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Abstract

Amethod to synthesize the modal characteristics of a system from the modal
characteristics of its subsystems is proposed. The interest is focused on those
systems with elastic links between the parts which is the main feature of the
proposed method. An algebraic proof is provided for the case of arbitrary
number of connections. The solution is a system of equations with a reduced
number of degrees of freedom that correspond to the number of elastic links
between the subsystems. In addition the method is also interpreted from a
physical point of view (equilibrium of the interaction forces). An application
to plates linked by means of springs shows how the global eigenfrequencies and
eigenmodes are properly computed by means of the subsystems eigenfrequencies
and eigenmodes.
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Symbol list

A Dynamic matrix of the mechanical system
B Diagonal block matrix involving matrices B1 y B2

C Coupling matrix, non-zero valued only at antisymmetric positions
connecting B1 and B2 coefficients

c
PiQi

Matrix C coefficient linking degrees of freedom labelled as Pi and Qi

c
PiQi

Matrix C coefficient linking degrees of freedom labelled as Pi and Qi

DB Diagonal matrix of eigenvalues of B
e

Pk
Base vector, unity-valued at degree of freedom labelled Pk

e
Qk

Base vector, unity-valued at degree of freedom labelled Qk

H B+C
K Stiffness matrix
M Mass matrix, diagonal an positive definite
m Number of degrees of freedom of B connected by C
mj jj coefficient of the mass matrix
nϵ Dimension of a generic matrix ϵ
Pi Label for the i’th connection on subsystem 1

may not correspond to degree of freedom i
Qi Label for the i’th connection on subsystem 2

may not correspond to degree of freedom i
u

Pk
Column vector in V−1

B on degree of freedom labelled Pk

u
Qk

Column vector in V−1
B on degree of freedom labelled Qk

VB Matrix of eigenvectors of B
vT

Pk
Row vector in VB on degree of freedom labelled Pk

vT
Qk

Row vector in VB on degree of freedom labelled Qk
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Γ Characteristic function whose zeroes are eigenvalues of H
λA Any eigenvalue of matrix A
λB1,k k’th eigenvalue of matrix B1

λB2,k k’th eigenvalue of matrix B2

Φi i’th eigenmode of subsystem 1.
ϕi(Pj) Coefficient in Φi corresponding to degree of freedom Pj

µi Modal mass of eigenmode i in subsystem 1, Φi

Ψi i’th eigenmode of subsystem 2.
ψi(Qj) Coefficient in Ψi corresponding to degree of freedom Qj

σi Modal mass of eigenmode i in subsystem 2, Ψi

ω Angular frequency

1 Introduction

Many products consist of an active device; e.g. engines, compressor units, frequency
converters, etc. and a structure which is defined to meet a functionality target. Such
structures may be for example trains, cars, refrigerators, etc. and the corresponding
active devices which supply energy to the entire system are frequently categorized as
auxiliary equipment.

Other type of products which may be partitioned in a similar way are all kind
of machines installed on top of a supporting structure, as typically encountered in
industrial facilities.

The assembly of the two aforementioned elements, typically through elastic joints
(see Fig. 1), may generate noise and/or vibration complications due to the dynamic
coupling between them. For instance, let an engine, whose dynamics are known,
having no resonances at its fundamental excitation frequency. The engine is installed
by means of elastic supports on a structure also not having resonances at excitation
frequency. Then, the question that arises is whether the engine-structure assembly
will resonate. A resonance of the assembly at the excitation frequency would be
critical since it may cause noise issues as well as ill-functioning of the product.

Now, consider that the modal frequencies and mode shapes of each subsystem are
known when the subsystems are subject to an infinite impedance condition through
the elastic joints at their interface, c.f. Fig. 2. Then, the problem to be solved is
determining the assembled system modal frequencies.

The problem of devising the behavior of a system from which one knows that of its
two composing subsystems has been widely studied. The fields in which this problem
has been addressed are widespread. As a matter of example one can cite in the field
of electrical networks a method developed in ref. [1], the method is known as the
Kron method. It was immediately applied to dynamics in [2], [3] and has been further
developed recently in [4], [5], [6], [7]. One can also cite methods in the field of physics
of composite systems such as those applied to sets of phonons [8] or to composite
materials [9]. Eventually, one may refer to methods in the field of dynamics, for
which a non-exhaustive review of methods may be found in [10].

