
Bachelor Thesis

Blockchain Consensus and
Transaction layer adaptation for

Inter-domain Security
Applications

Emanuele Cesari

Supervised by

Alberto Cabellos Aparicio

Jordi Paillissé Vilanova

Final Project Report

Facultad de Informática de Barcelona

June 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185525191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Generating public randomness without a trusted party is often desirable, especially
in decentralized systems such as blockchain, where many users may wish to par-
ticipate. Producing and using randomness in a distributed setting presents many
issues and challenges, such as how to combine random outputs from multiple bea-
cons without permitting bias by an active adversary. [10]
This document analyzes how blockchain technology can be used to generate random-
ness decentralized beacons, in a distributed way, to secure the allocation, delegation
and binding to topological information of the IP address space.

2

Contents

1 Introduction 5

1.1 Objective . 5

1.2 Scope . 5

2 State of the Art 6

2.1 Overview . 6

2.2 Blockchain . 6

2.3 Chain of signatures . 7

2.4 Consensus algorithm . 7

2.5 Proof of Work . 8

2.6 Proof of Stake . 9

2.7 Methods for generating random bits 10

2.8 Types of random numbers . 10

3 Project management 11

3.1 Stake Holders . 11

3.2 Methodology . 11

3.3 Intensive customer Feedback . 11

3.4 Developement tools . 12

3.5 Validation . 12

3.6 Temporal planning . 12

3.7 Project planning and flexibility . 13

3.8 Project analysis . 13

3.9 Project Design . 14

3.10 Algorithm Implementation . 14

3.11 Action Plan . 14

3.12 Economic Sustainability . 15

3.13 Social Sustainability . 15

3.14 Risk management . 15

3.15 Relation of the project with technical competences 15

4 Cryptographic background 16

4.1 Overview . 16

4.2 Distributed Key Generation . 16

4.3 Threshold Signature Scheme . 17

4.4 Shamir secret sharing . 18

4.5 Verifiable Random Functions . 18

3

5 Existing alternatives 19
5.1 NIST generator . 19
5.2 Random.org . 20
5.3 Algorand . 20
5.4 Randao . 21

5.4.1 Commit Reveal . 21
5.4.2 BLS . 21

5.5 Dfinity . 22
5.6 RandHerd . 22
5.7 Evaluation of the different solutions 23

6 Algorithm proposal 24
6.1 Overview . 24
6.2 Setup . 24
6.3 Random Number Generation . 25
6.4 Security Properties . 25

6.4.1 Unpredictability . 25
6.4.2 Verifiability . 25
6.4.3 Availability . 26
6.4.4 Unbiasiability . 26

7 Performance evaluation 27
7.1 Overview . 27
7.2 Implementation . 27
7.3 Proof of concept . 32
7.4 Performance measurements . 33

7.4.1 Experimental setup . 33
7.4.2 Setup time analysis . 33
7.4.3 Beacon generation time analysis 34

8 Conclusion 35
8.1 Final results . 35
8.2 Future work . 35

4 Chapter 0 Cesari Emanuele

Chapter 1

Introduction

The generation of random numbers has fascinated man since ancient times, nowa-
days there is still a great demand of random numbers, in various sectors from gam-
bling to cryptography. For these purposes different methods for the generation of
random numbers were invented: the use of dice, roulette wheels, coin-flipping, sta-
tistical methods, computer algorithms and the use of quantum mechanic principles.
These kinds of traditional random generators have all the same problems, the lack
of decentralization and verifiable fairness; although a real random number is not
verifiable fair by his nature.
People always wants a random number generator system with higher fairness. Nowa-
days blockchain systems are getting more and more popular for their decentralized
properties, and they also provide a nature basis for the verifiable fair random num-
bers.[9]

1.1 Objective

The objective of our research was develop a random numbers generator for a blockchain
based on proof-of-stake algorithm. In a proof-of-stake protocol, randomness is im-
portant to avoid participants cheat the network by choosing a malicious node in
order to damage the current blockchain. If malicious nodes are selected continu-
ously, they can behave in a way in which the new created blocks are incorrectly
created, slowing the network each time they became selected. For this reason is im-
portant to achieve a random consensus selection to hinder the option of slow down
the system by malicious participants

1.2 Scope

The scope of this document is to show how to safely save a list of ip addresses inside
the bloackchain and to achieve this I need a proof of stake algorithm.
However, none of the existing algorithms meet our requirements so we decided to
design a new one. In the following sections of this document we will present our
algorithm and describe in details, how create a decentralized randomness beacon
generator, based on a blockchain systems, using a distributed key generator algo-
rithm (DKI) and a threshold signature scheme.

5

Chapter 2

State of the Art

2.1 Overview

Bitcoin and the Blockchain technology have started at 2009 with a lot of controversy
around different areas of study, e.g., security, environment, efficiency, etc. One of
the most discussed aspects of Bitcoin is the proof of work or PoW.
As Bitcoin uses PoW as its way of choosing a new block signer, nodes in the network
have to mine,compute a complex mathematical problem in order to add a block, thus
demanding more and more computational effort.
Regarding the prototype, we have opted for a different block signer election, it is
called proof of stake or PoS.
In the following sections we will explain in detail the concepts mentioned here.

