

Congestion Control Tuning of the QUIC

Transport Layer Protocol
Spring 2018

Wendi Qu

Director: Llorenç Cerdà-Alabern

Departament d'Arquitectura de Computadors

Degree: Bachelor

Specialization: Information Technologies

Facultat d’Informatica de Barcelona (FIB)

Universitat Politecnica de Catalunya (UPC) - BarcelonaTech

April 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185525185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

Abstract

The QUIC protocol is a new type of reliable transmission protocol based on UDP. Its

establishment is mainly to solve the problem of network delay. It is efficient, fast, and takes

up less resources. The QUIC gathers the advantages of both TCP and UDP.

The first part of this thesis studies the development background of the QUIC protocol in terms

of characteristics and perspectives of what they can do and how they work. Because it adds

the congestion control algorithm used by TCP based on the UDP protocol, we have conducted

further research and analysis of the Cubic algorithm to investigate the impact of its parameters

on the behavior.

The second part includes performance and fairness tests for QUIC and TCP implementations.

The simulation framework Mininet is used to perform these tests using controlled network

properties. In this process we verified the reliability of the mininet. This work shows how

Mininet builds a test system to analyze the implementation of the transport protocol. QUIC's

tests show that the performance of QUIC has improved, and the test of fairness have

identified specific areas that may require further analysis.

In the third part, we test the influence of the parameter on the behavior of the algorithm in the

congestion control algorithm. We present an initial experimental evaluation of the newly

proposed Cubic-TCP algorithm.

Key words: QUIC, TCP, congestion control, fairness.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

Contents

1 Introduction ... 1

1.1 Background .. 2

1.2 QUIC Development ... 2

1.3 Objectives .. 2

1.4 related works ... 3

1.5 Our contributions ... 3

1.6 Thesis outline ... 4

2 Theory .. 5

2.1 QUIC motivation ... 5

2.2 QUIC Mechanisms .. 6

2.3 Congestion control ... 7

3 Methodology .. 10

3.1 Information collection ... 10

3.2 Source code ... 11

3.3 Test method .. 11

3.4 Testbed ... 12

3.4.1 Testing download ... 12

3.4.2 Mininet .. 13

3.5 Experiments and Performance Metrics.. 14

3.5.1 Experiments ... 14

3.5.2 Performances Metrics .. 14

3.5.3 Experiment method ... 15

3.6 Alternative test methods .. 16

3.6.1 Alternative testbed ... 16

3.6.2 Alternative test tool .. 17

3.7 Development Tools .. 17

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

4 Project planning ... 18

4.1 Schedule .. 18

4.1.1 Estimated project duration ... 18

4.1.2 Consideration ... 18

4.2 Planning ... 19

4.2.1 Project planning and feasibility ... 14

4.2.2 Task description ... 19

4.2.3 Main development ... 20

4.2.4 Final task ... 20

4.3 Estimated time ... 21

4.4 Gantt Chart .. 21

4.5 Action plan ... 22

5.Budget and Sustainability .. 23

5.1 Consideration ... 23

5.2 Project budget .. 23

5.2.1 Human resource budget ... 23

5.2.2 Hardware budget.. 24

5.2.3 Software budget ... 24

5.2.4 Total budget ... 25

5.3 Budget control ... 25

5.4 Sustainability ... 26

5.4.1 Social dimension ... 26

5.4.2 Economical dimension .. 26

5.4.3 Environmental dimension .. 27

6 Mininet .. 28

6.1 Test system verification ... 30

6.1.1 Packet delay ... 30

6.1.2 Packet loss ... 31

7 Performance Comparation of QUIC and TCP ... 32

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

8 Fairness tests .. 36

8.1 Fairness .. 36

8.2 QUIC vs QUIC .. 36

8.3 QUIC vs TCP ... 37

9 Congestion control tuning parameters ... 43

10 Obstacle and solutions ... 48

10.1 Source code ... 48

10.2 Fairness test ... 49

11 Conclusion ... 50

References .. 52

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

1

 Chapter 1

Introduction

The use of computer applications is becoming a very common practice in the modern

society. Just as we speak in a language, there is also a language between computers on

the network, that is the network protocol. Different computers must use the same

network protocol to communicate.

The Transmission Control Protocol (TCP) [1]is the foundation of the Internet of

yesterday and today. In most cases it simply just works and is both robust and versatile.

However, in recent years there has been a renewed interest in building new reliable

transport protocols based on the unreliable User Datagram Protocol (UDP)[2].

In this thesis, we will first study one reliable UDP-based protocol-----QUIC[1] to learn

what problems and situations it is trying to handle better, why Google want to launch it

and how it is different from TCP.

Google’s Quick UDP Internet Connections (QUIC), which implements TCP-like

properties at the application layer atop a UDP transport, is used for transporting web

requests and responses [3].

The second part of this thesis examines QUIC and TCP in more detail to test actual

protocol implementations using network emulation. These tests are performed to

evaluate the implementations’ performance characteristics in different network

situations and investigate the fairness of QUIC when competes with TCP.

Within a certain period of time, the demand for resources (link capacity, buffers in the

switching node, etc.) in the network is greater than that available, causing congestion

[4]. In order to solve the problem of network congestion, in addition to appropriately

increasing the buffer capacity, increasing the link bandwidth as much as possible, and

improving the capabilities of the processor, a congestion control mechanism is also

needed.

Transport-layer congestion control [5] is one of the most important elements for

enabling both fair and high utilization of Internet links shared by multiple flows. QUIC

use a congestion control algorithm named Cubic which is also used TCP.

So, the next part of this thesis is to learn the aspects of this algorithm the QUIC

improves and to investigate the congestion control window when tuning the parameter

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

2

of this algorithm.

The tests were performed using Mininet[6], a software based network emulator, which

makes it possible to test implementations using different network properties in a

controlled environment.

This thesis aims to give the reader a detailed description of how to test the performance.

1.1 Background

QUIC (Quick UDP Internet Connections, pronounced quick) was introduced in 2013,

included as a separate module in the Chromium source which is an experimental

transport layer network protocol designed by Google is aim at improve the speed of

network transmission. [7]

TCP is connection-oriented, and more emphasis is placed on the reliability of the

transmission. UDP is connection-free, that is, it does not need to establish a connection

before data exchange between the two parties of the communication. It is only

necessary to know the address of the other party to send data, because UDP protocol is

none. The protocol of the connection mode, so it is efficient, fast, and takes up less

resources. The QUIC gather the advantages of both which the other protocols do not

have, that is also why QUIC is attractive.

1.2 QUIC Development

It has undergone rapid development by Google developers and has been deployed by

companies such as Google and Akamai, with more than 20 implementations in progress,

including for Microsoft, Mozilla, Verizon, and Facebook. Beyond Google, applications

such as Snapchat have started to adopt QUIC, and more could follow in 2018. While

some of us thought QUIC would “only” grow linearly with Android traffic, iOS devices

have also started to adopt QUIC for YouTube. Google is moving to QUIC on the latest

iOS and YouTube app versions.

1.3 Objectives

The main objective of this project is investigating experimentally the performance of

the QUIC protocol and compare it with TCP to evaluate their performance and

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

3

congestion handling.

In particular, the thesis tries to answer the following questions:

Why study QUIC？

Which features do QUIC offer compared to TCP and how do they work？

Which parameters of Congestion control will have the influence on the protocol?

How can mininet be used to test implementation of QUIC?

How does the QUIC implementation perform compared to TCP？

What affect the fairness of QUIC when competing with TCP？

1.4 related works

Transport-layer performance. There is a large body of previous work on improving

transport-layer and web performance, most of them focusing on TCP [8] and HTTP/2 .

QUIC builds upon this rich history of transport-layer innovation. Vernersson[10]uses

network emulation to evaluate UDP-based reliable transport, but does not focus

specifically on QUIC.

QUIC emulation results Closely related to this work, several papers explore QUIC

performance. Megyesi [9] use emulated network tests with desktop clients running

QUIC version 20 and Google Sites servers. They find that QUIC runs well in a variety

of environment.

1.5 Our contributions

This work makes the following new and extended contributions compared to prior work.

