in your computer and sometimes process it.

Figure 10: Snippet of packages in the ggd-alpha channel hosted in Anaconda [49]

For this project in particular it will be interesting to know where exactly the files
are downloaded. It is necessary to know it beforehand because of how Snakemake
workflows work. For this kind of things, GGD has a convention for stating where the
files will be downloaded, which is in the path $PREFIX/$species/$build/$recipe/.
The $PREFIX refers to the path to the anaconda environment that is used when calling
the command mentioned above. If no specific environment has been created, then
the path is the one where anaconda has been installed. Additionally, this $PREFIX
variable includes the path /share/ggd/. The rest of the variables are pretty self-
explanatory. $species is the species for which the data comes from, for example
”Homo_sapiens”. $build is referring to the version of the genome for which the data
has been computed. In the case of the human genome, the two most known builds
are ”hg38” and ”hg19”, where ”hg” stands for Human Genome. Finally, $recipe is
the specific name of the recipe used. In the case of the recipes we see in Figure 10,
their build is ”hg38-noalt” and the recipe names are those that follow in the package
names: ”transcripts”, ”seq” and ”gtf”.

The most important benefit from using this tool is the fact that it is completely
open source, which means that anyone can add new recipes which download new data
in case they don’t yet exist. This can be done by creating a pull-request in their
GitHub repository. Once some tests are automatically run to ensure the quality
and fidelity to the information specified for the recipe, the new recipe is added and
automatically uploaded to the Anaconda cloud, making it available for everyone to
download. This tool can be very helpful because usually it is very difficult to find
reliable genomic data on the internet and, this way, it becomes very easy. We can
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use GGD without worrying so much about the data we want being there or not,
because of the fact that we can add it easily to the database.

Although it presents a lot of benefits, there are downsides to this tool. The most
important one is that, as seen in Figure 10, most of the recipes are very old and,
therefore, they usually get old versions of the data. Furthermore, the support for
it had been dropped a bit before this project’s start and, even if it has now been
retaken, some of the conventions are not always followed by all the recipes. These
issues, however, should prove easy to solve by keeping in contact with the developers
in charge of it.

PyPi / Bioconda
Revolving the third stage of this project, making the tool available, both PyPi

[40] and Bioconda [41] are the options decided as objective. They are not incompat-
ible options as they serve different purposes and usually one depends on the other.

PyPi is a distributing system for Python packages that is widely popular and,
usually, is the place to go to find specific packages. More than an option, it is almost
mandatory to have the tool developed uploaded to this system for it to be easily
distributed. Once a package is on PyPi it becomes accessible via the command
pip install package_name to be installed automatically. While this is the more
popular and logical option to use, there is another alternative to this for a Python
software to be distributed. This alternative consists on having the software in a
public repository hosted by either Bitbucket or GitHub and have the software sorted
in a way that can be easily executed. The instructions given to the user would
be to clone the repository to their local computer and run one or two commands
to execute the program directly from there. However, this option treats poorly
one of the main issues with bioinformatics software, which is the big amount of
dependencies. However, PyPi not only makes it easier to install the package but it
takes care of many dependencies for the user and also allows for different versions of
the software to be uploaded and installed, chosen by the user.

Bioconda is an Anaconda channel and so it works very similarly to the ”ggd-
alpha” channel that was just described. It contains all sorts of bioinformatics recipes
which, in this case, install software instead of downloading data. Even if PyPi
already does a good job at taking care of all the dependencies, some software is not
available there and not always are the dependencies well defined. However, by using
conda all possible dependency issues are taken care of, always. This is ensured by
applying automated tests to all new recipes which simulate the installation of the
package in an empty environment and tests if it works. An empty environment is a
simulation of a system without any prior installations. As a result, the tests fail if
some dependency is left up or if there are any errors in the package. Additionally, for
a new conda recipe to be accepted there are a set of conditions and guidelines that
must be followed, like the inclusion of some information about the project. Finally,
the way to install a package that is on anaconda is by using the command conda
install -c bioconda package_name if needed to specify the channel.

As a conclusion, bioconda works as a better version of PyPi specially for the users
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who want to use the tool. This comes with the cost of having to get through the
trouble of adding the recipe to the bioconda-recipes GitHub [50] in a similar way to
how GGD does it, and following the guidelines and respecting the stated conditions.
Because of all this and that the conda upload can take advantage of a PyPi package
already having been created, the first priority for this project will be to create the
PyPi package and then move on to the Bioconda release, as was mentioned in the
planning in section 4.

7.2 First development stage

Once all necessary decisions have been taken, the first development stage can be
started. Like it has been mentioned both in the methodology and the planning
sections, the objective will be to first have a functional version of a pipeline and
then continuously add more things onto it. Furthermore, we will have an iterative
approach to the development, which means that even when creating the first version
of the pipeline, this will be done in several stages with proper testing for each one.
The first step will be to get started with using the tools specified for the development,
Snakemake and GGD.

In terms of the planning for the project, this stage was developed in schedule, as
we will see, but in a different manner than planned. The fact that agile methodologies
are being used means that the objectives are constantly being changed. This stage
was initially thought out to be developed one task after the other. However, after
implementing some analysis it was thought best to process them before adding more
analysis, so that the procedure is more iterative and easy to test. This is why the
four main tasks from this stage were at times developed at the same time and not
sequentially. The budget estimated was only changed by the fact that it depends on
the time spent, so the final budget needed can be considered to be much lower. As
we will see, however, this time will be invested into other stages of the project so it
doesn’t have an effect on the final budget.

7.2.1 Testing tools

To get started with Snakemake the tutorial available in their documentation [26] was
used. This tutorial guides the user through the Snakemake installation, in this case
in a conda environment with Python 3, and the development of a simple pipeline
which contains 6 simple rules very similar to the ones seen in Figure 9. Most of
the characteristics and utilities explained from Snakemake like the main keywords
and the wildcards are introduced here. All the data used for the tutorial can be
easily downloaded following its instructions, so it is not necessary for the user to
have anything in advance. After testing that the results from the tutorial were the
ones expected, the true development of the tool can be started.

For the first version it was of interest to already download some data from GGD
to test both tools. Two specific data files were chosen to be downloaded. The
first one is the full human genome sequence, which basically specifies one nucleotide
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for each position of the genome, and can be used to obtain some data like the GC
content, inspired by Figure 2. The GC content is basically the percentage of G and C
contained by all the segments annotated with the same label, compared to the total
number of nucleotides contained. The second data file chosen to download is the
annotation containing information about genes, exons and transcripts in the human
genome. This information is necessary to run analysis that compare the obtained
results to other annotations like Segtools’ aggregation or feature distance.

GGD hosts genomic data from different species and different builds. The seg-
mentation used for testing during the development of the tool is the one obtained
after completing Segway’s protocol, which was used as a tutorial during the initial
stage. This segmentation corresponds to a human genome (species = Homo sapiens),
and specifically to the build hg38, and is stored in the usual format called Browser
Extensible Data (BED) [51]. As a consequence, to start testing this pipeline it in-
terests us to obtain all this data for the same given species and build. Luckily, GGD
already contains both files we want that met these specifications. The specific pack-
ages are called hg38-gtf and hg38-sequence. The name of the annotation refers to
the file format used to store the data, the General Transfer Format (GTF) format
[52] which is similar to BED. Understanding how this format works will be of high
importance for this project, as will be seen later. The sequence is stored in a format
called FASTA [53], which is format specifically used to store genomic sequence data.

A first pipeline with only the two downloads being executed was created using
one rule for each download and a general rule which specifies the targets needed.
This rule is generally called ”rule all”, and typically only presents input files. If the
rule is found on top of the file, when calling Snakemake through the command line by
just calling snakemake this rule will be executed and therefore all the rules necessary
to obtain said inputs will be run. After testing this pipeline using the command
line, it was noticed that the path were one of the files was downloaded didn’t exactly
match the specified convention seen before. As this is just a first version, for now
the different name is hardcoded into the code, as well as the species and build used,
although all of them stored into variables present on top of the Snakefile to facilitate
future changes to them.

7.2.2 First analyses

Once the tools have been tested the next step is to add analyses to the pipeline.
Starting by those analyses that take advantage of the data already being downloaded
by the workflow, the most important information to obtain from a segmentation will
be created. As we have seen, this will be done by executing existing software like
Segtools’ different tools and afterwards processing the outputs. From this point
onwards the development of the tool will be done using a Bitbucket repository where
the code will be stored for anyone to access using the url https://bitbucket.org/
hoffmanlab/segzoo [54].
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Aggregation
As described in the initial planning, the first analysis we want to incorporate

into the pipeline is Segtools’ aggregation because it needs the GTF file previously
downloaded and it is an analysis very commonly done in bioinformatics that should
be in the final visualization in some way. As a result, a new rule was created that
needed both the segmentation and the GTF file as inputs and had a single output
file. All Segtools commands have an argument when using the command line called
”–outdir” which lets the user define the output directory for the results. The final
files’ names, however, cannot be modified so these must be directly put into the code
when specifying the output paths. Other arguments must be taken into account
when doing the call to segtools-aggregation using the keyword ”shell”. It must be
specified that the analysis consists on an aggregation to a gene annotation so that
the components that are used for the aggregation are those of an idealized gene.
A series of other arguments can be added to make the execution faster: ”–noplot”
to skip all the creation of visualizations, as we are only interested in the numerical
results and, furthermore, the option ”–quick” allows to run the aggregation on only
one chromosome instead of all of them, making the analysis a lot faster and the
results erroneous, so this will only be useful for testing the pipeline.

#ANALYZING RULES

#Segtools Aggregation parameters obtention, general and by gene_biotype
rule run_segtools_aggregation_general:

input:
preprocessed_segmentation,
gtf=os.path.join(BUILDPATH, recipeGTF, fileGTF)

output:
os.path.join(DATA, ”aggregation”, ”general”, ”feature_aggregation.tab”)

shell:
”segtools−aggregation −−mode=gene −−quick −−noplot −−clobber −−outdir {DATA}/aggregation/general

{preprocessed_segmentation} {input.gtf}”

rule run_segtools_aggregation_gene_biotype:
input:

preprocessed_segmentation,
gtf=os.path.join(DATA, ”gene_biotype_gtfs”, ”general”, ”{biotype}”, fileGTF)

output:
os.path.join(DATA, ”aggregation”, ”gene_biotype”, ”{biotype}”, ”feature_aggregation.tab”)

shell:
”segtools−aggregation −−mode=gene −−quick −−noplot −−clobber −−outdir

{DATA}/aggregation/gene_biotype/{wildcards.biotype} {preprocessed_segmentation} {input.gtf}”

Figure 11: Snippet of the initial workflow developed, showing the rules running the
aggregation

The analysis mentioned is going to be called ”general aggregation” from now
on, which is the aggregation on all genes found in the gene annotation from the
GTF file. This is because an extra rule was added to the pipeline a bit later which
executes the aggregation on only a fraction of the genes. This will be explained in
more detail later on, but a partition of the GTF file will be done depending on each
gene’s biotype [55], a property specified on the annotation that tells more about the
gene’s function. Using each of the GTF files resulting from this partition, a new
aggregation analysis will be run using Snakemake’s wildcards so that only one extra
rule must be specified. The two rules, which can be compared in Figure 11, only
differ on the paths assigned to the inputs and the outputs and the fact that one uses
a wildcard for it and the other doesn’t. Although these extra analyses are run using
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different gene annotation the results still share the same format than the general
aggregation, so they can all be processed afterwards using the same script, but will
need a new rule for it anyways, similar to the one in Figure 11.