The latter reference exposes an historic review of methods from which it summa-
rizes the problem in just three equations and, subsequently, it examines the different
approaches for its solution in the physical space, the modal space or the frequency
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space. The first equation is the dynamic equation for each of the subsystems subjected
to external forces as well as coupling reaction forces. The second equation defines a
linear dependency between coupling interface coordinates, usually trough a boolean
matrix. Finally, the third equation defines the relation between the forces that each
subsystem exerts on the other. Notice that the second equation assumes that the
coupling interfaces are rigid or, generically, holonomic1.

From this historical review one can note that the substructuring problem with
elastic joints is not of frequent study. Yet, references [11], [12],[13] have studied the
problem with elastic couplings through modal or FRF based methods. The first of
these two references confirms the fact that the vast majority of analysis methods for
substructures coupling consider the interface being of rigid coupling kind.

The present article addresses the synthesis of eigenmodes as an algebraic problem.
It is based on solving the eigenvalues of a block matrix having one or more anti-
diagonal elements in antisymmetric positions, from the knowledge of each matrix
block’s eigenvalues and eigenvectors and of the antidiagonal elements.

The solution to this algebraic problem is achieved through a Divide and Conquer
approach. One of the basic articles of such solution method is that of Cuppen [14],
which studies the synthesis of eigensolutions of a tridiagonal matrix through a first
order perturbation approach. Also, an article by Arbenz, ref. [15], extends the method
to modifications of higher order.

The references in the former paragraph solve a very similar problem to that posed
in the present work, given that a tridiagonal matrix may be regarded as a block
matrix having two antisymmetric elements in its anti-diagonal. However, opposite
to the Divide and Conquer method, the method proposed here does not modify the
matrix blocks in order to achieve the solution.

This article is divided into three parts. The first part demonstrates the equivalence
between the dynamic and the algebraic problems and the solution to the eigenvalues’
algebraic problem is described for one, two and multiple coupling terms (section 2
and section 3). In the second part (section 4) the algebraic solution is applied to
the physical problem (section 4.1) and the physical interpretation of the solution is
discussed (section 4.2). This physical interpretation substantiates the computation of
the eigenvectors in subsection 4.3.

Thence, the first part gives a formal solution to the algebraic problem which is ap-
plicable to any linear system, regardless of its physical interpretation, and the second
part provides a physical meaning to the eigenvalue solution and to the computation
of the eigenmodes.

The third part (section 5) presents two examples, one on a simple system shows
the basic mechanics of the method and a second example shows the performance of
the method on a system with many degrees of freedom and multiple connections.

1A coupling interface is holonomic if one or more functions relating the degrees of freedom of the
coupling interface exist f(x1, x2.., xn) = 0. Consider a structure is split in two parts and the coupling
interface coinciding degrees of freedom are labelled x1F y x2F , then the continuity condition is simply
x1F −x2F = 0. Conversely, if the coupling interface degrees of freedom are non-coincident, e.g. they
are linked by an elastic joint as in the example problem, it can only be said that k(x1F − x2F ) = f
being f a force of unknown magnitude, so that the problem constraints are no longer holonomic.
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2 Equivalence of the physical and algebraic prob-

lems

In the present article an algorithm which computes the eigenfrequencies and eigen-
vectors of a system consisting of two parts is developed from the eigenfrequencies and
eigenvectors of each of the two parts and the characteristics of the elastic elements
which join them.

The proposed problem is equivalent to obtaining the eigenvalues and eigenvectors
of a block matrix in which the two composing blocks are connected at m degrees of
freedom, hence having non-zero valued anti-diagonal elements.

Let a mechanical system consisting of two subsystems such as shown in Fig. 1

Figure 1: Subsystems 1 and 2 with one or more coupling spring

Let A1 and A2 be the dynamic matrices of the two subsystems in isolation as
depicted in Fig. 2, i.e. including fixed boundary conditions at the coupling interface.

Then

A1 = K1 − ω2M1

A2 = K2 − ω2M2

(1)

where the mass matrices M are diagonal matrices and K are the stiffness matrices.
Let k be the stiffness of the coupling spring.
The assembled system dynamic matrix A may be described as:

A =

(
K1 0
0 K2

)
− ω2

(
M1 0
0 M2

)
+



0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 k . . . 0
0 . . . k 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 0


(2)

Be it P and Q labels corresponding to the degrees of freedom linked by the elas-
tic element, P in subsystem 1 and Q in subsystem 2. The system eigenmodes and
eigenfrequencies correspond to the eigenvalues and eigenvectors of the matrix

5



Figure 2: The total system is split into subsystems 1 and 2 as shown in the figure. This
decomposition allows the blocks that define the subsystems not to vary by forming
the total system.