2.2 Blockchain

A blockchain is a distributed, secure and trustless database. It can also be regarded
as a state machine with rules that clearly state which transitions can be performed.
Participants in the blockchain communicate through a P2P network. The smallest
data unit of a blockchain is a transaction. Users attach data to a transaction along
with its signature and their associated public key. Usually, the attached data is an
asset or a token, something that is unique and should not be replicated (e.g., coins
in Bitcoin).
Then they broadcast this transaction to the other participants. The rest of the nodes
in the network store temporarily this transaction. At some fixed intervals in time,
one of the nodes takes a set of these transactions and groups them in a block. It then
broadcasts this block back to the network. When the other nodes receive this block
they verify it, remove the transactions contained in the block from the temporary
storage and add it after the previous block, thus creating a chain of blocks. It should
be noted that all nodes store the entire blockchain locally. Figure 2.1 presents an
overview of the most common elements in a block. Two basic mechanisms are used
to protect the chained data: a chain of signatures and a consensus algorithm.

6

Figure 2.1: simplified bitcoin blockchain

2.3 Chain of signatures

The chain of signatures operates at transaction level. Consider the sender and
receiver of a token, each with its public-private keypair. To change the owner of a
token, the sender signs the data and the receiver’s public key. It then puts together
its public key, the signature, the data and the hash of the receiver’s public key to
form a transaction.

2.4 Consensus algorithm

The consensus algorithm is the central part of blockchain and it controls the chain-
ing of data blocks. The main role of the algorithm is to provide a set of well-defined
rules so that participants agree on a consistent view of the database. For this it
has the following main functions. First, forks (multiple chains) can exist, this may
happen for instance due to varying network latency among participants.
In this case the participants must agree on which is the valid chain. And second,
another important function of the consensus algorithm is to determine which par-
ticipants are allowed to add a new data blocks. The two more popular consensus
algorithms are: Proof of Work and Proof of Stake.

Chapter 2 Cesari Emanuele 7

2.5 Proof of Work

As we mentioned before in the Proof of Work nodes have to solve a complex math-
ematical problem to add a block, thus requiring some computational effort, this is
commonly know as mining.For example in Bitcoin the problem is to find a hash
starting with a fixed amount of zeroes, the only known way to solve this problem is
by brute force.
The valid chain is the one with most accumulated computing power, this chain is
also the more expensive in terms of computing power to modify.
This is because modifying a block going N blocks back from the tip of the chain
would require redoing the computations for all these N blocks.As a result, an at-
tacker should have more computational power than the power required to create
the N blocks to be able to modify the chain. Overall, it is commonly assumed that
if more than half of the nodes are honest the blockchain is considered as secure.
PoW offers relevant features, adding new blocks requires an external resource (CPU
power) that has an economical cost. However this also results in some relevant
drawbacks:

• Risk of overtaking: The security of PoW is entirely based on computation
power. This means that if an entity has access to more than half of the total
blockchain’s computing power it can control the chain. As a result and in
order to keep blockchain secure, the incentive of taking control of the chain
must be lower than the cost of acquiring and operating the hardware that
provides the equivalent to half of the participants computing power. This is
hard to guarantee since the economy of the blockchain and the economy of the
required hardware are independent. As an example an attacker can acquire
the required hardware and operate it, take control of the blockchain to obtain
an economical benefit and finally sell the hardware to reduce the final cost of
the attack.

• Energy inefficiency: PoW requires large amounts of energy to perform the
computations (e.g.,miningfarm).

• Hardware dependency: Bitcoin automatically increases -over time- the
complexity of the mathematical problem that needs to be solved in order to
add a block.This is done to account for Moore’s law. As a result the commu-
nity has designed mining specific hardware(ASICs) that provides a competitive
advantage.In this context blockchain becomes less democratic, since the cost
of participating in it increases.

8 Chapter 2 Cesari Emanuele

2.6 Proof of Stake

The main idea behind Proof of Stake is that participants with more assets (or stake)
in the blockchain are more likely to add blocks. With this, the control of the chain
is given to entities who own more stake. For each new block, a signer is selected
randomly from the list of participants typically weighted according to their stake.A
fundamental assumption behind PoS is that such entities have more incentives for
honest behavior since they have more assets in the chain.
Proof of Stake is seen as an alternative to PoW. At the time of this writing major
players in the blockchain environment such as Ethereum are preparing a shift to-
wards PoS, moreover several blockchains based on PoS already exist.
The main reason behind this paradigm shift is that PoS addresses some of PoW’s
main drawbacks:

• It does not require special hardware nor computationally or energy-expensive
calculations.

• An attacker must get hold of a significant part of the assets in order to gain
control of the blockchain. As opposed to PoS the investment required to gain
control of the chain lies within the chain, and does not involve using external
resources.

On the other side, Proof of Stake introduces new sources of attacks:

• In Proof of Stake the signer is selected randomly among the stakers.In this
context attackers can manipulate the source of randomness to sign more blocks
and ultimately gain control over the chain.

• As opposed to PoW, creating forks is very inexpensive, since no computational
power is required. The PoS must provide means to select the valid chain, which
is typically the longer one.

• Collusions of high-stakers can create alternate chains which can appear to be
valid.

Chapter 2 Cesari Emanuele 9

2.7 Methods for generating random bits

According to the NIST “Recommendation for Random Number Generation” [1],
there are two fundamentally different methods for generating random bits.
The first is to produce bits non-deterministically, where every bit of output is based
on a physical process that is unpredictable; this categories of random bit generators
(RBGs) is commonly known as non-deterministic random bit generators (NRBGs).
The second method is to compute bits deterministically using an algorithm; this
class of RBGs is known as Deterministic Random Bit Generators (DRBGs).

2.8 Types of random numbers

Random numbers can be divided into three categories: true random numbers, pseu-
dorandom numbers and quasi random numbers.

• Pseudorandom numbers: are a sequence of numbers which are algorith-
mically produced and they are not really random.If the initial conditions and
algorithm are known the sequence can be repeated.