A lot of related work is to test the quic in practical applications, but I run the

implementation of QUIC in the virtual network performance, so you can more

intuitively compare QUIC performance optimization over TCP. Secondly, this

experiment also focuses on analyzing the influence of parameters in the congestion

control algorithm. Most of the experiments still analyze the effect of the algorithm on

performance.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

4

1.6 Thesis outline

Chapter 2 begins with a short introduction of the born of QUIC and why QUIC is

attractive. There after follows the study of QUIC mechanisms to see what problems it

is trying to solve and how they work, including related work. Further, the analysis about

congestion control can help to understand why need TCP CUBIC congestion control

algorithm and what its equations are like.

Chapter 3 describes the methodology of the work.

Chapter 4 describe the initial plan of the work.

Chapter 5 explains in detail the budget required for this project and the sustainability

of the project..

Chapter 6 details how Mininet was used, including verification that the network

emulation works as expected.

Chapter 7 and Chapter 8 contains the actual tests of QUIC and TCP about their

comparation of performance and fairness. First describing how the tests were performed,

followed by results and analysis.

Chapter 9 test the congestion windows tuning the parameters of Cubic, a congestion

control algorithm.

Chapter 10 Problems and solutions that were encountered during the process are also

described.

Chapter 11 contains the concluding words of this thesis; about the protocols,

implementations and Mininet.

Appendix A lists details about the test system, hardware, software and tested versions.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

5

 Chapter 2

 Theory

2.1 QUIC motivation

With the rapid development of the mobile Internet and the gradual emergence of the

Internet of Things, the scenes of network interaction are becoming more and more

abundant, and the content of network transmission is also becoming increasingly large.

The users' demands for network transmission efficiency and WEB response speed are

also increasing.

Initially, the developers want to find a protocol can increase the stability of the

connection in order to dealing with highly variable network. Constant transition from

this wifi to that wifi, intermittent cellular data usage, occasional cellular signal

blackouts--this all makes mobile Internet connections very unstable and unreliable.

loading web pages may seemingly take ages to finish. This kind of environment poses

serious user experience problems. So--from the user's perspective--it is wiser to simply

press the refresh button in this situation instead of waiting for the loading to complete.

About this point, the TCP protocol has been difficult to improve. However, UDP

protocol is a connectionless protocol which is efficient, fast, and takes up less resources.

Fortunately, Google is trying to solve this problem by developing and researching a

new protocol named QUIC beyond UDP and take bidirectional control of bandwidth to

avoid network congestion.

The goals of QUIC are many but essentially Google wants a protocol that can be

deployed on today ’ s Internet that reduces latency and also solves problems with

multiple streams over a single TCP connections, in other words, to integrate the

reliability of the TCP protocol and the rapidity and efficiency of the UDP protocol.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

6

2.2 QUIC Mechanisms

QUIC replaces most of the traditional HTTPS stack: HTTP/2, TLS, and TCP , Figure 1

is how an application stack differs between TCP and QUIC.[11]

 Figure 1: QUIC in the traditional HTTPS stack

The main features of QUIC include: All the advantages of SPDY (SPDY is a protocol

developed by Google to improve HTTP speed, which is the basis of HTTP/2.0); 0-RTT

connection; reduce packet loss; forward error correction, reduce retransmission delay;

Adaptive congestion control, reducing reconnection.

The main performance improvement of QUIC over TCP come from two key

differentiators:

Connection handshake[12]: TCP required a 3-way handshake to establish a

connection, and, on top of that, you also need to negotiate the TLS connection. So, they

wanted to reduce the e ff ects of round-trip time(RTT) when establishing new

connections. By integrating TCP and TLS in a single protocol QUIC can avoid two

sequential handshakes. QUIC can more importantly completely avoid round-trips,

called 0-RTT connection latency. Clients that have previously communicated with a

server can start a new session without a three-way handshake, using limited state stored

at clients and servers. This shaves multiple RTTs from connection establishment. See

figure 2 for a brief connection establishment comparison between TCP/TLS and QUIC.

Actually, if the client and the server have spoken in the past, then we are talking about

a zero-handshake connection – that happens 75% the time.

Multiplexing: the communication between the client and the server is multiplexed and

this overcomes the head-of-line blocking issues that are common with TCP connections.

Individual QUIC streams can for example be decrypted independently. Multiplexing

streams in TCP also leads to a bandwidth disadvantage compared to parallel

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

7

connections, partly because a lost packet reduces all streams bandwidth and partly

because multiple connection can increase the total bandwidth faster during slow-start.

To compensate for this, QUIC’s streams also have individual congestion control.

 Figure 2 Comparation of connection establishment

In summary, the most attractive feature of the QUIC protocol has two point. First, Solve

the problem of team leader blocking more thorough. Another feature is to keep the

connection while switching networks.

2.3 Congestion control

Transport-layer congestion control is one of the most important elements for enabling

both fair and high utilization of Internet links shared by multiple flows.[13]

At a certain time, if the demand for a resource in the network exceeds the available part

of the resource, the performance of the network will deteriorate. This situation is called

congestion.

The purpose of congestion control is to perform corresponding processing in the case

of system overload, so that the system recovers to the normal load level and guarantees

stable operation of the system. Congestion control is a global process. However, UDP

itself is not controlled by congestion. Once unconstrained use, it will invade the

bandwidth of other "rule-worth" network protocols.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

8

Therefore, the UDP-based QUIC protocol draws on some of TCP's excellent congestion

control algorithms [14]. For example, Cubic is used by default. At the same time, packet

pacing is used to detect network bandwidth in order to avoid the low bandwidth

utilization caused by the AIMD mechanism.

From the perspective of the congestion algorithm itself, it looks like the QUIC protocol

is just a re-implementation of TCP's congestion algorithm, which is not the case. The

QUIC protocol makes some improvements based on the TCP congestion algorithm:

 Pluggable

 Different levels of congestion control algorithms can be implemented at the

application level without the need for operating system or kernel support.

 Different connections for a single application can also support configuring

different congestion controls.

 Changes to congestion control can be implemented without downtime and

upgrades.

Monotonically increasing Packet Number

QUIC does not use TCP's byte order number and ACK to confirm the orderly arrival of

the message. QUIC uses the Packet Number. Each Packet Number is strictly

incremented, so if Packet N is lost, the Packet Number that retransmits Packet N is not.

N, but a value greater than N. This makes it easy to solve the problem of TCP

retransmission ambiguity.

More ACK blocks

The QUIC ACK frame supports 256 ACK blocks. Compared with the TCP SACK

implemented in the TCP option, there is a length limitation, and only up to 3 ACK

blocks are supported.

Accurately calculate RTT time

The QUIC ACK packet also carries the delay from the receipt of the packet to the reply

ACK. In this way, the incremental packet number can be used to accurately calculate

the RTT.

2.3.1 CUBIC Window Growth Function

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

9

 Figure 3: The Window Growth Function of CUBIC

the congestion window of CUBIC is determined by the following function:

Wcubic = C(t − K)3 +Wmax

where C is a scaling factor, t is the elapsed time from the last window reduction, Wmax

is the window size just before the last window reduction, K is the time period that the

above function takes to increase W to Wmax when there is no further loss event. And

K = √Wmaxβ/C
3

 , where β is a constant multiplication decrease factor applied for

window reduction at the time of loss event (i.e., the window reduces to βWmax at the

time of the last reduction).

Fig. 3 shows the growth function of CUBIC with the origin at Wmax. The window

grows very fast upon a window reduction, but as it gets closer to Wmax, it slows down

its growth. Around Wmax, the window increment becomes almost zero. Above that,

CUBIC starts probing for more bandwidth in which the window grows slowly initially,

accelerating its growth as it moves away from Wmax. This slow growth around Wmax

enhances the stability of the protocol and increases the utilization of the network while

the fast growth away from Wmax ensures the scalability of the protocol.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

10

 Chapter 3

 Methodology

We now describe our methodology for evaluating QUIC, learning its congestion control

algorithms and comparing it to the TCP The tools we developed for this work and the

data we collected are publicly available.

3.1 Information collection

First of all, we need a rigorous project analysis and careful project plan. This phase is

the safeguard against risks and the success of the project. Only do we learn about

whether the project is even possible can we decide on this project.

the we need to assure that the project is something we are able to do. For example,

compared to rewriting a protocol, it is obviously a better choice to study the latest

protocol.

The second part of this work naturally consisted of looking into available protocols.