H =

(
M−1

1 K1 0
0 M−1

2 K2

)
+



0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 k

mP
. . . 0

0 . . . k
mQ

0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 0


(3)

In this equation mP is the diagonal coefficient of matrix M1 corresponding to the
degree of freedom labelled as P and, likewise, mQ is the diagonal coefficient of matrix
M2 corresponding to the degree of freedom labelled as Q.

According to Eq. (3), matrix H, from which the eigensolutions are seeked, is of
the kind:

H = B+C (4)

where B is a block matrix, as it is explicit in Eq. (5), and C is a matrix with
non-zero values in, at least, two antisymmetric positions in the two antisymmetric
blocks, Eq. (6).

B ≡
(

B1 0
0 B2

)
(5)
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C ≡



0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 cPQ . . . 0
0 . . . cQP 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 0


(6)

The equivalent algebraic problem involves the calculation the eigenvalues and
eigenvectors of matrix H from those of B1, B2 and from the coefficients of matrix
C.

3 Method

Under the framework of the problem raised in the introduction, the solution for the
union of two diagonal blocks in H will be obtained here for the cases: A single con-
necting element (section 3.1), two connecting elements (section 3.2) and m connecting
elements (section 3.3).

3.1 Single connection. Synthesis of eigenvalues

Let
H = B+C (7)

where the matrix C and the eigensolutions for B are known, the eigenvalues of H are
sought. C may be expressed as:

C = e
P
c
PQ

eT
Q
+ e

Q
c
QP

eTP (8)

where e
P
is a basis vector unity valued at the degree of freedom labelled P and zero

valued elsewhere. The same holds for e
Q
.

If B is diagonalizable (over the complex field C, any matrix either is diagonalizable
or is arbitrarily close to a matrix with distinct eigenvalues that does), it may be
formulated as:

B = VBDBV
−1
B (9)

with DB a diagonal matrix containing the eigenvalues of the isolated subsystems and
VB the corresponding matrix of eigenvectors. Matrix VB has, naturally, the same
block structure as B.

Consequently, H is reformulated as:

H = VB(DB +V−1
B CVB)V

−1
B = VBH

′
V−1

B (10)

where
H

′
= DB +V−1

B CVB (11)

Equation (10) demonstrates that H and H
′
are similar matrices, ergo they certainly

have identical eigenvalues and eigenvectors.
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Let

u
P
= V−1

B e
P

vT
P
= eT

P
VB (12)

where u
P
is the column vector corresponding to degree of freedom P in matrixV−1

B and
vT

P
is the row vector corresponding to degree of freedom P in matrix VB. Analogous

formulation holds for Q.
Substituting C by Eq. (8) in equation Eq. (11)

H
′
= DB + c

PQ
u

P
vT

Q
+ c

QP
u

Q
vT

P
(13)

if x is an eigenvector of H
′
with associated eigenvalue λH it holds that:(

DB + c
PQ

u
P
vT

Q
+ c

QP
u

Q
vT

P

)
x = λHx (14)

The inverse of (λHI−DB)
−1 exists provided that the eigenvalues of the coupled system

do not coincide with those of the subsystems. For very weak coupling, the system
eigenvalues will be very close to the eigenvalues of the isolated blocks, but they will
not be strictly equal unless the blocks were fully decoupled. Therefore, in general,
the inverse of (λHI −DB)

−1 must exist. Hence, equation (14) may be rearranged as
follows

x = (λHI−DB)
−1(c

PQ
u

P
vT

Q
x+ c

QP
u

Q
vT

P
x) (15)

Then, taking the scalar product of Eq. (15) with vT
Q and, separately, with vT

P
, and

given that vT
P
only has non zero valued components in subsystem 1 and vT

Q
only has

non zero valued components in subsystem 2, one obtains:

vT
Q
x = c

QP
vT

Q
(λAI−DB)

−1u
Q
vT

P
x (16)

vT
P
x = c

PQ
vT

P
(λHI−DB)

−1u
P
vT

Q
x (17)

Substituting Eq. (17) in Eq. (16) results in

vT
Q
x = c

QP
c
PQ

vT
Q
(λHI−DB)

−1u
Q
vT

P
(λHI−DB)