• Quasi random numbers: act as random numbers in some sort of simula-
tions, but are well-ordered in some other types, they are designed to be highly
correlated, in a way such that they will fill space fairly evenly. The three most
famous methods to generate this type of random numbers are:

– Richtmeyer-sequences

– Van der Corput-sequences

– Sobol sequences

• True random numbers: the process of generation of this type of random
numbers is not predictable, because is completely base on an underlying ran-
dom physical process.
Unlike the pseudorandom number there is no internal state kept in the genera-
tor and the output is based only on the physical process and not any previously
produced bits [4]

10 Chapter 2 Cesari Emanuele

Chapter 3

Project management

3.1 Stake Holders

The stakeholders involved in this project are described below.

• Developer The main function of the developer in this project is to do research
on the multiple available algorithms for the generation of random number ,
develop the selected algorithm and integrate it with the rest of the parts in
the blockchain system.

• Director and co-director Their role is the guidance and supervision of the
work done by the developer. They also help on the comprehension of the
technology and the implementation on the network.

• End-Users As the main goal of the project is to secure the Internet, anyone
who uses Internet nowadays, will be beneficiary of my project, i.e. companies,
users, government entities etc.

3.2 Methodology

I will develop my project with my thesis Director Albert Cabellos and my thesis
Co-director Jordi Paillissé. We both agree to use for this project an Agile software
development methodology, where communication among team member is crucial,
working on code is supposed to be mandatory and responding to change is supposed
to be rapidly applied.
According to the Agile methodology, there will be weekly meetings between us. The
Objective of these meetings will be to summarize the work done during the week
and to discuss relevant aspects for the good performance of the prototype

3.3 Intensive customer Feedback

While the project doesn’t have a real client, this concept from agile methodologies
could still be applied : By letting the person that is ultimately responsible for eval-
uating the project, Professor Albert Cabellos, checks the project state as frequently
as possible to provide feedbacks about the project

11

Figure 3.1: Agile methodology process

3.4 Developement tools

To develop the project and to achieve a correct integration with all the parts of the
project, I used the following tools:

• Visual Studio Code: is a code editor redefined and optimized for building
and debugging modern web and cloud applications. I will use this tool to write
the code of my Algorithm.

• Git:is a version control system for tracking changes in computer files and
coordinating work on those files among multiple people.

• Thunderbird: is an email client I used to comunicate with my cordinators.

• Wmare Workstation: Is a virtualization software that I used to create
different virtual machines for test and validate my project.

3.5 Validation

In order to validate my project, I will use a beta network to test the project. This
network is very similar to the real world environment, so this will give me a valid
and consistent result.

3.6 Temporal planning

The estimated project duration was approximately 5 months. The project started
on Febrary 15th, 2018 and it finished in the end of June.
It must be noticed that, due to the characteristics of this project, the planning
was subject to modifications depending on how the project was being developed.
Furthermore, during March 2018 the project stopped due to Easter holidays

12 Chapter 3 Cesari Emanuele

3.7 Project planning and flexibility

Five months (Erasmus period) can seem like a long time, but a bad scheduling can
make it insufficient.
To avoid this problem, a very rigid but realistic timetable with weekly meetings with
the project tutors will be set to ensure the project is on schedule, or to apply the
appropriate corrections otherwise. The coverage of the GEP course can be divided
in this stages:

• Context and scope of the project (10h)

• Project planning (5h)

• Budget and sustainability (5h)

• First oral presentation (10h)

• Specification (5h)

• Oral presentation and final document (15h)

All this stages will be done by the Project Manager under the supervision of the
Co-director and Director of the project. By the end of the thesis the planning is the
following:

• Project planning (40h)

• Research about blockchains (50h)

• Analysis of requirements (30h)

• Research on Random number generator (90h)

• Design of the algorithm (90h)

• Algorithm development (50h)

• Module tests (40h)

• Documentation of the final document (40h)

• Defense preparation (20h) TOTAL (450h)

3.8 Project analysis

This section will cover the analysis of the project and is implementations. Before
starting the development of the project, there is a need to understand what are the
technologies involved in it, the objectives to achieve and the requirements to have.
In the case of this scenario, the technology is the most important part, as it is
new and hard to understand,the technology involved in the project is called the
blockchain. In order to achieve the state of the art knowledge of the technology, I
must read a lot of papers to understand what a blockchain is, how it works and how
it should be developed. Only when I fully understand the technology, I will be able
to design and analyze a plan in order to develop the project.

Chapter 3 Cesari Emanuele 13

3.9 Project Design

This part consists on creating the software architecture in order to get a working
setup and the correct performance expected for the completion of the project. As I
mentioned before there are a lot of blockchains developed in the last years and this
can be helpful to have a general view of how a blockchain should be implemented.
To filter the search of a good prototype, I have opted for Bitcoin and Ethereum.
They are very different but both have characteristic that can be very useful for my
project

3.10 Algorithm Implementation

The core part of the project is the implementation of the algorithm. After the hard
work involved on understanding each part of the Blockchain,it is time to shape my
thoughts in the code.

3.11 Action Plan

As I mentioned before I developed my project with my thesis director and my thesis
co-director.
We used the Agile methodology as a development method so it allowed me to adapt
the timings in a proper way.If something required more time than expected. More-
over, in the meetings, my Director and Co-director checked all the timings in order
to decide whether I was in time or not.
If they saw that I was in time, everything was good, and we didn’t take any addi-
tional actions. If we saw that I was not in time, we tried to find which part was
taking the extra time with the objective of reducing the waste of time. For this
purpose, we had a meeting every week, where we analyzed the situation and we
took extra actions if was required.