Nucleotides
Although this was not in the original planning, it was decided to add another

analysis to the first version of the pipeline. This analysis is the one which is going to
use the other downloaded file, the genome sequence, and is going to get information
about the nucleotides found in each label’s segments. From these results other values
can be obtained, like the GC content we already talked about.

To run this analysis there is more than one viable option of software to use.
Segtools has a tool that can obtain these results from a segmentation, but it needs
a genomedata [7] file for the sequence. Although it would be possible to convert
other files like the FASTA we can obtain from GGD to the genomedata format, this
would be expensive both in time and resources. For this reason another option was
chosen instead: BEDTools [15]. This software, that was mentioned in section 2, also
provides some tools similar to those from Segtools. One of its downsides is the fact
that no plots are created from the results but, as mentioned, this is not something
we need when running the analysis in the pipeline. More specifically, the software
needed is the tool ”bedtools nuc”.

No more arguments can be provided to the tool other than the change of the
directory where the resulting file will be created. This file contains for each segment
in the BED file some of its information, including the label assigned, and a series of
other values, including the number of each different nucleotide found in the segment.
This information also includes the percent of GC and of AT. However, even if right
now we are only interested in the GC content to add it to the final visualization,
because it is an easy metric to recalculate we are more interested in the number
of each nucleotides found as it is more generic information. The inclusion of this
analysis was tested together with the aggregation.

Length distribution
Once the pipeline was more developed, with some analyses’ results being already

processed, other interesting analyses were added to it too. The first one was the
length distribution. Similarly to the aggregation, Segtools provides a tool to obtain
a set of metrics related to the length distribution of the segments and it was chosen
to be used in the workflow. The implementation into the pipeline for this analysis
resembles the others, adding a new rule that in this case only needs the segmenta-
tion as an input and outputs the results in the desired directory. Furthermore, the
arguments added to the call are almost the same than in the case of the aggregation,
although in this case there is no ”–quick” option.
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label num.segs mean.len median.len stdev.len num.bp frac.bp
all 14424537 202.052 140.000 1369.058 2914508857 1.000
0 59801 414.964 380.000 270.765 24815249 0.009
1 60798 961.382 400.000 2160.199 58450099 0.020
2 255948 415.311 240.000 469.170 106298140 0.036
3 2467217 152.959 130.000 96.371 377383130 0.129
4 2728482 179.740 140.000 134.553 490417019 0.168
5 1985340 147.355 120.000 107.925 292549347 0.100
6 1771985 150.698 130.000 90.095 267034694 0.092
7 1085564 214.758 150.000 231.079 233133298 0.080
8 2429674 340.998 180.000 3295.653 828513796 0.284
9 1579728 149.338 120.000 99.608 235914085 0.081

Table 7: Results obtained running segtools-length-distribution on the testing seg-
mentation

The results obtained from the analysis on the segmentation we are using for
testing are the ones found in Table 7. A file called ”length_distribution.tab” is
created which specifies the length for each segment analyzed. Another file is created
with the name ”segment_sizes.tab” which is a tab-delimited file with the information
on the table. As we can see, most of the columns are metrics than can already be
very useful for the analysis of a segmentation: the number of segments for each
label, the mean, median and standard deviation values for the segment lengths and
the number of base pairs (nucleotide) that each label represents, both raw and in
fraction. In addition to this, the representation for the results is clear and very easily
manageable. For all these reasons, this table will be left like this without any post-
processing, which is the reason why we are seeing it now and not in a later section.
Furthermore, this format will be taken as the convention used to store all results.
This way, they will al require the minimum amount of changes to be used for the
visualization.

Feature distance
This analysis, also explained in section 2 together with its tool within Segtools,

shares a lot of similarities to the aggregation analysis. They both need an external
annotation to compare the segmentation to, but in different ways. While the aggreg-
ation gets the count of coincidences between a segment’s label and a component in
an annotation, feature distance finds out exactly that, the distance for each segment
to the closest feature. In the case of the gene annotation in the GTF file we have,
this analysis will output the distance to the nearest gene for each segment, given
that the file has been filtered so that only the genes stay, taking out other present
annotations like exons. This information can be of use if trying to understand the
likeliness of a label being found in a gene.

The implementation of this analysis was done following the example of the ag-
gregation analysis. Not only do these analyses share the GTF file as an input and
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similar arguments, but they both are interesting to be executed not only on a general
analysis but also by gene biotype. As mentioned while explaining the aggregation
analysis, the GTF file will be divided into smaller ones that only contain the genes
of one specific biotype. This means that an extra rule will need to be created which
uses wildcards to specify the biotype for which it is being run, like seen in Figure 11.
All results are stored in a specific directory similarly to the other analysis.

Learned parameters
Finally, once all the analyses we have been seeing were implemented in the

pipeline and the visualization was the next step, one last thing was decided to be
added. This last analysis consists on the GMTK parameters explained in section 2,
which identify what each label found by the segmentation means in terms of the
input tracks used in the Segway run. The Segtools tool was also chosen for this task,
to avoid having to write a custom script which parses the file where these parameters
are stored, which would basically re-write the code that already exists. Furthermore,
Segtools is already a heavy dependency for this pipeline, so there are no possible bad
consequences for using it here too.

One single rule more was needed to implement this analysis and, as usual, adding
the output file to the ”rule all” on top of the Snakefile so that it must obtained when
executing the pipeline. A new input is needed to execute this rule, which is the
”params.params” file obtained by the training of the Segway network that needs to
be parsed. The output obtained is a CSV file which contains all the mean values
for the learned parameters, but not the variances, which could also be an interesting
value to add to the visualization. This CSV is very similar to the results of the
length distribution, seen in Table 7, presenting the labels in the rows and the names
for all the tracks as the columns. As mentioned, this format is the one chosen as
convention to store the results to be used directly by the visualization and, because
of the minimal difference between both CSV and tab-delimited formats, this output
will also be exempted from any post-processing.

When all wanted analyses for the first functional version of the pipeline had been
added, various tests were run using the ”rule all” explained earlier and executing the
pipeline in its entirety to check that all dependencies are specified correctly.

7.2.3 Processing results

Once the analyses are run on the pipeline it is sometimes necessary to process them
to obtain the results that we want to add to the visualization. All outputs obtained
by the different software used tend to be tab-delimited files, which is what we want
in the end, but they don’t always contain the data that we want yet or they do but in
a different format than the one we want. The fact that all of them are tab-delimited
and table-like makes it so they can all be processed using the same software, in
this case a Python library mentioned before called Pandas [33]. Pandas is an open
source library that provides high-performance easy-to-use data structures and data
analysis tools for Python. Specifically in the 2D space, which is the one we will
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be treating with, it uses a data structure called a data frame, which is similar to a
matrix with names assigned to each row, column and axis and allows for all sorts
of operations to be done efficiently. Furthermore, a new data frame can be created
easily by specifying a file with the characteristics we just mentioned.

The first two analyses to get processed were the aggregation and the nucleotide
outputs, as they were the ones present in the first version of the pipeline. To do
so, separate scripts were created that took the outputs from the analysis as inputs
and stored the processed results in a different file. These scripts were written with
the help of Jupyter [56] and the kernel IPython [57], which allow a Python working
environment where commands can be executed independently or as a script to be able
to interactively see the results obtained from them. Specially as we are working with
table-shaped data with Pandas, the Jupyter notebook allows to constantly know how
the results of a call look like so that it can be corrected instantly if needed. These
scripts can later be called from Snakemake with the keyword script. By doing so,
the scripts developed can access data from the Snakefile like the inputs or outputs
of the rule they are in.

import pandas as pd
import numpy as np

#creates a data frame with segtools’ output, computes the means of the values for each gene area and label,
#and writes it in a tab−delimited file

#[0:8] is the interval of groups to take if we only want to analyze the splicing
#[9:] would be for the translation
#it’s been encapsuled in a function called run that can be called from Snakefle by importing this script

df = pd.read_table(snakemake.input[0], skiprows=1, header=0)
means = df.drop(columns=[’offset’, ’group’]).groupby(”component”, sort=False).mean()[0:8].T
means.to_csv(path_or_buf=snakemake.output[0], sep=’\t’)

Figure 12: Script that creates the aggregation results from the output from Segtools

label 5’ fl. ini.ex ini.in int.ex int.in ter.ex ter.in 3’ fl
0 1.394 0.68 0.04 3.0 3.3 0.64 0.04 0.0
1 148.344 142.76 112.62 385.64 307.84 116.04 82.1 115.972
2 4.582 4.88 6.06 40.4 53.44 1.0 1.3 2.3
3 19.934 23.8 10.26 149.72 100.1 27.48 14.0 27.046
4 14.802 16.12 6.26 23.24 18.92 20.92 7.94 18.15
5 12.458 14.68 6.76 146.08 116.2 25.52 9.42 16.226
6 10.086 10.36 4.82 92.2 83.84 15.28 8.96 21.326
7 1.05 2.68 0.08 0.72 0.52 2.08 0.24 1.468
8 400.132 379.92 256.2 905.88 760.52 382.08 280.24 409.848
9 2.218 1.12 0.9 27.12 29.32 1.96 1.76 2.664