−1u
P
vT

Q
x (18)

Assuming that vT
Q
x ̸= 0, equation (18) proves that the eigenvalues of H, λH , must

satisfy:

1 = c
PQ
c
QP

n1∑
i=1

vT
P,i
u

i,P

λH − λB1,i

n2∑
j=1

vT
Q,j
u

j,Q

λH − λB2,j

(19)

Thus, as a conclusion to this section, it can be asserted that there exists a char-
acteristic function

Γ(λ) = 1− c
PQ
c
QP

n1∑
i=1

vT
P,i
u

i,P

λ− λB1,i

n2∑
j=1

vT
Q,j
u

j,Q

λ− λB2,j

(20)

whose zeroes correspond to the characteristic values (eigenvalues of matrix H).

8



3.2 Two connections. Synthesis of eigenvalues

Let H and B be the same matrices as in section 3.1, but now assuming that C has two
connection elements, one connecting P1 with Q1 and another connecting P2 with Q2.
The degrees of freedom labelled P always correspond to block 1, and those labelled
Q belong to block 2.

Under these assumptions, matrix C may be reformulated as:

C = c
Q1P1

e
Q1
eT

P1
+c

P1Q1
e

P1
eT

Q1
+ c

Q2P2
e

Q2
eT

P2
+ c

Q2P2
e

P2
eT

Q2

Similarly to section 3.1 derivations, one may define:

u
Ps

= V−1
B e

Ps
vT

Ps
= eT

Ps
VB (21)

for s = 1, 2, and analogous definitions for Q.
If x is an eigenvector of H with associated eigenvalue λH it holds that(
DB + c

Q1P1
u

Q1
vT

P1
+ c

P1Q1
u

P1
vT

Q1
+ c

Q2P2
u

Q2
vT

P2
+ c

P2Q2
u

P2
vT

Q2

)
x = λHx (22)

and taking scalar product with vT
P1

and vT
P2

yields(
vT

P1
x

vT
P2
x

)
=

(
c
P1Q1

vT
P1
(λHI−DB)

−1u
P1

c
P2Q2

vT
P1
(λHI−DB)

−1u
P2

c
P1Q1

vT
P2
(λHI−DB)

−1u
P1

c
P2Q2

vT
P2
(λH −DBI)

−1u
P2

)(
vT

Q1
x

vT
Q2
x

)
(23)

Likewise, it is straightforward to prove that(
vT

Q1
x

vT
Q2
x

)
=

(
c
Q1P1

vT
Q1
(λHI−DB)

−1u
Q1

c
Q2P2

vT
Q1
(λHI−DB)

−1u
Q2

c
Q1P1

vT
Q2
(λAI−DB)

−1u
Q1

c
Q2P2

vT
Q2
(λHI−DB)

−1u
Q2

)(
vT

P1
x

vT
P2
x

)
(24)

Let the matrices in (23) and (24) be named E and F. Substituting the vector to
the left of (24) in (23) one obtains(

vT
P1
x

vT
P2
x

)
= EF

(
vT

P1
x

vT
P2
x

)
⇒ (I− EF)

(
vT

P1
x

vT
P2
x

)
= 0 (25)

So that the non-trivial solution to (25), i.e. x not being a null vector, is:

det(I− EF) = 0 (26)

This equation is equivalent to the one obtained for one degree of freedom in Eq. (20).
Equation (26) is a function of λ, whose zeroes are the eigenvalues λH of matrix H.

3.3 Arbitrary number of connections. Synthesis of eigenval-
ues

Following section (3.2), the general solution may be readily formulated.
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Let

E =


vT

P1
Su

P1
vT

P1
Su

P2
vT

P1
Su

Pm

vT
P2
Su

P1
vT

P2
Su

P2
vT

P1
Su

Pm

...
...

...
vT

Pm
Su

P1
vT

Pm
Su

P2
vT

P1
Su

Pm



c
P1Q1

c
P2Q2

. . .

c
PmQm

 (27)

F =


vT

Q1
Su

Q1
vT

Q1
Su

Q2
vT

Q1
Su

Qm

vT
Q2
Su

Q1
vT

Q2
Su

Q2
vT

Q1
Su

Qm

...
...

...
vT

Qm
Su

Q1
vT

Qm
Su

Q2
vT

Q1
Su

Qm



c
Q1P1

c
Q2P2

. . .

c
QmPm

 (28)

where S = (λI−DB)
−1.