Figure 3.2: Gantt Chart

14 Chapter 3 Cesari Emanuele

3.12 Economic Sustainability

Taking into account the amount of hours needed and the number of computers ded-
icated to develop the project, is difficult to do a similar project with a lower general
cost. It was difficult to say beforehand if we will have the time to finish the TFG ac-
cording with the deadline, but this is the objective, so no extra costs will be needed
in theory.
In order to reduce the cost of the project, we used free software tools for the devel-
opment of it. Moreover, with this kind of actions we are supporting the free software
community, which is very important for the development of the software world.

3.13 Social Sustainability

The aim of this project is to decentralize the assignment of Internet IP addresses in
order to make the Internet more free and more accessible to people.
With this project and the final arrival of the IPv6 protocol, I could dream in a world
where each entity, person or whatever can have its own public IP without the need
of third parties. The only entity affected by our project is the IANA institution.
They have the nowadays power to determine who have which IP address, so they
will want to keep their power

3.14 Risk management

As I will be using open source software for the development of the project, I have
the risk that they could being deprecated in the future. If the developers do not
continue with the development we can be affected. This possibility is not so real
as there are a lot of contributors working in the software that I’ve chosen for the
implementation.
It is true that licensed software can be a good choice if I need support. But as I
know the tools and there a lot of documentation, I won’t have any problem for the
development of the project with the software chosen.
As a risk I also have the management of more than one virtual machines. It is not
trivial to manage them, as they are hardware simulated by software, so sometimes
it can be tricky to make everything work as expected.

3.15 Relation of the project with technical com-

petences

• To demonstrate comprehension, apply and manage the reliability and security
of the computer systems : This competence was chosen because the main
objective of the project is to secure the Internet in the end, so I need to
understand and manage the security that is around the network system

• To design communications software :Behind the Blockchain there is the
communication protocol, the P2P mentioned above. This is a crucial part, so
in order to develop the rest of the project, I need to fully understand how it
works.

Chapter 3 Cesari Emanuele 15

Chapter 4

Cryptographic background

4.1 Overview

Before presenting the different solutions already available in the market, and my
algorithm for the generation of random numbers, we will briefly explain some cryp-
tographic background that are fundamentals to clearly understand the following
chapters.

4.2 Distributed Key Generation

A Distributed Key Generation Protocol (DKG) is a cryptographic protocol in which
multiple entities contribute to calculating a public key and a set of private keys
where each private key belongs to one of the entities. This prevents any partici-
pants from having access to secret information belonging to another participants.
The first DKG protocol was specified by Torben Pryds Pedersen in ”Non-interactive
and information-theoretic secure verifiable secret sharing” [8].
It was based on the security of the Joint-Feldman Protocol for verifiable sharing
of secrets. Few year later Professor Rosario Gennaro and others published a series
of tests that showed that the Joint-Feldman Protocol was vulnerable and malicious
contributions to the protocol proposed by Pedersen were vulnerable.
The same group proposed in ”Secure distributed key generation for discrete-log based
cryptosystems” [3] an update of the Pedersen protocol that protects against mali-
cious contributions.
Nowadays the distributed keys generation algorithm (DKG) are used in different
sectors and for different purpose, but is main implementation is in the setup session
of a threshold signature scheme.

16

4.3 Threshold Signature Scheme

In a (t,n)-threshold signature scheme, n parties together set up a public group key,
and each party keep an individual secret key. After this setup, t out of the n
parties are required and sufficient for generating a group signature that could be
validate against the public group key generated before. The aim of distributing the
functionality by having different entities cooperate is usually due to the following
two motivations:

• Fault tolerance: it is necessary to compromise the security of several entities
to break the security of the system and on the other hand, establishing a
threshold lower than the number of participants allows some of the entities to
stop operating, thus increasing the availability of the functionality

• Distribution of responsibilities: For example, in an encryption system
with a threshold to obtain clear content, it is necessary for several servers to
cooperate in order to perform the action. In a threshold signature system
it is necessary that the two entities, which may have different views of the
problem, agree to sign. Is worth mentioned that a Distributed key generation
algorithm is much more than a secret sharing protocol,because in a secret
sharing protocol the shares can be used to recover the group secret just once,
and after everyone has learned the group secret the shares cannot be reused.
In a distributed key generation protocol the secret shares can be used for an
unlimited number of group signatures without ever recovering the group secret
key.

Different Threshold versions of signature schemes can be built for many public en-
cryption schemes such as:

• RSA

• ElGamal

• Damg̊ard–Jurik cryptosystem

• Paillier cryptosystem

According to whether a verifier can trace the signatories we can distinguish two
different types of threshold signatures scheme.

• Anonymous signers:no one can reveal the identity of the parties involved.

• Traceable signers: the identity of the parties involved is public.

Chapter 4 Cesari Emanuele 17

4.4 Shamir secret sharing

Shamir’s secret sharing system is a cryptographic algorithm. It is a form of secret
sharing where a secret is divided into parts and each participant is given only one:
all or part of them are necessary to reconstruct the secret.
The purpose of the algorithm is to divide a secret D (for example, a key) into N
parts so that:

• The knowledge of K or more D parts makes easily computable the secret D.

• Knowledge K -1 or less D parts makes D indeterminate, in the sense that all
its possible values are equally likely to be true.

4.5 Verifiable Random Functions

The Verifiable random functions were invented by Mical, Vadhan and Rabin in
“Verifiable random functions” [6] to solve the problem that a pseudo random oracle
is not verifiable without knowledge of the seed or other information.
It’s a pseudo-random function that provides for his output a fully verifiable proofs
of correctness.

18 Chapter 4 Cesari Emanuele

Chapter 5

Existing alternatives

In this chapter we will present in details the different solutions already available on
the market for generate true random numbers.