Further, get the knowledge of the computer network or other related paper concerning

about the protocols. QUIC were chosen due to it widespread usage on the Internet

compared to other candidates such as Structured Stream Transport (SST)[16] or UDP-

based Data Transfer (UDT)[15]. And also, the function of QUIC is similar to TCP but

with a more reliable and more efficient performance. So, comparing QUIC and TCP is

necessary.

The next step is to read the documentation of QUIC and learn the congestion control

implemented by QUIC. Read the protocols specifications and published articles to get

an understanding of the protocols and current knowledge. This is also used to decide

what kinds of tests that would be interesting to perform, such as verifying a specific

feature or goal in a protocol or further analyzing a known problem. Learn the congestion

control algorithms is helpful for us to research the source code of QUIC in later tests.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

11

3.2 Source code

The implementation of QUIC was tested because it’s a new and relatively complex

protocol. QUIC is also interesting because of its wide deployment and availability in

the Chrome browser [6][48]. What is more, an open source code implementation of

QUIC can be search from Github. [17] I choose the QUIC-GO, a quick way to use

QUIC, as an implementation of the QUIC protocol in Go [] . The implementation

includes a test server and a test client which can be used for experimentation but are

not tuned for production-level performance.

Quic-go is compatible with the current version(s) of Google Chrome and QUIC as

deployed on Google's servers. It is one version the author of QUIC designed only to

test QUIC. The author of quic-go is actively tracking the development of the Chrome

code to ensure compatibility as the protocol evolves. In that process, we're dropping

support for old QUIC versions. As Google's QUIC versions are expected to converge

towards the IETF QUIC draft [18], quic-go will eventually implement that draft. So, it

is valuable to choose QUIC-GO as the version of implementation of QUIC in my

project.

After launched the QUIC-GO following the instruction in the Github, I need to

Investigate the source code of QUIC and learn how the congestion control mechanism

has been implemented. The QUIC use the Cubic algorisms. Regarding the quic-go

implementation

I think the main implementation of Cubic is in this file

:~/go/src/github.com/lucas-clemente/quic-go/internal/congestion/cubic_sender.go

So, next I need to identify the parameters that can affect the performance of the

congestion control implementation in QUIC.

3.3 Test method

Since the goal is to test the actual protocol implementation in different scenarios, the

network simulator is chosen as the test method. This makes it possible to carry out

controlled experiments through actual implementation. When a parameter is changed,

the test can be repeated. You can use constant parameters to repeat the test to see the

results change. This method is used to compare the implementation of various network

conditions and display the results in several charts without testing all combinations.

https://github.com/quicwg/base-drafts
http://github.com/lucas-clemente/quic-go/internal/congestion/cubic_sender.go

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

12

3.4 Testbed

In this Section we describe the testbed employed to carry out the experimental

evaluation of QUIC. We employ the testbed configurations shown in Figure 4.

 Figure 4 testbed

3.4.1 Testing download

First of all, we need an object (file) as one of the application scenarios is showed in the

figure, so, we can download a test file (index.html) provided by

https://www.example.org. , The next step is to set this HTML file of a desired size for

testing download (filled with random data).

HTML (Hypertext Mark-up Language): a hypertext markup language or hypertext

mark-up language. It is currently the most widely used language on the Internet and is

the main language constituting webpage documents. HTML files are descriptive texts

composed of HTML commands. HTML commands can describe text, graphics,

animations, sounds, forms, links, and so on.

Python example are showed below to create a large index.html

1download index.html from www.example.org

mininet-vm # mkdir ~/quic-data

mininet-vm # sudo chown mininet:mininet quic-data/

mininet-vm # cd ~/quic-data

mininet-vm # wget https://www.example.org

2create a random le of 4Mbytes

mininet-vm # head -c 4M < /dev/urandom > random.data

3. convert to base64

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

13

mininet-vm # base64 random.data > random.data.base64

4. append random.data.base64 after <body> element of index.html

mininet-vm # cp index.html index.html.dst

mininet-vm # sed '/<body>/ r random.data.base64' index.html.dst > index.html

5. check the size of the bundled index.html

mininet-vm # du -h index.html

5.5M

index.html

3.4.2 Mininet

In order to test the protocol, we need to set up an integrated network. So, I choose the

mininet as the testbed. Mininet[5] is network emulator that uses existing Linux features

to enable both virtual networks and light weight virtual machines. In the mininet we

can

We need to test the performance of TCP and QUIC across a wide range of network

conditions (i.e., various bandwidth limitations, delays, packet losses),

Mininet[19] can provide emulation of the network parameters:

Parameter

Bandwidth The amount of data that can be transmitted per unit time

Delay One-way delay for all packets.

Jitter How much should delay change between different packets.

Expressed as the standard deviation from a normal distribution.

Loss How frequently are packets dropped, in percent.

Queue size How many packets the send queue can hold.

The RTT (round-trip time): it is the time during which a bit is sent to know that the bit

has been received from the perspective of the sender, that is, the duration of the

transmission. RTT is about 2*delay.

The maximum capacity of a network connection is only one factor that affects network

performance. Packet loss, latency and jitter can all degrade network throughput and

make a high-capacity link perform like one with less available bandwidth. An end-to-

end network path usually consists of multiple network links, each with different

bandwidth capacity. As a result, the link with the lowest bandwidth is often described

as the bottleneck, because the lowest bandwidth connection can limit the overall data

capacity of all the connections in the path.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

14

3.5 Experiments and Performance Metrics

3.5.1 Experiments

According to the thesis goals, the experiment consists of several categories:

Comparing performance of QUIC and TCP modifying the network conditions.

Run experiments with QUIC varying the congestion control parameters to test the

congestion windows.

Varying their fairness when QUIC competing TCP.

Produce figures with the data gathered in the experiments to evaluate the performance

of QUIC.

3.5.2 Performances Metrics

We evaluate the QUIC and TCP performance across a range of network conditions (i.e.,

various bandwidth limitations, delays, packet losses). In this section, we define two key

application metrics that drove QUIC’s development and deployment, and we describe

QUIC’s impact on these metrics. We use Throughput and CWND as the metrics of the

performances.

Throughput

Throughput is one of the most important performance metrics of a system's test

performance. Throughput refers to the amount of data that passes through a network (or

a channel, an interface) per unit time, that is, the amount of data processed per second.

It is a measure of how many units of information a system can process in a given amount

of time. For example, in an experiment, an interface achieves 2Mbps throughput. This

means that applications on one host can send data to another host at 2 Mbps. Therefore,

the greater the throughput of the system, the more users or system requests the system

has completed in a unit of time, and the system resources are fully utilized. Throughput

can be limited by the bandwidth of the network or the nominal rate of the network.

CWND（Congestion Window）:

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

15

The key parameter of congestion control, which describes the maximum number of data

packets that can be sent at one time by the server in case of congestion control. The size

of the window is the size of the data stream. When testing, you can use the number of

packets to represent the size of windows.The size of the congestion window depends

on the degree of network speed congestion and the amount of processing data. So it can

be observed as a test metrics.

3.5.3 Experiment method

In order to test the throughput, tcpdump need to be used. Using the tcpdump which is a

common packet analyzer that runs under the command line. It allows the user to display

TCP and other packets being transmitted or received over a network to which the

computer is attached. So，in my project, the tcpdump need to listening the interface of

client, it can catch the packets the server sent and dump the trace. Then, save captured

packets as local files, pcap file. Pcap is a commonly used datagram storage format, and

mainstream packet capture software including wireshark can generate data packets in

this format.

The python example of tcpdump:

tcpdump -ni h1-eth0 -w tcp-trace.pcap

In this case, there is need a test file to read information from local files for various data

packets and check the trace of network analysis and operation. So, I create a perl ascript

to parse all the UDP packets from an offline Pcap file.

What is more, when it is need to test the fairness, the QUIC and the TCP is in different

flows. it is must to start the connections in the same time. So we need the bash script

file to achieve this acquirement.

Bash script:

#!/usr/bin/env bash

ofile="tcp-and-quic.pcap"

echo "starting quic"

start quic client

cd ~/go/src/github.com/lucas-clemente/quic-go

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

16

/usr/local/go/bin/go run example/client/main.go \

 https://10.0.0.2:6121/ > /dev/null 2>1 &

echo "starting wget"

wget http://10.0.0.3:8000 > /dev/null 2>1 &

echo "done, output file: $ofile"

echo "execute killall tcpdump to stop tcpdump"

3.6 Alternative test methods

3.6.1 Alternative testbed

Network simulators are often used to analyze network protocols. The main difference

is that the simulator runs in an isolated environment, which makes the simulation

unaffected by external factors and results can be repeated. The disadvantage of using

network simulation is that the simplified model does not represent the complete

dynamics of the entire Internet network path and real applications cannot be used in the

simulator.