Table 8: Results after processing the output from segtools-aggregation

We will begin by seeing the processing of the aggregation results, which was
done with the script in Figure 12. The initial data that is read in the first line of
the script consists on a series of rows which contain the following information: an
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identifier of the specific position in the idealized gene to which it refers, composed
by the component and a value that specifies the location within the component, and
the count of segments for each label that were overlapped with that specific position
of all the genes in the annotation. We are interested in having the labels as rows,
not as columns, and compacting the information in some way. The probably most
simple approach is the one selected as solution, which is to compute the mean value
of counts for each component, which basically means turning each little graph that
we could see in Figure 5 into a single value. All this is what is being taken care of
by the second line of the script. Pandas commands always return the result so that
all different changes to the data can be chained up together like this. Finally, the
resulting table is stored in the output file defined by the Snakefile’s rule using the
same tab-delimited format. The table obtained for the general aggregation results
can bee seen in Table 8. The component names have been changed to make the table
more readable in this document, but the actual names are left unchanged from those
specified by segtools-aggregation (Figure 5).

import pandas as pd
import numpy as np

#creates a data frame with bedtools’ output, adds up the parameters for all segments of the same label,
#and writes it in a tab−delimited file
#two rows are added to the table: GC_content and AT_content
#it’s been encapsuled in a function called run that can be called from Snakefle by importing this script

df = pd.read_table(snakemake.input[0], header=0, usecols=([”4_usercol”, ”12_num_A”, ”13_num_C”, ”14_num_G”,
”15_num_T”, ”18_seq_len”]))

df.columns = [”label”, ”num_A”, ”num_C”, ”num_G”, ”num_T”, ”length”]
sums = df.groupby(”label”).sum()
sums[”GC_content”] = sums[”num_G”].add(sums[”num_C”]).div(sums[”length”])
sums[”AT_content”] = sums[”num_A”].add(sums[”num_T”]).div(sums[”length”])
sums.to_csv(path_or_buf=snakemake.output[0], sep=’\t’)

Figure 13: Script that creates the nucleotide results from the output from BEDTools

label num_A num_C num_G num_T length GC AT
0 6545354 5848750 5859093 6562052 24815249 0.47 0.53
1 15240520 13898513 14001424 15308941 58450099 0.48 0.52
2 29904528 23169957 23238596 29985049 106298140 0.44 0.56
3 114543877 74023064 74069662 114746343 377383130 0.39 0.61
4 143764885 101351280 101377881 143922958 490417019 0.41 0.59
5 86476384 59650033 59716273 86706641 292549347 0.41 0.59
6 82170169 51243241 51303897 82317328 267034694 0.38 0.62
7 66229064 50335029 50304158 66265031 233133298 0.43 0.57
8 245658975 167188067 168698227 246949748 828513796 0.41 0.59
9 70008840 47875801 47900868 70128475 235914085 0.41 0.59

Table 9: Results after processing the output from ”bedtools nuc”

Next is the nucleotide processing. As mentioned before, the nucleotide output
is a list of segments with the nucleotides counts for each of them. The first line of
the script in Figure 13 reads the data we are interested in from the original output,
which afterwards has the names changed. Even though the intention is for only the
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GC content to be used in the final visualization, all the nucleotide values will be
stored too in the processed table for possible future interest. This said, the results
for all segments from the same label are added up by grouping them up, and then
the new columns ”GC content” and ”AT content” are created using the other values
from each row. Again, the results are stored in the file stated by the Snakefile rule
from which this script is called. The results for our segmentation are the ones visible
in Table 9. Pandas once again makes all these different operations really easy to
program and efficient.

As it may be noticed, all tables created resemble Table 7, which was taken
as model for the convention to use. Because of this, both length distribution and
GMTK parameters’ results will be left without further processing. The only analysis
remaining to process, therefore, is the feature distance. However, due to not having
any clear way to summarize its results into a table similar to these obtained, it
was deemed more important to move on to other stages of the pipeline for this
first functional version, and leave the feature distance analysis un-used for now.
Therefore, the resulting files from the feature distance analysis were taken off from
the target rule of the Snakefile from now on, as well as changing the unprocessed
outputs to the processed results as new targets.

(a) Diagram of rules for the aggregation results (b) Diagram of rules for the
nucleotide results

Figure 14: Diagrams of the rule dependencies for the results processed

The resulting pipeline from these analyses being run and processed already
presents some interesting chain of dependencies. In Figure 14 we can observe both
independent rule graphs for the aggregation and nucleotide analysis. These graphs
show the rule dependencies that are created automatically because of the inputs and
outputs specified. In both cases, the graph has a depth of 3, starting with the down-
loading of the necessary data, followed by the execution of the analysis and finally
processing the results. The other initial rule dependency presented in Figure 14a
will be explained in the following section.
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7.2.4 Preprocessing rules

For all analysis to run there are a set of input files needed. In this case, it is of
interest to preprocess these files before running the analyses on them. As we will see
in this section, both the GTF file and the segmentation can be processed in some
way that interests us.

GTF division
Although doing general analyses like aggregation and feature distance can provide

interesting information about the segmentation studied, it is generally better to be
more precise on the analysis. This can be done by using annotation files that contain
more specific data. In this case, both the aggregation and feature distance are inter-
esting to be run on genes separated by gene biotype. These gene biotypes identify
the function that gene has, and the most common are the protein coding genes and
the ones that generate lincRNA. Because of this, added to the general analysis run
for both aggregation and feature distance, it is of interest to add to the pipeline
the analysis per gene biotype. To do this it is necessary to divide the GTF gene
annotation file into single gene biotype GTF files. Furthermore, we need to take into
account another important factor. The aggregation needs as an input a GTF that
specifies at least genes and exons, so that the differentiation between the intron and
exon components can be made. However, feature distance needs only the genes so we
will need to create two different files for each gene biotype, one with all annotations
and the other one with just genes. This is done with a separate script, called from
the Snakefile in the same way the processing scripts were called.

The script developed uses pybedtools [58], which is a Python library that wraps
and extends BEDTools and offers feature-level manipulations from within Python.
It proves useful when having to manipulate feature data like the one in our GTF
file. The script runs through the GTF lines, called intervals, using one of pybedtools’
classes to do so efficiently and stores the intervals into dynamic memory in form of
two dictionaries. These are stored in a list under the dictionary’s key according to
their gene biotype, always in one dictionary and the second one only if it consists
on a gene. Finally the files are created from the dictionaries’ data using the class
”BedTool” provided by pybedtools.

This operation needs to be added to the workflow by creating a new rule that has
the GTF file as input. However, in this case we have an unknown amount of output
files, as the amount of gene biotypes and their names cannot be known beforehand.
This is handled by using the ”dynamic files” functionality in Snakemake, which allows
to specify a pattern of a path that an unknown amount of files can match. Simil-
arly, the dynamic keyword can be used when specifying the targets of the pipeline,
so that an analysis is run for every file matching the pattern specified. As an ex-
ample, dynamic(data/gene_biotype_gtfs/general/{biotype}/hg38.gtf) is the
call used to specify the outputs from this rule that relate to the GTF files containing
all annotations. Finally, new rules were added like explained in the ”First analyses”
section to run the analysis using the different GTF files created for both aggregation
and feature distance.
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Segmentation preprocessing
When testing the pipeline with all analyses implemented, including those by gene

biotype, it was noticed that it was slow, specially the feature distance analyses. The
main reason for this was that it was run 40 times, which is the number of biotypes
found in the GTF file. At this stage, it was considered the possibility of running
the analysis only on the most important gene biotypes, which usually are the ones
most present across the genes. Because of this, a new file is created during the GTF
separation script which informs about the number of annotations and of genes for
each biotype, which is stored in a new directory called ”logs”.

Upon closer inspection, however, it was noticed that most of the time spent on
the analyses was used to parse the segmentation which is in BED format. A useful
tool in Segtools called ”preprocess” parses a segmentation one time and creates an
intermediate file that takes seconds instead of 3 to 5 minutes to parse. This processing
was added to the pipeline too, and all the inputs referring to the segmentation file
were changed to this new preprocessed file, which is in a ”Pickle” format.

Unfortunately, BEDTools does not allow this format as an input, so this optim-
ization can only be done in other analyses than nucleotide. Furthermore, the feature
distance analysis was temporarily taken out of the targets as mentioned before and,
as a result, the pipeline tests showed that it was executed in its entirety a lot faster.
Because of this, in the end it was not necessary to filter the gene biotypes used, but
the logged file with information was left for potential future use.

7.2.5 First visualization

After everything we have seen, the state of the pipeline is the one seen in Figure 15,
where the feature distance analysis has been commented out for the time being. The
only thing missing to have a first functional version of the tool is the visualization.
It will be programmed in a separate script as well, to improve the readability and
modularization of the code, and added under the script keyword in the current ”rule
all” which is being used to specify targets.

Figure 15: Final rule graph of the pipeline before incorporating the first visualization
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The objective is to present the information in a summarized way, following the
idea of Figure 2. A bunch of diagrams could be created, which go in depth for each
analysis, but that would not make it any different than the current Segtools html
report or other tools. Our main objective is to make the data as compact as possible
and easily readable, which is the reason why we are storing the data the way it has
been explained in previously, summarizing the original data to single numbers. We
want to build a plot which resembles a matrix with all the data stored and that
uses colors to make the data more readable and easy to interpret. For this, Seaborn
[34] is used, a Python visualization library that provides a high-level interface for
drawing attractive statistical graphics. It is based on another Python library called
matplotlib [35]. Using both these tools, it is possible to create a type of visualization
called heat maps, highly configurable colored matrices that fit our needs.

To develop the script we will be closely working with both visualizations and
data tables, which cannot be easily plotted in a normal Python environment. The
use once again of the Jupyter notebook will allow constant tests and correction of
errors during the development. Specially with the visualization, it is important to
continually check what is being obtained with each call to the Seaborn and matplotlib
utilities, to keep the debugging simple and quick.

A selection of the data we currently obtain from the workflow needed to be done
because, even if not considering the feature distance results, taking into account the
40 different aggregation tables there is a huge amount of data. Because of this, it
was decided to divide the visualization in distinguished parts, which will eventually
become 3 different heat maps.

GMTK parameters matrix
Following the convention normally used by the bioinformatics community, the

learned parameters should find themselves at the leftmost part of the visualization
and differentiated from the rest of it. This distinction is necessary because they
represent a different kind of data. While all the rest are results from analyses and
information about the segmentation’s behavior, the parameters characterize the la-
bels, state their identity. They serve as an introduction to the visualization and must
be easily found at all times because they will probably be the most looked-at data.
For all these reasons their positioning is on the left, as the visualization will be made
in a horizontal manner to increase its readability and take advantage of the format
used as convention with the labels being the rows, so that all plots share this axis.
Because of its formatting, the use of the data is direct and can be visualized easily
with all default parameters from the heatmap function provided by Seaborn.