5.1 NIST generator

NIST is offering a public source of randomness, this service use two independent
commercially available sources of randomness, each with an independent hardware
entropy source and SP 800-90-approved components.[7]

Figure 5.1: NIST beacon scheme

The NIST Beacon service is designed to provide:

• Unpredictability means that users cannot algorithmically predict bits before
they are made available by the source.

• Autonomy means that the source is resistant to attempts by outside parties
to alter the distribution of the random bits.

• Consistency means that the exact sequence will be shown when being ac-
cessed by a group of users

19

5.2 Random.org

Random.org is a website that offers true random numbers to anyone on the Internet.
The randomness comes from atmospheric noise, and as we explained in the previous
chapter this is better than the pseudo-random number algorithms typically used in
computer programs.
The random numbers generate by randaom.org are used in different way such as
holding drawings, lotteries and sweepstakes, to drive online games, for scientific
applications and for art and music.

5.3 Algorand

Algorand [5], despite at the beginning is not easy to understand, is another good
alternative solution for the generation of randomness. Algorand uses Verifiable Ran-
dom Functions (VRFs) to build a Common Coin, which acts as a God’s dice, and
when the nodes cannot research consensus, the hesitant nodes can react according
to the result given by the Common Coin.
In the Algorand algorithm the users communicate through a gossip protocol. Mes-
sages are signed using the private key of the sender, and peer selection is weighted
depending on how much money a peer has.
This gossip protocol is also used by users to submit new transactions, and every
user collects a block of pending transactions that they hear about. Algorand runs
on different rounds, and in each of these rounds a set of users are chosen randomly,
in a completely decentralised way, using cryptographic sortition, to propose a new
block for the blockchain.

Figure 5.2: An overview of transaction flow in Algorand.

20 Chapter 5 Cesari Emanuele

5.4 Randao

Randao [9] is a protocol that offers a public random number generator, based on
two different schemes: Commit Reveal and BLS.

5.4.1 Commit Reveal

The Commit Reveal algorithm is designed to operate on the famous Etherum blockchain
and it uses the Etherum smart contracts, the commit reveal scheme is compose by
three main steps:

• Collecting ETH and sha3(s): All the nodes that want participate to the
protocol should send the sha3(s) of a random number s and m amount of ETH
to the smart Contract C.

• Collecting s : All the partecipants that successfully submitted the sha3(s)
send the random number s to smart contract C.
C checks if the random number s matches with the sha3(s)received in the first
phase, if yes then the Smart Contract C saves (s) into the seeds of the function
that he will use to generate the random number.

• Generating the random number: This is the last steps of the Randao
Commit Reveal scheme, in this phase the smart Contract C generates the
random number, using the fucntion F,comunicates it to all the partecipants,
and it returns the amounts of m ETH received in the first step of the protocol.
It is worth mentioning, that if a partecipant sends the wrong random number
s in the second phase of the protocol,the m of ETH that were deposited in the
first step will not be returned.

5.4.2 BLS

The second scheme proposes in the Randao white paper [9] is based on the Boneh
Lynn Shacham (BLS) signature scheme, that allows a user to verify that a signer is
authentic.
The main idea to generate randomness using a BLS signature scheme is that all the
participants are divided into different groups, the first group generates a random
number,sign it, and send to another group that will do the same process. The final
random number will be the last group signature of the message.

Chapter 5 Cesari Emanuele 21

5.5 Dfinity

DFINITY [2] is another solution to generate randomness, is it a decentralized ran-
domness beacon generator that use a verifiable random function (VRF),a distributed
key generation algorithm (DKG) and a threshold signature scheme, all of this will
be explained with more details in the next chapter.
Because of the threshold signature scheme each random output of the DFINITY
algorithm is unpredictable by anyone until the it becomes available to everyone.
The threshold signature scheme used in the DFINITY protocol is non-interactive
and uniqueness

• Non-Interactive: the creation mechanism of the group signature is compose
only by one single round of one-way communication for each of the t partici-
pating parties.
Usually in this type of process, each node generates a signature share using
his individual signature and then he sends it to a third party. When the third
party has received t valid shares it can rebuild the group signature without
other further interactions.

• Uniqueness; a signature scheme is unique if for every public key and for every
message there is only one valid signature.

5.6 RandHerd

RandHerd is a protocol that allow a potentially large group of servers to form a
distributed public randomness beacon, which proactively generates a regular series
of public random outputs.[10]
Ranherd aims to offer a public randomness beacon with the following security prop-
erties:

• Availability: Given an honest leader, the protocol successfully completes and
produces the final random output Z with high probability.

• Unpredictability: Nobody knows anything about the final random output
Z,until the final group responses are revealed.

• Unbiasability: The collective randomness Z represents an unbiased, uni-
formly random value, except with negligible probability.

• Verifiability: The final randomness output randomness Z is third-party ver-
ifiable as a collective Schnorr signature under X

22 Chapter 5 Cesari Emanuele

5.7 Evaluation of the different solutions

In order to evaluate the different random number generator mentioned before we
used these criteria suggested in Randao: Verifiable Random Number Generation [9].

• Unpretictable: Nobody can predict the possible value of the next random
number based on the previous result or other historical data, not even a tiny
increase in the success rate prediction.

• Unconcealable: After the random number is generated the users cannot
refuse to disclose it.This also means that after being generated a random num-
ber will be public available and cannot be hidden or withdrawn.

• Conspiracy-resistant: If some of the network nodes privately join together
to exchange their own private information, they cannot affect the final output
or have other competitive advantages.