The eigenvalues of H, for any given number of connections between the two blocks,
are the zeroes of Γ(λ) = det (I− EF).

That is
Γ(λH) = 0 (29)

Notice that the order of matrix (I− EF) is m, i.e. the number of connected
degrees of freedom per subsystem, which is typically a much lower figure than the
total number of degrees of freedom of the coupled system.

4 Application of the algebraic solution to the phys-

ical problem, physical meaning and eigenmodes

In the following, the formulation obtained in the algebraic problem in Section 3 is
applied to a mechanical system consisting of two subsystems, the physical meaning
of the equations is interpreted and the equations defining the system eigenmodes are
derived.

4.1 Application to dynamics of mechanical systems

In order to apply the formulation in Eq. (29) to a mechanical problem one may
interpret the elements in matrices E and F in accordance with the eigenvalues and
eigenmodes of the mechanical subsystems in isolation.

To this effect, the inverse of the eigenmodes matrix must be known in order to get
the upi terms in Eq. (21).

Consider a mechanical system represented by the matrix A and consisting of two
undamped subsystems 1 and 2 connected by m elastic elements. Suppose that sub-
system 1 has n1 degrees of freedom and subsystem 2 has n2 degrees of freedom.

Recall that the connection points are labelled Pi in subsystem 1 and Qi in sub-
system 2, and that the subscripts indicate the elastic elements, i.e. element i joins
points Pi and Qi.
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Let c
PiQi

be the stiffness between Pi and Qi divided by the mass in Pi.
Let Φi i = 1...n1 be an eigenmode of subsystem 1 and Ψj j = 1...n2 an eigen-

mode of subsystem 2, let also λ1,i an eigenvalue of subsystem 1, λ2,j an eigenvalue of
subsystem 2 and λA,s an eigenvalue of the coupled system A.

A discrete (or discretized) mechanical system may be described through analogous
equations to those in Eq. (1).

If M is a positive-definite diagonal matrix with coefficients mi and K is a symmet-
ric matrix, the corresponding eigenmodes are orthogonal with respect to the scalar
product defined by matrix M. If the eigenmodes are normalised to have unity Eu-
clidean norm it follows that

ΦT
i MΦj = µiδij (30)

where µi are the so called modal masses.
From Eq. (30) it can be inferred that the inverse of the eigenmodes matrix is just

the transposed eigenmodes matrix right-scaled by the mass matrix and left-scaled by
the inverse modal mass matrix. If Π = diag(µ1, µ2 . . . , µn1), then

Φ−1 = Π−1ΦTM (31)

Same formulation holds for Ψ, the eigenmodes matrix of subsystem 2.
The Pi, Pj terms of the elements in matrix E in subsection (3.3) read:

vT
Ps
(DB − λI)−1u

Pl
(32)

where
u

Pl
= V−1

B e
Pl

and vT
Ps

= eT
Ps
VB (33)

In consequence, for subsystem 1

vT
Ps

=
(
ϕ1(Ps),ϕ2(Ps) . . . ,ϕn1(Ps)

)
and u

Pl
=


ϕ1(Pl)

ml

µ1

ϕ2(Pl)
ml

µ2

. . .
ϕn1(Pl)

ml

µn1

 (34)

Finally, the Pi, Pj term of matrix E in Eq. (32) is reformulated as

mj

n1∑
s=1

ϕs(Pi)ϕs(Pj)

λs − λ

1

µs

(35)

Other than the term mj, Eq. (35) is a system receptance function or, in other words,
the Green’s function relating the forces applied at Pi and the displacement produced
at Pj.

The connection terms in matrix C are

cPj ,Qj
=
k(Pj, Qj)

mj

(36)

where k(Pj, Qj) is the stiffness of the element connecting Pj and Qj, and mj is mass
in subsystem 1 connected to the jth elastic element.
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Given that in the final solution the Pi, Pj coefficient in matrix E multiplies with
c(Pj, Qj) (c.f. Eq. (27)), the elements of E will eventually be the Pi, Qj receptance
functions.

At this point, it is worth noting that from an experimental point of view it is easier
to measure a receptance function than it is to compute it out of a (experimental) modal
analysis which, in turn, would be of limited precision with respect to the measured
receptance due to having a finite number of modes.

In order to obtain the coupled system eigenvalues λ, let

G1 =


n1∑
i=1

ϕi(P1)ϕi(P1)
µi(λi−λ)

. . .
n1∑
i=1

ϕi(P1)ϕi(Pm)
µi(λi−λ)

...
...

