
Institut de Robòtica i Informàtica Industrial

Towards effective planning strategies
for robots in recycling

by Alejandro Suárez Hernández

to obtain the M.Sc. in Artificial Intelligence

Co-directed by
Guillem Alenyà Ribas & Carme Torras Genís (IRI, CSIC-UPC)

Supervised by
Cecilio Angulo Bahón (ESAII, UPC)

To be defended in
27th of Juny 2018

Towards Effective Planning Strategies for Robots in
Recycling

Thesis for the M.Sc. in Artificial Intelligence

Alejandro Suárez Hernández

Abstract

In this work we present several ideas for planning under uncertainty. Our
intention is to apply these ideas to recycle electromechanical devices with a
robotic arm. This domain presents two challenges: (1) since is not possible
to guarantee the desired action outcomes due to limited precision and exoge-
nous factors, the transition model is probabilistic; and (2) it is impossible to
know the whole configuration of the device that is being disassembled at once
due to occlusions. We opt to formulate the problem as a goal-based MDP
(Markov Decision Process) or, equivalently, a SSPP (Stochastic Shortest Path
Problem).

In general, MDPs’ solutions consist in policies (i.e. a mapping from states
to actions) rather than action sequences. Some of the most well-known algo-
rithms to deal with MDPs are Value Iteration and Policy Iteration. However,
these algorithms compute full policies and scale badly when the state con-
sists of a large number of variables. Due to the curse of dimensionality, the
state space grows too large. In addition, the computational effort invested in
obtaining full policies for solving the MDP is wasted when new objects and,
consequently, new state variables, are discovered. This renders the previous
policy invalid because the specification of the state and the goal changes.

Therefore, we explore the effectiveness of an on-line planning method based
on determinization followed by classical planning. We take advantage of the
well-performing and state-of-the-art systems such as Fast Downward, or the
older but still widely used Fast Forward. We consider the following deter-
minization methods, each presenting different strengths and drawbacks: All-
Outcome, Single-Outcome, α-Cost-Transition-Likelihood and Hindsight Opti-
mization. Another exploitable feature of our particular domain is that there
are strong precedence relations between the components. This allows us to
plan hierarchically, bounding the plan horizon and, thus, reducing the compu-
tational effort, specially if replanning is necessary.

We have hand-crafted a testbed of disassembly problems to test these ap-
proaches. In addition, the determinization techniques are tested against do-
mains from past IPPCs (International Probabilistic Planning Competitions) to
see how suitable they are under different circumstances.

Desenvolupament de Estratègies Efectives de
Planificació per Reciclatge amb Robots

Tesi per al Màster en Intel·ligència Artificial

Alejandro Suárez Hernández

Resum

En aquest treball presentem diverses idees per planificar sota incertesa.
Volem aplicar aquestes idees a reciclar dispositius electromecànics mitjançant
un braç robot. Aquest domini presenta dos reptes: (1) no és possible garantir
el resultat desitjat de les accions a causa de la precisió limitada del robot i de
factors externs i, per tant, el model de transició és probabilístic; i (2) és impos-
sible conèixer la configuració completa del dispositiu que està sent desacoblat
degut a les oclusions entre components. Optem per formalitzar el problema
com un MDP (Markov Decision Process) amb objectius o, equivalentment, un
SSPP (Stochastic Shortest Plan Problem).

En general, les solucions dels MDPs consisteixen en polítiques (i.e. fun-
cions que assignen a cada estat l’acció òptima que s’ha d’executar) en lloc de
seqüències d’accions. Alguns dels algorismes més coneguts per resoldre MDPs
són Value Iteration i Policy Iteration. No obstant això, aquests algorismes
computen polítiques completes i la seva complexitat és elevada quan l’estat
està format per un elevat nombre de variables. Això és perquè l’espai d’estats
és excessivament gran (curse of dimensionality). A més a més, l’esforç com-
putacional invertit en calcular polítiques completes per resoldre el MDP no
s’aprofita quan es detecten nous objectes i, per tant, canvia la definició de
l’estat i dels objectius, invalidant la política anterior.

Així doncs, explorem l’efectivitat d’un mètode en línia de planificació basat
en determinització i planificació clàssica. Aprofitem l’eficiència dels planifi-
cadore més avançats, com ara Fast Forward. Considerem els següents mè-
todes de determinització: All-Outcome, Single-Outcome, α-Cost-Transition-
Likelihood i Hindsight Optimization. Una altra característica explotada en el
nostre domini és que hi ha fortes relacions de precedència entre components.
Això ens permet aplicar planificació jeràrquica, acotant l’horitzó de planificació
i, per tant, reduint l’esforç de còmput, sobretot si és necessari replanificar.

Hem elaborat un conjunt de problemes de desacoblament per evaluar aques-
tes técniques. A més a més, les tècniques de determinització són provades en
dominis de les IPPCs (International Probabilistic Planning Competitions) de
anys anteriors, amb l’objectiu de veure com s’adeqüen a altres aplicacions
diferents de la nostra.

Desarrollo de Estrategias Efectivas de Planificación
para Reciclaje con Robots

Tesis para el Máster en Inteligencia Artificial

Alejandro Suárez Hernández

Resumen

En este trabajo presentamos varias ideas para planificar bajo incertidum-
bre. Queremos aplicar estas ideas a reciclar dispositivos electromecánicos me-
diante un brazo robot. Este dominio presenta dos desafíos: (1) no es posible
garantizar el resultado deseado de las acciones debido a la precisión limitada
del robot y a factores externos y, por ende, el modelo de transición es proba-
bilístico; y (2) es imposible conocer la configuración completa del dispositivo
que está siendo desensamblado debido a las oclusiones entre componentes. Op-
tamos por formular el problema como un MDP (Markov Decision Process) con
objetivos o, equivalentemente, un SSPP (Stochastic Shortest Plan Problem).

En general, las soluciones de los MDPs consisten en políticas (i.e. fun-
ciones que asignan a cada estado la acción óptima que se ha de ejecutar) en
lugar de secuencias de acciones. Algunos de los algoritmos más conocidos para
resolver MDPs son Value Iteration y Policy Iteration. Sin embargo, estos al-
gorítmos computan políticas completas y su complejidad es elevada cuando el
estado está conformado por un elevado número de variables. Esto se debe a
que el espacio de estados es excesivamente grande (curse of dimensionality).
Además, el esfuerzo computacional invertido en calcular políticas completas
para resolver el MDP no se aprovecha cuando se detectan nuevos objetos y,
por consiguiente, cambia la definición del estado y de los objetivos, invalidando
la política anterior.

Así pues, exploramos la efectividad de un método en línea de planificación
basado en determinización y planificación clásica. Aprovechamos la eficiencia
de los planificadore más avanzados, tales como Fast Forward. Consideramos los
siguientes métodos de determinización: All-Outcome, Single-Outcome, α-Cost-
Transition-Likelihood y Hindsight Optimization. Otra característica explotada
en nuestro dominio es que hay fuertes relaciones de precedencia entre compo-
nentes. Esto nos permite aplicar planificación jerárquica, acotando el horizonte
de planificación y, por tanto, reduciendo el esfuerzo de cómputo, sobre todo si
es necesario replanificar.

Hemos elaborado un conjunto de problemas de desensamblado para eva-
luar estos métodos. Además, las técnicas de determinización son probadas en
dominios de las IPPCs (International Probabilistic Planning Competitions) de
años anteriores, con el objetivo de ver cómo se adecúan a otras aplicaciones
diferentes de la nuestra.

Contents

Contents 1

1 Scope and contextualization 3
1.1 Introduction . 3
1.2 Motivation . 4
1.3 Involvement in H2020 Imagine 5
1.4 Planning concepts . 7

1.4.0 Domain and problem . 7
1.4.1 Planning paradigms . 8
1.4.2 Modeling languages . 9

1.5 Approach . 10
1.6 Scope and goals . 11
1.7 Related work . 12

2 Theory and background 15
2.1 MDPs and SSPPs . 15
2.2 Specification of the problem in PPDDL 17

2.2.0 Robot capabilities . 18
2.2.1 Device representation . 20
2.2.2 Actions . 23

3 Determinization of stochastic problems 24
3.1 Rationale . 24
3.2 Expansion of probabilistic outcomes 25
3.3 All-Outcome Determinization 26
3.4 Single-Outcome Determinization 27
3.5 α-Cost-Transition-Likelihood Determinization 29
3.6 Hindsight Determinization . 33

4 Short horizon planning 37
4.1 Rationale . 37
4.2 Simplifying the state . 37
4.3 Dealing with unseen precedences 38

1

CONTENTS 2

5 Experimental evaluation 41
5.1 Implementation . 41
5.2 Experiments with determinization techniques 41
5.3 Hierarchical planning . 44

6 Conclusions and future work 46

Bibliography 47

A PPDDL domain for the recycling application 50
A.1 Robot version . 50
A.2 Simulator (complete) version 58

B PPDDL domain of the “Terrains” example 68

CHAPTER 1

SCOPE AND CONTEXTUALIZATION

1.1 Introduction

Industrial robots are programmed to perform highly specialized and repetitive
actions in controlled environments. Therefore, their autonomy is quite limited
and they are restricted to a small set of problems. We would like that robots
that are not in such controlled scenarios are able solve a larger variety of prob-
lems, and even to react in the presence of adverse events. In other words, we
would like robots to reason about their environment and about the potential
effects that their actions may exert on it. Such capabilities would allow for
great flexibility in the following ways: (1) tasks can be switched without re-
programming; (2) multiple solutions to the same problem can be found and
assessed in terms of risk and potential gains in execution speed or other cri-
teria; and (3) contingency mechanisms can be applied, should adverse events
hinder the execution of the task.

We can think of several applications that are potential targets of these
desirable qualities. One possibility is to use robots to assist old and impaired
people for household chores or treatment [1, 2]. Another application is to
allow robots to perform maintainance in difficult-to-access environments, such
as subaquatic facilities [3, 4].

In this document we are concerned with automatically disassembly of elec-
tronic devices with a robotic arm. Namely, we want to enable the robot to
retrieve the most valuable and/or dangerous components. The recycling ap-
plication is very promising from environmental and scientific points of view.
Our intention is to provide strategies for performing intelligent action selec-
tion. That is, given a disassembly scenario, the robot should be able to per-
form the most suitable action taking into consideration risk and speed crite-
ria. We tackle this objective using tools from the area of Automatic Planning
and Scheduling, namely probabilistic planning with MDPs (Markov Decision

3

CHAPTER 1. SCOPE AND CONTEXTUALIZATION 4

Processes). In this document we explore methods of on-line resolution via
determinization and hierarchical organization of the identified tasks. We use
PPDDL (Probabilistic Planning Domain Definition Language) to define the
MDP.

1.2 Motivation

The research presented in this document has been conducted aiming at de-
veloping techniques that can be effectively employed to recycle contraptions
such as hard drives, hair trimmers, remote controls or electronic toys. Fig. 1.1
shows some examples of the devices that we have in mind.

(a) (b) (c)

Figure 1.1: (a) Bottom view of a hard drive being disassembled. (b) GSM amplifier
being disassembled. (c) Several handie-talkie models being displayed.

In our view, this application poses very attractive challenges from the scien-
tific point of view. In real life deterministic environments (i.e. fully observable
state variables and non-random action outcomes) are more an exception than
a rule, and this becomes evident in disassembly scenarios. On the one hand,
the whole structure of the device cannot be perceived at once because of oc-
clusions and perception noise, as Fig. 1.1 illustrates. Therefore, progression in
the disassembly task is required to discover hidden components and geometri-
cal relations. On the other hand, actions might not produce always the same
outcome, due to positioning errors, noise in the movement of the robots and
exogenous factors. For instance, levering the PCB of a hard drive in order to
extract it from the bay might not success entirely, leaving the PCB hovering
over one of the edges of the casing. In such case, one may need to consider an
additional action like levering from a different point or holding the case upside
down to let the loosen components fall.

We cannot forget the social and environmental impact of the proposed
application. The current recycling industry is dominated by the crush and
separate paradigm. Trash is crushed into very small bits that are then fil-
tered and classified using physical properties such as density or inductance.
However, the uniformity of the separated debris cannot be guaranteed. Even
more importantly, devices often contain components or substances that are
hazardous for the environment. In such cases, it is required that a human

CHAPTER 1. SCOPE AND CONTEXTUALIZATION 5

(a) (b)

Figure 1.2: (a) Top view of a hard drive with the lid. (b) View from the same
perspective without the lid. The previously occluded inner components are now
visible.

manually removes the source of danger. This has associated health risks for
the operator. Moreover, it is inefficient and costly, so a great amount of trash
is simply incinerated, posing a serious thread for the ecosystems. Another
drawback of this method is that precious or reusable components (e.g. PCBs,
capacitors, magnets) are destroyed, when they can be used right away or after
some refurnishing in the manufacturing of new products.

In light of these arguments, a robotic recycling system is appealing from
the sustainability perspective as well. To avoid the drawbacks of the crush
and separate method, we would like the following features for the robot: (1)
it should ideally adapt to different electromechanical contraptions (including
different brands/models of the same device); (2) it should correctly identify
the tasks that it has to complete to perform a successful disassembly; and (3)
it should be able to work even with damaged devices.

1.3 Involvement in H2020 Imagine

This research has been conducted as part of the European H2020 project Imag-
ine: Robots Understanding Their Actions by Imagining Their Effects, or just
Imagine1. The scientific objective of Imagine is to make robots aware of their
environment and, in general, to achieve the autonomy objectives discussed
previously in Section 1.1. The project focuses on the recycling application
introduced in the former section.

There are seven European research centers participating in Imagine, each
working on a different subsystem. One of these subsystems is a planning and
decision unit, which is developed by the IRI-CSIC (Institut de Robòtica i Infor-

1https://imagine-h2020.eu/

https://imagine-h2020.eu/

CHAPTER 1. SCOPE AND CONTEXTUALIZATION 6

màtica Industrial2-Consejo Superior de Investigaciones Científicas3) partner.
This thesis is hosted in this institution and is closely related to the develop-
ment of the Imagine’s decision unit. This subsystem is a fundamental part
of the overall system, since it evaluates the scene and selects the action that
is more suitable for the perceived state. This means that it has to make sure
that the action is beneficial in the long term and that the risk of falling into a
dead end is controlled.

The project also features PHYS and ASC as novel ideas for the considered
application. The first is a very realistic and powerful physics simulator that can
give a very precise idea of the state that results from executing an action, but
makes intensive use of computational resources. The second is an Association
Engine that identifies the points of interest of the scene, and also learns a
high level physics model (“folks physics”) that is much quicker to invoke than
PHYS, but also less accurate. They are very useful and have great potential,
because the planner can interact with them and “imagine” plans before any
action. Another key aspect of the project is the concept of ADES, or Action
Description, for storing the symbolic description of the actions and the DMPs
(Dynamic Movement Primitive) associated to each one. Other aspects of the
project include the perception of the scene and the design and construction of
a multifunctional gripper.

Figure 1.3: Execution of a levering action
in the V-REP simulator.

As of today, we have been partic-
ipating actively on Imagine for more
than a year. In April of 2018 the
project was evaluated by a Project
Officer and three experts in different
areas of robotics. It received very
positive critics. Part of the presenta-
tion for the evaluation meeting con-
sisted in a demonstration that dis-
played basic prototypes of the differ-
ent subsystems interacting with each
other, and was able to solve very sim-
ple disassembly simulated scenarios
involving a hard drive (see Fig. 1.3).
This demonstration already featured
a planner prototype in the loop. Our
objectives for this year is to extend

this planner with new capabilities, including the ones presented here, but also
with a rich and beneficial interaction with PHYS and ASC.

2http://www.iri.upc.edu/
3http://www.csic.es/

http://www.iri.upc.edu/
http://www.csic.es/

CHAPTER 1. SCOPE AND CONTEXTUALIZATION 7

1.4 Planning concepts

We see in the area of Automatic Planning and Scheduling tools that potentially
bring us toward the desirable qualities exposed in Section 1.1. Planning is a
branch inside Artificial Intelligence that aims at solving problems that are
defined declaratively, with as little control (procedural) knowledge as possible.
That is, a planning algorithm operates with a model that encodes the dynamics
of the domain and, for each problem, outputs an action sequence or a policy
that solves it, has a high success probability or has a high expected reward.

Planning is not a discipline that is particular to robotics and, therefore,
there exist multiple benchmarks and work in the field that is general enough to
be of use in many areas. One of the most successful conferences that spreads
knowledge in the field of planning is ICAPS (International Conference in Au-
tomatic Planning and Scheduling) 4. The conference is held every year and
hosts a competition that seeks to push the boundaries of the state of the art
planning systems.

In this section we seek to give a brief overview of some of the most of
the most important concepts in planning. Later, In Chapter chap:theory we
give a more formal description of the planning language and paradigm that is
relevant for our work.

1.4.1 Domain and problem

One of the common themes in planning is the separation between the do-
main description and the problem instance facts. This separation is not always
present, since, given a planning paradigm, it is possible to provide an ad-hoc
representation of the problem (e.g. a transitions and reward matrices for an
MDP, or a graph for deterministic problems). However, the domain/instance
concept gives a principled way for defining problems declaratively using spe-
cialized modeling languages (more on this later).

The domain models the logic of the environment. That is, the predicates
and variables that define the state, and the actions that are available to the
agent(s). This domain is common for all the problems that follow that share
the same logic. For instance, all the problems from the recycling application
would use the same domain, that specifies the levering and unscrew actions.

On the other hand, each particular instance has associated a set of facts
that are linked to this very problem. That includes the initial state, the goal
condition, the optimization criteria and so on. Let us provide an example for
the recycling scenario: for disassembling a hard drive, the initial state consists
in the specification of the current configuration of the device, as the robot
sees it (the cover and some screws on the top and the PCB, the motor-PCB
connector and some screws on the bottom); the goal consists in the removal

4http://www.icaps-conference.org/

http://www.icaps-conference.org/

CHAPTER 1. SCOPE AND CONTEXTUALIZATION 8

of all the macro-components (the cover and the PCB). Notice that in this
particular example, once the cover is removed, the robot will be able to see
more macro-components and update the goal. The goal can also include the
optimization of some metric (plan length, some measure of cost, reward...).

1.4.2 Planning paradigms

For our work we focus on goal-based MDPs for representing recycling prob-
lems. However, we think it is illustrative to present the planning that we have
considered in order to justify our choice:

Deterministic planning: A deterministic planning problem is given by a
graph of states connected by the allowed transitions due to actions, an initial
state and a set of goal states. Solutions to deterministic problems consist of
ground actions sequences. As the name suggests, the actions are deterministic
(i.e. they always produce the same outcome), and the state is fully observable.
PDDL (Planning Domain Definition Language [5]) is the language of choice
for specifying domains and instances in the Deterministic Track of the IPC
(International Planning Competition) organized by the ICAPS. This paradigm
is often hard to apply in the real world because the environments are noisy.
However, in certain applications it is acceptable to assume that the actions will
always render the expected outcomes, that all the relevant state information
is always available and that small deviations from the expected outcomes are
tolerable and can be handled via replanning. Deterministic planning has a
place within our work, since part of our approach consists in determinizing a
probabilistic domain.