• Response rate: The process for the random number generation should be as
fast as possible

• No possibility to know in advance: All the parties involved in the protocol
for the random number generator discover the generated random number at
the same time.No one can know the final result ahead of time.

• Open partecipation: The random number generation process should be
open to public partecipation, in order to reduce or eliminate the threshold to
participate.

• Unselectable:The nodes cannot withhold any results or replace one with
another one.

• Auditable: The whole process of the random number generation should be
fully auditable.

• Low cost: The cost for random number generation should be as low as pos-
sible.

• Tamper-resistant: After the generation of the random number no one can
modify it.

Chapter 5 Cesari Emanuele 23

Chapter 6

Algorithm proposal

6.1 Overview

Since none of the solutions mentioned above meets our requirements in terms of
scalability, safety and performance, I decided, in agreement with my thesis director
and co-director, to implement a new solution that would better cover our require-
ments.
The algorithm we designed for the generation of a random beacon in a distributed
way, is based on D-infitiy and Randherd since it always uses a DKG algorithm and
a threshold signature scheme.
However, our algorithm has a substantial and innovative difference compared to the
two algorithms previously mentioned, the use of blockchain in the process of gener-
ating random numbers to avoid the high numbers of messages between the nodes.
The algorithm is composed mainly of the two following phases: setup phase and
random number generation.

6.2 Setup

In the setup phase, the nodes belonging to the peer to peer network are randomly
grouped into groups.
Once created the groups, begins the phase of key generation that is achieved through
distributed key generation (DKG) algorithm invented by the professor MIchali [3]
which is a safer improvement of the famous Petersen algorithm [8].
Once the keys are generated, each node will have a secret piece of a private key,
and the shared key of the group will be saved in the blockchain to be available to
everybody. Once the key generation is complete, the second phase of the Algotihm
will begin.

24

6.3 Random Number Generation

Each participating node will calculate the hash of the previous blockchain block,
sign it with its private key and save the signature in the blockchain; everyone can
verify this signature using the public group signature available in the blockchain.
Once there are enough signatures in the blockchain any node can use a ”recover”
function to calculate the final public group signature, and save it into the blockchain.
However, it is worth remembering that given the security properties of the threshold
signature scheme, it is irrelevant which signatures are selected to generate the final
group signature.
The random number at the end will be determined by the hash of the final group
signature, which will then be used to generate an ip address and the owner of this
ip address will be the one who will signs the block.

6.4 Security Properties

In this section we will describe and explain the security properties of our algorithm:

6.4.1 Unpredictability

Through the security properties of the threshold signature scheme our algorithm
ensures that nobody can predict the random number in advance until the final
group signature is calculated and saved into the blockchain.

6.4.2 Verifiability

Thanks to the properties of the blockchain,DKG algorithm and threshold signature
scheme, all the phases of the algorithm can be verified by a third party. More in
details:

• Hash signatures of the previous block can be verified using the public group
key saved in the blockchain.

• Final group signature can be recalculated by everyone through a recover
function using as input the block signatures saved in the blockchain.

• Random number can be easily verified, just calculate the hash of the final
group signature saved in the blockchain.

Chapter 6 Cesari Emanuele 25

6.4.3 Availability

Our algorithm guarantees a high probability that the protocol will end in a positive
way generating a random number even in the presence of an adversary who behaves
in a malicious way.
The availability is guaranteed mainly by the threshold signature scheme which allows
that n out of t nodes are required to generate the final group signature.

6.4.4 Unbiasiability

The algorithm prevents the adversary from biasing the value of the random number.
As we explained before it requires that at least one node is honest and the algorithm
will product a true random number.

26 Chapter 6 Cesari Emanuele

Chapter 7

Performance evaluation

7.1 Overview

This section experimentally evaluates our prototype implementations of the algo-
rithm for the distributed beacon generation.
Given the absence of an open source cryptographic library to implement quickly and
easily the distributed key generation algorithm of Micali [6] and the threshold sig-
nature scheme, and in agreement with my director and co-director I decided to use
for the evaluation phase the Randherd algorithm previously explained. we decided
to use this algorithm for two main reasons:

• Similitude Randherd is a solution very similar to my algorithm because it
uses the same components: distributed key generation and thresold signature
scheme, except for blockchain so the results I got in this simulation phase are
the same valuable and significant.

• Open Source:is the only one whose source code is publicly available online
and also has a very good documentation that has allowed me to understand
how the code works and allowed me to easily make some changes to the source
code to better adapt him to my needs.

7.2 Implementation

For the testing and analysis of the algorithm we used as a starting point an open-
source code available on Github, and we modified the following script that we used
to generate the various nodes of the peer to peer network, test the exchange of
keys for the DKG and the generation of the random beacon. In detail we added
the possibility to set the number of the network nodes and we inserted a function
to print on the console the execution time of every step to record the data for the
graphs.

27

1 #!/bin/bash

2 start=$(date +%s)

3 N=6

4 BASE="/tmp/drand"

5 if [! -d "$BASE"]; then

6 mkdir $BASE

7 fi

8 unameOut="$(uname -s)"

9 case "${unameOut}" in

10 Linux*) TMP=$(mktemp -p "$BASE" -d);;

11 Darwin*)

12 A=$(mktemp -d -t "drand")

13 mv $A "/tmp/$(basename $A)"

14 TMP="/tmp/$(basename $A)"

15 ;;

16 esac

17 GROUPFILE="$TMP/group.toml"

18 IMG="dedis/drand:latest"

19 DRAND_PATH="src/github.com/dedis/drand"

20 DOCKERFILE="$GOPATH/$DRAND_PATH/Dockerfile"

21 NET="drand"

22 SUBNET="192.168.0."

23 PORT="80"

24

25 function checkSuccess() {

26 if ["$1" -eq 0]; then

27 return

28 else

29 echo "TEST <$2>: FAILURE"