...
n1∑
i=1

ϕi(Pm)ϕi(P1)
µi(λi−λ)

. . .
n1∑
i=1

ϕi(Pm)ϕi(Pm)
µi(λi−λ)

 (37)

Kc =

 kP1Q1 . . . 0
...

...
...

0 . . . kPmQm

 (38)

and G2 an equivalent expression to that of G1.
The system eigenvalues λ are the zeroes of the I−EF determinant, with E = G1Kc

, F = G2Kc and being I an identity matrix of order m.

det (I− EF) = 0 (39)

4.2 Physical meaning of the solution

As discussed above, the elements of G1 and G2 are frequency response functions
relating force to displacement. Element ij in G1 is the displacement in Pj due to a

unit force with frequency f =
√
λ

2π
applied at Pi.

Now, let G = (I− EF), the elements γ of matrix G are

γij =
∑
l

g1(PiPl)k(PlQl)g2(QlQj)k(QjPj) (40)

γii = 1−
∑
l

g1(PiPl)k(PlQl)g2(QlQi)k(QiPi) (41)

Figs. 3 and 4 show how a force applied at P1 in subsystem 1 is transmitted into
P1 itself through the springs which couple subsystems 1 and 2.

Fig. 3 shows the displacements produced at points P1 to P4 by the force applied
at P1. These displacements are simply g(P1, P1) for P1, g(P1, P2) for P2, g(P1, P3) for
P3 and g(P1, P4) for P4. Each of these displacements produce a force at points Q1 to
Q4 in subsystem 2, these being g(P1, Pi)kPi,Qi

for i = 1, 2, 3, 4.
In Fig. 4 it is shown how the forces on points Q1 to Q4 produce a total displacement

in Q1 equal to
∑4

i=1 g(P1, Pi)kPi,Qi
g′(Qi, Q1). Finally, the coupled system reaction

force on P1 is
∑4

i=1 g(P1, Pi)kPi,Qi
g′(Qi, Q1)kQi,P1 .
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Figure 3: A force in P1 produces forces on the Q points

Figure 4: The forces in the Q points produces a reaction force on P1

Thus, the matrix element γi,i is the reaction force over Pi as a result of a unit force
applied at the same point Pi. Therefore, the resonance condition in Eq. (39) means
that if a point unit force is applied only at Pi, the reaction force at Pi is unity, and
zero elsewhere.

This means that the forces acting on P1 are self equilibrated at some of the
frequencies without the need of external loading. It is, indeed, the resonance condition.

Formally, including forces in Eq. (39) it holds that

det(G) = 0 ⇔ ∃f | Gf = 0 ⇐⇒ Rf = f being R ̸= I and f ̸= 0 (42)

where R = I−G.
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For any given λ and f it holds that Rf = f
′
. Under the hypothesis that a force

f is applied to the connection points of one of the subsystems, such force may be
decomposed into two parts: the reaction force of the other subsystem, i.e. Rf , and
the external forces. Thereof, f = Rf + fExterior. Solving Rf = f implies finding a
set of forces that may exist without the need of any external loading. These forces
correspond to the reaction Rf at the couplings in absence of external forces, thus, at
resonance. In consequence, Eq. (39) is a resonance condition.

The conclusion is therefore that the function derived here from algebraic consid-
erations is a resonance condition from a physical point of view, which states that the
coupling forces at resonance are the result of the action of same forces through the
connections.

4.3 Eigenmodes calculation

Given that the resonance condition requires Rf = f , it can be ascertained that matrix
R (λA), whose eigenvalues λA are zeroes of detG, has at least one eigenvector with
eigenvalue equal to 1. Name this eigenvector fA.

The components of fA over subsystem 1 are the coupling forces that apply on
subsystem 1 at system resonance with eigenvalue λA.

Considering that G is of order m, i.e. the number of connections, which is a very
small dimension as compared to the number of degrees of freedom of the subsystems
specifically in the present target problem, the calculation of its eigenvectors will be
very simple in terms of computation burden.

Once obtained the eigenvector fA with associated eigenvalue 1, one must just apply
the force vector fA to the matrix of subsystem 1 in order to obtain the corresponding
displacement that the applied forces produce. The computed displacements are those
of the system eigenmode with eigenvalue λA over subsystem 1.

Proceeding in the same way on subsystem 2, displacements for the corresponding
eigenmode are found.