For this purpose, it can be simply tested and implemented on the Internet. A testbed

may consist of a device machine running Google’s Chrome browser connected to the

Internet through a router under our control. For Chrome, we will evaluate QUIC

performance using necessary webpages consisting of some files. It will be a huge

program. This can be done at different scales on several hosts, or using test benches for

network research that may involve hundreds of hosts or large-scale tests involving

millions of test hosts. The larger the scale, the more extensive network conditions can

be tested. However, replication testing is also a challenge for practical networks because

parameters are uncontrollable and external factors change over time.

The small scale available for this work would only have provided a limited set of diff

erent network properties, such as round-trip times, packet loss rates and bandwidths.

The large scale tests can be performed by Google since they control both the server side

and the Chrome browser[28]. These along with the problem of reproducing results

made me dismiss this method.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

17

3.6.2 Alternative test tool

I find another tool to analysis the trace of network is wiresharke. Wiresharke is a

powerful sniffer which can decode lots of protocols, lots of filters, and it will feel good

to analyze packets on a pretty window. However, tcpdump is a CLI tool, I can use it in

most system and also can use through ssh. And also, tcpdump is enough to capture

traffic and write it to a file, and then later use the test file to analyze it since the project

is not complicated. Although I will see captured packets on a black & white command

prompt but not like using Wireshark to see them on a window, it is easier to use and

simple.

3.7 Development Tools

The tools that will be used to develop the project are the following:

First of all, GO programming language is most important, a programming language

developed by Google, which has been used to implement QUIC-GO. This language is

similar to other language we are familiar, so it is not difficult for us to learn it.

Mininet: the main tool we used is that allows to emulate a realistic computer network

in a computer as a test bed. This platform will be used to perform the QUIC experiments.

More details will be introduced in the chapter: Mininet.

Tcpdump - To record packets headers and/or data to packet capture files (PCAP files),

including time stamp when each packet was received.

Ping- Utilities to send Internet Control Message Protocol (ICMP) echo packets and

display round-trip-time, latency and packet loss.

Gnuplot aims to capture the traffic generated in the experiments. With the graphic, we

can make a more intuitive analysis of the test.

GitHub, a platform to provide the source code of the QUIC.

Interpreted language, like perl, is to parse tcpdump traces and produce the numerical

results.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

18

 Chapter 4

Project planning

This section is about temporal planning, and it aims to describe the tasks that

are going to be executed in order to do the project, giving an action plan that

summarizes the actions that have to be taken in order to finish the project in the

desired time frame. However, we have to take into account that the planning

described in this project is subject to modifications depending on the

development of the project.

4.1 Schedule

4.1.1 Estimated project duration

The estimated project duration is approximately 5 months. The project starts on

February 14th, 2018 and the deadline is on June 30th, 2018.

4.1.2 Consideration

It is important to consider that the initial planning could be revised and updated

because of the evolution of the project. So, keep in touch with the teacher and

Modify the plan is required during the project.

What is more, I’m an exchange student. So, I have an tutor in UPC and an tutor

in Beihang. It is better to get their feedback and synthesize their opinions.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

19

4.2 Project planning

4.2.1 Project planning and feasibility

This phase is currently running. It appertains to Project Management Course

and it includes the next four stages:

i. Project scope.

ii. Project planning.

iii. Project budget.

iv. Initial state of art.

4.2.2 Task description

4.2.2.1 Project analysis and design

The main objective of this phase is to make an accurate analysis of the project

and develop the consequent design. It is developed comprehensively of

individual plans for – cost, scope, duration, quality, communication, risk and

resources. This phase is the safeguard against risks and the success of the

project. Only do we learn about whether the project is even possible can we

decide on this project.

For example, economic feasibility analysis is that if there has a higher cost, the

economic use this system to strengthen the registration efficiency of information

management, to provide us with a high efficiency, can save the expenditure of

human resources.

4.2.2.2 Initial system set up

Before starting the development of the project, we need to prepare the

environment, set up the tools required to work on it and install the necessary

frameworks to develop correctly the application. First, I need to install an

Ubuntu system which used in all tasks of the project. And we know that when

preparing the environment, it is not always fit with us own computer, so we need

to debug all the time. It may seem a simple operation, but it takes enough time

to be listed as an important task in my schedule.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

20

4.2.3 Main development

This is the most important task of the project. It covers all the tasks related with

implementation and testing of the program. It can be divided in the following

stages:

4.2.3.1 Acquire background in QUIC protocol

The main task of this phase is to understand the network architecture and the

function of the protocol in network transmission. The QUIC protocol is based

on the TCP and UDP protocols. Therefore, we need to understand the common

points and differences between QUIC and the other two protocols. In this case,

it will help the project proceed smoothly. Moreover, understanding the algorithm

of congestion control used by the QUIC protocol can help us more accurately

find the impact of parameters on performance when we study the QUIC protocol.

So, In the last months I have been learning about the TCP protocol and UDP

protocol.

4.2.3.2 Get familiar with software

The implementation of the QUIC protocol is best performed on the ubuntu

system, so I need to be familiar with the rules of the use of the ubuntu system

in advance. Moreover, I need to use the mininet to build a network topology. In

order to test the performance of the quic, a complete network structure is

necessary. So, it is important to be familiar with this tool. What is more, I still

need to be familiar with matlab and other drawing tools, so, we can better

analyze the performance changes after modifying the parameters, which can

help us intuitively analyze the protocol with graphics. So, this task also requires

human resources to understand it.

4.2.3.3 QUIC-GO implementation

In this phase, I need to learn about the go language and search for some paper

in order that I can get knowledge of the code of QUIC-GO. And the congestion

control algorithms is the most important things so that I would pay more

attention on it and research for other algorithms to know the difference about

them. What is more, in this phase I need to install the QUIC-GO and use quic

like using the loopback (client and server in the same host). Then go for mininet

to create topologies. I should try different topologies and then find the difference

of the performance when use these topologies. I think this phase will take

several weeks. This task also needs human resources to collect the profiling

data and then analyze that data to detect the performance of the QUIC-GO.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

21

4.2.3.4 Performance test:

In this stage, we are going to modify the parameter and research this protocol

implementation. Also, we have to take into account that the program and any

of the components that are part of it can be improved before the delivery of the

project.

4.2.4 Final task

In this task we are going to check that everything works as expected and we

are going to prepare the delivery of the project, assuring that the documentation

is correct and preparing the final presentation.

4.3 Estimated time

Task Estimated duration(h)

Project analysis and design 80

Initial system set up 20

Acquire background in QUIC protocol 45

Get familiar with software 35

QUIC-GO implementation 230

Performance test 50

Final task 40

Total 500

4.4 Gantt Chart

Our schedule is represented by the Gantt chart shown in the figure 1. We have

taken into account the break for job and holidays mentioned before.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

22

4.5 Action plan

Best case, I will work as what I have planned, but there would be some

obstacles that may make it difficult to follow the plan. Fortunately, the agile

methodology will allow us to revise and adapt dynamically the initial planning. I

will try my best to do all the tasks. If is the time is not enough for me to do all

the tasks stated. I think I will try to get a basic version only.

The most important thing in my project is that I need to learn about the QUIC

and implement it on the mininet platform, then investigate the congestion

control performed by QUIC, which I need to adjust the parameter and observe

changes in individual performances. But we know that only investigate QUIC

maybe is not enough. So, I am going to try to find some existing methods which

can improve the performance of QUIC.

I am going to try to arrange meetings with the project tutor every time that an

important stage of the project is finished. So, the tutor of the project will help

me to analyses the project and confirm that the project is following a good

process.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

23

 Chapter 5

Budget and Sustainability

5.1 Consideration

This section is about the budget and the sustainability of the project. For this

reason, it contains a detailed description of the costs of the project, describing

both material and human costs, an analysis of how the different obstacles could

affect our budget and an evaluation of the sustainability of the project. Just like

in the previous section, the budget described is subject to modifications

depending on the development of the project.