30 cleanup

31 exit 1

32 fi

33 }

34

35

36 function convert() {

37 return printf -v int '%d\n' "$1" 2>/dev/null

38 }

39

40 if ["$#" -gt 0]; then

41 #n=£(convert "£1")

42 if ["$1" -gt 4]; then

43 N=$1

44 else

45 echo "./run_local.sh <N> : N needs to be an integer > 4"

46 exit 1

47 fi

48 fi

28 Chapter 7 Cesari Emanuele

49

50 ## build the test travis image

51 function build() {

52 echo "[+] Building the docker image $IMG"

53 docker build -t "$IMG" . > /dev/null

54 }

55

56

57 function run() {

58 echo "[+] Create the docker network $NET with subnet ${SUBNET}0/24"

59 docker network create "$NET" --subnet "${SUBNET}0/24" > /dev/null 2> /dev/null

60

61 sequence=$(seq $N -1 1)

62 #sequence=£(seq £N -1 1)

63 # creating the keys and compose part for each node

64 echo "[+] Generating all the private key pairs..."

65 for i in $sequence; do

66 # gen key and append to group

67 data="$TMP/node$i/"

68 addr="${SUBNET}2$i:$PORT"

69 addresses+=($addr)

70 mkdir -p "$data"

71 #drand keygen --keys "£data" "£addr" > /dev/null

72 public="key/drand_id.public"

73 volume="$data:/root/.drand/:z"

74 allVolumes[$i]=$volume

75 docker run --rm --volume ${allVolumes[$i]} $IMG keygen "$addr" > /dev/null

76 #allKeys[£i]=£data£public

77 cp $data$public $TMP/node$i.public

78 ## all keys from docker point of view

79 allKeys[$i]=/tmp/node$i.public

80 echo "[+] Generated private/public key pair $i"

81 done

82

83 ## generate group toml

84 #echo £allKeys

85 docker run --rm -v $TMP:/tmp:z $IMG group --out /tmp/group.toml "${allKeys[@]}" > /dev/null

86 echo "[+] Group file generated at $GROUPFILE"

87 echo "[+] Starting all drand nodes sequentially..."

88 for i in $sequence; do

89 # gen key and append to group

90 data="$TMP/node$i/"

91 groupFile="$data""drand_group.toml"

92 cp $GROUPFILE $groupFile

93 dockerGroupFile="/root/.drand/drand_group.toml"

94 #drandCmd=("--debug" "run")

95 drandCmd=("--debug" "run" "--period" "2s")

96 detached="-d"

Chapter 7 Cesari Emanuele 29

97 args=(run --rm --name node$i --net $NET --ip ${SUBNET}2$i --volume ${allVolumes[$i]} -d)

98 #echo "--> starting drand node £i: £{SUBNET}2£i"

99 if ["$i" -eq 1]; then

100 drandCmd+=("--leader" "--period" "2s")

101 if ["$1" = true]; then

102 # running in foreground

103 echo "[+] Running in foreground!"

104 unset 'args[${#args[@]}-1]'

105 fi

106 echo "[+] Starting the leader of the dkg"

107 else

108 echo "[+] Starting node $i"

109 fi

110 drandCmd+=($dockerGroupFile)

111 docker ${args[@]} "$IMG" "${drandCmd[@]}" > /dev/null

112 sleep 0.1

113 detached="-d"

114 done

115 }

116

117 function cleanup() {

118 echo "[+] Cleaning up the docker containers..."

119 docker stop $(docker ps -a -q) > /dev/null 2>/dev/null

120 docker rm -f $(docker ps -a -q) > /dev/null 2>/dev/null

121 }

122

123 cleanup

124

125 ## END OF LIBRARY

126 if ["${#BASH_SOURCE[@]}" -gt "1"]; then

127 echo "[+] run_local.sh used as library -> not running"

128 return 0;

129 fi

130

131 ## RUN LOCALLY SCRIPT

132 trap cleanup SIGINT

133 build

134 run false

135

136 end=$(date +%s)

137 echo "[+] Waiting 3s to get some beacons..."

138 sleep 230

139 while true;

140 do

141 rootFolder="$TMP/node1"

142 distPublic="$rootFolder/groups/dist_key.public"

143 serverId="/key/drand_id.public"

144 drandVol="$rootFolder$serverId:$serverId"

30 Chapter 7 Cesari Emanuele

145 drandArgs=("--debug" "fetch" "private" $serverId)

146

147 runtime=$(python -c "print '%u:%02u' % ((${end} - ${start})/60, (${end} - ${start})%60)")

148 echo "Runtime was $runtime"

149 echo "---"

150 echo " Private Randomness "

151 docker run --rm --net $NET --ip ${SUBNET}11 -v "$drandVol" $IMG "${drandArgs[@]}"

152 echo "---"

153 checkSuccess $? "verify randomness encryption"

154 echo "---"

155 echo " Public Randomness "

156 drandPublic="/dist_public.toml"

157 drandVol="$distPublic:$drandPublic"

158 drandArgs=("--debug" "fetch" "public" "--public" $drandPublic "${addresses[1]}")

159 docker run --rm --net $NET --ip ${SUBNET}10 -v "$drandVol" $IMG "${drandArgs[@]}"

160 checkSuccess $? "verify signature?"

161 echo "---"

162 sleep 3

163 done

Chapter 7 Cesari Emanuele 31

7.3 Proof of concept

In this section we will provide an example of the output produced by our script when
it is executed. The script runs with the following command: ./script.sh 10 where
10 represents the number of nodes we want to create. Once the script is executed
the screen shown in Figure 7.1 will appear.