5 Examples

In this section two examples are considered. The first example is a simple system so to
explicitly illustrate the method steps towards the final solution. Also, the resemblance
of this example to that in reference [3] is exploited so to briefly remark the differences
between both methods with regards to the subsystems selection.

The second example is a system with many degrees of freedom, having 5 connec-
tions between two composing subsystems, so to illustrate the method performance in
a much more complex problem.

5.1 Simple discrete system

The first example is a discrete system involving three masses and four springs, whose
values are defined without magnitude units for brevity.

This is a very similar problem to the one exposed in [3] as an application example
of Kron’s method.
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Figure 5: Simple discrete system example. k and m are stiffness and masses values.

In order to apply Kron’s method, or any other method applicable to rigid con-
nexions, the system must be split by dividing the masses elements. See for example
Fig. 6.

Figure 6: Subsystems division in order to apply Kron’s method [3].

Notice that masses are split in Kron’s method in order to make the connections
holonomic. This is optimal to subdivide an structure, but it is virtually of no use for
an auxiliary equipment.

The method proposed here decomposes the problem into two smaller problems
with the coupling interface set at the springs (see Fig. 7).

Figure 7: Top (above black line): Problem to solve. Middle: Subsystem 1. Bottom:
Subsystem 2
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The subsystems’ mass matrices are:

M1 =

(
2 0
0 2

)
; M2 =

(
5
)

(43)

and the subsystems’ stiffness matrices:

K1 =

(
3 −1
−1 2

)
; K2 =

(
3
)

(44)

The eigenmodes of subsystems 1 and 2 are

Φ1 =

(
−0.5257 −0.8507
−0.8507 0.5257

)
; Φ2 =

(
1
)

(45)

and their corresponding eigenvalues

Λ1 =

(
0.6910 0

0 1.8090

)
; Λ2 =

(
0.6000

)
(46)

The coupled system stiffness and mass matrices are:

K =

 3 −1 0
−1 2 −1
0 −1 3

 ; M =

 2 0 0
0 2 0
0 0 5

 (47)

Since the mass matrix is positive definite and diagonal the generalized eigenvalues
problem may be converted to an standard eigenvalues problem.Thence we have to
find the eigenvalues and eigenvectors of:

M−1K =

 1.5 −0.5 0
−0.5 1 0.5
0 0.2 0.6

 (48)

Eq. (48) may be decomposed as

M−1K =

 1.5 −0.5 0
−0.5 1 0
0 0 0.6

+

 0 0 0
0 0 0.5
0 0.2 0

 (49)

Now, identifying the decomposition terms as

H =

 1.5 −0.5 0
−0.5 1 0.5
0 0.2 0.6

 ; B =

 1.5 −0.5 0
−0.5 1 0
0 0 0.6

 ; C =

 0 0 0
0 0 0.5
0 0.2 0


(50)

it is clear that this decomposition corresponds with the proposed problem approach,
where the H matrix eigenvectors and eigenvalues correspond to the eigenmodes and
eigenfrequencies of the full system, the B matrix contains the decoupled subsystem
matrices and C is the coupling matrix.

16



Notice that the coefficients in matrix C, c
PQ

= 0.5 and c
QP

= 0.2, are normalised
by the contiguous masses.

Then, following the notation used in the derivations in Section 3.1

VB =

 −0.5257 −0.8507 0
−0.8507 0.5257 0

0 0 1

 ; DB =

 0.6910 0 0
0 1.8090 0
0 0 0.6

 (51)

u =

 −0.8507
0.5257

0

 ; w =

 0
0
1

 ; vT = wT ; yT = uT (52)

the solution are the zeroes of:

1 =(0.5)(0.2)
(
0 0 1

)  1
λ−0.6910

0 0

0 1
λ−1.8

0

0 0 1
λ−0.6

  0
0
1


(
−0.8507 0.5257 0

) 1
λ−0.6910

0 0

0 1
λ−1.8

0

0 0 1
λ−0.6

 −0.8507
0.5257

0

 (53)

that is, the zeroes of:

1 = 0.1
1

λ− 0.6

(
0.85072

λ− 0.6910
+

0.52572

λ− 1.8

)
(54)

In Fig. 8 it can be observed that the zeroes of Eq. (54) coincide with the eigenvalues
of the system, namely 0.3614, 0.9060 and 1.8327. In this figure black circles represent
subsystem eigenvalues and black squares represent coupled system eigenvalues.