MDP: MDP stands for Markov Decision Process. They drop the determin-
istic state-transition assumption and allow for probabilistic effects. Moreover,
MDPs are typically formulated as reward-maximization problems rather than
graph search. However, we can also think of specific class of MDPs which are
goal-based and that are also also known as SSPPs (Stochastic Shortest Path
Problem). In these, there exists a subset of states called goals or absorbing
states such that all actions lead to self-transitions with 0 reward. MDPs are
specified by the transition probability, the reward function and a discount fac-
tor that determines how important are the long-term versus the short term
gains. The solution for general MDPs are policies. That is, a function that
tells the agent which action should it pick in each state to maximize the accu-
mulated discounted reward (this is formalized in Chapter 2). The computation
of full or off-line policies is costly in large-scale MDPs, although there exist on-
line methods to overcome this issue. We apply this paradigm to our problem
because it is adequate for expressing uncertainty about the action outcomes,
but stills allows for efficient solving techniques, avoiding the issues of more
sophisticated techniques. The language employed in the IPPCs (International

CHAPTER 1. SCOPE AND CONTEXTUALIZATION 9

Probabilistic Planning Competition) for describing the domains’ logic and the
problems’ instances are PPDDL (Probabilistic PDDL [6]) and RDDL (Rela-
tional Dynamic Influence Diagram Language [7]).

POMDP: POMDPs (Partially Observable MDP) introduce an additional
level of uncertainty, dropping the assumption of full observability. The plan-
ning agent no longer has access to the ground truth about the current state
variables. Instead, it receives observations that are drawn from a probabil-
ity distribution that depends on the true state and the last executed action.
Therefore, the agent operates in belief space (i.e. a continuous space of prob-
ability distributions over all the possible states). Due to this, the resolution
methods of POMDPs become more sophisticated and intensive from a com-
putational perspective. While, seemingly, this is the best approach to our
recycling domain, the main source of state uncertainty comes from unknown
objects that cannot be seen due to occlusions. Therefore, the state is incom-
plete (which is different than unobserved), and POMDPs would not greatly
help at this issue. We assume that other sources of state uncertainty can be
handled effectively via replanning. The RDDL language has enough expres-
sivity for specifying POMDPs, too. Other languages for specifying POMDPs
are Cassandra’s pomdp-sove file format [8] and PomdpX [9].

Reinforcement Learning: Since planning deals with tuning an agent’s be-
havior to operate in a certain environment, it is possible to see some similarities
between planning and Reinforcement Learning. The main difference is that,
in their most basic form, a Reinforcement Learning agent is model-free and
dependent on its learning capabilities to decide the suitable action for a certain
state, while a planner takes advantage of a model of the domain and employs
informed search or other heuristic methods to find a plan (although definitively
there exist works that allow partial domains and that incorporate learning ca-
pabilities to complete them [10, 11]). Reinforcement Learning is a “tabula
rasa” framework [12], while planning takes advantage of an existing model of
the domain to tune the agent’s performance. In Reinforcement Learning it is
often assumed (although it is, by no means, a necessary condition) that the
underlying model of the environment follows the same principles as an MDP,
although it is unknown to the agent.

1.4.3 Modeling languages

Above we mentioned a couple of options for modeling MDP problems in a
principled way: PPDDL [6]) and RDDL [7]). These languages allow to easily
encode the dynamics of the environment, and to interpret already encoded
ones. The language of choice for our work is PPDDL. Here, we give the
highlights of both in order to justify our choice. Later on, in Chapter 2, we
describe PPDDL in more detail.

CHAPTER 1. SCOPE AND CONTEXTUALIZATION 10

PPDDL: effects-based language. That means that all the transitions are
caused by an action executed by the agent(s). All the possible changes in the
state are organized as effects of the different actions that are available. In
fact, PPDDL is just an extension over PDDL to add probabilistic outcomes to
the actions and rewards. PPDDL does not provide any “iddle” action nor any
language mechanism for concurrency and exogenous effects (i.e. effects that
are independent of the selected action). In other words, PPDDL considers
that all the changes that may occur in the state are the result of conscious
choices made by the agent. Much like in PDDL, the state is represented
as a collection of predicates. Numeric variables can be also encoded in the
state, although with very limited support from the available planners. state
variables. We have chosen PPDDL because an effects-based language makes it
much easier to design and manipulate the disassembly domain. The easiness of
manipulation becomes specially important for the determinization techniques.

RDDL: transition-based language. RDDL regards everything as a fluent or
variable, including the actions and the rewards. The language allows to spec-
ify a transition function for all the state variables. The transition function
may depend on the executed action and the previous state variables’ values.
It can be defined stochastically as well. Therefore, RDDL has the potential
of expressing domain logics with exogenous effects much more naturally than
PPDDL. However, since the changes are not grouped into action, some do-
mains that can be written very easily in PPDDL are somewhat more tedious
to reproduce in RDDL. The main reason we have chosen PPDDL over RDDL,
however, is that RDDL makes it considerably harder to implement the deter-
minization techniques that we explore in this document. Since we do not need
the additional expressivity of RDDL, this is not a big concern. As a side note,
RDDL is expressive enough to also represent partial observability.

1.5 Approach

As said before, we resort to the MDP formalism to express our problem, cap-
turing the uncertainty over the state transitions. One of the main limitations of
MDPs for real-life problems is that they assume full observability of the state
variables. In practice, this is not true for our application. However, drop-
ping this assumption results in POMDPs, whose resolution is computationally
costly and scales badly with the size of the state space. Moreover, POMDPs
do not provide any substantial expressivity gain when the agent does not know
all the state variable, which happens when the agent is not aware of all the
relevant objects of the scene.

We update and solve a new MDP each time the specification of the state
changes (i.e. when new objects are discovered after performing an action).
Even though solving MDPs is much less intensive than solving POMDPs, con-

CHAPTER 1. SCOPE AND CONTEXTUALIZATION 11

ventional algorithms that obtain a full policy, such as Value Iteration and
Policy Iteration, still suffer from the curse of dimensionality when there are
many state variables due to the curse of dimensionality. Then, computing
a full policy becomes infeasible. We explore two complementary strategies
for dealing with this: (1) determinization algorithms together with classical
planners; and (2) decompositon of the main goal into sub-goals, taking advan-
tage of the topological precedences imposed by some geometrical and physical
features (e.g. partial occlusion).

The first of these two strategies consists in constructing a deterministic ver-
sion of the problem and solving the determinized problem with a planner such
as Fast Forward5 [13] or Fast Downward6 [14]. The rationale behind this idea
is that solving the determinized problem is typically much faster than comput-
ing an off-line policy. The first action suggested by the deterministic planner
is executed. Then, the process is repeated for the next state. Optionally, we
can cache plans to execute them in sequence if everything goes according to
expectation (i.e. the agent does not replan until a deviation from the expected
outcomes is detected). Good determinization strategies encode the stochas-
ticity of the outcomes somehow (e.g. as action costs), so the classical planner
comes up with plans that make sense from the probabilistic perspective or,
said differently, have a good chance of succeeding.

The second strategy has more to do with limiting the planning complexity.
The recycling domain is a good candidate for task decomposition, since there
are clear precedence relations between components. For instance, it makes
sense to disassemble the R/W arm of a hard drive before the platters, be-
cause the arm may move and block the platters. The robot can identify the
macro-components that are worth retrieving as the main tasks, and sort them
topologically given the precedence relations. Then, the planner solves one
small task at a time, without caring about the rest and omitting from the
state the facts and variables that are not relevant for the selected task.

1.6 Scope and goals

Let us remind the general objectives presented in Section 1.1: we seek to en-
able a robotic arm to perform automatic disassembly of an electromechanical
device. We approach the problem from the planning perspective, using the
MDP formalism. That is, we allow actions to have associated stochastic ef-
fects. We seek to solve MDPs via on-line methods based on determinization,
and to limit the planning complexity with a hierarchical decomposition of the
recycling goal.

The present work assumes that perception and low-level robot control rou-
tines are already provided, and that there is an existing interface to retrieve

5https://fai.cs.uni-saarland.de/hoffmann/ff.html
6http://www.fast-downward.org/

https://fai.cs.uni-saarland.de/hoffmann/ff.html
http://www.fast-downward.org/

CHAPTER 1. SCOPE AND CONTEXTUALIZATION 12

the state (as logic predicates) from the world and to execute actions on it.
We present tools for modeling stochastic problems from the recycling domain,
as well as techniques for dealing efficiently with these problems. Although all
the examples and benchmarks have been conceived for the particular use case
of the hard drive, the techniques described here can be extrapolated to other
devices by extending the state specification with variables particular to these
devices.

More specifically, we cover the following points:

• We propose a tentative domain for the recycling application, following
the premises of the Imagine project. We provide a set of predicates
that are meant to represent the different components of the device and
the links among them. Moreover, the domain contains the schemata
of several manipulation action for retrieving the device’s components
or flipping it. PPDDL defines an action-centric DBN (Dynamic Bayes
Network) with full observability or, equivalently, a MDP.

• We explore and test several determinization techniques to achieve fast
approximate on-line solutions to MDPs. The rationale is to avoid costly
policy recalculations each time new objects are discovered (e.g. after
removing the lid of a hard drive). The considered determinization al-
gorithms are: (1) All-Outcome and Single-Outcome [15]; (2) α-Cost-
Transition-Likelihood [16]; and (3) Hindsight optimization [17, 18].

• We complement the previous techniques with hierarchical planning, tak-
ing advantage of the strong precedences that arise naturally in the con-
sidered application. This occurs, for instance, when the reader of a hard
drive is occluding the platters.

We assess the effectiveness of these strategies testing them against bench-
mark problems. On the one hand, we have all the problems from past IPPCs
(International Probabilistic Planning Competitions, hosted each year by the
ICAPS). These are useful to evaluate the suitability of the different deter-
minization strategies in domains different from ours. On the other hand, we
have hand-crafted a set of benchmark problems that consist of hard drive
variations with different disposition of components. The determinization algo-
rithms are evaluated on top of these, too. In addition, these serve the purpose
of assessing the computational gain of the hierarchical planning method that
is specific for the recycling domain.

1.7 Related work

In this section we review some contributions that are related somehow to our
own work. Some of these contributions are purely theoretical, while others are
practical recycling stations.

CHAPTER 1. SCOPE AND CONTEXTUALIZATION 13

Figure 1.4: Barrett WAM robotic
arm inserting a triangular piece
through a cavity with the same
shape

G-Pack [19] and PROST [20] are two
state-of-the art probabilistic planners that
operate with RDDL (Gourmand actually op-
erates with a PPDDL dialect that results
from translating RDDL models) and provide
on-line solutions to the input MDPs. They
interact with a server that sends the most
recent state. They have outperformed the
rest of the planners of the 2011 and the
2014 IPPC. Gourmand is based on the La-
beled Real-Time Dynamic Programming al-
gorithm [21], while PROST usesMonte Carlo
Tree-Search with the UCT (Upper Confi-
dence bound applied to Trees) variant [22].
Both algorithms perform well in an on-line
setting, with no one being consistently bet-
ter than the other in all the IPPC bench-
marks, and are worth of consideration in fu-
ture work.

Our previous work [23] is also relevant.
We illustrate how to apply concepts of hier-
archical and probabilistic planning to a ma-
nipulation task that is comparable with an
assembly scenario (the inverse of the problem covered in this document), as
shown in Fig. 1.4. Much like in the present work, geometrical concerns play
an important role in the planning task.

The work of Kaelbling and Lozano-Pérez [24] deals with hierarchical plan-
ning in a way that is very similar to our approach. In a more recent paper [16]
they combine this hierarchical planning approach with probabilistic planning
in belief space. Very much like us, they base their resolution method in deter-
minizing the SSPP that results from their formulation. The determinization
they propose is called α-Cost-Transition-Likelihood. It consists in introducing
as many actions as possible outcomes exist in the original domain. Then each
action is given a cost that depends on its transition cost and in its probability.
This is one of the methods we employ in our own research.

The other determinization strategies that we study are All-Outcome/Single-
Outcome [15] and Hindsight Optimization [17, 18]. The former is a baseline
determinization technique that simply transforms outcomes to actions, but
without assigning any cost. The second one is, perhaps, the most sophisti-
cated of all the considered methods since it approximates the utility of each
action in the current state (also known as the Q function in Reinforcement
Learning). It needs to invoke the deterministic planner several times before
choosing an action.

CHAPTER 1. SCOPE AND CONTEXTUALIZATION 14

Figure 1.5: Liam robot removing the
screen of an iPhone device. Source:
https://youtu.be/AYshVbcEmUc

We believe that the work of
Martínez et al is also interesting in
the context of our research. It de-
scribes an approach for obtaining the
operators of a domain via Reinforce-
ment Learning and teacher demon-
strations. The NID (Noise Indeter-
ministic Deictic) rules formalism is
employed to represent the probabilis-
tic outcomes of the operators as dis-
joint effects, each one with its associ-
ated probability. This makes learn-
ing new effects through experience

and demonstration very convenient. This formalism is adequate for our own
purposes because it simply corresponds to an expanded form of the probabilis-
tic PPDDL outcomes. In the future, we may consider completing the speci-
fication of our domain with a similar approach, but substituting the teacher
demonstrations by physics simulations.

On a more practical level, a recent robotic systems that is more closely
related to the application presented here is Liam (showed in Fig. 1.5), devel-
oped by Apple [25]. Liam is a recycling robot specially conceived to dismantle
iPhone devices. It is equipped with tools for rescuing the most critical com-
ponents: the battery, the camera and the logic board. While the details of the
robot are not revealed, it would seem that it has been designed for operating in
highly controlled environments and following a scripted sequence of actions for
retrieving and classifying the different components. In other word, the system
is tuned to work with a single type of device, while our goal is to work toward
a more general recycling robot.

The work of Torres et al [26] falls directly within the recycling applica-
tion. In fact, it belongs to the Spanish CICYT project (Sistema Robotizado
de Desensamblado Automático basado en Modelos y Visión Artificia). Much
like us, they seek find disassembly sequences for an electromechanical device.
They represent these devices as graphs and automatically detect clusters of
components and topological dependencies. However, they do not consider
stochasticity.

Finally, it is also worth considering the paper of Zhang et al on part re-
moval [27]. They propose a method for removing parts from a device with
collision free paths. It is more concerned than us with the physical aspects of
the problem, rather than with complex long-term goals and interdependences
between components. In the future, we would like to incorporate some degree
of low-level information into the planner within the Imagine project. PHYS
and ASC, presented in Section 1.3, are invaluable tools for this purpose.

https://youtu.be/AYshVbcEmUc

CHAPTER 2

THEORY AND BACKGROUND

2.1 MDPs and SSPPs

The concepts of MDPs (Markov Decision Process) and SSPPs (Stochastic
Shortest Path Problem) are a fundamental part of this work. The reason
is that we want to account for probabilistic actions and they allow to model
such stochasticity. The implemented determinization methods described in
Chapter 3 are meant to solve efficiently MDPs in an on-line manner. There-
fore, in order to fully understand them, we present here the formal definition
of MDPs and SSPPs. We focus on discrete MDPs formulations. Notice that it
is possible to consider continuous state and/or actions spaces, although these
naturally present more challenges.

Definition 2.1.1. Markov Decision Process A Markov Decision Process
is a tuple (S,A, T,R, γ) where:

• S is a finite set of states.

• A is a finite set of actions.

• T (s, a, s′) = P(St+1 = s′|St = s ∧ At = a) is a probabilistic Markov
transition model. For each triplet (s, a, s′), it indicates the probability
of transitioning from s to s′ when action a is taken in state s.

• R(s, a, s′) is a reward function where R(s, a) is the immediate reward for
transitioning from state s to state s′ through a.

• γ is the discount factor. Rewards are diminished by this factor after each
time step.

There are alternative definitions that consider a reward of the form R(s),
and also of the form R(s, a). These can be made equivalent with a slight

15

CHAPTER 2. THEORY AND BACKGROUND 16

re-parametrization of the problem. They do not alter the problem in any
fundamental way [28].

The reward accumulated over time is:
∞∑
t=0

γtR(st, at, st+1)

, where at is the action selected by the agent at each time step. Solving a MDP
consists in finding a policy that maximizes the total or accumulated reward.
A policy is a function π(s) ∈ A that maps each state to the action that the
agent should preferentially use in that state.

The discount factor γ gives or subtract importance to the long-term reward.
A very low γ may result in a process in which only the most immediate and
short-term actions have an effect in the accumulated reward. γ < 1 is very
convenient because it guarantees that the accumulated reward is bounded, as
long as all the immediate rewards are not infinite. γ = 0.99 and γ = 0.95 are
usual choices.

We can assign an utility function to each state. This function gives an idea
of the accumulated reward that we can expect to obtain if this state is reached.
This utility function is defined as a Bellman equation:

V (s) = max
a

{∑
s′

(
R(s, a, s′) + γP(St+1 = s′|St = s ∧At = a)V (s′)

)}
.

This equation already gives an indication for a couple of dynamic program-
ming algorithms for solving MDPs: Value Iteration and Policy Iteration. Both
algorithms are based on the same idea: iterating over all the states and per-
forming relaxations according to the Bellman equation. In their most basic
form, these algorithms compute off-line or full policies. That is, an exhaustive
policy array for all the states. This is fine for problems with small state spaces,
but impractical when the state is factored and consists of several state vari-
ables. Say, for instance, that in a hypothetical problem the state is composed
of 40 binary state variables. Then, the state space would have a cardinality
of 240 ≈ 1012, which clearly makes the direct application of Value and Policy
iteration infeasible.

Notice that, as per the definition given here, the resolution of MDPs implies
maximizing the expected reward rather than finding a sequence of actions. So
far, we have not mentioned goals in the classical planning sense. However, we
wish to consider problems with specific objectives (e.g. the retrieval of a hard
drive’s PCB, or the removal of the top lid). SSPPs (Stochastic Shortest Path
Problems) are a subclass of MDPs. They contain terminating or absorbing
states. SSPPs are well-suited for our needs because they allow easy application
of determinization methods that do not require exhaustive iteration over all
the state space.

CHAPTER 2. THEORY AND BACKGROUND 17

Definition 2.1.2. Stochastic Shortest Path Problem A Stochastic Short-
est Path Problem is an MDP with absorbing states and negative rewards. The
SSPP is specified by a tuple (S,A, T,C,G) as follows:

• S, A and T have the same meaning as in an MDP

• C(s, a, s′) is the cost of transitioning from state s to state s′ through
action a. C(s, a, s′) = −R(s, a, s′).

• G ⊆ S is the set of absorbing states. ∀g ∈ G, a ∈ A C(g, a, g) =
0 ∧ T (g, a, g) = 1.

• the discount factor is γ = 1.