5.2 Project budget

Project budgeting is critical to the success of any real estate development

project. In this document, an estimation of the cost of the project is presented,

taking into account the aforementioned hardware and software resources, and

the corresponding amortizations.

To calculate the amortization we are going to take into account two factors, the

first one being the useful life and the second one being the fact that our project

is going to last for approximately five months.

5.2.1 Human resources budget

Budgeting involves the systematic the finances needed to support an

organization’s objectives can be projected. Most organizations have some sort

of process for developing a budget. This project is going to be developed only

by one person. Hence, this person will need to be both a project manager and

a software developer engineer, as well as a software developer engineer in test.

Thus, we will need to difference between each role in the total of 500 hours. In

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

24

Table 1, an estimation of the cost is provided.

Role Estimated

hours

Estimated price per

hour

Total estimated

cost

Project manager 70 h 50 €/hour 3500.00 €

Software Engineer 240 h 35 €/hour 8400.00 €

Software Tester 190 h 2o €/hour 3800.00 €

Total 5oo h 15700.00 €

 Table 1: Human resources budget

5.2.2 Hardware budget

In order to be able to design, implement and test all applications functionalities,

a set of hardware will be needed for different purposes. In Table 2, an estimation

of the cost of that hardware is provided taking into account their useful life, as

well as their amortizations.

Product Price Units Useful life Total estimated amoritization

laptop 1,000 € 1 5 years 200 €

keyboard 20 € 1 5 years 8 €

Total 1,020 € 208 €

 Table 2: Hardware budget

5.2.3 Software budget

Additionally, some software products will be needed to carry out the project.

Although some of them are available for free as this is an academic project, the

real cost is considered. As in the hardware budget, their amortizations have

been taken into account. In Table 3 the software budget is shown.

Product Price Units Useful

life

Total estimated

amortization

Windows 10

professional

100€ 1 4 years 20 €

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

25

Ubuntu

14.01

0.00€ 1 N/A 0.00€

Mininet 0.00€ 1 N/A 0.00€

gnuplot 0.00€ 1 N/A 0.00€

Office 2016 9,99€/month 1 5 months 49.95€

GitHub 0.00€ 1 N/A 0.00€

Total 149.95 € 69.95 €

 Table3 software budget

5.2.4 Total budget

By adding all the budgets provided above, the total estimated budget for this

project is computed, as shown in table 4

Concept Cost

Hardware 208.00 €

Software 69.95 €

Human resources 15700.00 €

Total estimated cost 15977.95 €

 Table 4 Total budget

5.3 Budget control

Budgetary control is the process of developing a spending plan and periodically

comparing actual expenditures against that plan to determine if it or the

spending patterns need adjustment to stay on track. This process is necessary

to control spending and meet various financial goals.

When the project has the difficult or something unpredictable, we could adjust

the plan and reorganize the work for the manager and other staffs. And this

project is mainly use the software which are all for free. So the main probable

cause of increasing the budget is that the time to test the performance of QUIC .

So, creating an appropriate topology before investigating the program can avoid

this deviation of causing.

Instead, a revised budget is necessary. This can happen when inflation drives

prices up so high that it is not possible to stay within the original budget,

requiring a revision to more accurately forecast financial performance.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

26

5.4 Sustainability

5.4.1 Social dimension

Nowadays, everyone can get access to a computer and most people will use

the Chrome desktop browsers. Google has been introduced QUIC in Chrome

desktop browsers. Beyond Google, applications such as Snapchat have started

to adopt QUIC, and more could follow in 2018. While some of us thought QUIC

would “only” grow linearly with Android traffic, iOS devices have also started to

adopt QUIC for YouTube. Google is moving to QUIC on the latest iOS and

YouTube app versions. So, I think that QUIC has been actually coming to our

life.

What is more, QUIC moves congestion control to the application and the user

space, enabling a rapid evolution for the protocol, as opposed to kernel space

TCP. So it improve the performance of the protocol used in network. It can help

to attract company to use it.

At Openwave Mobility, we have witnessed how these solutions are used to

deliver the same amount of QUIC video with 20% less data. As a result, mobile

operators can achieve reductions in the number of congested cells by 15%,

facilitating fairness in the distribution of video bitrates (and therefore video

quality) across subscribers sharing physical network resources.

After Google introduced and implemented the QUIC agreement in 2013, the

IETF QUIC Working Group is now responsible for standardizing the QUIC

agreement. The IETF community has shown great interest in the

standardization of QUIC. A preliminary QUIC protocol version has been used in

Google services and Chrome browser, which was deployed by some other

developers. Some individual audio and video sites are also beginning to use

QUIC protocol. HTTP2 which based on QUIC will also serve as a new Internet

standard in the future.

5.4.2 Economical dimension

A detailed quantification of all the costs involved in the project has been done,

both of material and human resources, as shown in previous sections of this

document.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

27

The other solution like to write a protocol from scratch will be less expensive

than current solutions from an economical point of view, simply because the

ability to rewrite a protocol is not necessary for there actually exit a protocol

which I want to research. Hence, I think modifying an existing implementation

will be cheaper, since it will not require a data plan to work.

5.4.3 Environmental dimension

First, this project is a research about a protocol. The main purpose of the QUIC

protocol is to integrate the reliability of the TCP protocol and the speed and

efficiency of the UDP protocol. So, it can save network resources. If this study

is adopted by others, it may save much resources, which is good for the

environment.

What is more, the execution of this project uses the minimum amount of

resources possible, limited only to the electricity required for the equipment to

work. This fact limits the search of alternatives to reduce the consumption and

the environmental impact. This also makes the reuse of resources difficult.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 28

 Chapter 6

 Mininet

We conduct our evaluation on a testbed, Mininet. There are several reasons why

Mininet was used as testbed.

The functionality provided seems to be consider with the needs of the test case. Ability

is to test real implementations and modify different network properties in a simulated

network environment. The envisioned network speed, number of links, and number of

processes are within the scope of Mininet's ability to handle.

It is easy to installation, each "host" does not need a separate "guest operating system"

installation is also very helpful. Since Mininet's "host" can access the same directory

structure, there is no need to distribute binary files or test files to virtual hosts. All of

this makes it an easy-to-use test and development environment.

Mininet is implemented in Python and also offers a Python API to construct different

environments and run tests. Using Python also makes it easy to implement automatic

tests of many different test cases. Mininet also offers a way to run test manually after

the network is constructed.

Tests can be run on a laptop without external hardware and to be able to easily move

back and forth to a desktop computer is also helpful.

However, for testing non-application levels (such as different operating systems or

kernel-mode drivers), Mininet may not be practical because all Mininet hosts run the

same kernel.

Test system setup

The tests have been performed on a regular computer, running Ubuntu and utilizing

Mininet. Appendix A contains the hardware specifications and exact software versions

that have been used.

The tests of QUIC and TCP both requires similar test environments where different

network properties and hosts where commands executed.

Mininet can create a realistic virtual network, running real kernel, switch and

application code, on a single machine (VM, cloud or native), in seconds, with a single

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 29

command, for example:

sudo mn -x --topo=minimal --link tc,bw=5,delay=50ms,loss=0

In this command, the bw is to set the bandwidth, delay is to set delay, loss is to set loss.

Figure 5: Utilized network layout in Mininet

Figure5 shows the actual network layout that has been used in the tests.

C0 is a controller, which designed to manage the physical network and virtual network

architecture.

H2 is the server, h1 is the client, these hosts will be used for the main protocol under

test. We will use tcpdump in the terminal of client to catch the packets of the flows.

The topology is only an example, we can create other topology to do the test. For

example, we can add a server host,…

All network links can have different properties, we can set the parameters of link

through the link details showed in the Figure.

Two different test systems (Test details can refer to Methodology) are been developed

to run test cases. They are both very similar and use simple data structures to define a

number of test-cases, which describes network properties, the commands to run and

how to capture and extract results.

To capture the result of packets after passing the limited network link, the Tcpdump

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 30

will be used as we sayed in the Methodlogy. It will listen on the specific interface h1-

eth0, the packets from server would be captured. The reason Tcpdump do not use in the

server is that it cannot avoid the loss of the link.

6.1 Test system verification

Verification that a test system works as intended is of great importance and this have

previously been done extensively on Mininet, for example in [23].

Since the combination of used hardware, operating system, software versions and test

scripts also will influence the result; a few initial test verifications have been performed.