Aggregation matrix
The aggregation results have the particularity that are very numerous and actu-

ally are 3-dimensional if gene biotypes are taken into account. Complex visualizations
could be attempted, but this was deemed unnecessary and even counterproductive
for this project. The solution suggested is to only visualize both protein coding and
lincRNA gene biotype results, as they are the most prominent in the genome and
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they provide a more accurate and detailed analysis than the general aggregation.
As a result, these two data matrix are taken from their respective files and merged
together into a single one.

Distinctively from the case with the learned parameters it is now of interest to
have in the heat map the actual values of the matrix too. Furthermore, the values
are not all between 0 and 1. To take care of this, a copy of the data frame must
be created and modified so that the values can be used for the heat map, while the
original data frame is used to annotate the heat map cells. If the heat map is created
with default options, the results are mostly not readable because two components
have very high count values, and so the color map maximum and minimum values are
set very apart, making all the smaller values indistinguishable as seen in Figure 16.
To solve this problem, the values are re-scaled between 1 and 0, being 1 the higher
number in a component and 0 the lower one. This way, the color map limits are set
to 1 and 0 and the labels can be compared on each component easily. The original
values are still showed in the cells.

Figure 16: Aggregation heat map obtained without normalization being applied to
the data, losing information

In Figure 5 we saw that the values were normalized to obtain an enrichment.
However, the results we obtain are not normalized in any way and only present the
counts of aggregations, which lack meaning. An example to show this is that if
one label has many more segments than the others, it will naturally have a higher
count on the aggregation analysis. Then the heat map created will show it has the
highest values, which can be misinterpreted as that label being more in genes than
the others, which is not necessarily true. Changes will need to be made in this matrix
in particular, but they will be made later on, as it is prioritized to make the tool
available beforehand.
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Mix matrix
Other than the learned parameters and the aggregation results, all the other

data we have obtained with the workflow are basically a set of columns which give
independent information on the segmentation. They don’t need to be put in any
specific way, and can be mixed up. Because of all this, a similar approach to Figure 2
is taken with all these remaining data and it will all be put together in a single heat
map, which will be called the ”mix matrix” or heat map.

The length distribution results are taken from their respective file and, because
they didn’t need to be processed before, some small changes are made to them, like
adding a new column or taking out the row ”all”. The nucleotide results are also
read, but only the GC content column is actually retrieved. These two data frames
are put together in a similar way than the aggregation tables. This resulting data
frame is the one that is going to be used as annotation for the heat map.

With putting together a bunch of different data from different sources new prob-
lems appear. While the GC content already contains data which ranges from 0 to
1, those from the length distribution analysis are generally not. All possible values
must be converted into fractions, which are more readable, and some sort of normal-
ization like the one used in the aggregation results must be made in order to create
the heat map. Because all the values are together and will share a color map, the
values used to create the heat map cannot be from different scales. Consequentially,
all columns are normalized so that the maximum number is 1 and the minimum 0.
The GC content could arguably be left without any changes, but for the sake of
making the whole matrix homogeneous the normalization is applied too.

Figure 17: Final visualization for the first development stage

The visualization obtained as a result is the one in Figure 17. Note that the
color bars showing the color map used for each heat map are not displayed in this
initial visualization to make it more compact. The dark blue colored cells in the mix
matrix are the highest values for each column and the pale yellow ones the minimum
values. The fact that all the heat maps are positioned this way allows for the labels
to be omitted in both the mix and the aggregation heat maps, because they share
the axis with the GMTK parameters.
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7.2.6 File system

During all this section it has been mentioned that files are stored in specific locations.
Because of how Snakemake works, it is indispensable to have a designed file system
that defines where each file will be downloaded, created or moved. The file system
used for this version of the pipeline is showed in Figure 18.

The basic idea is to store all results from running the different software tools
into the ”data” folder and, after processing them, storing the table obtained in a
”results” file inside the ”results” folder. As a consequence, these two directories share
very similar structures, with the difference of the GTF files and the preprocessed
segmentation only being in ”data”. The final visualization is stored in the ”plots”
directory, and the ”logs” folder is meant to store all sorts of information about the
run of the pipeline, in this case the data on the amounts of intervals for each gene
biotype.

Snakefile
scripts/

CreateAggregationResults.py
CreateNucleotideResults.py
CreateGeneBiotypeGtfs.py
Visualization.py

results/
aggregation/

general/results
gene_biotype/

protein_coding/results
lincRNA/results
...

gmtk_parameters/results
length_distribution/results
nucleotide/results

data/
... // The same 4 than in "results/"
segmentation/segmentation.pkl.gz
gene_biotype_gtfs/

protein_coding/hg38.gtf
lincRNA/hg38.gtf
...

plots/plot.png
logs/gene_biotype_results

Figure 18: File system after the first development stage

This is the structure obtained from scratch when executing the pipeline from
within the same folder where the Snakefile is found, but if called from somewhere
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else, this whole structure except the Snakefile and the scripts folder would be created
in that place instead. This is because of the use of relative paths throughout the
pipeline. Even if the structure is already determined, the names for most of the
important folders are stored in variables in the code so that they can be changed
easily. Notice that, in case it was of interest, the same name could be specified for
the ”data” and ”results” folders, and the result would be that the processed results
would find themselves together with the outputs from the tools, because of both
directories following the same structure.

7.3 Making the tool available

Once a functional version is developed, the priority is to make it accessible to anyone
who may want to use it. This is specially important because of the possibility to
obtain feedback from the community. As it has already been mentioned there are
a few ways to accomplish this objective. The option selected, involving Python
packages, is the most used for Python software overall, as well as being the better
option for the users in terms of what they need to do to obtain the software in a
functional state. The alternative to this option is the one suggested by Snakemake’s
developers [26] to distribute pipelines using their software, which consists on using a
GitHub repository to be cloned with instructions for its correct use. However, one of
the main objectives of this project is to make the software as easy to use as possible
so that it really is a turnkey system. As a result, the alternative is considered as
a bad option for this specific project and a Python package needs to be developed,
as well as correctly distributed using the tools already mentioned. In the coming
sections it will be explained in detail how the development of this stage took place.

7.3.1 Package creation

The first step when creating a package is to come up with a name for it. This may
seem something of little importance, but in fact a bad name can make the tool less
approachable to the user, as it may not be clear what it refers to. Its originality is
important as well in case the tool is finally used by a lot of people. The name chosen
in this case is Segzoo, so this is the name to which the tool will be referred from now
on. It keeps the ”seg”(from segmentation) half that makes it obvious that it keeps
a connection both to Segway and Segtools, while adding the ”zoo” to give the idea
that it deals with a lot of data from different sources, combining them all up into
one single automated pipeline.

For the tool to be available some changes were needed, both on the structure
and the files that are part of the tool, and in the software developed up until now.
These changes will be described more precisely next.

Structure and files
To create the package the official guidelines [59] were followed. The library

setuptools is used, which means having a file called setup.py as well as a setup.cfg
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sometimes and keeping a specific structure for the information that needs to be
present on these files and more. The whole structure needed for the package is
showed in Figure 19.

LICENSE.txt
MANIFEST.in
README.md
setup.py
segzoo/

__init__.py
main.py
create_aggregation_results.py
create_gene_biotype_gtfs.py
create_nucleotide_results.py
Snakefile
version.py
visualization.py

Figure 19: Segzoo package’s file system

For this project the setup.cfg file that normally contains configuration details
for the setup.py file is not needed, and that’s the reason why it is not present in
Figure 19. MANIFEST.in must contain references to all files that are intended to
be included in the package other than those that are already added automatically,
like Python scripts (files with the ”.py” extension). LICENSE.txt contains the license
agreement according to the regulation applied, which was explained in section 6. The
README.md like all README files contains general information about the software
it refers to, in this case Segzoo. In this case it uses the markup language Markdown,
shown in its extension ”.md”, which will allow to easily add all sorts of figures to the
file. The information stored here will later on be very important, as it will be the
first thing the user sees from Segzoo both in the Bitbucket repository where it has
been developed and on the PyPi page automatically created for it.

As recommended in the tutorial followed [59], all code is stored inside a folder
named like the package itself. The previously used ”scripts” folder is eliminated to
make all the mutual references between scripts much more intuitive and the files
easier to access. Note also that some names were changed to match the Python
standards. A new Python file called version.py is added containing a single global
variable with the version of the package, initially __version__ = "1.0.0.dev1".
This variable will be used in multiple scripts from the package, so the objective of
creating it in a separate file is to centralize its value for when it needs to be changed.
Finally, the __init__.py file identifies Segzoo as a Python package, while the use
of main.py will be mentioned on the following section.

Finally, the base of the package, setup.py. In this Python file all sorts of
information about the package are provided, from the developers name and email to
the description, stable url, dependencies and entry points for the project. The entry
points are command line entries with which the software can be invoked. The version
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must also be specified in this script, as well as a reference to the README and the
LICENSE used. All this information is stored in the shape of arguments that are
passed onto a single function call with the name ”setup”, from the setuptools library.

Command line interface
This tool only need one single entry point, as it doesn’t present any independent

software like Segtools does. This entry point specified in setup.py refers to the
main.py file where all the options available to the user are stated and the final call
to the Snakefile is made. To make the tool as easy to use as possible for the user’s
perspective it was deemed indispensable that only one argument was mandatory to
run Segzoo: the segmentation. The ”params.params” file necessary for the learned
parameters was moved to an optional argument as well, which had some implications
that will be seen later. The specification of the accepted arguments in the Segzoo
call was done using the library argparse which automatically creates the argument
”-h” or ”–help” that outputs all the information regarding accepted arguments.

usage: segzoo [-h] [--version] [--parameters PARAM] [-o OUTDIR]
[--species SPECIES] [--build BUILD][--prefix PREFIX] segmentation

Download necessary files, run workflow and obtain results

positional arguments:
segmentation .bed.gz file, the segmentation/annotation output

from Segway

optional arguments:
-h, --help show this help message and exit
--version show program's version number and exit
--parameters PARAM The params.params file used to obtain the

gmtk-parameters
-o OUTDIR, --outdir OUTDIR

Output directory to store all the results
--species SPECIES Species of the genome used for the segmentation
--build BUILD Build of the genome assembly used for the

segmentation
--prefix PREFIX Prefix where all the GGD data is going to be

downloaded

Figure 20: Help displayed when running segzoo -h on the command line

As seen in Figure 20, a full guide with descriptions is shown when running the
command segzoo -h. The optional arguments can be specified in any order, and
most of them are followed by a value after their keyword. When added to the Segzoo
command line call, their different values are parsed and stored in a dictionary-like
object that can be added to the Snakemake call. As a result, all these values are
now assigned to the variables that originally had constant values in the pipeline.
Because of this, all optional arguments must have default values specified so that
these variables always have a valid value.
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The output directory’s default name is ”outdir”, where the ”data”, ”results” and
all the rest of output folders from the file system will be created. For the species and
the build, the values used during development are the ones taken as defaults: ”Homo
sapiens” and ”hg38”. Furthermore, this is the most used combination of the two as
”hg19” is slowly being used less and less. The prefix, which specifies partially the
directory where the GGD downloads will take place, has as a default the path to the
current conda environment being used. This is obtained by assuming that Segzoo
has been installed either by running conda or using the PyPi package but with a
Python installation in anaconda. These are the two most common use cases, so it is a
safe assumption to make. Alternatively, the user can specify another location where
the path share/ggd/species/build/recipe/ will be created for the downloads, as
this portion of the path cannot be modified.