Given the significant frequency shift of the eigenvalues for coupled system vs. that
of the decoupled subsystems, the interest in knowing the resonant frequencies of the
coupled system is justified, since the excitation frequency may then coincided with a
resonant frequency of the coupled system.

5.2 Two plates connected by five springs

The following example illustrates the performance of the method on a continuous
system which is discretised, giving a mesh of 13x23 degrees of freedom.

The feature of having several degrees of freedom connected trough springs is also
introduced in this example having 5 connections.

The model involves two plates with dimensions: 1.3 m length, 2.3 m width and 20
cm thickness and material properties as indicated in Table 1.

In Fig. 10, the continuous line is Γ(λ) as defined in Eq. (39), computed over a λ
sweep from 0 to 4 with 1E − 3 incremental step. In a real case the zone to explore
will be defined by the nature of the problem, engine RPM, fan characteristics, etc.
As it is known already, its zero value crossings correspond to the modal frequencies of
the system, ∗ symbols indicate these zero crossings, which are the eigenvalues of the
system.

17



Figure 8: The total system eigenvalues calculated using standard methods (black
squares) correspond to the zeroes of the Γ(λ) function. The eigenvalues of the sub-
systems (black circles) are also represented.

Material ρv (kg/m3) ν E (Pa) Lx (m) Ly (m) h (m)
Concrete 2000 0.2 2 · 1010 2.3 1.3 0.2
Concrete 2000 0.2 2 · 1010 2.3 1.3 0.2

Table 1: Geometric and mechanical properties of the two plates (ρv is the volumetric
density, ν is the Poisson’s ratio, E is the Young modulus, Lx, Ly the plate dimensions
and h the plate thickness).

Spring K (N
m
) x (m) y (m)

1 2 · 105 0.3 0.4
2 2 · 105 0.6 0.1
3 2 · 105 0.2 0.4
4 2 · 105 0.5 0.5
5 2 · 105 0.1 0.1

Table 2: Stiffness K and position of each spring that connects the plates.

The accuracy of the obtained result is analysed in Fig. 11, which shows on top
the eigenvalues computed through Γ(λ) (abscissa axis) versus the eigenvalues of the
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Figure 9: Example of continuous system with several non-holonomic coupling connec-
tions. Two plates connected through 5 springs.

Figure 10: —–Γ (λ) characteristic function whose zeros are the system eigenvalues, ∗
Eigenvalues of the system calculated using standard numerical methods

system directly compute with standard eigenvalue solver (ordinate axis). The scatter
of resulting points is then least squares approximated by a straight line with equation
y = 0.99999x + 0.00066, meaning that the correlation of the method results to those
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of a standard eigensolver is 0.99998, which is regarded as an optimal result.

Figure 11: Linear correlation between the system eigenvalues and the Γ(λ) zeros.
Top curve: Linear approximation. Bottom curve: Differences between the linear
approximation and the value calculated with this paper method (fitting residue).

Fig. 12 shows the relative error in the eigenmodes. Such relative error is com-
puted in vector form as the difference between the eigenvectors computed through
the gamma function and the eigenvectors obtained with standard solver, each of them
normalised by the norm of the (standardly computed) eigenvector. In all cases the
error is below 1E − 9.

6 Conclusions

For two coupled subsystems, a characteristic function Γ(λ) whose zeroes correspond to
the characteristic values, the eigenfrequencies of the coupled system has been derived,
in which Γ(λ) is the determinant of a matrix of order equal to the number of subsystem
connections, typically a smaller number than the subsystems’ number of degrees of
freedom.

The characteristic function Γ(λ) depends on the eigenvalues and eigenvectors of
each of the two subsystems as well as on the elastic constants of the springs which
connect them. Yet, in the solution procedure of the proposed method, the subsystem
eigenvalues and eigenvectors get combined into receptance functions. Therefore, for an
experimental application of the method, it is not needed to know the eigenmodes and
eigenfrequencies of the subsystems. Knowing the receptances between the coupling
degrees of freedom suffices.
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Figure 12: Relative error on the obtained eigenvectors vs. system ones

Furthermore, it has been demonstrated the procedure for obtaining the corre-
sponding eigenvectors based on the matrix whose determinant generates Γ(λ).

Finally, the method has been applied to two examples, a discrete system with one
single connection and a continuous system with 5 connections. In both examples the
proposed method shows fully satisfactory performance.
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