Figure 7.1: Setup phase of the algorihtm

As we can easily see the script generates 10 container dockers which simulate
each a different node of the p2p network and each of them produces a private and
public key and the public key of the group will be saved in a file called group.toml.
Then the random beacon generation shown in the Figure 7.2 will begin.
The script produces a random beacon completely verifiable every five seconds.

Figure 7.2: Example of the random beacon output

32 Chapter 7 Cesari Emanuele

7.4 Performance measurements

7.4.1 Experimental setup

we ran all our experiments and tests on a server from UPC, equipped with:

• Intel Xeon dual core E5-2620 v4

• 64 Gb of RAM

• 2 gb nics

7.4.2 Setup time analysis

Below in Figure 7.1 we will report an analysis on the time needed to generate the
shared key, for the DKG algorithm, depending on the number of nodes, to verify
the performance and the scalability of my algorithm.
As we can easily see from the graph in Figure 7.1 for a low number of nodes,
the algorithm takes reasonable time for the generation of public and private keys,
but as the number of nodes increases, the time for the generation of keys grows
exponentially, thus highlighting a possible problem of scalability in the future.

Figure 7.3: Analysis of DGK setup time

Chapter 7 Cesari Emanuele 33

7.4.3 Beacon generation time analysis

However it is worth remembering that the setup phase mentioned above must be
performed only once, and not at each round, then the times for the generation of
random numbers remain constant without depending on the number of nodes as
shown in the graph below .

Figure 7.4: Analysis of beacon generation time

This is a positive result to take into consideration and could balance the long
setup times needed in the first phase of the algorithm.

34 Chapter 7 Cesari Emanuele

Chapter 8

Conclusion

8.1 Final results

The results shown in the two graphs above are meaningful and to be taken into
account for the future implementation of my algorithm. The long setup times re-
quired to generate the keys for the Randherd algorithm are a problem that can be
solved using the blockchain as theorized in my algorithm. The constant time to
generate the random beacon instead is a positive factor that adds a great value to
the algorithm.
However, the fact that every time a node wants to join the network it is necessary to
re-execute the protocol of key generation with its long times is a significant problem,
which led me to the conclusion that my algorithm is more suitable for systems where
the number of nodes of the peer to peer network changes very rarely, or to allow
only nodes with a certain amount of stakes to join the process, so the algorithm
have to re-generate the keys less times.
Our algorithm is also a perfect solution for other systems that require public ran-
domness such as tor node protection, selection of encryption parameters for elliptical
curves, electronic voting systems, lottery, gambling. In all of these services my al-
gorithm can be useful for generating third-party verifiable randomness.
For example our solution could be integrated into the Nist beacon generator to
provide the same service but in more distributed way.

8.2 Future work

In this section we briefly explain the work to be done in the future. After the test
phases using the Randherd [10] algorithm described in the previous chapter, we
demonstrated the great potential of the algorithm we designed.
So for the future we have to implement our own algorithm, trying to use part of
the RanHerd code for the common parts in order to reduce the development time
and not reinvent the wheel, and write the code of the part of the algorithm that
interacts with the blockchain.

35

Acknowledgements

I would like to thank my thesis director Professor Albert Cabellos and my thesis
co-director Jordi Paillissé for supporting me during these past five months and for
their advices and support throughout the thesis work.
A special thank to the Universitat Politècnica de Catalunya and FIB department
for accepting me and allowing me to do my thesis as an international student.
Last but not least, I would like to thank my family, my parents Ambrogio and
Maria and my sister Erika, for their unconditional support,encouragement and love
without which I would not have have come this far.

36

Bibliography

[1] Elaine Barker et al. Recommendation for Random Number Generation Using
Deterministic Random Bit. 2013.

[2] dfinity.org. DFINITY Technology Overview Series Consensus System. Jan.
2018. url: https://dfinity.org/pdf- viewer/pdfs/viewer?file=..

/library/dfinity-consensus.pdf.

[3] Rosario Gennaro et al. “Secure distributed key generation for discrete-log
based cryptosystems”. In: International Conference on the Theory and Ap-
plications of Cryptographic Techniques. Springer. 1999, pp. 295–310.

[4] Paul Kohlbrenner and Kris Gaj. “An embedded true random number genera-
tor for FPGAs”. In: Proceedings of the 2004 ACM/SIGDA 12th international
symposium on Field programmable gate arrays. ACM. 2004, pp. 71–78.

[5] Silvio Micali. “ALGORAND: The Efficient and Democratic Ledger”. In: CoRR
abs/1607.01341 (2016). arXiv: 1607.01341. url: http://arxiv.org/abs/
1607.01341.

[6] Silvio Micali, Michael Rabin, and Salil Vadhan. “Verifiable random func-
tions”. In: Foundations of Computer Science, 1999. 40th Annual Symposium
on. IEEE. 1999, pp. 120–130.

[7] NIST.org. NIST Randomness Beacon. Dec. 2017. url: https://www.nist.
gov/programs-projects/nist-randomness-beacon.

[8] Torben Pryds Pedersen. “Non-interactive and information-theoretic secure
verifiable secret sharing”. In: Annual International Cryptology Conference.
Springer. 1991, pp. 129–140.

[9] Randao.org. Randao: Verifiable Random Number Generation. Sept. 2017. url:
http://randao.org/.

[10] E. Syta et al. “Scalable Bias-Resistant Distributed Randomness”. In: 2017
IEEE Symposium on Security and Privacy (SP). May 2017, pp. 444–460. doi:
10.1109/SP.2017.45.

37