While SSPPs may be solved via conventional MDP techniques such as
Value Iteration, we can take advantage of their goal-based nature to use more
specific and efficient techniques. In the extreme case in which all the transitions
are deterministic, SSPPs are equivalent to classical planning problems. Notice
that, since all the rewards are negative, we allow γ = 1 without resulting in
an ill-defined problem with positive cycles. The problem essentially consists in
reaching one of the goal states with high probability minimizing the transition
cost. For a transition cost C(s, a, s′) = 1 ∀s, s′, a this would be the same as
minimizing the plan length.

2.2 Specification of the problem in PPDDL

We represent the dynamics of our SSPP using PPDDL (Probabilistic Planning
Domain Description Language) [6]. As said in Section 1.4, PPDDL is an
action-centric language. While exogenous effects and events are difficult to
model in PPDDL, it makes it easier to express the effects of conscious choices
made by the robot.

The body of a PPDDL domain consists of:

• The list of required language features (e.g. conditional effects universal
or existential preconditions).

• The type hierarchy (objects can have an associated type).

• The predicate list. These act as binary state variables. Problem instances
are constructed indicating which of these predicates are true. PPDDL
operates under the close-world assumption, so the not included predi-
cates are considered to be false.

• Optionally, a list of functional fluents (numeric state variables). This
feature is not widely supported, and we do not use it.

CHAPTER 2. THEORY AND BACKGROUND 18

• The list of actions, each having a name, a list of parameters, the precon-
dition and the effect.

PPDDL is built on top of PDDL: it has a LISP-like syntax, supports several
types of preconditions (e.g. simple predicate check, negative, conjunctive, ex-
istential, universal) and effects (e.g. add effects, delete effects, conditional, to-
tal). The main additions of PPDDL are the implicit declaration of a (reward)
numeric variable, should the :rewards requirement be listed; and probabilistic
effects, if the :probabilistic-effects requirement is listed. Fig. 2.1 shows
an example PPDDL domain that features two deterministic actions and one
probabilistic actions.

It is our intention to fit our domain as much as possible to the premises of
the Imagine problem:

• We will use a single robotic arm.

• Different tools are required to disassemble components such as planar
lids, PCBs and screws.

• The robot should be able to grasp the device and turn it over, either to
operate on the other side or to let loosen components fall down.

• The points of interest of the different actions are known as affordances.
An affordance consists in a special point in a component for levering, suc-
tioning or extracting with pliers. It makes sense to consider affordances
with different levels of confidence. The confidence determines the success
probabilitiy of the associated action. For an example, see Fig. 2.2.

In the remaining of this chapter we will describe how we modeled the
dynamics of the recycling domain in PPDDL.

2.2.1 Robot capabilities

We assume the robot to be equipped with a multifunctional gripper. This
gripper allows performing bimanual skills with just one manipulator thanks to
its two kind of fingers: a couple of parallel fingers for grasping and a SCARA
finger to assist in grasping or for manipulation of the device while it is held.
The gripper allows to carry several tools and has the potential to use them
with two grasping modes: power grab, using all the fingers to perform a stable
and powerful grasp; and the SCARA mode, using the third finger to grab the
tool while the parallel fingers hold the device.

All of these considerations have been pondered in order to elaborate a
domain that describes as good as possible the dynamics of a recycling domain.
Whether the robot has equipped one tool, uses a particular mode or is holding
the whole device is critical for planning the next actions. We propose the
following predicates to describe the robot status and its interaction with the
device:

CHAPTER 2. THEORY AND BACKGROUND 19

1 (define (domain triangle-tire)
2 (: requirements :typing :strips :equality :probabilistic-effects :rewards)
3
4 (:types location)
5
6 (: predicates (vehicle-at ?loc - location)
7 (spare-in ?loc - location)
8 (road ?from - location ?to - location)
9 (not-flattire)

10 (hasspare))
11
12 (: action move-car
13 :parameters (?from - location ?to - location)
14 :precondition (and (vehicle-at ?from) (road ?from ?to) (not-flattire))
15 :effect (and (decrease (reward) 1) (vehicle-at ?to) (not (vehicle-at ?from))
16 (probabilistic 0.5 (not (not-flattire)))))
17
18 (: action loadtire
19 :parameters (?loc - location)
20 :precondition (and (vehicle-at ?loc) (spare-in ?loc))
21 :effect (and (decrease (reward) 1) (hasspare) (not (spare-in ?loc))))
22
23 (: action changetire
24 :precondition (hasspare)
25 :effect (and (decrease (reward) 1) (not (hasspare)) (not-flattire)))
26)
27
28 (define (problem p01)
29 (: domain triangle-tire)
30 (: objects l-1-1 l-1-2 l-1-3 l-2-1 l-2-2 l-2-3 l-3-1 l-3-2 l-3-3 - location)
31 (:init
32 (vehicle-at l-1-1)
33 (road l-1-1 l-1-2)
34 (road l-1-2 l-1-3)
35 (road l-1-1 l-2-1)
36 (road l-1-2 l-2-2)
37 (road l-2-1 l-1-2)
38 (road l-2-2 l-1-3)
39 (spare-in l-2-1)
40 (spare-in l-2-2)
41 (road l-2-1 l-3-1)
42 (road l-3-1 l-2-2)
43 (spare-in l-3-1)
44 (spare-in l-3-1)
45 (not-flattire))
46 (:goal (vehicle-at l-1-3)) (: goal-reward 100) (: metric maximize (reward)))

Figure 2.1: Example PPDDL domain and problem. This is the triangle-tireworld
domain from the IPPC competitions. It depicts a car that lives in world with nodes
distributed in a triangular grid. The car has to move from one of the nodes of the grid
(in this example, l-1-1) to another node (here, l-1-3). The car has a 50% chance
of getting a flat tire in each movement. It can pick spares from the nodes in which
they are available, and fix flat tires if it has previously picked a spare. This is one of
the domains regarded as “probabilistically interesting” by Little et al [29]
.

CHAPTER 2. THEORY AND BACKGROUND 20

Figure 2.2: Affordances in a HDD PCB. Each of the blue circles is an affordance for
a lever-up action, either for removing or loosening the PCB.

• (current-mode ?m - mode): mode of the currently grasped tool. The
available modes are no-mode (for when the robot is not grabbing any
tool), scara and power.

• (current-tool ?t - tool): indicates the currently equipped tool. We
consider the following tools: flat-sd (flat screwdriver), star-sd (star
screwdriver), suction pads, pliers, a hammer and a cuter.

• (valid-mode ?t - tool ?m - mode): indicates that ?m is a valid mode
for tool ?t. Some tools like the screwdriver and the suction pad are
valid both in scara mode and in power mode. However, others like the
hammer are valid only in power mode.

• (current-side ?s - side): the side of the device that is currently
facing upwards. We assume that the device has a prism-like shape. We
consider 6 possible sides: top, bottom, left, right, front and back.
Each component of the device is visible from a specific side (e.g. in a
hard drive the lever and the platters are at the top, while the PCB is
located at the bottom).

• (opposite-side ?s1 ?s2 - side): when a particular side is facing up-
wards, the loosen components at the opposite face fall down. This pred-
icates is used to mark the opposite side pairs.

• (held): tells whether the device is being held between the parallel fin-
gers. This is necessary to flip it over and to perform actions in scara
mode.

The predicates presented here do not say anything about the configuration
of the different components of the device being recycled. This is covered in
the next Section.

2.2.2 Device representation

CHAPTER 2. THEORY AND BACKGROUND 21

While the previous list of predicates is related to the robot capabilities and
its interaction with the device, we must also encode in the state the information
about the device itself. That is: the detected components and affordances, the
screws, connectors, partial occlusions, etc.

Below we show a list with the proposed predicates to represent a device’s
inner configuration. Fig. 2.3 shows three examples of usage.

• (at-side ?c - component ?s - side): tells the side where a certain
component is located at. This side has to be facing upwards in order to
interact with the affordances of this component.

• (broken-component ?c - removable-component): the component is in
such a bad shape that the robot cannot use its affordances. This often
results in a dead end, unless the component is loosen, in which case the
device can be turned around in order to let it fall.

• (broken-tool ?t - tool): the tool is broken and it can no longer be
used for further manipulation.

• (connected ?c1 ?c2 - component): tells that two components are con-
nected via a cable or a flat connector.

• (clear ?c - removable-component): true for components that neither
are connected to anything nor have any screw fixing them.

• (fixed-by ?c - removable-component ?s - screw): true for pairs of
components-screws in which the screw keeps the component in place.

• (has-affordance ?c - removable-component ?a - affordance): in-
dicates that a component has associated a certain affordance.

• (has-confidence ?a - affordance ?c - affordance-confidence): in-
dicates the confidence associated to each affordance. We consider three
levels of confidence: low, medium and high.

• (loose ?c - removable-component): identifies components that are
loose and may fall just by turning the device around.

• (partially-occludes ?c1 ?c2 - component): marks pairs of compo-
nents in which the first argument occludes the second one. This is useful
to identify hierarchies.

• (removed-non-verified ?c - removable-component): identifies com-
ponents that have been removed, but the robot has not checked behind
them to see if they were occluding another component or affordance.

• (removed-verified ?c - removable-component): the component has
been removed, and the robot has already checked for previously hidden
components and affordances.

CHAPTER 2. THEORY AND BACKGROUND 22

• (stuck ?s - screw): the screw is stuck and it is more difficult to re-
trieve it by simply unscrewing.

• (valid-sd ?s - screw ?sd - screwdriver): identifies which is the
valid screwdriver for a certain screw.

(a) (b) (c)

Figure 2.3: (a) Top lid of a hard drive being fixed by a star screw. If the identifiers of
the lid and the screw are lid and lid-s0 respectively, then this would be represented
as (fixed-by lid lid-s0). (b) Connection between an HDD’s PCB and the motor
axis. This is represented as (connected pcb motor-axis). Notice that this is a
symmetric relationship, so the order of the arguments may be inverted. (c) A hard
drive’s R/W arm partially occluding a platter. Represented as (partially-occludes
reader platter). Notice that when one object occludes another, it may as well be
hiding one of the affordances.

.

We consider that these predicates are observable. We assume that we have
a working perception system that is able to process the scene and provide
them to us, or that there is some middleware to infer them. We can also think
of hidden components and relationships. These are not observed by the dis-
assembling agent, but the simulated environment we use for experimentation
(see Chapter 5) would need to take them into account since they are part of
the ground truth about the device. They are needed to identify those compo-
nents that are not visible (e.g. the disassembling should not be aware of the
components under the HDD lid until the lid is removed).

• (hides-component ?c1 ?c2 - component): tells that the second ar-
gument is not visible by the recycling robot because it is completely
occluded by the first argument component.

• (hides-affordance ?c1 - component ?a - affordance): tells that the
second argument affordance is completely hidden by the first agument
component and, therefore, it should not be included into the robot’s
state.

CHAPTER 2. THEORY AND BACKGROUND 23

2.2.3 Actions

Finally, we will briefly comment on the actions available to the robot. We
have assumed that the actions for picking and placing the device, switching
tools and turning the device around when is held by the robot, are determin-
istic. On the other hand, we have modeled several actions for unscrewing,
bashing and retrieve the components with specialized tools that have proba-
bilistic effects (e.g. successful retrieval of the object, tool break, component
break).

Namely, we have included the following actions in the domain:

• pick-tool, put-away-tool, grab-device, place-device, flip: all of
these are deterministic. We believe their names to be self-explanatory.

• let-fall-down: also deterministic. Produces that all the loosened com-
ponents fall down by virtue of turning the device around.

• cut-connector: deterministic action for removing the (connected ?c1
?c2) predicate.

• four unscrew actions. The probability of successfully unscrewing a screw
depends on the grasp mode and whether the screw is stuck or not (hence
the 4 actions).

• bash action for quickly remove all the screws that are fixing some compo-
nent, and loosening it. However, it has a low success probability and may
break the bashed component. This action only works with the hammer
tool.

• six lever actions (all the combinations of modes and affordance confi-
dence) for levering a device, each with different success/dead-end prob-
abilities.

• 3 suck-away actions, each for a different level of confidence (the mode
does not matter here). This action has a very low dead-end probability,
but also the success rate (even for highly trusted affordances) is low.

• 3 extract-with-pliers actions. The pliers are available only with the
power mode, so the 3 actions correspond to the three levels of confidence
of the affordance. This action has a very high chance of succeeding, but
it also has more risk of breaking the device than the lever action(s).

The complete PPDDL domain specification can be found in Annex A

CHAPTER 3

DETERMINIZATION OF STOCHASTIC PROBLEMS

3.1 Rationale

One may reasonably wonder why would we bother on elaborating a probabilis-
tic version of the problem we want to solve when we are going to determinize
it anyway. The idea of constructing a deterministic version of the problem
aims at making it easily solvable with a classic planner such as Fast Forward
or Fast Downward. In order to select an action, the decision maker invokes
a planner with the deterministic version of the problem and the most recent
perceived state. It then processes the plan appropriately and decides the most
suitable action for the current state (typically, the first action of the plan).

Two of the most straightforward transformations presented here are those
implemented by FF-Replan [15]: Single-Outcome Determinization and All-
Outcome Determinization. These make little to no use of the probabilistic
information when building the deterministic version, and depend entirely on
the capability of the planner to find another solution (replan) when there is a
deviation from the expected outcome. This strategy, however, fails completely
in domains where there is a high probability of falling into a dead end. These
are the kind of domains regarded as “probabilistically interesting” by Little et
al [29].

However, it is possible to translate the probability of the outcomes into
some feature of deterministic domains that hints the planner to give preference
to the most likely ways of succeeding. The α-Cost-Transition-Likelihood [16]
Determinization that we will present here does so via translating the transition
probabilities into deterministic costs.

Another possibility is to use the deterministic planner as a subroutine of
a method that invokes it repeatedly. Hindsight Optimization [17, 18] does
so via outcome sampling and repeated invocations to a deterministic plan to
calculate an upper bound to the Q functions (the state-action utility) in the

24

CHAPTER 3. DETERMINIZATION OF STOCHASTIC PROBLEMS 25

current state.
However, all the methods presented in this chapter require (or, at the

very least, work more easily) with expanded probability outcomes. We will
elaborate on that in the next Section. Notice that these techniques are quire
general, so we will resort to examples from other domains to illustrate more
compactly some of this methods.

3.2 Expansion of probabilistic outcomes

Typically, probabilistic effects in PPDDL are more easily expressed in factored
form. This means that they are either nested (Fig. 3.1a) or together in a
conjunction (Fig. 3.1b).

(and
(probabilistic
0.25 (and

(forall (?screw - screw)
(not (fixed-by ?comp ?screw)))
(forall (?screw - screw

?side_ - side)
(not (at-side ?screw ?side_)))

(probabilistic
0.5 (loose ?comp)))

0.10 (broken-component ?comp))
(decrease (reward) 1))

(a)

(and
(probabilistic
0.25 (and (loose ?comp)

(when (loose ?comp)
(removed-non-verified ?comp)))

0.10 (removed-non-verified ?comp)
0.12 (broken-component ?comp))

(probabilistic
0.12 (broken-tool flat-sd))

(decrease (reward) 1))

(b)

Figure 3.1: (a) Nested probabilistic effects. This example is part of the effect of
the bash action of the recycling domain (Annex A). (b) Conjunction of probabilistic
effects. This example is part of the effect of the lever-scara-medium-confidence
of the recycling domain (Annex A).

However, all the techniques presented in this chapter are based on intro-
ducing one new action per outcome (except Single-Outcome, which picks one).
Therefore, it is much more convenient to have the probabilistic effects in ex-
panded form, similarly to NID rules [10].

One could demand the domain designer to write the probabilistic effects
already in expanded form. However, that sacrifices the compactness of factored
probabilistic effects, and makes the domain design task more tedious and error-
prone.

Fortunately, it is straightforward enough to implement an algorithm that
performs automatic expansion of probabilistic effects. While it is true that
the number of outcomes grows exponentially with the nesting depth and with
the number of probabilistic effects in a conjunction, nested effects are typically
shallow, and the number of probabilistic effects in conjunctions is usually low.

In Fig. 3.2 we show the result of applying our expansion algorithm to the
effects shown in Fig. 3.1.

CHAPTER 3. DETERMINIZATION OF STOCHASTIC PROBLEMS 26

(probabilistic
0.125 (and

(forall (?screw - screw)
(not (fixed-by ?comp ?screw)))

(forall (?screw - screw ?side_ -
side)

(not (at-side ?screw ?side_)))
(loose ?comp)
(decrease (reward) 1))

0.125 (and
(forall (?screw - screw)
(not (fixed-by ?comp ?screw)))

(forall (?screw - screw ?side_ -
side)

(not (at-side ?screw ?side_)))
(decrease (reward) 1))

0.1 (and
(broken-component ?comp)
(decrease (reward) 1))

0.65 (decrease (reward) 1))

(a)

(probabilistic
0.03 (and

(loose ?comp)
(when (loose ?comp)
(removed-non-verified ?

comp))
(broken-tool flat-sd)
(decrease (reward) 1))

0.22 (and
(loose ?comp)
(when (loose ?comp)
(removed-non-verified ?comp))

(decrease (reward) 1))
0.012 (and

(removed-non-verified ?comp)
(broken-tool flat-sd)
(decrease (reward) 1))

0.088 (and
(removed-non-verified ?comp)
(decrease (reward) 1))

0.0144 (and
(broken-component ?comp)
(broken-tool flat-sd)
(decrease (reward) 1))

0.1056 (and
(broken-component ?

comp)
(decrease (reward) 1)

)
0.0636 (and

(broken-tool flat-sd)
(decrease (reward) 1))

0.4664 (decrease (reward) 1))

(b)

Figure 3.2: Notice that expanded effects are much more verbose than the original fac-
tored form. However, it is much easier to identify the outcomes and their probability.
(a) Effect of bash after expansion. (b) Effect of lever-scara-medium-confidence
after expansion.

3.3 All-Outcome Determinization

All-Outcome Determinization consists in building a new domain with one ac-
tion for each of the outcomes of the original probabilistic domain, discarding
completely the probabilities of such outcomes. In addition, all the increments
and decrements of rewards are removed. Empty effects result in useless actions,
so those can be safely omitted from the deterministic domain. The precondi-
tion of the newly introduced actions is the same as that of the original action.

Doing this, we allow the planner to freely choose the outcome that best
suits its need for reaching the goal. Whenever a planner finds a solution in
the determinized version of the problem, this solution is guaranteed to have a
non-zero probability of reaching the goal. In several domains where there are
no dead ends or it is unlikely to fall into one, this strategy is good enough.

All-Outcome Determinization produces n·m actions, where n is the number
of actions in the original domain and m is the (average) number of outcomes
per action.

CHAPTER 3. DETERMINIZATION OF STOCHASTIC PROBLEMS 27

Let us consider an example. In the recycling domain, all the stochastic
actions have more than 4 outcomes, so they are somewhat cumbersome to
serve as an illustration for All-Outcome method. Therefore, let us consider
the move-car action from the Triangle Tireworld (the full domain was given
in Fig. 2.1 as an example).

After applying All-Outcome Determinization to the domain, the actions
derived from the original move-car would look as in Fig. 3.3. This already gives
us a hint of one of the main pitfalls of the method: since the planner makes the
conscious choice of one outcome over the others, it will never select a harmful
outcome. However, harmful outcomes may well occur in a real environment.
For this very reason, All-Outcome Determinization is often regarded as “too
optimistic”.