Pipeline changes
During this process some changes were needed to be made to the pipeline that

had been developed up until this point. As we just saw, a set of optional arguments
were created for the user to specify. The ”outdir” argument made it so an extra layer
had to be added to all paths specified in the Snakefile, which didn’t take into account
having to store all outputs in a specific folder. Regarding the learned parameters,
its argument doesn’t present any default value. This is because it is not possible
to predict where the ”params.params” will be, and even whether it exists. For this
reason, this argument is different than the rest in that it causes the pipeline to behave
differently if it has been specified or not. In this case, if it is not included in the Segzoo
call, no GMTK parameters can be shown in the final visualization and, furthermore,
all needed analyses regarding them must not be executed. Changes were made to
the pipeline so that the learned parameters results were needed conditionally, and
the visualization showed an empty space where the parameters should be if no path
was specified.

When building the package there was a question that needed to ba answered:
how is the user going to install and use this tool?”. The answer given made it so that
some changes were needed. For starters, it of interest for the tool to be usable many
times with different inputs. If this was done with the current pipeline the GTF file
processing, which creates a bunch of new GTF files, would be executed each time
a new directory with results is created. As this data is completely independent to
the segmentation itself and only depends on some variables like the species or the
build used, it was decided to move its creation path to the same one where the GGD
data is stored. This way, this data can be shared between all Segzoo runs that share
species and build, even if they are done using different segmentations. Moreover, the
gene biotype stats that are created by this same rule are also stored in this directory.
As a result, future executions of the pipeline will need to execute less rules, which
will make them faster, and no duplicate data is created.
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Problems encountered
Aside from the small problems that were resolved during the development of this

stage, there were important issues that were found when testing the Python package
created. As mentioned, in the setup.py file all dependencies needed to be specified.
One of them is BEDTools, used in the nucleotide analysis of the pipeline. The reason
why these dependencies need to be specified is for them to be automatically installed
when installing this tool. The issue in this case is that BEDTools is not available
on PyPi, and as a result the installation fails when having it as a dependency. Its
is available, however, on Bioconda, the Anaconda channel, for which we had plans
to create a version of this tool in the future. Once this is done, the dependency can
be added, and the only way to manage this situation is by clearly specifying in the
README file that BEDTools needs to be previously installed.

In the package it is also necessary to state the Python compatibility of the tool,
which basically means to specify a Python version from which the compatibility
will be properly tested and guaranteed. In this case, the version for all Python
packages used as dependencies was checked, because it is not possible to have a tool
compatible with a version if all their dependencies aren’t. Snakemake, for example,
is only available from Python 3.3 onward, which coincides with the big majority
of the tools used. Because of this reason, it was chosen to take the latest Python
version, 3.6 as the compatible version, even if it should be able to work on many
older versions too.

An exception to all this however is Segtools, which only had compatibility for
Python 2.7 at that point. This was already known beforehand but the solution that
was first thought of, regarding the use of conda environments to run different versions
of Python, was finally considered as not good enough. Doing so is not intuitive and
makes the user take a lot of extra steps before being able to use Segzoo, which goes
against its objectives. This combined with the fact that Python 2 was going to be
dropped from support in less than 2 years (Jan 1st, 2020), made it so another solution
was selected to proceed. This solution consists on porting to Python 3 Segtools
partially, enough for the project to continue with a full Python 3 dependency and
not relying on any Python 2 software.

Results obtained
Although these last issues had some consequences as described in the following

section, a version of the package without Segtools or BEDTools as dependencies
was already available after this stage was completed, and completely usable if both
software were already installed and this tool was installed in a separate Python
3 environment. Thanks to PyPi, to do so is as easy as executing pip install
segzoo in said environment. Furthermore, a web space is automatically created for
the package in which all data specified in its creation is shown and each time a
new version is uploaded it gets automatically updated. The url for this page is the
following: https://pypi.org/project/segzoo/ [60].
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7.3.2 Schedule changes

Because of the issues previously mentioned this stage caused big changes needed in
the planning. This change of plans made it so the initial scheduling had to be remade.
Because of the inability to upload the obtained package to Bioconda without the full
dependency tree up to date, this new task will have to be done between both main
tasks from this stage. The estimated time for the new task, as well as making sure
Segtools’ new version is available, is of 150 h. As a result, the new schedule is the
one in Figure 21. All times for the stages that have actually been finished have been
updated to its real time instead of the estimated time from section 4. Note that
thanks to the fast end of the first development stage, even with the new task being
added, some days are left available in comparison to the initial planning. These days
have been given to the second development stage to be able to add more functionality
and optimize the pipeline better.

Feb Mar Apr May Jun

14 19 26 05 12 19 26 02 09 16 23 30 07 14 21 28 04 11 18 25

Initial stage

1st development stage

Making tool available

Upload Python package

Port Segtools

Bioconda upload

2nd development stage

Finalize workflow

Optimize code

Final Stage

Write final report

Final changes

Final presentation

Figure 21: Update on the Gantt chart of the project

Although once again this schedule presents the tasks sequentially, it is very prob-
able that this is not developed this way in reality like it has already been done during
the first development stage. Specially during the new task’s execution, when the new
version of Segtools needs to be uploaded there will most likely be ”dead” time, during
which the development of the tool can continue while waiting. As a result, it can
be considered that the second development stage can overlap with this entire stage,
including the Bioconda upload for the tool.

This change in the schedule once again does not have any important effect on
the final budget for the project.
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7.3.3 Porting Segtools to Python 3

Getting into such a big software like Segtools and applying some changes to it, even
if only partial, is no easy task, which is why a quite big amount of time was estimated
for this process to be finished. The partial port to Python 3 will be done so that all
tools from Segtools used by Segzoo are available both in Python 2 and Python 3,
while leaving the others on Python 2 only because of time constraints. This stage is
not this project’s objective in itself, so the least amount of time needs to be invested
in it. It will now be described what exactly needed to be done and how the issue
was addressed, seeing some of the problems encountered on the way.

Python 2 and 3
As an introduction, the problematic and main differences between Python 2 and

Python 3 are going to be explained next. This version update represented a big
change in comparison to the smaller version updates like the one from Python 3.3
to 3.4, for example. For years now both Python 2 and 3 have been widely used, as a
lot of already developed software is on Python 2 and, because of dependency issues,
there are still new tools and packages being developed using this version. However,
although support has been maintained for both versions during these years, the
official end-of-life for Python 2 has already been announced, being the date the
beginning of 2020. Because of this, there is an increasing interest in porting all
Python 2 software to Python 3. However, due to the current situation, this is usually
done while keeping Python 2 compatibility too, using a set of tools available as well
as some official resources that Python developers made available for the community
to use.

We will now take a look at the most noticeable changes that Python 3 brought
and that may be important for this task:

1. Imports behave differently, the way the division operator works is more consist-
ent on Python 3, and the print() function call is made differently. These three
changes have been put together because they all are resolved by adding similar
lines on top of the code, which import functions from __future__, a built-in
Python package created to allow compatibility between Python versions. For
example, from __future__ import print_function allows to make print()
calls in Python 2 like in Python 3.

2. Among a lot of syntax changes, the syntax regarding both catching and raising
exceptions is significantly modified. Luckily, the Python 3 syntax for it is also
valid for Python 2.7, which is the latest version of Python 2 and the only one
for which the support has been kept.

3. A general change to iterators was made, affecting most notably the functions
map, zip, range, next and a bunch of dictionary iteration functions. All these
functions now return iterators instead of lists, which causes errors when trying
to use the result more than once.
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4. A list of built-in libraries were changed and some of them even removed. It
was made sure however that good alternatives were left for all those libraries
still needed.

5. While both Text and Bytes types of strings were treated as one in Python 2,
a heavy differentiation is made between them in Python 3. This makes it so
most Python 2 software that treats with strings without specifying its subtype
is incompatible with Python 3.

Methodology
As mentioned previously the objective of this section of the project is to obtain a

version of Segtools that gets enough Python 3 functionality for Segzoo to run properly
with it as a dependency, while keeping all current functionality with Python 2. To
do so the official porting guide [61] was followed while working on a forked version
of the original repository for Segtools.

Segtools consists on a lot of different files that take care of the software’s function-
ality partially. An initial study was made to see which files needed to be modified.
Those included the main files for each of the tools from Segtools used in Segzoo,
those files referenced in them and all the ones responsible for the package creation,
which is done the same way as in Segzoo.

For each Python file to modify, a software called python-modernize is used. This
tool takes care of most of the compatibility issues between Python versions that are
easily fixable, like the first 4 mentioned in the last section. The library six, which
provides functions and classes that behave differently whether if used with Python
2 or 3, is widely used by the tool. For example, the function six.range() can be
used, which will always return an iterator and so no different results are obtained
depending on the version used. The software however is not perfect, so a close look
needs to be kept on the changes made by it for each of the files modified. Even after
all this when trying to run the code a lot of bugs will most likely still be found. This
is because the change number 5, regarding strings, cannot be automatically dealt
with.

Debugging these issues will require to look at variables and results obtained
mid-execution to check for their types and values. The use of the called breakpoints
allows to do exactly that. This is done by using debugging tools like the ones offered
by PyCharm [62], which are the ones used during the course of this project.

Finally, when no errors are found some proper testing needs to be done on the
software. To make sure changes keep all specifications, the tests will consist on
comparing the outputs obtained for the same inputs by the version of Segtools being
modified both uing Python 2.7 and Python 3.6, as well as by PyPi’s version of
Segtools. This way, we can make sure that the results are correct using both Python
versions. For this purpose a series of scripts were created so that the tests could be
done automatically.
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Development
During the development of this stage following the methodology mentioned some

unexpected issues were found and mostly dealt with. Small packages used by Segtools
were found that also needed to be updated to Python 3, as well as being added in
the dependencies list. Luckily, all this software, including Segtools, is maintained by
the Hoffman Lab so it was easily accessible and changes were made quickly.