These tests were also helpful in trying to better understand how the test system behaves

and the influence of different parameters.

To verify delay and packet loss, ping packets were sent from client to server and the

RTT time and loss will be captured showed in the mininet. So I use the ping command

in this experiment. The value of table1 and table2 are all get through the ping command.

One of the test example is in Figure 6, Then modify the parameter and repeat the

experiment.

Figure 6 Ping example

6.1.1 Packet delay

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 31

Packet delay is specified as the minimum one-way delay. The total delay can be larger

depending on current queuing delays.

Since the delay is applied in both directions in one link. In my test systems, there are

two links between the client and server, one is between the client and switch and the

other one is between the server and switch. In my topology, every links have been set

the delay, so, totally, this round trip time should be close to 4∗delay.

Target

delay/ms

Average

RTT/ms

Min

RTT/ms

Max

RTT/ms

Sent

packets

0 0.034 0.026 0.048 20

5 20.591 20.089 23.896 20

10 40.667 40.071 40.879 20

25 100.764 100.081 101.072 20

Table5: Validation of delay

6.1.2 Packet loss

Packet loss is specified as the probability p that a packet is loss.

Target

loss/ %

Actual

loss/ %

Receive

count

Sent

packets

0.0 0.00 1500 1500

0.1 0.14 1498 1500

0.5 0.52 1493 1500

1.0 1.04 1484 1500

2.5 2.58 1461 1500

Table6: Validation of packet loss

The actual loss rate is close to the target loss, but for higher loss rates accuracy it is not

very exact.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 32

 Chapter 7

Performance Comparation of QUIC and TCP

In this experiment, testing was performed to compare how different parameters of the

link in the network affects the throughput for TCP and QUIC. The purpose of this

experiment is to test the behavior of QUIC is same or better than TC through comparing

how the protocols handle different network environments.

After setting a suitable test environment using mininet, to create a 5.5M file. Then, use

the example network in the figure 7, Run the implementation of QUIC and record data.

It is worth noting that the tcpdump need used before running the test of client.

One example of the information of testing trace:

 Figure 7 Evaluate of pcap

Each test case consists of a set of network parameters and the varying parameter’s test

interval. The protocols are then tested repeatedly while different results are captured,

such as bandwidth and throughput.These results are later plotted to show how the

varying parameter (on X-axis) yields different results (Y-axises).

To do the same tests but with TCP, the bytes transmitted was of the same size as the file

used in the QUIC experiment. Traffic shaping was also made using the same with QUIC

test.

The network I used is showed as Figure 5 in chapter 6.

Three different cases were tested and the results are shown below.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 33

1) Varying bandwidth, 2-100Mbit/s bandwidths with 40ms RTT and 0% loss.

In this step I vary the bandwidths of all the links, we can see in the Figure 5,the

network I use, the link between h1 and s1 and the link between the h2 and s1).

Figue 8 Bandwidth test 2-100 Mbit/s, 40 ms RTT and 0% loss

The bandwidth test in figure 8 shows that the curve of TCP Throughput is basically

linear growth, QUIC can follow TCP until available bandwidth is 30 Mbit/s, after which

throughput do not increase linearly with available bandwidth. QUIC ends at 53

Mbit/s and TCP at 67 Mbit/s.

 The reason for QUIC not performing as well in the higher bandwidths may is that the

5.5 MB file completes very quickly and QUIC does not increase it’s transfer speed as

fast as TCP. A larger test file would have shown more equal QUIC throughput.

2) Varying network delay,80-800 ms RTT with 50Mbit/s bandwidth and 0% loss.

In this step, I vary the delay of all the link in the figure 5, the relation between network

delay and RTT is explained in the chapter 6.

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

Th
ro

u
g

h
p

u
t

[M
b

it
/s

]

Bandwidth

[Mbit/s]

Bandwidth vs 5.5MB transfer

QUIC

TCP

Bandwidth Mbit/s 100 70 50 30 20 10 5 2

Throughput

Mbit/s

quic 53.76 45.77 37.82 25.35 17.61 9.26 4.76 1.92

tcp 66.67 52.06 40.51 26.31 18.19 9.31 4.89 1.96

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 34

Delay ms 10 20 40 80 120 160 200

RTT ms 40 80 160 320 480 640 800

Throughput

Mbit/s

quic 38.01 31.05 22.77 15.04 9.64 7.26 5.49

tcp 40.98 33.29 23.54 14.03 8.99 6.78 5.02

Figure 9 Latency test 80-800 ms RTT, 50 Mbit/s bandwidth and 0% loss

The latency test shows that QUIC and TCP are both affected well by the increase of

RTT, but QUIC is less than TCP.

3) Varying packet loss probability, 0-5% loss with 50Mbit/s bandwidth and 40 ms RTT.

In this step, I vary the packet loss of each link.

Loss % 0 0.05 0.075 0.1 0.5

Throughput

Mbit/s

quic 38.13 34.46 26.78 16.07 7.41

TCP 41.26 34.5 23.74 9.18 2.37

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900

Th
ro

u
g

h
p

u
t

M
b

it
/s

RTT

ms

Latency vs 5.5MB transfer

QUIC

TCP

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 35

Figure 10 Packet loss test 0-0.5%, 50Mbit/s bandwidth and 40 ms RTT

And also, when the loss is 0.5%, the time to download the file is 34.56s, however, when

the loss is 0.1%, the time is 2.89s, it changes well.

In the figure 10, the throughput for both the protocols did not vary so much for packet

loss rates between 0%-0.05%. But there was a huge drop for both protocols after the

packet loss rate increased to 0.05%，where QUIC ended on throughputs a little higher

than TCP.

The QUIC ability to handle packet loss did not seem significantly better than TCP.

Therefore, the only enabled method QUIC has for recovering lost packets is by

retransmitting them, which is the same method for error recovery that TCP uses.

0

5

10

15

20

25

30

35

40

45

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Th
ro

u
g

h
p

u
t

M
b

it
/s

Loss

%

QUIC

TCP

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 36

 Chapter 8

Fairness tests

8.1 Fairness

QUIC’s basic fairness handling against TCP was tested by running large transfers to run

the client and server. The test procedure is same as the to the steps as above. But the

most important thing which is different from to test the performance comparation

between QUIC and TCP is that the QUIC and TCP need to start to running

simultaneously. The bash script I have write in the Methodology to achieve it. After

running the server, I just need to run this bash script in the host of client, then test it.

An essential property of transport-layer protocols is that they do not consume more than

their fair share of bottleneck bandwidth resources. Absent this property, an unfair

protocol may cause performance degradation for competing flows. We evaluated

whether this is the case for the following scenarios, and present aggregate results. We

expect that QUIC and TCP should be relatively fair to each other because they both use

the Cubic congestion control protocol. However, we find this is not the case at all.[24]

8.2 QUIC vs QUIC

Figure shows two QUIC flows are fair to each other. We also found similar behavior

for two TCP flows. Although their throughput will

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 37

 Figure 11 QUIC vs QUIC

8.3 QUIC vs TCP

When we first test the fairness between QUIC and TCP using the simple network, we

find they are not fair. So, in order to know whether different scenes will have an impact

on the fairness we have designed some other test to research it.

Offload effect on fairness

Offload designed to take processing of the network such as packet segmentation and

reassembly processing tasks is a technology that increases the throughput of high-

bandwidth network connections by reducing CPU overhead. This technique is applied

to TCP. This has the effect of reducing the workload on the host CPU and moving it to

the NIC(network interface card), allowing both the host to perform quicker and also

speed up the processing of network traffic.

If offloading was turned on, we offloaded all TCP connections on a supported network

interface, regardless of whether it would benefit or not. In this case, we test if the offload

will have effect on the fairness.

The command to disable TCP offloading in both h1 and h2

disable TCP offloading in both h1 and h2

h1 # ethtool -K h1-eth0 tso off

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 38

h1 # ethtool -K h1-eth0 gso off

h2 # ethtool -K h2-eth0 tso off

h2 # ethtool -K h2-eth0 gso off

We totally have four different scenes but with the same parameters of network link, we

set the delay to 10ms and the bandwidth to 10Mbit/s.

 Figure 12 Examples of topology

Test 1, we use the first topology of network in the figure, which means we use the same

server and client. Using the 20MB test file for downloading. Then we test with TCP

offloading.

Test 2, we did not change the topology but test the fairness without TCP offload. Using

20MB file.