(: action move-car
:parameters

(?from - location ?to - location)
:precondition (and

(vehicle-at ?from)
(road ?from ?to)
(not-flattire))

:effect (and
(decrease (reward) 1)
(vehicle-at ?to)
(not (vehicle-at ?from))
(probabilistic 0.5 (not (

not-flattire)))))

(a)

(: action move-car_o0
:parameters

(?from ?to - location)
:precondition (and

(vehicle-at ?from)
(road ?from ?to)
(not-flattire))

:effect (and
(vehicle-at ?to)
(not (vehicle-at ?from))
(not (not-flattire))))

(: action move-car_o1
:parameters

(?from ?to - location)
:precondition (and

(vehicle-at ?from)
(road ?from ?to)
(not-flattire))

:effect (and
(vehicle-at ?to)
(not (vehicle-at ?from))))

(b)

Figure 3.3: (a) Original move-car action. Even though it is not in expanded form, it
is easy to see that it has only two outcomes: one in which the car moves and gets a
flat tire, and another in which the tire is preserved. (b) Deterministic actions derived
from the All-Outcome Determinization of move-car. Notice that there are 2 actions
in total, one for each of the non-empty outcomes of the original action.

3.4 Single-Outcome Determinization

For each action, Single-Outcome Determinization picks only one of the out-
comes. The criterion for selecting the outcome varies, although the most fre-
quent choice is to select the most likely one. Other selection criterion is to
pick the outcome that makes more predicates true in the state. Much like in
All-Outcome determinization, rewards are removed from the state.

CHAPTER 3. DETERMINIZATION OF STOCHASTIC PROBLEMS 28

Since Single-Outcome Determinization commits to a single outcome per
action, it has the advantage of resulting in a reduced number of actions with
respect to All-Outcome Determinization. On the one hand, the problem is less
complex. The impact of this can be notable in problems with many outcomes
(like the recycling domain). On the other hand, it potentially throws away
outcomes that are necessary to reach the objective. The most immediate
consequence of this is that problems that are solvable may become unsolvable
under this transformation.

Contrarily to All-Outcome Determinization, the Single-Outcome alterna-
tive can use a bit of probabilistic information to construct the deterministic
domain, depending on the outcome selection criterion (e.g. this is evident for
the most-likely outcome selection criterion).

In Fig. 3.4 we can see an example of Single-Outcome Determinization for
the extract-with-pliers-high-confidence action of the recycling domain.

(: action
extract-with-pliers-high-confidence

:parameters
(?comp - removable-component
?pp - pliers-point ?side - side)

:precondition
(and

(not (broken-tool pliers))
(not (broken-component ?comp))
(at-side ?comp ?side)
(has-affordance ?comp ?pp)
(has-confidence ?pp high)
(current-side ?side)
(current-tool pliers)
(clear ?comp))

:effect (probabilistic
0.0425 (and

(removed-non-verified ?comp)
(broken-tool pliers)
(decrease (reward) 1))

0.8075 (and
(removed-non-verified ?comp)
(decrease (reward) 1))

0.0075 (and
(broken-component ?comp)
(broken-tool pliers) (

decrease (reward) 1))
0.1425 (and

(broken-component ?comp)
(decrease (reward) 1))))

(a)

(: action
extract-with-pliers-high-confidence

:parameters
(?comp - removable-component
?pp - pliers-point ?side - side)

:precondition
(and

(not (broken-tool pliers))
(not (broken-component ?comp))
(at-side ?comp ?side)
(has-affordance ?comp ?pp)
(has-confidence ?pp high)
(current-side ?side)
(current-tool pliers)
(clear ?comp))

:effect (and
(removed-non-verified ?comp)
(decrease (reward) 1)))

(b)

Figure 3.4: (a) Original extract-with-pliers-high-confidence action presented
in expanded form. (b) Single-Outcome Determinization based on the most-likely-
outcome criterion. Even though there are 4 outcomes, only one of them is retained.

CHAPTER 3. DETERMINIZATION OF STOCHASTIC PROBLEMS 29

3.5 α-Cost-Transition-Likelihood Determinization

α-Cost-Transition-Likelihood Determinization tries to give preference to plans
that are more likely to succeed. It is very similar to All-Outcome Determiniza-
tion in that it creates an action per outcome. However, it does not discard the
rewards completely. Instead, it reformulates them as action costs (decrements
are transformed to increments, and all the references to the reward fluent ar
substituted by a total-cost fluent). This is akin to the definition of SSPP
presented in Chapter 2.

The costs are transformed according to the following expression:

Cnew(s, a, s
′) = αCold(s, a, s

′)− log(P(s′|s, a))

, where α is a parameter that modulates the transition cost.
We can see that this new cost depends on the previous cost and the transi-

tion likelihood. The lower the probability, the higher the cost. The α param-
eter can give more or less relevance to the cost term. α → 0 means that the
new cost depends exclusively on the likelihood of the transitions (i.e. the less
likely to occur, the higher the cost). Conversely, α→∞ gives more relevance
to the transition cost. If Cold(s, a, s

′) = 1, the accumulated cost represents the
plan length corrected by the success probability of the plan.

If the planner optimizes over the accumulated cost, we can see that α
establishes a trade-off between potentially lengthy but safer plans and short
but risky plans. We present a few examples to illustrate this point.

Figure 3.5: Example grid. The
green cells depict grass, the cyan
cells are shallow water and the
blue cells are deep water. The
pickaxe, the character, the boul-
ders and the objective are also
represented with self-explanatory
icons.

The “terrain” example: Let us imagine a
rectangular grid. Some of the cells are grass,
others shallow water and other deep water.
There is a character who starts in a given po-
sition of the grid. He has to travel to a goal
cell. He can travel through grass with no risk.
He can swim through shallow water with lit-
tle risk (a 5% chance of drowning). He can
also swim through deep water with a greater
risk (a 20% chance of drowning). To add to
the complexity of the problem, some grass
cells contain boulders. The character cannot
go through these cells. However, some cells
may contain a pickaxe that the character can
pick and use to break these boulders. Fig. 3.5
shows an example instance of the problem.
We want to show the risk/speed trade-off of

α-Cost-Transition-Likelihood through this understandable example. The prob-
lem is easily enough modeled in PPDDL (shown in Annex B). Fig. 3.6 shows
several solutions to this same instance for different values for the α parameter.

CHAPTER 3. DETERMINIZATION OF STOCHASTIC PROBLEMS 30

15

20

25

P
la

n
 l
e
n
g
th

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

0.45

0.56

0.67

0.78

0.89

1.00

S
u
cc

e
ss

 p
ro

b
a
b
ili

ty

0

1

2

P
la

n
 c

o
st

Figure 3.6: Solutions to an instance of the “terrain” problem using α-Cost-Transition-
Likelihood Determinization with several values of α.

Clearly, greater αs result in more direct but riskier paths to the goal. We
can see that with α > 0.175 the character happily accepts swimming through
deep water. On the other hand, low α values are associated to longer paths and
safer plans. With α = 0 the risk is minimal, since the character puts himself
only in little danger to get the pickaxe through the shallow water. From that
point on, he slowly breaks his way to the target cell and going only through
grass.

Example with Imagine domain: We also present an example of the appli-
cation of α−Cost−Transition−Likelihood Determinization in the recycling
domain. We consider a very simple problem in which the robot has to retrieve
the PCB of a hard drive. The PCB is located at the bottom, with four screws
keeping it in place. Moreover, there is a connector from the PCB to the motor
axis. The PCB can be extracted either via levering using the pliers, or bashing
it with the hammer to loosen it and then letting it fall. The hard drive is ini-
tially resting before the robot with its top side facing upwards. Fig. 3.7 shows
that the effect of the α parameter is the same as in the “terrain” example.

CHAPTER 3. DETERMINIZATION OF STOCHASTIC PROBLEMS 31

Small values lead to long but safe actions, while bigger values result in riskier
sequence. Notice, for instance, that the 4th plan uses the bash action (the
riskiest action in the repertoire) to quickly get rid of the 4 screws that keep
the PCB in place, and then the pliers to remove it from the drive.

Triangle Tireworld, an unfriendly domain: Up to this point, α-Cost-
Transition-Likelihood has worked as expected. However, it is still somewhat
vulnerable to domains with dead ends that are difficult to avoid. This is the
case of the Triangle Tireworld domain. Let us remember that the goal is to
reach the target node and avoiding getting stuck as result of a flat tire. The
probability of getting a flat tire after moving is 50%. It can be replaced if the
car has a spare. Spares are distributed among the different cells.

In this case, the α parameter has no influence and the planner has no
reason to give preference to neither of the two outcomes because both have
the same probability and the same transition cost. In fact, the planner will
always suggest the shortest route, even though this may not be the best choice.
This is clear in Fig. 3.8. While the safest route is going through the top of the
triangle (the l-2-1 → l-3-1 → l-2-2 → l-1-3 path), for the planner this
plan has the same chances of succeeding as the route that goes in a straight
line from l-1-1 to l-1-3.

This leads us to an interesting observation: even if the plans obtained by a
planner that operates in a determinized domain with α parameterized costs are
optimal, these do not induce the best policy. That is, repeatedly obtaining the
“optimum” plan (according to the α-Cost-Transition-Likelihood criterion) and
executing the first action is not equivalent to executing the optimum policy.
The reason is somewhat subtle: even if two plans have the same probability of
succeeding and the same accumulated cost, the consequences of failing one of
the plans are not necessarily the same as the consequences of failing the second
one. Turning back to the Tireworld domain, we can see that if we get a flat
tire going through the top of the triangle, we can always pick one of the spares
that are distributed along the way and fix the tire. However, this is not the
case in the shortest route. In other words, the top route has more tolerance to
failure than the straight one.

Notice that we could easily manipulate the domain to make α − Cost −
Transition− Likelihood work effectively in this particular case: we can alter
the probabilities so that getting a flat tire is more likely than moving without
hazard. Then, the cheapest plan with α = 0 is the one that always forces a
flat tire at each movement, picks a new tire, and proceeds to the next cell.
Alternatively, we could artificially increase the transition cost of the outcome
of the move action in which the car does not get a flat tire.

This suggests a general approach to improve the robustness of α-Cost-
Transition-Likelihood against dead-ends: if we are able to identify the most
“beneficial” or “desirable” outcomes, we can artificially increment their transi-

CHAPTER 3. DETERMINIZATION OF STOCHASTIC PROBLEMS 32

14

16

18

20

P
la

n
 l
e
n
g
th

0.0 0.1 0.2 0.3 0.4 0.5

0.10

0.16

0.22

0.27

0.33

0.39

S
u
cc

e
ss

 p
ro

b
a
b
ili

ty

2

4

6

8

P
la

n
 c

o
st

1st plan (21 actions):
 (grab-device)
 (flip top bottom)
 (place-device)
 (pick-tool star-sd power)
 (unscrew-power-non-stuck pcb-s4 star-sd bottom)
 (put-away-tool star-sd power)
 (pick-tool flat-sd power)
 (unscrew-power-non-stuck pcb-s0 flat-sd bottom)
 (unscrew-power-non-stuck pcb-s1 flat-sd bottom)
 (unscrew-power-non-stuck pcb-s2 flat-sd bottom)
 (unscrew-power-non-stuck pcb-s3 flat-sd bottom)
 (put-away-tool flat-sd power)
 (grab-device)
 (pick-tool cutter scara)
 (cut-connector motor-axis pcb bottom)
 (place-device)
 (put-away-tool cutter scara)
 (pick-tool pliers power)
 (assert-clear pcb)
 (extract-with-pliers-high-confidence pcb pcb-a4 bottom)
 (check-removed pcb bottom)

2nd plan (19 actions):
 (grab-device)
 (flip top bottom)
 (pick-tool cutter scara)
 (cut-connector motor-axis pcb bottom)
 (place-device)
 (put-away-tool cutter scara)
 (pick-tool star-sd power)
 (unscrew-power-non-stuck pcb-s4 star-sd bottom)
 (put-away-tool star-sd power)
 (pick-tool flat-sd power)
 (unscrew-power-non-stuck pcb-s0 flat-sd bottom)
 (unscrew-power-non-stuck pcb-s1 flat-sd bottom)
 (unscrew-power-non-stuck pcb-s2 flat-sd bottom)
 (unscrew-power-non-stuck pcb-s3 flat-sd bottom)
 (put-away-tool flat-sd power)
 (pick-tool pliers power)
 (assert-clear pcb)
 (extract-with-pliers-high-confidence pcb pcb-a4 bottom)
 (check-removed pcb bottom)

3rd plan (17 actions):
 (grab-device)
 (flip top bottom)
 (pick-tool cutter scara)
 (cut-connector motor-axis pcb bottom)
 (place-device)
 (put-away-tool cutter scara)
 (pick-tool star-sd power)
 (unscrew-power-non-stuck pcb-s4 star-sd bottom)
 (put-away-tool star-sd power)
 (pick-tool flat-sd power)
 (unscrew-power-non-stuck pcb-s0 flat-sd bottom)
 (unscrew-power-non-stuck pcb-s1 flat-sd bottom)
 (unscrew-power-non-stuck pcb-s2 flat-sd bottom)
 (unscrew-power-non-stuck pcb-s3 flat-sd bottom)
 (assert-clear pcb)
 (lever-power-high-confidence pcb pcb-a3 bottom)
 (check-removed pcb bottom)

4th plan (13 actions):
 (grab-device)
 (flip top bottom)
 (pick-tool cutter scara)
 (cut-connector motor-axis pcb bottom)
 (put-away-tool cutter scara)
 (place-device)
 (pick-tool hammer power)
 (bash pcb bottom)
 (put-away-tool hammer power)
 (pick-tool pliers power)
 (assert-clear pcb)
 (extract-with-pliers-high-confidence pcb pcb-a4 bottom)
 (check-removed pcb bottom)

Figure 3.7
.

CHAPTER 3. DETERMINIZATION OF STOCHASTIC PROBLEMS 33

Figure 3.8

tion cost so the planner does not get too optimistic. However, automatically
identifying such outcomes is not a trivial task in general.

3.6 Hindsight Determinization

The last determinization method that we consider is not only a modification of
the domain, but also an algorithm to calculate a lower bound of the state-action
utility (the same Q function that is used in many Reinforcement Learning
algorithms) via repeated calls to a deterministic planner.

Each time the action maker has to decide the next action, it calculates an
upper bound of the Q(s, a) for the current state and all the available action
(or an intelligently chosen subset of all the available actions). Let us call this
upper bound Q̂(s, a). Q̂(s, a) is assumed to preserve the same ranking as the
true Q function, and is calculated averaging the negative length of several
different plans traces that start with that action. The longer the plans, the
lower the Q̂ score of that action for the given state. To obtain different plans,
the outcome of each action is decided in hindsight for each time step. For
instance, for a given action with 5 outcomes, the planner may decide that if
the action is executed at time step 3, it will yield the fourth outcome. In order
to fix the outcomes in advance, they are sampled for each time step. The
assignment of an outcome for each action at each time step is called future. If
for a given action and future no plan is found, then a penalty is applied to the
Q̂ value of that action in order to make it less appealing.

The method that we have outlined here has several advantages over the
other determinization methods: it makes the most of the probabilistic infor-
mation about the outcomes; it invokes a planner several times in order to base
the decision on multiple possibilities; and it is very robust against dead ends.
However, it also makes an intensive use of computational resources. Some
improvements have been suggested to reduce this intensive computation. One
of them is computing the Q̂ value of only a reduced set of actions. The set of
actions is called Probabilistically Helpful Actions. One way to compute such set

CHAPTER 3. DETERMINIZATION OF STOCHASTIC PROBLEMS 34

is to sample several futures, plan for all of them, and retrieve the first action of
each one. Another improvement is to identify prefixes that are common in all
the plans that start with the selected action. These are usually deterministic
actions and can be executed in sequence without resorting to the Hindsight
Optimization method for the intermediate states.

The original proposal only sets the outcomes of the actions up to a cer-
tain horizon, so one must have an idea of the expected length of the plans
before setting this horizon. The authors of the method have modified the
implementation of Fast Forward to incorporate Hindsight Optimization us-
ing non-stationary action expansion. We propose two method for performing
Hindsight Optimization with out-of-the-box planners, using exclusively PDDL
features, and that does not fix the horizon of planning. More specifically, we
use a wheel of outcomes, as shown inf Fig. 3.9.

t1
t2

t3t4t5

t6

t7

t8 o11

o11

o12

o11o11

o11

o11

o12

o22

o23

o22

o23o21

o23

o21

o22

global timestep
a1 outcomes
a2 outcomes

(a)

s11 o11

o11

o12

o11o11

o11

o11

o12

a2 status
a1 outcomes
a2 outcomes

s21 o22

o23

o22

o23o21

o23

o21

o22

s22
s23

s24s25

s26

s27

s28
s12
s13

s14s15

s16

s17

s18

a1 status

a1 wheel a2 wheel

(b)

Figure 3.9: (a) Global time step. Each action as an outcome associated to each time
step. The execution of any action makes the time step advance, potentially changing
the available outcome for the rest of the actions. (b) Local action status. Each action
has has associated an outcome for each of its internal statuses. The execution of an
action makes the internal status advance, but it will not change the available outcome
for the rest of the actions.

The first method is the closest to the author’s proposal. It is depicted in
Fig.3.9a. The outcome that each action will produce depends on the global
time step. However, time steps cycle as in a wheel, so the planner is not
constrained to plans that have lengths smaller than the horizon. What is
more important, this can be achieved using just PDDL:

CHAPTER 3. DETERMINIZATION OF STOCHASTIC PROBLEMS 35

• We introduce a (current-timestep ?t).

• Time steps are linked via several (next-timestep ?t1 ?t2) predicates.
These define the order of the time steps. The “last” time step is succeeded
by the “first” one.

• A predicate (applicable-ai-oj ?t) for each action ai and outcome aj .
This predicate tells, for every action, which outcome should be triggered
at each time step.

Then, the domain is determinized in an All-Outcome fashion, but modify-
ing the preconditions so that an action outcome can be executed only when is
applicable in the current time step. The effects are also modified to make the
time step advance. Since each action increments the time step, the execution
of an action alter the active outcome of the rest of the actions.

The second method is similar, but it maintains a local status for each action
rather than a global one. The execution of an action modifies exclusively its
own status, so the planner is forced to trigger bad outcomes if it wants more
beneficial effects from the same action. The method is depicted in Fig. 3.9b.

Fig. 3.10 gives an idea of the power of the hindsight optimization method
for discriminating good actions from bad ones. It shows the negative Q̂ value
obtained from two states of the rectangle-tireworld and the triangle-tireworld
domains (therefore, the lower the value, the more appealing the action is). We
can observe that the issue that was present with α-Cost-Transition-Likelihood
has been mitigated.

In the first case (Fig. 3.10a), the most promising action (and by a great
margin) is (move-r n1 n1 n2). This makes sense when we understand the
dynamics of the rectangle tireworld domain: the car moves in a rectangular grid
and can perform diagonal moves, that allow to reach the goal much quicker, but
sacrificing safety. The other three actions correspond to diagonal movements.