As mentioned previously, a selection of the tools to be updated had to be made.
These were length-distribution, aggregation, feature-distance, preprocess and gmtk-
parameters. However, all these tools have code that refers to the creation of an
html-like file used for the execution of the html-report tool that was mentioned in
subsection 2.2. This specific code particularly gave a lot of trouble when being
executed with Python 3. As this tool is not wanted for Segzoo, the code was modified
so that a message is prompted whenever this file creation is attempted with Python
3, warning the user of its incompatibility.

The setup.py file also needed to be modified, and way more than the other
ones. This is because the entry points definition is being made there. Segtools has
an entry point for each tool, so it was decided to remove all entry points referring
to unavailable tools when using Python 3. This way it is much clearer to the user
what can be done and what can not with each version, instead of relying on error
messages being shown. Two variables were created in the code which contained the
list of entry points for Python 2 and Python 3, and the adequate one is used when
installing the package with one of the versions.

Decisions like this last one were made so that it will become easy in the future
to add tools that are only available for Python 3. It is important to keep in mind
that this version of Segtools is a partial one that will need to be expanded in the
future, so everything possible was made to make the future transition to Python 3
smoother.

While up to this point the stage was kept within schedule, the duration of it
was extended in the end due to various reasons. For some of the tasks performed
from now on the time factor is not entirely dependent on the developer but on
other stakeholders. As an example, all changes are requested to be added to the
code, but a responsible needs to make sure the changes are correct and then accept
them. Furthermore, it was considered necessary to modify Segtools’ documentation
[21] to reflect the changes that have been made. For instance, the table shown in
Table 10 was added in a new subsection called Python 2/3 compatibility status and
the dependencies section was updated.

When the final version of Segtools was finished and merged into the main re-
pository with its documentation updated too, the only thing missing for it to be
added as a dependency for Segzoo is to upload the package. As it was uploaded on
PyPi, Segtools can already be in the dependencies list for Segzoo’s package on PyPi.
However, its upload to Bioconda encountered some issues, which affects the ability
to do the same with Segzoo.
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Table 10: Compatibility table added in Segtools’ documentation to keep track of the
state of the Python 3 port, created using rst format in Sphinx

7.3.4 Bioconda upload

Bioconda is the channel from anaconda where bioinformatics software is stored. For
a new recipe to be added, which basically means adding a new Python package or
tool, a similar procedure than the one followed to modify Segtools. All the contained
recipes are hosted by a GitHub repository [50] that must be forked before adding the
new recipe and then asking for a merge. The big difference with Segtools is that the
procedure of having the changes accepted can take a very long time, specially since
some very rigorous automated tests don’t allow you to ask for the merge if any type
of error is found.

To build a recipe the official tutorials can be followed [63]. A recipe consists
on a file named meta.yaml which contains all information about the package and a
script called build.sh which specifies the commands to build the package. A similar
extra script is needed if wanting to run it on Windows too, but this is not the case
for Segzoo. These two files combined form the recipe, which is used to create the
package on a computer for it to be installed afterwards.

As it has been mentioned before, the conventions followed in the making of these
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two necessary files are very strict and sometimes messy. Even if only the name and
version of the package are the obligatory information to add in the configuration file,
for the build to actually work there are a series of sections in which more information
must be specified: source, build, requirements, test, outputs, about and more. For
each of these sections a series of variables can be assigned. The whole set of them
with their descriptions and expected values are explained in detail on the conda
documentation [64].

Luckily, if looking at the tutorials available [63] one may notice that there is an
option called conda-skeleton, which allows to create conda recipes almost auto-
matically from PyPi packages. Because of this being the case for Segzoo, this option
is chosen as it makes the whole process a lot easier. By using the command conda-
skeleton and specifying the PyPi package, a meta.yaml file is automatically gener-
ated with all the available data in the package already stored correctly. This goes
from the dependencies to the package description, completing the file in its entirety.
The reason why this is considered ”almost” automatic is because the results must
be checked for errors and some changes may be wanted. In this case, BEDTools can
finally be added as a dependency too, in addition to the rest of dependencies already
present on the PyPi package.

Once the recipe is created, it must be tested before attempting to merge it. As
explained in the last section, Segtools was still pending for its Python 3 version
addition in Bioconda when the final date of the project arrived, so the tests with
it specified as a dependency fail. However, all tests done removing this dependency
turn out fine, which should mean that, once Segtools is finally available, Segzoo
should also be ready to go.

While this stage finally took a lot longer than expected mainly because of the
waiting times that were mentioned as possible issues, this doesn’t have any direct
effect on the rest of the project, either in terms of the schedule or budget. As men-
tioned previously the second development stage, described in the next section, was
started earlier than scheduled to make up for the time this stage was taking to com-
plete. In the end both making the tool available and developing the tool were done
in parallel, updating any changes made to the package regularly. Furthermore, with
the PyPi version working already the tool could be already used by the community
and some feedback could be collected as expected.

7.4 Second development stage

The first development stage ended up when work on the software’s availability was
decided to begin. However, the state of Segzoo in which it was left then was not the
one intended for the end of the project. As seen previously, the schedule planned
for the remaining of the project’s development after the changes needed after the
problems encountered in the last stage could not be followed. Instead of keeping
a sequential approach to it, it was decided to begin the second development stage
whenever it was possible and the other stages could not see any progress. Starting the
beginning of May, the development on the tool, further from the package creation,
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was retaken. The main decisions and changes applied are going to be described in
the following subsections.

7.4.1 Visualization

The most important changes needed in the tool from its state after the first devel-
opment stage are probably those related to the visualization. The way it was left
made it really hard to interpret and even some of the information was not shown
in a meaningful way whatsoever. Although this is considered one single stage, the
changes that this visualization went through can be separated into three, with a
resulting visualization coming out of each of these. We will now see which was the
focus for each of the three iterations of changes and an explanation for the decisions
taken in each of them.

First iteration
Although the main visualization code went through a lot of changes, a very

important one was done in the beginning of this stage. This change referred to the
structure of the code, separating into functions the segments of it that prepared each
of the results, and adding more global variables on top of the file to easily control
some aspects of the visualization if needed. These standards will be kept during the
rest of the development to make sure the code is easily readable and modifiable.

Figure 22: Example of a visualization obtained after a first round of improvements

During this first iteration of changes the main focus was to make the figure easier
to look at. To this end, the labels for the columns of the heat maps were changed,
from the ones used in the data frames in Pandas to more intuitive names without
points or dashes between words. Some of the values shown in the heat maps were
also altered, changing the fractions to percentages to get rid of the ”0.” on front (and
indicating this in the column name) and getting rid of all unnecessary decimals. This
set of changes makes the heat maps look a lot cleaner while holding the same amount
of relevant information.

An important isolated change applied during this phase was the normalization in
a different manner of the GC content. The previously applied normalization, which
consisted on scaling the highest value to 1 and the lowest one to 0, made it so the
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GC content looked very different for all the labels because of their colors when the
numbers shown contradicted this statement. While other columns can present very
different values and cannot be normalized in any other way safely, the GC content
is a percentage that usually presents similar values, so a better normalization can
be applied. Another option would be to assign the 0 to 0% and the 1 to 100% of
the GC content. However, this would cause the opposite effect from what has just
been described. As seen in Figure 22 the values for the GC content are all very
similar, so this normalization would make all of them look like the same, assigning a
very similar color to all of them. The middle ground between these options is to use
different boundaries for the normalization, in this case 35% and 65%. These values
were chosen because they are rarely ever surpassed and they make the colors of the
heat map more meaningful.

Finally, as seen in Figure 22 different color maps were used for the tables this
time. The objective was to have good-looking color maps that share the characteristic
of more intense colors being the higher values, while more pale colors means lower
values. Furthermore, the heat map used for the learned parameters is the one used
in Segtools, so that interpreting them is more straight-forward and intuitive for the
researcher. Other than that, color bars were added to the right of the heat maps
with different color maps so that it is easily known what the colors mean for each
of them. The boundaries for both the mix matrix and the aggregation heat map are
set to ”high” and ”low” as no specific value can be assigned to them.

Second iteration
For the second iteration of changes, the focus was to make the aggregation results

meaningful. Because of this the mix and aggregation heat maps were differentiated
and different color maps were assigned to them again. As a result, another color bar
is needed to specify the boundaries for the color map added.

As seen in Figure 23 the results for the different biotypes for the aggregation are
separated into different heatmaps to make them more distinguishable. Although all
examples shown always present the biotypes protein coding and lincRNA, if more
were to be added extra heat maps would appear progressively in the visualization.
It can also be observed that the values presented in the heat maps has completely
changed from the last iteration of changes. These results now present percentages,
as specified in the color bar on the right. This percentage is the amount of counts
found by the aggregation in a specific component (5’ flanking, initial exon, initial
intron, etc.) compared to the total counts for that label on a gene, so each row adds
up to 100%. For example, if looking at label 9, we see that segments presenting this
label are a lot more likely to appear in the internal regions of an idealized gene than
in all other components. This information proves a lot more useful than just the
amount of counts found by the aggregation, which were the results presented before
these changes. In terms of the heat map, the boundaries used for the color map are
the 0% and the highest value found across all biotypes. This is necessary so that all
aggregation heat maps share the same color map and their results can be compared
with each other.
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(a) Example of plot obtained without learned paramet-
ers being specified

(b) Example of plot obtained with learned parameters being specified

Figure 23: Visualization resulting from a set of improvements, both with and
without the parameters

As seen in the results in Figure 23, having different gene biotypes represented in
the visualization can prove very useful as they show meaningful differences. Because
of this, the code was developed in a way that more gene biotypes can be added easily
and the ones present can be modified, as it will be seen in the following section. These
changes were added along with other modularization improvements that make the
plots’ resolution easily modifiable, and that allow a variety of new heat maps to
be added automatically in case they are needed. All positioning and scaling is also
decided accordingly to the sizes of the matrix, which includes the amount of labels
used for the segmentation, which is variable.

Along with other fixes, the possibility of not showing the GMTK parameters was
improved, by making sure the label names are shown in the mix matrix instead if
needed, and by actually removing the space where the parameters would be found
instead of leaving a blank space there. The difference between both versions of the
visualization can be seen in both plots of Figure 23.

Finally, the heat map titles were improved for readability and sub titles were
added to specify the gene biotypes for the aggregation plots. The title for the mix
matrix was removed so that other columns can be added in the future without
requiring further changes. The font sizes for all labels on the plot’s axis and the
color bar boundaries were made equal to those onside the heat maps, while a bigger
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font is used in titles. The values for these two font sizes can be easily modified by
changing two constants on top of the script.