Test 3, we change the topology which has two connections and three host, h1 is the

client, h2,h3 is the protocols server respectively. One connection is to run the QUIC,

and the other one is to run TCP. Test the fairness with TCP offload.

Test 4, we use the same network environment with first test. But we change the size of

file to 5 MB to see if the fairness will improve when downloading a small file.

1 2

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 39

8.3.1 Results

Test 1

Figure13 One connection between client and server; with offloading; 20MB file

Test 2 Offloading test

Figure14 One connection between client and server; without offloading; 20MB file

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 40

Test 3 network test

Figure 15 Two connection between client and server; with offloading; 20MB file

Test 4 Dowloading test

Figure 16 One connection between client and server; without offloading; 5MB file

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 41

The results are showed in the figures above. The green one is TCP, the red one is QUIC.

The result is as showed that QUIC is unfair to TCP as predicted. And the TCP is more

aggressive.

First, we can see in the Figure13 Figure 14 that, TCP offloading has a little influence

on the fairness. TCP offloading has been known to cause some issues, and disabling it

can help avoid these issues. For example, TCP offloading will improve the performance

of TCP, so, making the offloading will decrease the throughput of TCP. In this case, the

TCP will use a small amount of bandwidth and the TCP and QUIC will be more fair.

Then, I find when I run the QUIC and TCP in different connections, there is a significant

increase of the throughput of TCP. They are more fair with each other. It can be showed

that when using the QUIC and TCP in one same connection, they will occupied with

each other’s bandwidth, so they will not fair as when they implement into different

connection.

Finally, I find that when the host of client download a small file, they are more fair,

becaue they have smaller objective size to allow TCP and QUIC to fairly share available

bandwidth.

We further investigate why QUIC is unfair to TCP by instrumenting the QUIC source

code, we can use the tool tcpdump to investigate the packets, which can be shown below.

When looking at pcap file, in the sample of fraction of tcpdump, we can see that the

pks can represent the congestion window sizes. To extract the average congestion

window sizes, the average congestion window size of TCP and QUIC is 23406,

10283,represently.

When competing with QUIC, TCP is able to achieve a larger congestion window.

Taking a closer look at the congestion window changes, we find that while both

protocols use Cubic congestion control scheme, TCP increases its window more

aggressively (both in terms of slope, and in terms of more frequent window size

increases). As a result, TCP is able to grab available bandwidth faster than QUIC does,

leaving QUIC unable to acquire its fair share of the bandwidth.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 42

Sample of fraction of tcpdump:

wendi@wendi-Surface-Laptop:~$ perl analize-tcpdump-trace.pl -e tcp-and-quic-

6.pcap

File gererated by analize-tcpdump-trace.pl -e tcp-and-quic-6.pcap

Pipe: 'cat tcp-and-quic-6.pcap | /usr/sbin/tcpdump -vvnttr - 2>/dev/null|'

interesting flows found in trace: (4)

10.0.0.2.6121 > 10.0.0.1.33462: udp, t=46.64 (1528019396.93, 1528019443.57),

trim_t=46.64 (1528019396.93, 1528019443.57), Mbps=4.97, pkts=23406 (tot=23406),

outofseq=956, bytes=28999972, pkt_size=1239.00 (min=28, max=1252)

10.0.0.2.8000 > 10.0.0.1.57852: tcp, t=27.04 (1528019395.68, 1528019422.72),

trim_t=27.04 (1528019395.68, 1528019422.72), Mbps=8.38, pkts=10283 (tot=10283),

outofseq=1, bytes=28331410, pkt_size=2755.17 (min=0, max=2896)

10.0.0.1.57852 > 10.0.0.2.8000: tcp, t=26.88 (1528019395.64, 1528019422.53),

trim_t=26.88 (1528019395.64, 1528019422.53), Mbps=0.00, pkts=9640 (tot=9640),

outofseq=0, bytes=140, pkt_size=0.01 (min=0, max=140)

10.0.0.1.33462 > 10.0.0.2.6121: udp, t=46.81 (1528019396.84, 1528019443.66),

trim_t=46.81 (1528019396.84, 1528019443.66), Mbps=0.02, pkts=2950 (tot=2950),

outofseq=629, bytes=94812, pkt_size=32.14 (min=24, max=1071)

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 43

 Chapter 9

 Congestion control tuning parameters

This part of the experiment is to study the influence of the parameters in the congestion

control algorithm on the performance of the protocol, because the congestion control

mainly affects the congestion windows, so I modified some command lines in the

source code of the algorithm and can automatically generate the relationship between

cwnd and time. Take the research method of control variables, keep other parameters

unchanged, change one parameter, and conduct experiments.

Based on our study of the Cubic protocol in Chapter 2, the two parameters that control

the behavior of the algorithm are C and β. Let's take a look at the beta and C in the

curve that affect the characteristics of QUIC.

Pseudo code for the main functionality of the Cubic algorithm is shown in Figure17.

The features of this algorithm can be summarized as follows,

Backoff factor 0.7. On packet loss, cwnd is decreased by a factor of 0.7 (compared with

a factor of 0.5 in the standard TCP algorithm).

Cubefactor is a factor that can influence the performance.

Figure 17 Cubic.go file

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 44

I adjust the CubeFactor and backoff factor separately, and observe the congestion

window over time. First I set the parameters of network link: The bandwidth is 10

Mbit/s; RTT is 40 ms; Packet loss is 0.05%

The initial data is : CubeFactor: 1 backoff factor: 0.7

Parameters Values tested

CubeFactor 0,1,2

Backoff factor 0.5 0.7 1

Results

Figure 18 CubeFactor 1; Backoff factor 0.7

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 45

Figure 19 CubeFactor 1 Backoff Factor 1

Figure 20 CubeFactor 1 Backoff Factor 0.5

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 46

Figure 21 CubeFactor 2 Backoff Factor 0.7

Figure 22 CubeFactor 0 Backoff Factor 0.5

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 47

Analysis

When a packet loss occurs, CUBIC reduces its window size by a factor beta, when it

control the windows size, the new window size = beta* W max,in that way, seeing the

Figure 18, 19, 20,we will find when the backoff factor is more small, the time is more

long. And when the backoff factor is 1, we can see that the window size will not

decrease.

Seeing the Figure 18, 21, 22,we found the Cube Factor is biger, the curve will be

more fluent, so the network will be more stable.

In conclusion, Beta Controls its convergence rate. C Controls TCP friendiness

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 48

 Chapter 10

Obstacle and solutions

10.1 Source code

When I download quic and implement the test files on the terminal of server and client

in Ubuntu. The server and the client can establish a connection. And also, the server

can successfully monitor the client, receive the user's request, and perform

corresponding operations and return corresponding data.

However, when I implement the quic following the same steps as before on the

emulated network created by the mininet and start the server and client, they can not

connect.

Because the client tries to connect to the localhost address (127.0.0.1). Actually, I

should use the IP address of the server. It is needed to execute ifconfig in the server to

figure out what address it has. It is showed the address of server is 10.0.0.2. It is need

to modify the code of the run files of server. Then this problem will be solved. The steps

to modify it can be shown as follow.

After running the server it can been see the UDP socket:

netstat -nau

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

udp 0 0 127.0.0.1:6121 0.0.0.0:*

So I changed the following in the server: example/main.go

 // bs = binds{"localhost:6121"}

 bs = binds{"0.0.0.0:6121"}

and execute the server again.

netstat -nau

Active Internet connections (servers and established)

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 49

Proto Recv-Q Send-Q Local Address Foreign Address State

udp 0 0 0.0.0.0:6121 0.0.0.0:*

10.2 Fairness test

Although I have start the QUIC and TCP at the same time but as the figure23 shows,

they don’t have the interval of time to run together, that is because, although the client

starts to connect the server through different protocol simultaneously, but the server

need a while to send the package to the client through the QUIC protocol. However the

flow using TCP does not have the buffer time. So, it can be seen that after the TCP

finish the process have not the QUIC start.

In order to solve the problem, we can use a bigger test file or decrease the bandwidth

of the link in order to increase the time to download the file.

Figure 23

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 50

 Chapter 11

Conclusion

The main contributions of this thesis are the tests of QUIC and TCP implementations

of their network performance and congestions handling. We used various metrics such

as fairness and stability of throughput to evaluate the QUIC. Further, the thesis give a

parameter analysis of congestion control. The work has shown how Mininet can be used

to build systems to test implementations of QUIC for multiple scenarios.