In the second case (Fig. 3.10b), the most promising action is to pick a
spare from the current position. This makes sense. Let us remind that in this
domain each displacement action has associated a risk of getting a flat tire, so
it is better to be prepared for the next displacement, even if the car is in good
state.

CHAPTER 3. DETERMINIZATION OF STOCHASTIC PROBLEMS 36

(a) (b)

Figure 3.10: (Negative) score of the assessed actions in a state of (a) the rectangle
tireworld domain and (b) the rectangle tireworld domain.

CHAPTER 4

SHORT HORIZON PLANNING

4.1 Rationale

The methods presented in the previous Chapter work with general domains.
However, we can take advantage of the structure of our particular problem.
The key observation is that the robot can focus on retrieving one of the com-
ponents, forgetting about the unrelated ones. That is, the planning problem
can be simplified in the presence of precedence relationships.

The main source of precedence in our case is partial occlusion. If a compo-
nent occludes another, it is a good candidate to be removed first. Even if it is
possible to remove an occluded component, removing first the occluding object
can lead to the discovery of a better affordance than those that have already
been detected. Therefore, a good strategy to gain in computational efficiency
and to increase the chances of success is to perform topological sorting based
on precedence relations, and disassemble first the components with no prece-
dences. The predicates that are not directly related to this component can
be removed from the state, easing the task for the planner. That is, we want
to enable the robot to focus its attention on a particular component of the
device. In this Chapter we consider the problem in its full form: the device is
composed of components that may hide each other. While some precedence re-
lations are observable (e.g. (partially-occludes ...)), others are not (e.g.
a hidden screw fixing a component on the other side). It is our intention to
deal successfully with both kind of precedences.

4.2 Simplifying the state

Let us consider an hypothetical hard drive scenario in which the lid and the
PCB have already been removed. The only remaining components left to
extract are the reader and the platter. The reader is fixed by a screw on the

37

CHAPTER 4. SHORT HORIZON PLANNING 38

other side, and at the same time is occluding part of the platter. It turns
out that the reader is hiding a high quality suction point. This scenario has
been represented as a graph in Fig. 4.1. This kind of representation is useful
to represent graphically the distribution of the components, and to operate
with its topological properties. Of course, the robot would not see the hidden
features, so it would be restricted to the view of Fig. 4.1b.

Now, let us see that the robot could remove the platter much more effi-
ciently if the reader was out of the way. However, when a planner is fed with
this state, it may determine that it is better to remove the platter first (let us
remember that the planner operates under the assumption of full observabil-
ity). However, we know that removing first the reader can potentially lead to
a much better scenario.

The strategy that we follow is to first identify the components without
partial occlusions. We select one of these components for removal (we show
in the next Section the criterion used to select the component). Then we
use breadth first search to identify the closest neighbors, since these are the
ones that are more prone to be relevant in the disassembly of the chosen
component. When invoking breadth first search, we do not navigate through
the partially-occluded edges in order to avoid the accidental inclusion of
the components that we want to avoid. The result of doing this in the state
of Fig. 4.1b can be shown in Fig. 4.1c. This is, in fact, a form of hierarchical
planning. We sort the tasks according to their precedences and solve them in
order, without caring about the rest.

4.3 Dealing with unseen precedences

In the previous section we dealt with observable precedences. However, we can
expect to encounter situations such as the one from Fig. 4.2. In this particular
scenario, the task that the robot has chosen to complete is impossible. This
is because it cannot possibly know that there is a hidden screw on the other
side of the hard disk keeping the reader in place. However, after a few trials,
we can reasonably assume that this task should be tried later.

When choosing one task to complete from the set of tasks with no visible
precedences and with no previous experience, the robot may choose any of
them. However, if it fails many times during the completion of the task, it
can assume that it has picked the wrong component to disassemble, and that
it should try another task. The robot can return the component back to the
goal stack, and select another one.

We have implemented this feature giving a score to each component. When-
ever the robot repeats the same action several times with no success, we de-
crease the score of the component and pick another available goal with a higher
score.

CHAPTER 4. SHORT HORIZON PLANNING 39

reader-a1
has-confidence(high)

pliers-point

platter
at-side(top)

loose
removable-component

platter-a0
has-confidence(low)

suction-point

has-affordance

platter-a1
has-confidence(high)

suction-point

has-affordance

reader-a0
has-confidence(low)

lever-point

reader
at-side(top)

removable-component

has-affordance

partially-occludes

has-affordance

hides-affordance

reader-s0
at-side(bottom)

screw
valid-sd(star-sd)

fixed-by

(a)

reader-a1
has-confidence(high)

pliers-point

platter
at-side(top)

loose
removable-component

platter-a0
has-confidence(low)

suction-point

has-affordance

reader-a0
has-confidence(low)

lever-point

reader
at-side(top)

removable-component

has-affordance

partially-occludes

has-affordance

reader-s0
at-side(bottom)

screw
valid-sd(star-sd)

fixed-by

(b)

reader-a1
has-confidence(high)

pliers-point

reader
at-side(top)

removable-component

has-affordance

reader-a0
has-confidence(low)

lever-point

has-affordance

reader-s0
at-side(bottom)

screw
valid-sd(star-sd)

fixed-by

(c)

Figure 4.1: (a) Simple hard drive scenario. The hidden nodes are shaded in gray, and
the hidden relations are represented as dashed edges. (b) The state that the robot
would actually see (i.e. without the hidden nodes/edges). (c) Simplified state after
removing the partial occlusions: the platter and its only detected affordance have
been removed. The robot can use this simplified state to focus on the removal of the
reader.

CHAPTER 4. SHORT HORIZON PLANNING 40

platter-a1
has-confidence(high)

suction-point

pcb-a0
has-confidence(high)

lever-point

platter-a0
has-confidence(low)

suction-point

reader-a1
has-confidence(high)

pliers-point

pcb-s0
at-side(bottom)

screw
valid-sd(flat-sd)

pcb
at-side(bottom)

removable-component has-affordance

fixed-by

reader-s0
at-side(bottom)

screw
valid-sd(star-sd)

hides-component platter
at-side(top)

loose
removable-component

has-affordance

has-affordance

reader-a0
has-confidence(low)

lever-point

reader
at-side(top)

removable-component hides-affordance

has-affordance

fixed-by

partially-occludes

has-affordance

(a)

reader
at-side(top)

removable-component

platter
at-side(top)

loose
removable-componentpartially-occludes

reader-a1
has-confidence(high)

pliers-point

has-affordance

reader-a0
has-confidence(low)

lever-point

has-affordance

platter-a0
has-confidence(low)

suction-point

pcb-s0
at-side(bottom)

screw
valid-sd(flat-sd)pcb

at-side(bottom)
removable-component

fixed-by

pcb-a0
has-confidence(high)

lever-point

has-affordance

has-affordance

(b)

reader
at-side(top)

removable-component

reader-a1
has-confidence(high)

pliers-point
has-affordance

reader-a0
has-confidence(low)

lever-point

has-affordance

(c)

Figure 4.2: (a) Complex distribution with one hidden precedence: there is one hidden
screw below the PCB blocking the reader. (b) The state that the robot would actually
see (i.e. without the hidden nodes/edges). Note that, in particular, the reader seems
to have no precedence. (c) Simplified state after removing the partial occlusions,
focused on the reader. The robot will never succeed removing the it.

CHAPTER 5

EXPERIMENTAL EVALUATION

5.1 Implementation

For the purpose of experimenting with the ideas presented here, we have im-
plemented a planning toolbox in the Python language. Our toolbox contains a
(P)PDDL parser and data structures to represent internally the domains and
problems as Python classes and manipulate them. We have also implemented
a PPDDL simulator that reads problem descriptions and simulates the prob-
abilistic effects of actions. This simulator has been employed to obtain the
results that are presented in this section. Our implementation is available in
a public Github repositoy1.

Our tools use the Fast Forward and Fast Downward planners to solve PDDL
problems.

On the one hand, we want to perform a quantitative assessment of the
determinization techniques described in Chapter 3. To do so, we resort to
several problems from the IPPC 2018 (some of them already introduced in the
previous sections). We also include some problems from our “terrain” domain
(used to illustrate the α-Cost-Transition-Likelihood method) and instances of
our own Imagine domain, described in Chapter 2 and shown in Annex A.

On the one hand, we assess qualitatively the techniques for simplifying
and limiting the planning horizon. We use a modified version of our simulator
to perform these experiments. The modifications consist in removing all the
predicates that should not be available to the robot due to occlusions.

5.2 Experiments with determinization techniques

We have considered the following planner configurations:
1https://github.com/sprkrd/planning_tools

41

https://github.com/sprkrd/planning_tools

CHAPTER 5. EXPERIMENTAL EVALUATION 42

• ml-ff: Single-Outcome determinizer that selects the most likely outcome.
Uses Fast Forward as a back-up planner.

• ma-ff: Same as the previous one, but selects the outcome that sets more
predicates to true.

• ao-ff: All-Outcome determinizer. Uses Fast Forward as a back-up plan-
ner.

• alph-1.0: α-Cost-Transition-Likelihood Determinizer with α = 1. Uses
Fast Downward as a back-up planner, configured to run A* search with
the CEA (Context Enhanced Additive) heuristic.

• alph-0.2: Same as previous but with α = 0.2.

• alph-0.1: Same as previous but with α = 0.1.

• alph-0.0: Same as previous but with α = 0.0.

• ho-lo-30: Hindsight Optimizer with a wheel of size 30 and local state
counter. Uses Fast Forward as a back-up planner.

• ho-lo-15: Same as previous but a wheel of size 15.

• ho-gl-30: Hindsight Optimizer with a wheel of size 30 and a global time
step. Uses Fast Forward as a back-up planner.

• ho-lo-15: Same as previous but a wheel of size 15.

The experiments have been conducted as follows: for each domain we have
considered several problem instances and run all the determinizing agents ex-
ecuting actions against the simulator. Every agent tries to solve 10 episodes of
each problem. The simulator accepts one action per step and then returns the
state that results from the execution of that action. All the episodes have a
timeout of 180 seconds (3 minutes). We have compiled the following statistics:

• S: number of successful episodes.

• C: average cost (only for the successful episodes).

• E: time spent per episode.

The results are shown in Table 5.1 for the IPPC 2008 problems. The results
for the Imagine and “terrain” domains are shown in Table 5.2.

One of our first observations is that there are barely results for the Hind-
sight Optimization techniques. The reason is that our implementation takes
too much time to select an action, and the time out almost always triggered
canceling the execution. Note that we do have results for the two tireworld
problems, and that they perform better than most of the remaining planners.

CHAPTER 5. EXPERIMENTAL EVALUATION 43

Table 5.1: Results of the experiments with the IPPC2008 domains

Problem ex-blocksworld zenotravel
Determinizer S C E S C E

ml-ff 34/50 (68%) 9.35 0.02 20/20 (100%) 66.60 0.02
ma-ff 10/50 (20%) 5.00 0.03 20/20 (100%) 48.35 0.02
ao-ff 31/50 (62%) 9.06 0.02 20/20 (100%) 61.10 0.02

alph-1.0 29/50 (58%) 8.72 0.14 20/20 (100%) 59.90 0.15
alph-0.2 28/50 (56%) 8.07 0.15 20/20 (100%) 57.65 0.14
alph-0.1 34/50 (68%) 9.06 0.14 20/20 (100%) 70.35 0.15
alph-0.0 33/50 (66%) 8.76 0.13 20/20 (100%) 36.85 0.14
ho-lo-30 - - - - - -
ho-lo-15 - - - - - -
ho-gl-30 - - - - - -
ho-gl-15 - - - - - -
Problem triangle-tw rectangle-tw

Determinizer S C E S C E
ml-ff 50/50 (100%) 21.28 0.10 11/30 (36.67%) 6.27 0.01
ma-ff 50/50 (100%) 21.04 0.09 16/30 (53.33%) 4.94 0.01
ao-ff 8/50 (16%) 2.25 0.01 11/30 (36.67%) 6.09 0.01

alph-1.0 6/50 (12%) 3.33 0.08 13/30 (43.33%) 4.46 0.12
alph-0.2 6/50 (12%) 2.67 0.07 9/30 (30%) 4.22 0.11
alph-0.1 6/50 (12%) 2.33 0.08 9/30 (30%) 4.67 0.12
alph-0.0 7/50 (14%) 2.29 0.07 15/30 (50%) 4.53 0.12
ho-lo-30 49/50 (98%) 20.78 20.01 30/30 (100%) 10.63 40.64
ho-lo-15 46/50 (92%) 21.30 8.45 24/30 (80%) 9.88 11.09
ho-gl-30 49/50 (98%) 21.80 27.74 27/30 (90%) 10.19 33.91
ho-gl-15 47/50 (94%) 21.26 17.71 25/30 (83.33%) 10.12 18.06
Problem blocksworld schedule

Determinizer S C E S C E
ml-ff 30/30 (100%) 45.17 0.02 0/50 (0%) - -
ma-ff 30/30 (100%) 45.93 0.03 30/50 (60%) 24.20 0.02
ao-ff 30/30 (100%) 43.23 0.05 30/50 (60%) 23.20 0.02

alph-1.0 30/30 (100%) 15.40 0.13 50/50 (100%) 27.00 0.17
alph-0.2 30/30 (100%) 15.73 0.14 50/50 (100%) 34.14 0.18
alph-0.1 30/30 (100%) 15.67 0.13 50/50 (100%) 27.18 0.17
alph-0.0 30/30 (100%) 14.97 0.13 50/50 (100%) 30.24 0.17
ho-lo-30 - - - - - -
ho-lo-15 - - - - - -
ho-gl-30 - - - - - -
ho-gl-15 - - - - - -

CHAPTER 5. EXPERIMENTAL EVALUATION 44

Table 5.2: Results of the experiments with the ”terrain“ and the recycling domain
(“imagine”)

Problem terrain imagine
Determinizer S C E S C E

ml-ff 21/30 (70%) 8.33 0.01 23/50 (46%) 20.30 0.04
ma-ff 10/30 (33.33%) 21.00 0.02 32/50 (64%) 21.81 0.06
ao-ff 14/30 (46.67%) 7.43 0.01 24/50 (48%) 20.29 0.06

alph-1.0 20/30 (66.67%) 7.80 0.10 32/50 (64%) 23.09 0.61
alph-0.2 21/30 (70%) 7.95 0.10 29/50 (58%) 22.90 0.61
alph-0.1 27/30 (90%) 10.33 0.11 35/50 (70%) 26.03 0.77
alph-0.0 30/30 (100%) 20.67 0.11 34/50 (68%) 22.44 0.65
ho-lo-30 - - - - - -
ho-lo-15 - - - - - -
ho-gl-30 - - - - - -
ho-gl-15 - - - - - -

In the triangle tireworld problem, the hindsight optimizers are only outper-
formed by the Single-Outcome approaches. This is the serendipitous effect
of the Single-Outcome Determinizers selecting the right outcome out of co-
incidence. The one using the maximum likelihood criterion chose the worst
outcome for the move action (the one that always results in a flat tire) by
mere chance, since both outcomes have a 50% of probability. The same ap-
plies to the Single-Outcome determinizer that selects the outcome with the
largest number of add effects, since both outcomes share the same number
of additions. However, the Hindsight Optimizers are the clear winners in the
rectangle tireworld domain.

α-Cost-Transition-Likelihood exhibits very good performance in the terrain
domain and imagine domains. They have a reasonable success rate with a low
enough α.

5.3 Hierarchical planning

We have combined all the techniques presented here to build a decision maker
capable of deciding intelligent sequences of instructions to fully disassemble
a hard drive. Fig. 5.1 shows a plan trace. Preliminary experiments seem
promising in the sense that the task decomposition makes sense and episodes
are usually computed with success against the simulator.

CHAPTER 5. EXPERIMENTAL EVALUATION 45

Starting ...
[1.195s] Executed (grab-device)
[1.196s] Executed (flip top bottom)
[1.197s] Executed (place-device)
[1.197s] Executed (pick-tool star-sd power)
[1.198s] Executed (unscrew-power-non-stuck pcb-s4 star-sd bottom)
[1.633s] Executed (put-away-tool star-sd power)
[1.633s] Executed (pick-tool flat-sd power)
[1.634s] Executed (unscrew-power-non-stuck pcb-s0 flat-sd bottom)
[1.926s] Executed (unscrew-power-non-stuck pcb-s1 flat-sd bottom)
[2.192s] Executed (unscrew-power-non-stuck pcb-s2 flat-sd bottom)
[2.444s] Executed (unscrew-power-non-stuck pcb-s3 flat-sd bottom)
[2.676s] Executed (assert-clear pcb)
[2.677s] Executed (lever-power-high-confidence pcb pcb-a3 bottom)
[2.678s] Executed (check-removed pcb bottom)
[2.911s] Executed (put-away-tool flat-sd power)
[2.912s] Executed (grab-device)
[2.913s] Executed (flip bottom top)
[2.913s] Executed (place-device)
[2.914s] Executed (pick-tool flat-sd power)
[2.915s] Executed (unscrew-power-non-stuck lid-s0 flat-sd top)
[3.132s] Executed (assert-clear lid)
[3.133s] Executed (lever-power-medium-confidence lid lid-a0 top)
[3.134s] Executed (check-removed lid top)
[3.364s] Executed (put-away-tool flat-sd power)
[3.365s] Executed (grab-device)
[3.366s] Executed (flip top bottom)
[3.366s] Executed (place-device)
[3.367s] Executed (pick-tool star-sd power)
[3.368s] Executed (unscrew-power-non-stuck reader-s0 star-sd bottom)
[3.587s] Executed (put-away-tool star-sd power)
[3.588s] Executed (grab-device)
[3.589s] Executed (flip bottom top)
[3.589s] Executed (place-device)
[3.590s] Executed (pick-tool pliers power)
[3.591s] Executed (assert-clear reader)
[3.592s] Executed (extract-with-pliers-high-confidence reader reader-a1 top)
[3.594s] Executed (check-removed reader top)
[3.823s] Executed (put-away-tool pliers power)
[3.824s] Executed (grab-device)
[3.825s] Executed (flip top bottom)
[3.825s] Executed (assert-clear platter)
[3.826s] Executed (let-fall-down platter top bottom)
[3.827s] Executed (flip bottom top)
[3.828s] Executed (check-removed platter top)
[3.828s] Stopped after 44 step(s). Success!

Figure 5.1: Plan trace for the disassembly of a full hard disk.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

We have explored several techniques for dealing with problems from a recycling
domain from the planning perspective. We have used the MDP formalization,
combined with task decomposition and automatic identification of precedences
to bound the complexity o planning.

Perhaps the main point to improve of our project is the implementation of
the Hindsight Optimizer, since it seems unable to do timely decisions in most of
the problems. However, for our purposes α-Cost-Transition-Likelihood seemed
to perform well. In the future we would like to explore options to make this
determinization method more robust against dead-ends.

While the simplification of the planning problems, as described in Chap-
ter 4 seems good from a conceptual point of view, we still have to find problems
that are complex enough to show its virtues.