Third iteration
Up to this point, the most important changes have already been made and the

visualization accomplishes all objectives set for it. The plots make the summarized
results easy to read, and they are shown in a way that meaningful hypothesis can
be concluded from them. All information is compacted so that cross-results analyses
can be done. The techniques used to accomplish all these objectives like the use of
heat maps with differentiated color maps are intuitive and easy to understand at first
sight with the information provided. The focus for this final iteration of changes to
the visualization is to polish some aspects of the plot to obtain a final version for
the tool obtained in this project.

(a) Example of plot with the table on top of the heatmap and small font
scale

(b) Example of plot with the table on bottom of the heatmap and big font
scale

Figure 24: Comparison of visualizations with different values for the table position
and font scale

Although most of the information is intuitive, the fact that the boundaries for
the mix matrix are ”high” and ”low” doesn’t give much information. Furthermore,
there was no way currently to know how the normalization for the GC content was
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made by looking at the plot. Something needs to be added so that it is obvious that
the normalization for the columns of the heat map is sometimes done differently. The
solution that was suggested for this is to add a table that shows what the ”high”
and ”low” values mean for each of the columns. This table, which can be seen in
Figure 24, must be located near the heat map so that the columns align and uses the
”high” and ”low” values in the color map to indicate the rows of the table referring
to each of them.

As observed, two positions are considered for the table. The first one is on top
(Figure 24a) which takes advantage of the space left by the absence of title in this
heat map. The second option is to put it on the bottom of the heat map (Figure 24b),
which means having to move the axis labels to make space for it to fit. The latter
option makes the columns more easily identifiable because of the column names being
next to the table, and it avoids having to constantly jump from reading the top and
the bottom of the heat map. For these reasons, this option is considered the most
appropriate for the project and will be set as the default.

Another decision to be made is whether to put the words ”max” and ”min” in
the cases of the length distribution results or actually put the value of the maximum
and minimum values in the table. Although both options are viable and would make
clear which are the scales used for each of the columns, the ”min” and ”max” option
is accepted as the default because it causes the scale used for the GC content to
stand out even more. It becomes intuitive and easy to see that this scale is special
compared to the rest, which wouldn’t be so obvious if all values were numbers.

Along with all the options for the table added, it was considered the usefulness
of being able to scale all font sizes easily. This can be useful depending on the use
thought for the visualization obtained: a publication, a presentation, research, etc.
In some cases like in a presentation it is of interest to make the numbers as big as
possible, even if the figure looks a bit weird that way, while this is not necessary
for publications like papers. In Figure 24 two different versions of the scale can be
compared, being the scale 1 in Figure 24a and 2 in Figure 24b. A middle ground is
set as the default, with the scale being 1.5. Notice that the scale also affects titles
and the labels in the axis, as well as the color bar boundaries.

All these aspects that can be modified like the table position, the values shown in
it and the font scale of the general visualization, as well as others that have not been
mentioned like the height of the table (which is set to the same height as a row of
the heat maps as default), are stored in constants on top of the file and commented
so that they are easily reachable. Although this is done so that they can be modified
or turned into configuration parameters of the tool in the future, it is important to
keep good defaults for all of them. This way the simplicity of the tool is kept intact,
while adding more possibilities for experienced users.

A final little addition is the number of genes found for each gene biotype, which
can be found next to the biotype name on top of its aggregation heat map. This
information is facilitated so that the researcher has an idea of the validity of the
results obtained, as an aggregation with a small amount of genes does not give
meaningful results. This information is obtained from the file that was already
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created to obtain statistics on the gene biotypes back in the first development stage,
during the creation of the GTF files used for the aggregation.

7.4.2 Pipeline

Although the visualization is the element that was changed the most during this
stage, the entire pipeline saw some modifications that need to be mentioned. Starting
by those related to what we just discussed, some improvements were made related
to the gene biotypes used to obtain the results for the aggregation. A new file
was created in the Python package called gene_biotypes.py which, similarly to
version.py, only contains one variable that in this case consists on a list of the gene
biotypes to be displayed in the visualization. This variable is shared to the rest of
the package, and so the script that creates the visualization has access to it. The
default state of this variable contains both protein coding and lincRNA, followed
by all other biotypes accepted commented. This way, if it is of interest to change
this default, it would be enough to uncomment or comment biotypes. This scenario,
however, is very rare as most of the genes pertain to one of these two biotypes, and
the rest are not usually studied. It is important to note that both repetitions and
reorganizations in the list will be reflected in the visualization.

Optimizations
As specified in the original schedule the objective of this second development

stage wasn’t only to add more functionalities or improve the visualization of the
tool, but also optimize it. Several code optimizations were constantly applied, but the
following two changes are the ones that had the biggest impact in the performance of
the tool. The first optimization consists on running the aggregation analysis only on
the biotypes that are of interest, which are accessible through the gene_biotypes.py
file as it has been just mentioned. Taking advantage of the ability to modify this
information easily by the user, it is possible to now implement an optimization like
this one, which resembles the one originally suggested when in the first development
stage of limiting the analysis to the most important biotypes. By doing this, the use
of the dynamic files is no longer necessary, as the exact number and names of the
files needed is known now.

It was also considered to only create the GTF files for these biotypes, but because
of how their creation works almost no execution time is avoided. Creating all the files
has the downside of storing a bit more information than necessary, but it prevents
future runs from having to run the whole creation script all over again, so it was
considered as the optimal solution for this. The aggregation analysis, however, can
be treated separately much easier and no problem appears because of all the biotypes
not being analyzed always.

Talking about storage optimization, the second big optimization was regarding
all the GTF files involved with the pipeline, both the one downloaded using GGD
and the ones created by the tool’s script. This optimization consists in compressing
all these files into the Gzip format. This format allows for big files to be compressed
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down to a lot smaller sizes, and presents the characteristic of being very easily undone
on runtime, so many tools can work directly with files of this format. Both the
pybedtools [58] library and segtools-aggregation can directly work with them, so not
many changes are needed more than converting all the output files.

After these optimizations were implemented some tests were run to test the
performance of the tool and provide the users an expected time and space consumed.
The size of the directory where all the GTF files were stored was reduced dramatically
from around 2 GB to less than 100 MB, with a ratio of around 1/30. Time-wise,
both the installation process and running a full Segzoo exxecution (with external
data needed) were tested resulting in around 8 min for the installation and around
30 min for the execution. It is important to note that this time will be greatly
reduced in future runs because of all external data already being present, down to
around 10 min.

Feedback implementation
As mentioned in the stakeholders section (subsection 1.4) it is of high importance

for a tool like this one to open up to the users as soon as possible to obtain as much
feedback as possible. Because of the changes in the schedule the Bioconda upload
was not finished on time to be able to use this method to distribute the tool. A
temporary solution was suggested using the PyPi package installation so that the
tool could be tested by some users. From these tests the main feedback received was
that the tool didn’t work when running it on a cluster instead of a local computer.
Although this tool has always been thought out to run on a single computer, it is true
that this kind of analysis is normally run on a cluster of computers to do so quicker.
The issue involved the library used for the implementation of the visualization called
matplotlib, and was fixed thanks to this feedback.

A bigger problem still exists, however. The way most clusters work is that
they have a single node with connection to the internet, while the ones used for
computation-heavy operations which are the big majority do not have this connec-
tion. When trying to run Segzoo on a cluster without connection the GGD downloads
fail, so it becomes necessary to do it on the shared node, which is not recommen-
ded. The best way to deal with this is to execute one run on this node just for
the downloads to happen, and then stop it. All future executions of Segzoo can be
done on any other node while specifying the correct prefix to the data downloaded
previously, because no internet connection is required for the rest of the pipeline. To
make this process easier a new argument was added to the tool, --download-only,
which makes the tool execute only the downloading rules and therefore should be
used when doing the first run on the shared node. This is accomplished creating
a new rule with all downloads as inputs and targeting that rule instead of the one
creating the visualization when the argument is specified.
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7.4.3 Documentation

One last thing that was taken care of during this stage was documenting Segzoo.
The most basic things like commenting crucial parts of the code extensively and
such, although done during the whole development, were checked to be on point in
this stage. Moreover, the README was edited to serve as an initial informative
point for all Segzoo users. Initially this file, created during the packaging stage, was
almost empty holding only a brief description of the project. A lot of new contents
were added progressively to it.

After an initial introductory section briefly explaining what Segzoo is, sections
were added with instructions on how to install the tool and how to use it. These
sections were updated during the development continuously. On the first one, both
PyPi and Bioconda options are described. The only difference between them is the
fact that PyPi doesn’t take care of non-Python dependencies, so they all need to
be installed previously. On the second section a list of all arguments is presented
with descriptions for each one of them, as well as a description of the way to modify
aspects of the visualization by changing some information in the source files. Finally,
a sample visualization obtained is shown with all results obtained being described.

This README file already contains all necessary data for a user to be able to
use Segzoo without any trouble. The guidelines presented in the paper ‘Creating
great documentation for bioinformatics software’ [25] were considered at this point.
The following summary is given as requirements for a good documentation, sorted
in order of importance:

1. GitHub or Bitbucket page with code and issue tracker.

2. Readme that covers installation, quick start, input formats, and output formats.

3. Reference manual with detailed description of every user-configurable para-
meter.

At this point it was decided to aim for the two first points for Segzoo, staying
with a complete README instead of creating a whole reference manual in HTML
format as suggested in the paper. For this objective to be achieved the only thing
missing is a ”quick start” section. A quick start is a short enumeration of instructions
to follow to get the tool working and get results from it by using some facilitated
input data. In this case, links to the segmentation and ”params.params” file used
for testing during the entirety of this project were added, as well as the instructions
to install and execute Segzoo with all needed dependencies. This quick start can be
seen in Figure 25. This README file that consists on all the documentation for
the project can both be found in the Bitbucket public repository found in https://
bitbucket.org/hoffmanlab/segzoo [54] and also in the PyPI page found in https:
//pypi.org/project/segzoo/ [60], which consist on the two main access points to
Segzoo at the moment.
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7.5 Final state

In this section an overview will be taken at the state of the tool as of the end of the
project. Most of these things have already been mentioned in previous sections but
the finality of repeating them in this section is, by adding them all up together, to
generate an idea of what the tool does and how some of the objectives set from the
beginning have been accomplished.