QUIC can avoid a number of limitations with TCP, such as: head-of-line blocking and

the dependency of the TCP version in the operating system. Other new features are

briefly mentioned and not described in much detail in this thesis.

The performance in low delay without packet loss is very similar to TCP, except for

higher bandwidth which is mostly due to the slower CWND growth rate. The tests

confirm that QUIC does work well when there’s a small probability of packet loss,

which is what QUIC is designed for. To cover larger packet loss would result in even

more overhead, but packet loss must also affect the congestion control even if the

packets can be recovered. QUIC outperforms TCP in most cases.

The congestion control is very important in QUIC which the UDP not have. I present

an initial experimental evaluation of the Cubic-TCP algorithm. Chapter 7 give an

intuitive test showing that how Beta and C influence the performance of QUIC.

The two QUIC flows are sharing a good fairness, but in the case of QUIC and TCP

using same connection have the low fairness. It suggests that TCP obtains performance

at the expense of QUIC. We made further studies to study what the network

environments will affect fairness.

When testing in isolated and emulated environments, the results should always be taken

with a bit of skepticisms since real networks are influenced by many other factors and

simultaneous traffic. To further verify the results of these tests, comparison with tests

on real network are necessary.

More analysis is needed to understand exactly when and why, to properly adjust the

algorithm or parameters to be more TCP-friendly. A thorough evaluation needs to look

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 51

at a variety of testing scenarios to make a valid observation about the behavior of a

protocol. But we believe that the steps we took are at least steps toward the right

evaluation of these protocols and hope that our work improves the methodology in

evaluting various congestion control protocols.

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 52

References

[1] B.M.Leiner,V.G.Cerf,D.D.Clark,et al.,“A brief history of the Internet”, ACM SIGCOMM

Computer Communication Review, vol. 39, no. 5, pp. 22–31, 2009. [Online]. Available:

http://www.cs.ucsb.edu/~almeroth/classes/ F10.176A/papers/internet-history-09.pdf.

[2] M. Tuexen and R. Stewart, UDP Encapsulation of Stream Control Transmission Protocol (SCTP)

Packets for End-Host to End-Host Communication, RFC 6951 (Proposed Standard), Internet

Engineering Task Force, May 2013. [Online]. Available: http://www.ietf.org/rfc/rfc6951.txt.

[3] QUIC: A UDP-Based Secure and Reliable Transport for HTTP/2. https://tools.ietf.org/html/

draft-tsvwg-quic-protocol-02.

[4]Van Jacobson, Michael J. Karels. Congestion Avoidance and Control (1988). Proceedings of the

Sigcomm '88 Symposium, vol.18(4): pp.314–329. Stanford, CA. August 1988. This paper originated

many of the congestion avoidance algorithms used in TCP/IP.

[5] "Performance Analysis of TCP Congestion Control Algorithms" . Retrieved 26 March 2012.

[6] B. Lantz and B. Heller. Mininet - an instant virtual network on your laptop (or other pc), [Online].

Available: http://www.mininet.org.

[7] I.Swett. QUIC Deployment Experience @ Google. https://www.ietf.org/proceedings/96/slides/

slides-96-quic-3.pdf, 2016.

[8] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira. PCC: Re-architecting congestion

control for consistent high performance. InProc. of USENIX NSDI,2015.

[9] P.Megyesi, Z.Krämer, and S.Molnár. How quick is QUIC? InProc. of ICC, May2016

[10] A.Vernersson. Analysis of UDP-based reliable transport using network emulation. Master’s

thesis, Luleå University of Technology, 2015.

[11] J. Roskind. Google QUIC design specification, [Online]. Available: https://do

cs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFVev2jRFUoVD34.

[12] Google Chromium. QUIC wire layout specification, Available: https://

docs.google.com/document/d/1WJvyZflAO2pq77yOLbp9NsGjC1CHet AXV8I0fQe-B_U.

[13] C. Cimpanu. Google Creates New Algorithm for Handling TCP Traffic Congestion Control.

http://news.softpedia.com/news/ google-creates-new-algorithm-for-handling-tcp-traffic-

congestion-control-508398.shtml, September2016.

[14] S. Floyd, “High Speed TCP for Large Congestion Windows,” RFC 3649, December 2003

[15]B. Ford, “Structured streams: a new transport abstraction”, ACM SIGCOMM

Computer Communication Review, vol. 37, pp. 361–372, 2007. [Online].

Available: http://dl.acm.org/citation.cfm?id=1282421

[16] Y. Gu. UDP-based data transfer protocol, [Online]. Available: http://udt.

sourceforge.net.

[17] Github https://github.com/

[18] https://github.com/quicwg/base-drafts

[19] B. Heller, “Reproducible network research with high-fidelity emulation”,

https://en.wikipedia.org/wiki/Van_Jacobson
https://en.wikipedia.org/wiki/Michael_J._Karels
http://citeseer.ist.psu.edu/484335.html
http://www.wseas.us/journals/cc/cc-27.pdf
https://github.com/
https://github.com/quicwg/base-drafts

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 53

PhD thesis, Stanford University, 2013. [Online]. Available: https://stacks.stanfor

d.edu/file/druid:zk853sv3422/heller_thesis-augmented.pdf.

[20] A.Langley,A.Riddoch,A.Wilk,A.Vicente,C.Krasic,D.Zhang,F.Yang,F.Kouranov,I.Swett,

J.Iyengar,J.Bailey,J.Dorfman,J.Kulik,J.Roskind,P.Westin,R.Tenneti,R.Shade,R.Hamilton,

V.Vasiliev,W.-T.Chang, and Z.Shi. The QUIC transport protocol : Design and Internet-scale

deployment. InProc. of ACM SIGCOMM,2017.

[21] S. Ha, I. Rhee, and L. Xu. 2008. CUBIC: A New TCP-friendly High-Speed TCP Variant. ACM

SIGOPS Operating Systems Review (2008).

[23] A. Jurgelionis, J. Laulajainen, M. Hirvonen, et al., “An empirical study of netem network

emulation functionalities”, in Computer Communications and Networks (ICCCN),2011

Proceedings of 20th International Conferenceon,IEEE,2011,pp.1– 6.

[24] P. Karn and W. Simpson, Photuris: Session-Key Management Protocol, RFC 2522

(Experimental), Internet Engineering Task Force, Mar. 1999. [Online]. Available:

http://www.ietf.org/rfc/rfc2522.txt.

[25] M.Honda,F.Huici,C.Raiciu,J.Araújo,andL.Rizzo.2014. Rekindlingnetwork protocol

innovation with user-level stacks. ACM Computer Communication Review (2014).

[26] C. Paasch. 2016. Network Support for TCP Fast Open. (2016). Presentation at NANOG 67,

https://www.nanog.org/sites/default/files/Paasch_Network_Support. pdf.

[27]Cheng Jin, David X. Wei and Steven H. Low, “FAST TCP: motivation, architecture, algorithms,

performance,” Proceedings of IEEE INFOCOM 2004, March 2004

[28] Chrome https://www.google.cn/chrome/

[29] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig. 2008. RFC 5077: Transport Layer Security

(TLS) Session Resumption without Server-Side State. Internet Engineering Task Force (IETF)

(2008).

[30]S. R. Das. Evaluation of QUIC on web page performance. Master’s thesis, Massachusetts

InstituteofTechnology,2014.

[31] M.Allman,V.Paxson,andE.Blanton,TCP Congestion Control,RFC5681(Draft Standard),

Internet Engineering Task Force, Sep. 2009. [Online]. Available: http: //www.ietf.org/rfc/rfc5681.txt.

http://www.ietf.org/rfc/rfc2522.txt

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

 54

Appendix A

Hardware:

Microsoft Surface

Host system

UPC Intel(R) Core(TM) i5-7300U 2.71GHz

RAM 8.00GB

Software versions:

• Ubuntu 14.04.1 LTS, 64-bit

• Linux kernel 3.13.0-43-generic Ubuntu SMP, CFS scheduler default, IPv6

disabled.

• Mininet 2.1.0 (Ubuntu packaged)

• Perl-6

Gnuplot-5.2.3

Tested UDP-protocol versions:

• QUIC - Chromium git checkout 2014-10-28, release compiled.