46

BIBLIOGRAPHY

[1] Gerard Canal, Guillem Alenyà, and Carme Torras. “Adapting robot task
planning to user preferences: an assistive shoe dressing example”. In:
Autonomous Robots (2018). To appear.

[2] Antonio Andriella et al. “Deciding the different robot roles for patient
cognitive training”. In: International Journal of Human-Computer Stud-
ies (2018).

[3] Narcís Palomeras et al. “Toward persistent autonomous intervention in
a subsea panel”. In: Autonomous Robots 40.7 (2016), pp. 1279–1306.

[4] Sylvie C.W. Ong et al. “Planning under uncertainty for robotic tasks with
mixed observability”. In: The International Journal of Robotics Research
29.8 (2010), pp. 1053–1068.

[5] Maria Fox and Derek Long. “PDDL2. 1: An extension to PDDL for ex-
pressing temporal planning domains”. In: Journal of artificial intelligence
research (2003).

[6] Håkan LS Younes and Michael L Littman. “PPDDL1.0: An extension
to PDDL for expressing planning domains with probabilistic effects”. In:
Techn. Rep. CMU-CS-04-162 (2004).

[7] Scott Sanner. “Relational dynamic influence diagram language (RDDL):
Language description”. In: Unpublished ms. Australian National Univer-
sity (2010). url: http://rddlsim.googlecode.com/svn-history/
r42/trunk/doc/RDDL.pdf.

[8] Anthony Cassandra. POMDP File Format. Online; accessed 10 June
2018. url: http://www.pomdp.org/code/pomdp-file-spec.html.

[9] David Hsu, Wee Sun Lee, et al. PomdpX File Format (version 1.0).
Online; accessed 10 June 2018. url: http://bigbird.comp.nus.edu.
sg/pmwiki/farm/appl/index.php?n=Main.PomdpXDocumentation.

47

http://rddlsim.googlecode.com/svn-history/r42/trunk/doc/RDDL.pdf
http://rddlsim.googlecode.com/svn-history/r42/trunk/doc/RDDL.pdf
http://www.pomdp.org/code/pomdp-file-spec.html
http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.PomdpXDocumentation
http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.PomdpXDocumentation

BIBLIOGRAPHY 48

[10] David Martínez, Guillem Alenyà, and Carme Torras. “Relational rein-
forcement learning with guided demonstrations”. In: Artificial Intelli-
gence 247 (2017), pp. 295–312.

[11] David Martínez Martínez, Guillem Alenya, and Carme Torras. “V-MIN:
Efficient Reinforcement Learning through Demonstrations and Relaxed
Reward Demands.” In: AAAI. 2015, pp. 2857–2863.

[12] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. 2nd Editio. Draft. The MIT Press, June 2018. url: http:
//incompleteideas.net/book/the-book-2nd.html.

[13] Jörg Hoffman and Bernhard Nebel. “The FF Planning System: Fast
Plan Generation Through Heuristic Search”. In: Journal of Artificial
Intelligence Research 14.27 (2001), pp. 253–302. issn: 10769757. doi:
10.1613/jair.855. arXiv: 1106.0675.

[14] Malte Helmert. “The Fast Downward Planning System”. In: Journal of
Artificial Intelligence Research 26 (2006), pp. 191–246.

[15] Sungwook Yoon, Alan Fern, and Robert Givan. “FF-Replan: A base-
line for probabilistic planning”. In: 17th International Conference on
Automated Planning and Scheduling (ICAPS). 7. 2007, pp. 352–359.
isbn: 9781577353447 (ISBN). url: http://www.scopus.com/inward/
record.url?eid=2-s2.0-58349118462%7B%5C&%7DpartnerID=40%7B%
5C&%7Dmd5=8abd5307b4dee9aa40248bbe6c51d389.

[16] Leslie Pack Kaelbling and Tomás Lozano-Pérez. “Integrated task and mo-
tion planning in belief space”. In: The International Journal of Robotics
Research 32.9-10 (2013), pp. 1194–1227. issn: 0278-3649. doi: 10.1177/
0278364913484072. url: http://ijr.sagepub.com/content/32/9-
10/1194.abstract?etoc.

[17] Sungwook Yoon et al. “Probabilistic Planning via Determinization in
Hindsight”. In: AAAI (2008), pp. 1010–1016. url: http://www.aaai.
org/Papers/AAAI/2008/AAAI08-160.pdf.

[18] Sungwook Yoon et al. “Improving determinization in hindsight for online
probabilistic planning”. In: 20th International Conference on Automated
Planning and Scheduling. 2010, pp. 209–216. isbn: 9781577354499. url:
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS10/paper/
viewFile/1438/1561.

[19] Andrey Kolobov, Mausam, and Daniel S. Weld. “LRTDP vs. UCT for
Online Probabilistic Planning”. In: 26th AAAI Conference on Artificial
Intelligence. 2012, pp. 1786–1792. isbn: 9781577355687.

[20] Thomas Keller and Malte Helmert. “Trial-based Heuristic Tree Search
for Finite Horizon MDPs”. In: Proceeding of the Twenty-Third Inter-
national Conference on Automated Planning and Scheduling (ICAPS)
(2013), pp. 135–143. doi: 1011377.3524.

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://dx.doi.org/10.1613/jair.855
http://arxiv.org/abs/1106.0675
http://www.scopus.com/inward/record.url?eid=2-s2.0-58349118462%7B%5C&%7DpartnerID=40%7B%5C&%7Dmd5=8abd5307b4dee9aa40248bbe6c51d389
http://www.scopus.com/inward/record.url?eid=2-s2.0-58349118462%7B%5C&%7DpartnerID=40%7B%5C&%7Dmd5=8abd5307b4dee9aa40248bbe6c51d389
http://www.scopus.com/inward/record.url?eid=2-s2.0-58349118462%7B%5C&%7DpartnerID=40%7B%5C&%7Dmd5=8abd5307b4dee9aa40248bbe6c51d389
http://dx.doi.org/10.1177/0278364913484072
http://dx.doi.org/10.1177/0278364913484072
http://ijr.sagepub.com/content/32/9-10/1194.abstract?etoc
http://ijr.sagepub.com/content/32/9-10/1194.abstract?etoc
http://www.aaai.org/Papers/AAAI/2008/AAAI08-160.pdf
http://www.aaai.org/Papers/AAAI/2008/AAAI08-160.pdf
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS10/paper/viewFile/1438/1561
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS10/paper/viewFile/1438/1561
http://dx.doi.org/1011377.3524

BIBLIOGRAPHY 49

[21] Blai Bonet and Héctor Geffner. “Labeled RTDP : Improving the Conver-
gence of Real-Time Dynamic Programming”. In: International Confer-
ence on Automated Planning and Scheduling (ICAPS). 3. 2003, pp. 12–
21. url: http://www.aaai.org/Papers/ICAPS/2003/ICAPS03-002.
pdf.

[22] Levente Kocsis and Csaba Szepesvári. “Bandit Based Monte-Carlo Plan-
ning”. In: European conference on machine learning (2006), pp. 282–
293. issn: 03029743. doi: 10.1007/11871842_29. url: http://link.
springer.com/10.1007/11871842%7B%5C_%7D29.

[23] Alejandro Suárez-Hernández, Guillem Alenyà, and Carme Torras. “Inter-
leaving hierarchical task planning and motion constraint testing for dual-
arm manipulation”. In: International Conference on Intelligent Robots
and Systems. Submitted. 2018.

[24] Leslie Pack Kaelbling and Tomás Lozano-Pérez. “Hierarchical task and
motion planning in the now”. In: International Conference on Robotics
and Automation (2011), pp. 1470–1477. issn: 10504729. doi: 10.1109/
ICRA.2011.5980391. url: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5980391.

[25] Haje J. Kamps. Apple creates Liam, a robot to rip apart used iPhones.
Online; accessed 10 June 2018. 2016. url: https://techcrunch.com/
2016/03/21/apple-creates-robot-to-rip-apart-iphones/.

[26] F. Torres, S. T. Puente, and R Aracil. “Disassembly Planning Based on
Precedence Relations among Assemblies”. In: The International Journal
of Advanced Manufacturing Technology 21.5 (2003), pp. 317–327.

[27] Liangjun Zhang et al. “D-plan: Efficient collision-free path computa-
tion for part removal and disassembly”. In: Computer-Aided Design and
Applications 5.6 (2008), pp. 774–786. issn: 16864360. doi: 10.3722/
cadaps.2008.774-786.

[28] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern ap-
proach. Malaysia; Pearson Education Limited, 2016.

[29] Iain Little, Sylvie Thiebaux, et al. “Probabilistic planning vs. replan-
ning”. In: ICAPS Workshop on IPC: Past, Present and Future. 2007.

http://www.aaai.org/Papers/ICAPS/2003/ICAPS03-002.pdf
http://www.aaai.org/Papers/ICAPS/2003/ICAPS03-002.pdf
http://dx.doi.org/10.1007/11871842_29
http://link.springer.com/10.1007/11871842%7B%5C_%7D29
http://link.springer.com/10.1007/11871842%7B%5C_%7D29
http://dx.doi.org/10.1109/ICRA.2011.5980391
http://dx.doi.org/10.1109/ICRA.2011.5980391
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5980391
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5980391
https://techcrunch.com/2016/03/21/apple-creates-robot-to-rip-apart-iphones/
https://techcrunch.com/2016/03/21/apple-creates-robot-to-rip-apart-iphones/
http://dx.doi.org/10.3722/cadaps.2008.774-786
http://dx.doi.org/10.3722/cadaps.2008.774-786

APPENDIX A

PPDDL DOMAIN FOR THE RECYCLING
APPLICATION

A.1 Robot version

This version of the domain does not contain the hide-... predicates, since
the robot should not be aware of them:
1
2 ; Client version. hide predicates are removed (the client shouldn ’t be aware
3 ; of them
4
5 (define (domain imagine)
6 (: requirements :adl :rewards :probabilistic-effects)
7 (:types component side mode tool affordance affordance-confidence - object
8 removable-component static-component - component
9 lever-point suction-point pliers-point - affordance

10 screwdriver - tool
11 screw - removable-component
12)
13
14 (: constants
15 top bottom front back left right - side
16 low medium high - affordance-confidence
17 scara power no-mode - mode
18 flat-sd star-sd - screwdriver
19 hammer suction-tool pliers cutter no-tool - tool
20)
21
22 (: predicates
23 (has-affordance ?c - removable-component ?a - affordance)
24 (has-confidence ?a - affordance ?c - affordance-confidence)
25 (broken-component ?c - removable-component)
26 (broken-tool ?t - tool)
27 (connected ?c1 ?c2 - component)
28 (clear ?c - removable-component)
29 (current-mode ?m - mode)
30 (current-side ?s - side)
31 (current-tool ?t - tool)
32 (held)
33 (fixed-by ?c - removable-component ?s - screw)
34 (loose ?c - removable-component)
35 (partially-occludes ?c1 ?c2 - component)
36 (removed-non-verified ?c - removable-component)
37 (removed-verified ?c - removable-component)
38 (stuck ?s - screw)

50

APPENDIX A. PPDDL DOMAIN FOR THE RECYCLING
APPLICATION 51

39 ; static predicates
40 (opposite-side ?s1 ?s2 - side)
41 (at-side ?c - component ?s - side)
42 (valid-mode ?t - tool ?m - mode)
43 (valid-sd ?s - screw ?sd - screwdriver)
44)
45
46 ;#########################
47 ;# DETERMINISTIC ACTIONS #
48 ;#########################
49
50 (: action check-removed
51 :parameters (?comp - removable-component ?side - side)
52 :precondition (and
53 (current-side ?side)
54 (at-side ?comp ?side)
55 (removed-non-verified ?comp)
56)
57 :effect (and
58 (forall (?other - component)(not (partially-occludes ?comp ?other)))
59 (not (at-side ?comp ?side))
60 (not (removed-non-verified ?comp))
61 (removed-verified ?comp)
62)
63)
64
65 (: action assert-clear
66 :parameters (?comp - removable-component)
67 :precondition (and
68 (not (clear ?comp))
69 (forall (?screw - screw) (not (fixed-by ?comp ?screw)))
70 (forall (?other - component)
71 (and (not (connected ?comp ?other)) (not (connected ?other ?comp))))
72)
73 :effect (clear ?comp)
74)
75
76 (: action pick-tool
77 :parameters (?tool - tool ?mode - mode)
78 :precondition (and
79 (not (= ?tool no-tool))
80 (not (= ?mode no-mode))
81 (imply (held) (not (= ?mode power)))
82 (current-tool no-tool)
83 (current-mode no-mode)
84 (valid-mode ?tool ?mode)
85)
86 :effect (and
87 (not (current-tool no-tool))
88 (not (current-mode no-mode))
89 (current-tool ?tool)
90 (current-mode ?mode)
91 (decrease (reward) 1)
92)
93)
94
95 (: action put-away-tool
96 :parameters (?tool - tool ?mode - mode)
97 :precondition (and
98 (not (= ?tool no-tool))
99 (not (= ?mode no-mode))

100 (current-tool ?tool)
101 (current-mode ?mode)
102)
103 :effect (and
104 (not (current-tool ?tool))
105 (not (current-mode ?mode))
106 (current-tool no-tool)
107 (current-mode no-mode)
108 (decrease (reward) 1)
109)
110)
111
112 (: action grab-device

APPENDIX A. PPDDL DOMAIN FOR THE RECYCLING
APPLICATION 52

113 :parameters ()
114 :precondition (and
115 (not (held))
116 (not (current-mode power))
117)
118 :effect (and (held) (decrease (reward) 1))
119)
120
121 (: action place-device
122 :parameters ()
123 :precondition (held)
124 :effect (and (not (held)) (decrease (reward) 1))
125)
126
127 (: action flip
128 :parameters (? old-side - side ?new-side - side)
129 :precondition (and (current-side ?old-side) (held))
130 :effect (and
131 (not (current-side ?old-side))
132 (current-side ?new-side)
133 (decrease (reward) 1)
134)
135)
136
137 (: action let-fall-down
138 :parameters (?comp - removable-component ?side ?side-opposite - side)
139 :precondition (and
140 (held)
141 (at-side ?comp ?side)
142 (opposite-side ?side ?side-opposite)
143 (current-side ?side-opposite)
144 (loose ?comp)
145 (clear ?comp)
146 (forall (?comp_ - component) (not (partially-occludes ?comp_ ?comp)))
147)
148 :effect (and
149 (removed-non-verified ?comp)
150 (decrease (reward) 1)
151)
152)
153
154 (: action cut-connector
155 :parameters (?c1 ?c2 - component ?side - side)
156 :precondition (and
157 (current-tool cutter)
158 (imply (not (held)) (current-mode power))
159 (connected ?c1 ?c2)
160 (current-side ?side)
161 (or (at-side ?c1 ?side) (at-side ?c2 ?side))
162)
163 :effect (and
164 (not (connected ?c1 ?c2))
165 (not (connected ?c2 ?c1))
166 (decrease (reward) 1)
167)
168)
169
170 ;#######################
171 ;# UNSCREW (4 ACTIONS) #
172 ;#######################
173
174 (: action unscrew-scara-non-stuck
175 :parameters (?screw - screw ?sd - screwdriver ?side - side)
176 :precondition (and
177 (not (broken-component ?screw))
178 (not (broken-tool ?sd))
179 (not (stuck ?screw))
180 (current-mode scara)
181 (current-side ?side)
182 (at-side ?screw ?side)
183 (current-tool ?sd)
184 (valid-sd ?screw ?sd)
185)
186 :effect (and

APPENDIX A. PPDDL DOMAIN FOR THE RECYCLING
APPLICATION 53

187 (probabilistic
188 0.60 (and
189 (forall (?comp - removable-component) (not (fixed-by ?comp ?screw)))
190 (not (at-side ?screw ?side))
191 (removed-verified ?screw))
192 0.15 (stuck ?screw)
193)
194 (decrease (reward) 1)
195)
196)
197
198 (: action unscrew-scara-stuck
199 :parameters (?screw - screw ?sd - screwdriver ?side - side)
200 :precondition (and
201 (not (broken-component ?screw))
202 (not (broken-tool ?sd))
203 (stuck ?screw)
204 (current-mode scara)
205 (current-side ?side)
206 (at-side ?screw ?side)
207 (current-tool ?sd)
208 (valid-sd ?screw ?sd)
209)
210 :effect (and
211 (probabilistic
212 0.2 (and
213 (forall (?comp - removable-component) (not (fixed-by ?comp ?screw)))
214 (not (at-side ?screw ?side))
215 (removed-verified ?screw))
216)
217 (decrease (reward) 1)
218)
219)
220
221 (: action unscrew-power-non-stuck
222 :parameters (?screw - screw ?sd - screwdriver ?side - side)
223 :precondition (and
224 (not (broken-component ?screw))
225 (not (broken-tool ?sd))
226 (not (stuck ?screw))
227 (current-mode power)
228 (current-side ?side)
229 (at-side ?screw ?side)
230 (current-tool ?sd)
231 (valid-sd ?screw ?sd)
232)
233 :effect (and
234 (probabilistic
235 0.85 (and
236 (forall (?comp - removable-component) (not (fixed-by ?comp ?screw)))
237 (not (at-side ?screw ?side))
238 (removed-verified ?screw))
239 0.15 (stuck ?screw)
240)
241 (decrease (reward) 1)
242)
243)
244
245 (: action unscrew-power-stuck
246 :parameters (?screw - screw ?sd - screwdriver ?side - side)
247 :precondition (and
248 (not (broken-component ?screw))
249 (not (broken-tool ?sd))
250 (stuck ?screw)
251 (current-mode power)
252 (current-side ?side)
253 (at-side ?screw ?side)
254 (current-tool ?sd)
255 (valid-sd ?screw ?sd)
256)
257 :effect (and
258 (probabilistic
259 0.75 (and
260 (forall (?comp - removable-component) (not (fixed-by ?comp ?screw)))