Segzoo is currently only available through the command pip. Because of the
work done on Segtools, the version 1.2 which adds Python 3 compatibility to some
of the tools is also on PyPI and will be installed automatically as a dependency. The
only thing preventing the installation from being as easy as running one command
are the non-Python dependencies of which Bioconda would take care: in this case,
BEDTools and some R packages that Segtools needs. This is the reason why the cur-
rent preferred way to install Segzoo is the one shown in the quick start section of the
documentation, shown in Figure 25. However, when Segzoo is available for Bioconda
in the future, it will be enough to run conda install -c bioconda segzoo on a
Python 3 environment for the installation to be complete.

Figure 25: Snippet from the documentation written for Segzoo showing the quick
start section

If working directly in a Python 3 environment, there is no need to create a
new one, but it is useful anyways to isolate the installation of all dependencies on
a separate environment. After installing it, the command segzoo segway.bed.gz
--parameters params.params can directly be run, specifying the segmentation and
the parameters file previously obtained with Segway. From executing this, a figure
very similar to the one in Figure 26 is obtained. In said figure all the defaults
mentioned previously can be seen, as it is the figure obtained by default using the
input files provided by the quick start section of the documentation.

Although all defaults are usually good enough, a set of optional arguments is
available. The current ”help” shown for Segzoo after executing segzoo -h on the
command line is the one presented in Figure 27.
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Figure 26: Example of a visualization created by the final tool developed in the
project
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usage: segzoo [-h] [--version] [--parameters PARAMETERS] [-o OUTDIR]
[-j CORES] [--species SPECIES] [--build BUILD] [--prefix PREFIX]
[--download-only]
segmentation

Segzoo is a tool that allows to run various genomic analysis on a segmentation
obtained by segway. The results of each analysis are made available as well as
a summarizing visualization of the results. The tool will download all
necessary data into a common directory and run all the analysis, storing the
results in an output directory. All this information is then transformed into
a set of tables that can be found in this same directory under the "data"
folder, that are used to generate a final visualization.

positional arguments:
segmentation .bed.gz file, the segmentation/annotation output from
Segway

optional arguments:
-h, --help show this help message and exit
--version show program's version number and exit
--parameters PARAMETERS

The params.params file used to obtain the gmtk-
parameters (default: False)

-o OUTDIR, --outdir OUTDIR
Output directory to store all the results (default:
outdir)

-j CORES Number of cores to use (default: 1)
--species SPECIES Species of the genome used for the segmentation

(default: Homo_sapiens)
--build BUILD Build of the genome assembly used for the segmentation

(default: hg38)
--prefix PREFIX Prefix where all the external data is going to be

downloaded, followed by /share/ggd/SPECIES/BUILD
(default: ~/anaconda3/)

--download-only Execute only the rules that need internet connection,
which store data in a shared directory (default: False)

Figure 27: Help displayed when running segzoo -h on the command line on its
final version
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8 Future directions

Although the project has come to an end, Segzoo is open source software that will
hopefully continue to grow and improve. In this section some of the ideas for near
future directions for the project will be presented. The most obvious one is the
upload of Segzoo on Bioconda. Although the recipe is already ready to be added
to the GitHub repository [50], the issues with Segtools’ new version not being yet
in Bioconda makes this task impossible at the moment, as all dependencies must be
already in an anaconda channel before. However, once this is resolved, it should be
a priority to work on the addition of Segzoo so that the installation of the tool turns
to be a lot simpler than the current alternative, as seen throughout this thesis.

Another obvious thing to consider is adding more information to the pipeline and
the visualization, which should prove easy due to the existence of the mix matrix.
Two first options are suggested for this, the first one consisting on the addition of
results coming from the feature distance analysis that is already found, although
not used, in the pipeline’s code. The second option is one that has been studied
briefly already, consisting in the addition of the FANTOM5 enhancers[65] overlap.
FANTOM5 is a project that provides biological data of use for the bioinformatics
field. The enhancers are interesting annotations to compare a segmentation to, like
the gene annotation used in the current visualization. The original annotation, which
is downloaded as a BED file, can be used in an aggregation just like with genes. The
results present three components in this case only, two flanking regions and a single
enhancer region.

Figure 28: Plots of the enhancer results treated like the gene aggregation and ready
for addition into the mix matrix

As seen in Figure 28 some options have been already considered for the results
representation. In the left, the results are treated just like the gene aggregation
ones and in the right only the enhancer overlaps are taken and the total number of
base pairs covered by each label are taken into account. The second option gives a
result almost ready to be added into the mix matrix, with some proper and better
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normalization being applied. On top of this, the analysis should be added to the
pipeline as well as the annotation file used being added in GGD.

Although, as it has been mentioned, several strategies have been used to make
sure it is easy for the user to modify the visualization’s default parameters if needed,
Segzoo’s ability to be configured is something that could be widely improved. While
the main point of the project was to make the tool as simple and easy to use as
possible, it would be interesting to explore the possibility to add ways for the user to
configure the visualization to his likings for example to make it ready for a publica-
tion. This could be done by adding the option to include a configuration file with a
format like YAML or JSON which specifies information like those mentioned during
this thesis, for example the font scale and the table position, and many more.

Finally, as described in the last section, Segzoo is not thought out to be used
on a cluster. While some adjustments have been made after the feedback received
to make it usable, the tool’s usability on a cluster could be widely improved. This
could be done by taking advantage of the cluster option that Snakemake provides,
for example, which allows to specify detailed information for each rule on how it
needs to be executed.
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9 Conclusions

In spite of the fact that not everything went according to plan during the devel-
opment of this project, the final result is a software that accomplishes all initial
objectives. The tool developed is able to do automatically much of the work a re-
searcher normally must do by himself manually, like downloading data or running
analysis. The final visualization of the results has also been improved considerably
throughout the project until a point where it already is very useful for any researcher
trying to obtain a quick analysis on a segmentation.

Although the initial goals have been achieved, some of the ones that have been
defined during the development of the project, due to the appliance of agile method-
ologies, could not be finished in time. This project was dependent on very rigorous
time constraints which, combined with the appearance of unforeseen issues and third
party time issues, made the schedule impossible to fully complete. However, these
aspects that in the end could not be taken care of were at most secondary to the
real purposes of this project. For this reason, the results can be considered all the
same as very satisfactory. What has been accomplished here is the creation of a
new software tool with a lot of potential to grow and have these little issues fixed
eventually, even if this is done outside the scope of this project.

With every little issue found during its development, this project has made me
learn a variety of skills both in the computer science and bioinformatics fields. Tak-
ing for example the Python 3 porting stage, which was not originally planned, but
nevertheless was one that taught me a lot about a different scope of computer science
from those originally planned for the project. This combined with the nature of the
project itself, being based on the full development of a software tool, has enriched
me with a lot of different skills and experience.

Personally, the development of this whole project has given me invaluable know-
ledge and experiences that will serve me good for the rest of my life. Even if there
were difficult moments and a bunch of new things to learn all the way, because of the
support I received and the good planning and methodology followed I was always
able to move forward. I specially appreciate the fact that I could apply so many
different skills I have learned during my years of study in the development of Seg-
zoo, from optimization of software to project management. To conclude, the results
obtained and the fact that they are already useful to its users show that the whole
development and the whole project was successful in achieving its goals.
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Glossary

annotation A division of a genome (or part of a genome) into segments assigned
to a fixed set of labels. Unlike with a segmentation, the segments can be
overlapping. 14, 18–21, 27, 43–45, 47, 50, 52

ChIP-seq Stands for chromatin immunoprecipitation sequencing, it is a powerful
method for identifying genome-wide DNA binding sites for transcription factors
and other proteins. [66]. 11, 20

chromatin A complex of macromolecules found in cells, consisting of DNA, protein,
and RNA with the primary functions of compacting, reinforcing, preventing
damage and controling replication for DNA. 6, 15

chromosome A structure of nucleic acids and protein found in the nucleus of most
living cells, carrying genetic information in the form of genes. Human cells
contain 23 pairs of chromosomes which is the total of the genetic information
in the cell.. 45

enhancer Genomic region that influences transcription of a gene distant along the
one-dimensional chromosome.. 80

exon Any part of a gene that will encode a part of the final mature RNA produced
by that gene after introns have been removed by RNA splicing. In other words,
is a coding part of a gene. 19, 20, 43, 47, 52

histone Class of protein that acts to package DNA into nucleosomes.. 83

histone modification A covalent post-translational modification (PTM) to histone
proteins, which can alter gene expression [67]. 11, 20

intellectual property Inventions (whether or not patentable), technology, tech-
nical information, confidential information, concepts, ideas, etc. Intellectual
property includes research works, institutional works and traditional academic
works.. 36

intron The opposite of exons. Introns are the sections of a gene that don’t contain
coding information for RNA and are removed by RNA splicing. 19, 52

label Identifier for a pattern or cluster describing multiple regions of the genome.
11, 16, 18–20, 28, 54

lincRNA Short for Long intergenic noncoding RNA, a transcript longer than 200
nucleotides that is not translated into protein. 52, 54, 70, 74

nucleotide Organic molecules that form nucleic acids like DNA or RNA. There
are 4 primary different nucleotides: adenine (A), cytosine (C), guanine (G),
thymine(T). 10, 21, 43, 45–47, 50
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protein coding DNA sequences that are transcribed into mRNA and in which
the corresponding mRNA molecules are translated into a polypeptide chain
(protein). 52, 54, 70, 74

recipe A set of documents including configuration files and scripts that suffice to
specify a set of actions to execute and data to download automatically. 24, 29,
40, 41

segmentation A division of a genome (or part of a genome) into non-overlapping
segments, each of which is assigned one of a fixed set of labels. Ideally, segments
that share a common label are somehow similar to one another, and vice versa
[21]. 6, 9–11, 13, 14, 16, 18–22, 35, 43, 44, 46–48, 51–54, 56, 58, 60, 61, 83

turnkey system A system that only requires one action by a user, like turning a
key or pressing a button, to function correctly. 9, 58

Acronyms

API Application Programming Interface. 16, 24

BED Browser Extensible Data. 44, 46, 53, 80

CSV Comma Separated Values. 48

DBN dynamic Bayesian network. 10

GGD Go Get Data. 24, 27, 28, 40–44, 46, 61, 74, 75, 81

GMTK The Graphical Models Toolkit. 10, 11, 16, 22, 48, 51, 54, 56, 61, 71

GNU GNU’s Not Unix!. 36

GPLv2 General Public License version 2. 36, 37

GTF General Transfer Format. 44, 45, 47, 48, 52, 53, 57, 61, 74, 75

IP Intellectual Property. 36

PMCRT The Princess Margaret Cancer Research Tower. 9, 27

PyPi Python Package Index. 29

rst reStructured Text. 8, 67

UCSC University of California, Santa Cruz. 14, 20

UHN University Health Network. 36, 38

UPC Universitat Politècnica de Catalunya. 36
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