APPENDIX A. PPDDL DOMAIN FOR THE RECYCLING
APPLICATION 54

261 (not (at-side ?screw ?side))
262 (removed-verified ?screw))
263 0.10 (broken-component ?screw)
264)
265 (probabilistic 0.10 (broken-tool ?sd))
266 (decrease (reward) 1)
267)
268)
269
270 ;########
271 ;# BASH #
272 ;########
273
274 (: action bash
275 :parameters (?comp - removable-component ?side - side)
276 :precondition (and
277 (not (broken-component ?comp))
278 (not (broken-tool hammer))
279 (at-side ?comp ?side)
280 (current-side ?side)
281 (current-tool hammer)
282 (forall (?comp_ - component) (not (partially-occludes ?comp_ ?comp)))
283)
284 :effect (and
285 (probabilistic
286 0.25 (and
287 (forall (?screw - screw) (not (fixed-by ?comp ?screw)))
288 (forall (?screw - screw ?side_ - side) (not (at-side ?screw ?side_)))
289 (probabilistic 0.5 (loose ?comp))
290)
291 0.10 (broken-component ?comp))
292 (probabilistic 0.05 (broken-tool hammer))
293 (decrease (reward) 1)
294)
295)
296
297 ;#####################
298 ;# LEVER (6 ACTIONS) #
299 ;#####################
300
301 (: action lever-scara-low-confidence
302 :parameters (?comp - removable-component
303 ?lp - lever-point
304 ?side - side)
305 :precondition (and
306 (not (broken-component ?comp))
307 (not (broken-tool flat-sd))
308 (at-side ?comp ?side)
309 (has-affordance ?comp ?lp)
310 (has-confidence ?lp low)
311 (current-side ?side)
312 (current-tool flat-sd)
313 (current-mode scara)
314 (imply (not (held)) (current-mode power))
315 (clear ?comp)
316)
317 :effect (and
318 (probabilistic
319 0.10 (and (loose ?comp)
320 (when (loose ?comp) (removed-non-verified ?comp)))
321 0.05 (removed-non-verified ?comp)
322 0.25 (broken-component ?comp)
323)
324 (probabilistic 0.25 (broken-tool flat-sd))
325 (decrease (reward) 1)
326)
327)
328
329 (: action lever-scara-medium-confidence
330 :parameters (?comp - removable-component
331 ?lp - lever-point
332 ?side - side)
333 :precondition (and
334 (not (broken-component ?comp))

APPENDIX A. PPDDL DOMAIN FOR THE RECYCLING
APPLICATION 55

335 (not (broken-tool flat-sd))
336 (at-side ?comp ?side)
337 (has-affordance ?comp ?lp)
338 (has-confidence ?lp medium)
339 (current-side ?side)
340 (current-tool flat-sd)
341 (current-mode scara)
342 (imply (not (held)) (current-mode power))
343 (clear ?comp)
344)
345 :effect (and
346 (probabilistic
347 0.25 (and (loose ?comp)
348 (when (loose ?comp) (removed-non-verified ?comp)))
349 0.10 (removed-non-verified ?comp)
350 0.12 (broken-component ?comp)
351)
352 (probabilistic 0.12 (broken-tool flat-sd))
353 (decrease (reward) 1)
354)
355)
356
357 (: action lever-scara-high-confidence
358 :parameters (?comp - removable-component
359 ?lp - lever-point
360 ?side - side)
361 :precondition (and
362 (not (broken-component ?comp))
363 (not (broken-tool flat-sd))
364 (at-side ?comp ?side)
365 (has-affordance ?comp ?lp)
366 (has-confidence ?lp high)
367 (current-side ?side)
368 (current-tool flat-sd)
369 (current-mode scara)
370 (imply (not (held)) (current-mode power))
371 (clear ?comp)
372)
373 :effect (and
374 (probabilistic
375 0.60 (and (loose ?comp)
376 (when (loose ?comp) (removed-non-verified ?comp)))
377 0.30 (removed-non-verified ?comp)
378 0.05 (broken-component ?comp)
379)
380 (probabilistic 0.05 (broken-tool flat-sd))
381 (decrease (reward) 1)
382)
383)
384
385 (: action lever-power-low-confidence
386 :parameters (?comp - removable-component
387 ?lp - lever-point
388 ?side - side)
389 :precondition (and
390 (not (broken-component ?comp))
391 (not (broken-tool flat-sd))
392 (at-side ?comp ?side)
393 (has-affordance ?comp ?lp)
394 (has-confidence ?lp low)
395 (current-side ?side)
396 (current-tool flat-sd)
397 (current-mode power)
398 (imply (not (held)) (current-mode power))
399 (clear ?comp)
400)
401 :effect (and
402 (probabilistic
403 0.05 (and (loose ?comp)
404 (when (loose ?comp) (removed-non-verified ?comp)))
405 0.10 (removed-non-verified ?comp)
406 0.25 (broken-component ?comp)
407)
408 (probabilistic 0.25 (broken-tool flat-sd))

APPENDIX A. PPDDL DOMAIN FOR THE RECYCLING
APPLICATION 56

409 (decrease (reward) 1)
410)
411)
412
413 (: action lever-power-medium-confidence
414 :parameters (?comp - removable-component
415 ?lp - lever-point
416 ?side - side)
417 :precondition (and
418 (not (broken-component ?comp))
419 (not (broken-tool flat-sd))
420 (at-side ?comp ?side)
421 (has-affordance ?comp ?lp)
422 (has-confidence ?lp medium)
423 (current-side ?side)
424 (current-tool flat-sd)
425 (current-mode power)
426 (imply (not (held)) (current-mode power))
427 (clear ?comp)
428)
429 :effect (and
430 (probabilistic
431 0.20 (and (loose ?comp)
432 (when (loose ?comp) (removed-non-verified ?comp)))
433 0.50 (removed-non-verified ?comp)
434 0.25 (broken-component ?comp)
435)
436 (probabilistic 0.12 (broken-tool flat-sd))
437 (decrease (reward) 1)
438)
439)
440
441 (: action lever-power-high-confidence
442 :parameters (?comp - removable-component
443 ?lp - lever-point
444 ?side - side)
445 :precondition (and
446 (not (broken-component ?comp))
447 (not (broken-tool flat-sd))
448 (at-side ?comp ?side)
449 (has-affordance ?comp ?lp)
450 (has-confidence ?lp high)
451 (current-side ?side)
452 (current-tool flat-sd)
453 (current-mode power)
454 (imply (not (held)) (current-mode power))
455 (clear ?comp)
456)
457 :effect (and
458 (probabilistic
459 0.25 (and (loose ?comp)
460 (when (loose ?comp) (removed-non-verified ?comp)))
461 0.60 (removed-non-verified ?comp)
462 0.10 (broken-component ?comp)
463)
464 (probabilistic 0.05 (broken-tool flat-sd))
465 (decrease (reward) 1)
466)
467)
468
469 ;#########################
470 ;# SUCK-AWAY (3 ACTIONS) #
471 ;#########################
472
473 (: action suck-away-low-confidence
474 :parameters (?comp - removable-component
475 ?sp - suction-point
476 ?side - side)
477 :precondition (and
478 (not (broken-component ?comp))
479 (not (broken-tool suction-tool))
480 (at-side ?comp ?side)
481 (has-affordance ?comp ?sp)
482 (has-confidence ?sp low)

APPENDIX A. PPDDL DOMAIN FOR THE RECYCLING
APPLICATION 57

483 (current-side ?side)
484 (current-tool suction-tool)
485 (imply (not (held)) (current-mode power))
486 (clear ?comp)
487)
488 :effect (and
489 (probabilistic 0.05 (removed-non-verified ?comp))
490 (probabilistic 0.05 (broken-tool suction-tool))
491 (decrease (reward) 1)
492)
493)
494
495 (: action suck-away-medium-confidence
496 :parameters (?comp - removable-component
497 ?sp - suction-point
498 ?side - side)
499 :precondition (and
500 (not (broken-component ?comp))
501 (not (broken-tool suction-tool))
502 (at-side ?comp ?side)
503 (has-affordance ?comp ?sp)
504 (has-confidence ?sp medium)
505 (current-side ?side)
506 (current-tool suction-tool)
507 (imply (not (held)) (current-mode power))
508 (clear ?comp)
509)
510 :effect (and
511 (probabilistic 0.25 (removed-non-verified ?comp))
512 (probabilistic 0.05 (broken-tool suction-tool))
513 (decrease (reward) 1)
514)
515)
516
517 (: action suck-away-high-confidence
518 :parameters (?comp - removable-component
519 ?sp - suction-point
520 ?side - side)
521 :precondition (and
522 (not (broken-component ?comp))
523 (not (broken-tool suction-tool))
524 (at-side ?comp ?side)
525 (has-affordance ?comp ?sp)
526 (has-confidence ?sp high)
527 (current-side ?side)
528 (current-tool suction-tool)
529 (imply (not (held)) (current-mode power))
530 (clear ?comp)
531)
532 :effect (and
533 (probabilistic 0.50 (removed-non-verified ?comp))
534 (probabilistic 0.05 (broken-tool suction-tool))
535 (decrease (reward) 1)
536)
537)
538
539 ;###################################
540 ;# EXTRACT-WITH-PLIERS (3 ACTIONS) #
541 ;###################################
542
543 (: action extract-with-pliers-low-confidence
544 :parameters (?comp - removable-component
545 ?pp - pliers-point
546 ?side - side)
547 :precondition (and
548 (not (broken-tool pliers))
549 (not (broken-component ?comp))
550 (at-side ?comp ?side)
551 (has-affordance ?comp ?pp)
552 (has-confidence ?pp low)
553 (current-side ?side)
554 (current-tool pliers)
555 (clear ?comp)
556)

APPENDIX A. PPDDL DOMAIN FOR THE RECYCLING
APPLICATION 58

557 :effect (and
558 (probabilistic 0.50 (removed-non-verified ?comp)
559 0.50 (broken-component ?comp))
560 (probabilistic 0.05 (broken-tool pliers))
561 (decrease (reward) 1)
562)
563)
564
565 (: action extract-with-pliers-medium-confidence
566 :parameters (?comp - removable-component
567 ?pp - pliers-point
568 ?side - side)
569 :precondition (and
570 (not (broken-tool pliers))
571 (not (broken-component ?comp))
572 (at-side ?comp ?side)
573 (has-affordance ?comp ?pp)
574 (has-confidence ?pp medium)
575 (current-side ?side)
576 (current-tool pliers)
577 (clear ?comp)
578)
579 :effect (and
580 (probabilistic 0.75 (removed-non-verified ?comp)
581 0.25 (broken-component ?comp))
582 (probabilistic 0.05 (broken-tool pliers))
583 (decrease (reward) 1)
584)
585)
586
587 (: action extract-with-pliers-high-confidence
588 :parameters (?comp - removable-component
589 ?pp - pliers-point
590 ?side - side)
591 :precondition (and
592 (not (broken-tool pliers))
593 (not (broken-component ?comp))
594 (at-side ?comp ?side)
595 (has-affordance ?comp ?pp)
596 (has-confidence ?pp high)
597 (current-side ?side)
598 (current-tool pliers)
599 (clear ?comp)
600)
601 :effect (and
602 (probabilistic 0.85 (removed-non-verified ?comp)
603 0.15 (broken-component ?comp))
604 (probabilistic 0.05 (broken-tool pliers))
605 (decrease (reward) 1)
606)
607)
608)

A.2 Simulator (complete) version

This version contains all the predicates, including the hide-... ones. It is
intended for simulation use (the simulator should have a complete and true
model of the application).
1 (define (domain imagine)
2 (: requirements :adl :rewards :probabilistic-effects)
3 (:types component side mode tool affordance affordance-confidence - object
4 removable-component - component
5 lever-point suction-point pliers-point - affordance
6 screwdriver - tool
7 screw - removable-component
8)
9

APPENDIX A. PPDDL DOMAIN FOR THE RECYCLING
APPLICATION 59

10 (: constants
11 top bottom front back left right - side
12 low medium high - affordance-confidence
13 scara power no-mode - mode
14 flat-sd star-sd - screwdriver
15 hammer suction-tool pliers cutter no-tool - tool
16)
17
18 (: predicates
19 (has-affordance ?c - removable-component ?a - affordance)
20 (has-confidence ?a - affordance ?c - affordance-confidence)
21 (broken-component ?c - removable-component)
22 (broken-tool ?t - tool)
23 (connected ?c1 ?c2 - component)
24 (clear ?c - removable-component)
25 (current-mode ?m - mode)
26 (current-side ?s - side)
27 (current-tool ?t - tool)
28 (held)
29 (hides-component ?c1 ?c2 - component)
30 (hides-affordance ?c1 - component ?a - affordance)
31 (fixed-by ?c - removable-component ?s - screw)
32 (loose ?c - removable-component)
33 (partially-occludes ?c1 ?c2 - component)
34 (removed-non-verified ?c - removable-component)
35 (removed-verified ?c - removable-component)
36 (stuck ?s - screw)
37 ; static predicates
38 (opposite-side ?s1 ?s2 - side)
39 (at-side ?c - component ?s - side)
40 (valid-mode ?t - tool ?m - mode)
41 (valid-sd ?s - screw ?sd - screwdriver)
42)
43
44 ;#########################
45 ;# DETERMINISTIC ACTIONS #
46 ;#########################
47
48 (: action check-removed
49 :parameters (?comp - removable-component ?side - side)
50 :precondition (and
51 (current-side ?side)
52 (at-side ?comp ?side)
53 (removed-non-verified ?comp)
54)
55 :effect (and
56 (forall (?other - component)
57 (and
58 (not (hides-component ?comp ?other))
59 (not (partially-occludes ?comp ?other))
60))
61 (forall (?aff - affordance) (not (hides-affordance ?comp ?aff)))
62 (not (at-side ?comp ?side))
63 (not (removed-non-verified ?comp))
64 (removed-verified ?comp)
65)
66)
67
68 (: action assert-clear
69 :parameters (?comp - removable-component)
70 :precondition (and
71 (not (clear ?comp))
72 (forall (?screw - screw) (not (fixed-by ?comp ?screw)))
73 (forall (?other - component)
74 (and (not (connected ?comp ?other)) (not (connected ?other ?comp))))
75)
76 :effect (clear ?comp)
77)
78
79 (: action pick-tool
80 :parameters (?tool - tool ?mode - mode)
81 :precondition (and
82 (not (= ?tool no-tool))
83 (not (= ?mode no-mode))

APPENDIX A. PPDDL DOMAIN FOR THE RECYCLING
APPLICATION 60

84 (imply (held) (not (= ?mode power)))
85 (current-tool no-tool)
86 (current-mode no-mode)
87 (valid-mode ?tool ?mode)
88)
89 :effect (and
90 (not (current-tool no-tool))
91 (not (current-mode no-mode))
92 (current-tool ?tool)
93 (current-mode ?mode)
94 (decrease (reward) 1)
95)
96)
97
98 (: action put-away-tool
99 :parameters (?tool - tool ?mode - mode)

100 :precondition (and
101 (not (= ?tool no-tool))
102 (not (= ?mode no-mode))
103 (current-tool ?tool)
104 (current-mode ?mode)
105)
106 :effect (and
107 (not (current-tool ?tool))
108 (not (current-mode ?mode))
109 (current-tool no-tool)
110 (current-mode no-mode)
111 (decrease (reward) 1)
112)
113)
114
115 (: action grab-device
116 :parameters ()
117 :precondition (and
118 (not (held))
119 (not (current-mode power))
120)
121 :effect (and (held) (decrease (reward) 1))
122)
123
124 (: action place-device
125 :parameters ()
126 :precondition (held)
127 :effect (and (not (held)) (decrease (reward) 1))
128)
129
130 (: action flip
131 :parameters (? old-side - side ?new-side - side)
132 :precondition (and (current-side ?old-side) (held))
133 :effect (and
134 (not (current-side ?old-side))
135 (current-side ?new-side)
136 (decrease (reward) 1)
137)
138)
139
140 (: action let-fall-down
141 :parameters (?comp - removable-component ?side ?side-opposite - side)
142 :precondition (and
143 (held)
144 (at-side ?comp ?side)
145 (opposite-side ?side ?side-opposite)
146 (current-side ?side-opposite)
147 (loose ?comp)
148 (clear ?comp)
149 (forall (?comp_ - component) (not (hides-component ?comp_ ?comp)))
150 (forall (?comp_ - component) (not (partially-occludes ?comp_ ?comp)))
151)
152 :effect (and
153 (removed-non-verified ?comp)
154 (decrease (reward) 1)
155)
156)
157

APPENDIX A. PPDDL DOMAIN FOR THE RECYCLING
APPLICATION 61

158 (: action cut-connector
159 :parameters (?c1 ?c2 - component ?side - side)
160 :precondition (and
161 (current-tool cutter)
162 (imply (not (held)) (current-mode power))
163 (connected ?c1 ?c2)
164 (current-side ?side)
165 (or (at-side ?c1 ?side) (at-side ?c2 ?side))
166)
167 :effect (and
168 (not (connected ?c1 ?c2))
169 (not (connected ?c2 ?c1))
170 (decrease (reward) 1)
171)
172)
173
174 ;#######################
175 ;# UNSCREW (4 ACTIONS) #
176 ;#######################
177
178 (: action unscrew-scara-non-stuck
179 :parameters (?screw - screw ?sd - screwdriver ?side - side)
180 :precondition (and
181 (not (broken-component ?screw))
182 (not (broken-tool ?sd))
183 (not (stuck ?screw))
184 (current-mode scara)
185 (current-side ?side)
186 (at-side ?screw ?side)
187 (current-tool ?sd)
188 (valid-sd ?screw ?sd)
189 (forall (?comp - component) (not (hides-component ?comp ?screw)))
190)
191 :effect (and
192 (probabilistic
193 0.60 (and
194 (forall (?comp - removable-component) (not (fixed-by ?comp ?screw)))
195 (not (at-side ?screw ?side))
196 (removed-verified ?screw))
197 0.15 (stuck ?screw)
198)
199 (decrease (reward) 1)
200)
201)
202
203 (: action unscrew-scara-stuck
204 :parameters (?screw - screw ?sd - screwdriver ?side - side)
205 :precondition (and
206 (not (broken-component ?screw))
207 (not (broken-tool ?sd))
208 (stuck ?screw)
209 (current-mode scara)
210 (current-side ?side)
211 (at-side ?screw ?side)
212 (current-tool ?sd)
213 (valid-sd ?screw ?sd)
214 (forall (?comp - component) (not (hides-component ?comp ?screw)))
215)
216 :effect (and
217 (probabilistic
218 0.2 (and
219 (forall (?comp - removable-component) (not (fixed-by ?comp ?screw)))
220 (not (at-side ?screw ?side))
221 (removed-verified ?screw))
222)
223 (decrease (reward) 1)
224)
225)
226
227 (: action unscrew-power-non-stuck
228 :parameters (?screw - screw ?sd - screwdriver ?side - side)
229 :precondition (and
230 (not (broken-component ?screw))
231 (not (broken-tool ?sd))

APPENDIX A. PPDDL DOMAIN FOR THE RECYCLING
APPLICATION 62

232 (not (stuck ?screw))
233 (current-mode power)
234 (current-side ?side)
235 (at-side ?screw ?side)
236 (current-tool ?sd)
237 (valid-sd ?screw ?sd)
238 (forall (?comp - component) (not (hides-component ?comp ?screw)))
239)
240 :effect (and
241 (probabilistic
242 0.85 (and
243 (forall (?comp - removable-component) (not (fixed-by ?comp ?screw)))
244 (not (at-side ?screw ?side))
245 (removed-verified ?screw))
246 0.15 (stuck ?screw)
247)
248 (decrease (reward) 1)
249)
250)
251
252 (: action unscrew-power-stuck
253 :parameters (?screw - screw ?sd - screwdriver ?side - side)
254 :precondition (and
255 (not (broken-component ?screw))
256 (not (broken-tool ?sd))
257 (stuck ?screw)
258 (current-mode power)
259 (current-side ?side)
260 (at-side ?screw ?side)
261 (current-tool ?sd)
262 (valid-sd ?screw ?sd)
263 (forall (?comp - component) (not (hides-component ?comp ?screw)))
264)
265 :effect (and
266 (probabilistic
267 0.75 (and
268 (forall (?comp - removable-component) (not (fixed-by ?comp ?screw)))
269 (not (at-side ?screw ?side))
270 (removed-verified ?screw))
271 0.10 (broken-component ?screw)
272)
273 (probabilistic 0.10 (broken-tool ?sd))
274 (decrease (reward) 1)
275)
276)
277
278 ;########
279 ;# BASH #
280 ;########
281
282 (: action bash
283 :parameters (?comp - removable-component ?side - side)
284 :precondition (and
285 (not (broken-component ?comp))
286 (not (broken-tool hammer))
287 (at-side ?comp ?side)
288 (current-side ?side)
289 (current-tool hammer)
290 (forall (?comp_ - component) (not (hides-component ?comp_ ?comp)))
291 (forall (?comp_ - component) (not (partially-occludes ?comp_ ?comp)))
292)
293 :effect (and
294 (probabilistic
295 0.25 (and
296 (forall (?screw - screw) (not (fixed-by ?comp ?screw)))
297 (forall (?screw - screw ?side_ - side) (not (at-side ?screw ?side_)))
298 (probabilistic 0.5 (loose ?comp))
299)
300 0.10 (broken-component ?comp))
301 (probabilistic 0.05 (broken-tool hammer))
302 (decrease (reward) 1)
303)
304)
305

APPENDIX A. PPDDL DOMAIN FOR THE RECYCLING
APPLICATION 63

306 ;#####################
307 ;# LEVER (6 ACTIONS) #
308 ;#####################
309
310 (: action lever-scara-low-confidence
311 :parameters (?comp - removable-component
312 ?lp - lever-point
313 ?side - side)
314 :precondition (and
315 (not (broken-component ?comp))
316 (not (broken-tool flat-sd))
317 (at-side ?comp ?side)
318 (has-affordance ?comp ?lp)
319 (has-confidence ?lp low)
320 (current-side ?side)
321 (current-tool flat-sd)
322 (current-mode scara)
323 (imply (not (held)) (current-mode power))
324 (forall (?comp_ - component) (not (hides-affordance ?comp_ ?lp)))
325 (forall (?comp_ - component) (not (hides-component ?comp_ ?comp)))
326 (clear ?comp)
327)
328 :effect (and
329 (probabilistic
330 0.10 (and (loose ?comp)
331 (when (loose ?comp) (removed-non-verified ?comp)))
332 0.05 (removed-non-verified ?comp)
333 0.25 (broken-component ?comp)
334)
335 (probabilistic 0.25 (broken-tool flat-sd))
336 (decrease (reward) 1)
337)
338)
339
340 (: action lever-scara-medium-confidence
341 :parameters (?comp - removable-component
342 ?lp - lever-point
343 ?side - side)
344 :precondition (and
345 (not (broken-component ?comp))
346 (not (broken-tool flat-sd))
347 (at-side ?comp ?side)
348 (has-affordance ?comp ?lp)
349 (has-confidence ?lp medium)
350 (current-side ?side)
351 (current-tool flat-sd)
352 (current-mode scara)
353 (imply (not (held)) (current-mode power))
354 (forall (?comp_ - component) (not (hides-affordance ?comp_ ?lp)))
355 (forall (?comp_ - component) (not (hides-component ?comp_ ?comp)))
356 (clear ?comp)
357)
358 :effect (and
359 (probabilistic
360 0.25 (and (loose ?comp)
361 (when (loose ?comp) (removed-non-verified ?comp)))
362 0.10 (removed-non-verified ?comp)
363 0.12 (broken-component ?comp)
364)
365 (probabilistic 0.12 (broken-tool flat-sd))
366 (decrease (reward) 1)
367)
368)
369
370 (: action lever-scara-high-confidence
371 :parameters (?comp - removable-component
372 ?lp - lever-point
373 ?side - side)
374 :precondition (and
375 (not (broken-component ?comp))
376 (not (broken-tool flat-sd))
377 (at-side ?comp ?side)
378 (has-affordance ?comp ?lp)
379 (has-confidence ?lp high)

APPENDIX A. PPDDL DOMAIN FOR THE RECYCLING
APPLICATION 64

380 (current-side ?side)
381 (current-tool flat-sd)
382 (current-mode scara)
383 (imply (not (held)) (current-mode power))
384 (forall (?comp_ - component) (not (hides-affordance ?comp_ ?lp)))
385 (forall (?comp_ - component) (not (hides-component ?comp_ ?comp)))
386 (clear ?comp)
387)
388 :effect (and
389 (probabilistic
390 0.60 (and (loose ?comp)
391 (when (loose ?comp) (removed-non-verified ?comp)))
392 0.30 (removed-non-verified ?comp)
393 0.05 (broken-component ?comp)
394)
395 (probabilistic 0.05 (broken-tool flat-sd))
396 (decrease (reward) 1)
397)
398)
399
400 (: action lever-power-low-confidence
401 :parameters (?comp - removable-component
402 ?lp - lever-point
403 ?side - side)
404 :precondition (and
405 (not (broken-component ?comp))
406 (not (broken-tool flat-sd))
407 (at-side ?comp ?side)
408 (has-affordance ?comp ?lp)
409 (has-confidence ?lp low)
410 (current-side ?side)
411 (current-tool flat-sd)
412 (current-mode power)
413 (imply (not (held)) (current-mode power))
414 (forall (?comp_ - component) (not (hides-affordance ?comp_ ?lp)))
415 (forall (?comp_ - component) (not (hides-component ?comp_ ?comp)))
416 (clear ?comp)
417)
418 :effect (and
419 (probabilistic
420 0.05 (and (loose ?comp)
421 (when (loose ?comp) (removed-non-verified ?comp)))
422 0.10 (removed-non-verified ?comp)
423 0.25 (broken-component ?comp)
424)
425 (probabilistic 0.25 (broken-tool flat-sd))
426 (decrease (reward) 1)
427)
428)
429
430 (: action lever-power-medium-confidence
431 :parameters (?comp - removable-component
432 ?lp - lever-point
433 ?side - side)
434 :precondition (and
435 (not (broken-component ?comp))
436 (not (broken-tool flat-sd))
437 (at-side ?comp ?side)
438 (has-affordance ?comp ?lp)
439 (has-confidence ?lp medium)
440 (current-side ?side)
441 (current-tool flat-sd)
442 (current-mode power)
443 (imply (not (held)) (current-mode power))
444 (forall (?comp_ - component) (not (hides-affordance ?comp_ ?lp)))
445 (forall (?comp_ - component) (not (hides-component ?comp_ ?comp)))
446 (clear ?comp)
447)
448 :effect (and
449 (probabilistic
450 0.20 (and (loose ?comp)
451 (when (loose ?comp) (removed-non-verified ?comp)))
452 0.50 (removed-non-verified ?comp)
453 0.25 (broken-component ?comp)

APPENDIX A. PPDDL DOMAIN FOR THE RECYCLING
APPLICATION 65

454)
455 (probabilistic 0.12 (broken-tool flat-sd))
456 (decrease (reward) 1)
457)
458)
459
460 (: action lever-power-high-confidence
461 :parameters (?comp - removable-component
462 ?lp - lever-point
463 ?side - side)
464 :precondition (and
465 (not (broken-component ?comp))
466 (not (broken-tool flat-sd))
467 (at-side ?comp ?side)
468 (has-affordance ?comp ?lp)
469 (has-confidence ?lp high)
470 (current-side ?side)
471 (current-tool flat-sd)
472 (current-mode power)
473 (imply (not (held)) (current-mode power))
474 (forall (?comp_ - component) (not (hides-affordance ?comp_ ?lp)))
475 (forall (?comp_ - component) (not (hides-component ?comp_ ?comp)))
476 (clear ?comp)
477)
478 :effect (and
479 (probabilistic
480 0.25 (and (loose ?comp)
481 (when (loose ?comp) (removed-non-verified ?comp)))
482 0.60 (removed-non-verified ?comp)
483 0.10 (broken-component ?comp)
484)
485 (probabilistic 0.05 (broken-tool flat-sd))
486 (decrease (reward) 1)
487)
488)
489
490 ;#########################
491 ;# SUCK-AWAY (3 ACTIONS) #
492 ;#########################
493
494 (: action suck-away-low-confidence
495 :parameters (?comp - removable-component
496 ?sp - suction-point
497 ?side - side)
498 :precondition (and
499 (not (broken-component ?comp))
500 (not (broken-tool suction-tool))
501 (at-side ?comp ?side)
502 (has-affordance ?comp ?sp)
503 (has-confidence ?sp low)
504 (current-side ?side)
505 (current-tool suction-tool)
506 (imply (not (held)) (current-mode power))
507 (forall (?comp_ - component) (not (hides-affordance ?comp_ ?sp)))
508 (forall (?comp_ - component) (not (hides-component ?comp_ ?comp)))
509 (clear ?comp)
510)
511 :effect (and
512 (probabilistic 0.05 (removed-non-verified ?comp))
513 (probabilistic 0.05 (broken-tool suction-tool))
514 (decrease (reward) 1)
515)
516)
517
518 (: action suck-away-medium-confidence
519 :parameters (?comp - removable-component
520 ?sp - suction-point
521 ?side - side)
522 :precondition (and
523 (not (broken-component ?comp))
524 (not (broken-tool suction-tool))
525 (at-side ?comp ?side)
526 (has-affordance ?comp ?sp)
527 (has-confidence ?sp medium)

APPENDIX A. PPDDL DOMAIN FOR THE RECYCLING
APPLICATION 66

528 (current-side ?side)
529 (current-tool suction-tool)
530 (imply (not (held)) (current-mode power))
531 (forall (?comp_ - component) (not (hides-affordance ?comp_ ?sp)))
532 (forall (?comp_ - component) (not (hides-component ?comp_ ?comp)))
533 (clear ?comp)
534)
535 :effect (and
536 (probabilistic 0.25 (removed-non-verified ?comp))
537 (probabilistic 0.05 (broken-tool suction-tool))
538 (decrease (reward) 1)
539)
540)
541
542 (: action suck-away-high-confidence
543 :parameters (?comp - removable-component
544 ?sp - suction-point
545 ?side - side)
546 :precondition (and
547 (not (broken-component ?comp))
548 (not (broken-tool suction-tool))
549 (at-side ?comp ?side)
550 (has-affordance ?comp ?sp)
551 (has-confidence ?sp high)
552 (current-side ?side)
553 (current-tool suction-tool)
554 (imply (not (held)) (current-mode power))
555 (forall (?comp_ - component) (not (hides-affordance ?comp_ ?sp)))
556 (forall (?comp_ - component) (not (hides-component ?comp_ ?comp)))
557 (clear ?comp)
558)
559 :effect (and
560 (probabilistic 0.50 (removed-non-verified ?comp))
561 (probabilistic 0.05 (broken-tool suction-tool))
562 (decrease (reward) 1)
563)
564)
565
566 ;###################################
567 ;# EXTRACT-WITH-PLIERS (3 ACTIONS) #
568 ;###################################
569
570 (: action extract-with-pliers-low-confidence
571 :parameters (?comp - removable-component
572 ?pp - pliers-point
573 ?side - side)
574 :precondition (and
575 (not (broken-tool pliers))
576 (not (broken-component ?comp))
577 (at-side ?comp ?side)
578 (has-affordance ?comp ?pp)
579 (has-confidence ?pp low)
580 (current-side ?side)
581 (current-tool pliers)
582 (forall (?comp_ - component) (not (hides-affordance ?comp_ ?pp)))
583 (forall (?comp_ - component) (not (hides-component ?comp_ ?comp)))
584 (clear ?comp)
585)
586 :effect (and
587 (probabilistic 0.50 (removed-non-verified ?comp)
588 0.50 (broken-component ?comp))
589 (probabilistic 0.05 (broken-tool pliers))
590 (decrease (reward) 1)
591)
592)
593
594 (: action extract-with-pliers-medium-confidence
595 :parameters (?comp - removable-component
596 ?pp - pliers-point
597 ?side - side)
598 :precondition (and
599 (not (broken-tool pliers))
600 (not (broken-component ?comp))
601 (at-side ?comp ?side)

APPENDIX A. PPDDL DOMAIN FOR THE RECYCLING
APPLICATION 67

602 (has-affordance ?comp ?pp)
603 (has-confidence ?pp medium)
604 (current-side ?side)
605 (current-tool pliers)
606 (forall (?comp_ - component) (not (hides-affordance ?comp_ ?pp)))
607 (forall (?comp_ - component) (not (hides-component ?comp_ ?comp)))
608 (clear ?comp)
609)
610 :effect (and
611 (probabilistic 0.75 (removed-non-verified ?comp)
612 0.25 (broken-component ?comp))
613 (probabilistic 0.05 (broken-tool pliers))
614 (decrease (reward) 1)
615)
616)
617
618 (: action extract-with-pliers-high-confidence
619 :parameters (?comp - removable-component
620 ?pp - pliers-point
621 ?side - side)
622 :precondition (and
623 (not (broken-tool pliers))
624 (not (broken-component ?comp))
625 (at-side ?comp ?side)
626 (has-affordance ?comp ?pp)
627 (has-confidence ?pp high)
628 (current-side ?side)
629 (current-tool pliers)
630 (forall (?comp_ - component) (not (hides-affordance ?comp_ ?pp)))
631 (forall (?comp_ - component) (not (hides-component ?comp_ ?comp)))
632 (clear ?comp)
633)
634 :effect (and
635 (probabilistic 0.85 (removed-non-verified ?comp)
636 0.15 (broken-component ?comp))
637 (probabilistic 0.05 (broken-tool pliers))
638 (decrease (reward) 1)
639)
640)
641)

APPENDIX B

PPDDL DOMAIN OF THE “TERRAINS” EXAMPLE

“Terrains” domain together with a small problem instance:
1 ; Author: Alejandro Suarez Hernandez
2
3 (define (domain terrain)
4 (: requirements :typing :strips :probabilistic-effects :rewards)
5 (:types loc - object land shallow-water deep-water - loc)
6 (: predicates
7 (connected ?l1 ?l2 - loc)
8 (at ?l - loc)
9 (boulder-at ?l - loc)

10 (pickaxe-at ?l - loc)
11 (flag-at ?l - loc)
12 (alive)
13 (has-pickaxe)
14 (goal-reached)
15)
16
17 (: action move-to-land
18 :parameters (?l1 - loc ?l2 - land)
19 :precondition (and
20 (alive)
21 (at ?l1)
22 (or (connected ?l1 ?l2)
23 (connected ?l2 ?l1))
24 (not (boulder-at ?l2)))
25 :effect (and
26 (not (at ?l1))
27 (at ?l2)
28 (decrease (reward) 1))
29)
30
31 (: action move-to-shallow-water
32 :parameters (?l1 - loc ?l2 - shallow-water)
33 :precondition (and
34 (alive)
35 (at ?l1)
36 (or (connected ?l1 ?l2) (connected ?l2 ?l1))
37 (not (boulder-at ?l2)))
38 :effect (and
39 (not (at ?l1))
40 (at ?l2)
41 (probabilistic 0.05 (not (alive)))
42 (decrease (reward) 1)
43))
44
45 (: action move-to-deep-water

68

APPENDIX B. PPDDL DOMAIN OF THE “TERRAINS” EXAMPLE 69

46 :parameters (?l1 - loc ?l2 - deep-water)
47 :precondition (and
48 (alive)
49 (at ?l1)
50 (or (connected ?l1 ?l2) (connected ?l2 ?l1))
51 (not (boulder-at ?l2)))
52 :effect (and
53 (not (at ?l1))
54 (at ?l2)
55 (probabilistic 0.2 (not (alive)))
56 (decrease (reward) 1))
57)
58
59 (: action pick-pickaxe
60 :parameters (?l - loc)
61 :precondition (and
62 (alive)
63 (not (has-pickaxe))
64 (at ?l)
65 (pickaxe-at ?l))
66 :effect (and
67 (has-pickaxe)
68 (not (pickaxe-at ?l)))
69)
70
71 (: action break-boulder
72 :parameters (?l1 ?l2 - land)
73 :precondition (and
74 (alive)
75 (has-pickaxe)
76 (at ?l1)
77 (or (connected ?l1 ?l2) (connected ?l2 ?l1))
78 (boulder-at ?l2))
79 :effect (and
80 (not (boulder-at ?l2))
81 (decrease (reward) 2))
82)
83
84 (: action reach-goal
85 :parameters (?l - loc)
86 :precondition (and
87 (not (goal-reached))
88 (alive)
89 (at ?l)
90 (flag-at ?l)
91)
92 :effect (goal-reached)
93)
94
95)
96
97 (define (problem p01)
98 (: domain terrain)
99 (: objects

100 x_0_0 x_0_2 x_0_3 x_1_0 x_2_0 x_2_1 x_2_2 x_2_3 - land
101 x_0_1 x_1_1 - shallow-water
102 x_1_2 x_1_3 - deep-water
103)
104 (:init
105 (alive)
106 (connected x_0_0 x_1_0)
107 (connected x_0_0 x_0_1)
108 (connected x_0_1 x_1_1)
109 (connected x_0_1 x_0_2)
110 (connected x_0_2 x_1_2)
111 (connected x_0_2 x_0_3)
112 (connected x_0_3 x_1_3)
113 (connected x_1_0 x_2_0)
114 (connected x_1_0 x_1_1)
115 (connected x_1_1 x_2_1)
116 (connected x_1_1 x_1_2)
117 (connected x_1_2 x_2_2)
118 (connected x_1_2 x_1_3)
119 (connected x_1_3 x_2_3)

APPENDIX B. PPDDL DOMAIN OF THE “TERRAINS” EXAMPLE 70

120 (connected x_2_0 x_2_1)
121 (connected x_2_1 x_2_2)
122 (connected x_2_2 x_2_3)
123 (at x_1_0)
124 (boulder-at x_2_1)
125 (pickaxe-at x_0_3)
126 (flag-at x_2_3)
127 (= (reward) 0)
128)
129 (:goal (goal-reached))
130 (: metric maximize (reward))
131)

	Contents
	Scope and contextualization
	Introduction
	Motivation
	Involvement in H2020 Imagine
	Planning concepts
	1.4.0 Domain and problem
	1.4.1 Planning paradigms
	1.4.2 Modeling languages

	Approach
	Scope and goals
	Related work

	Theory and background
	MDPs and SSPPs
	Specification of the problem in PPDDL
	2.2.0 Robot capabilities
	2.2.1 Device representation
	2.2.2 Actions

	Determinization of stochastic problems
	Rationale
	Expansion of probabilistic outcomes
	All-Outcome Determinization
	Single-Outcome Determinization
	-Cost-Transition-Likelihood Determinization
	Hindsight Determinization

	Short horizon planning
	Rationale
	Simplifying the state
	Dealing with unseen precedences

	Experimental evaluation
	Implementation
	Experiments with determinization techniques
	Hierarchical planning

	Conclusions and future work
	Bibliography
	PPDDL domain for the recycling application
	Robot version
	Simulator (complete) version

	PPDDL domain of the ``Terrains'' example

