
Interlingua based Neural Machine Translation

Carlos Escolano Peinado

Supervisors:

Marta Ruiz Costa-Jussà

Lluis Padró

June 27, 2018

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185525178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Machine translation is a highly interesting research topic with a big impact in multi-
lingual information society. For the last 30 years, most state-of-the-art approaches
have mainly been designed and trained for language pairs, translating from source to
target languages. The number of translation systems required with these approaches
scales quadratically with the number of languages which becomes very expensive in
highly multilingual environments.

Current Neural Machine Translation approach has an architecture of encoder-decoder
which inherently creates an intermediate representation. However, systems are still
trained by language pair. In this thesis, we propose a new Neural Machine Transla-
tion architecture which aims at generalizing this intermediate representation to an
interlingua representation shared across all languages on the system. We define this
interlingua as the shared space in which the sentences can be represented indepen-
dently of their language. This interlingua representation can be then generated and
interpreted by all systems.

We propose a way of training such systems based on optimizing the distance be-
tween the representations generated and the use of variational and not variational
autoencoders. Experimental results show that this technique can produce compa-
rable results to the state-of-the-art baseline systems while giving clear evidences of
learning the interlingua representation. To evaluate the quality of this interlingua
representation, we use a new evaluation metric capable of measuring the similarity
among the recovery of sentences from the corresponding interlingua representations
and originated from different languages encodings of parallel sentences.

ii

Acknowledgement

I would like to thank Marta Ruiz Costa-Jussà and Jose Adrián Rodriguez Fonollosa
for their comments and guidance during this project. To my workmates that have
witnessed this process and also help every time they could. And to my friends and
family for their support these months.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Contributions of the thesis . 2
1.4 Thesis Structure . 3

2 Theoretical background 4
2.1 Transformer . 4
2.2 Autoencoders . 7

2.2.1 Variational autoencoders . 8
2.2.2 Vector quantization . 9

2.3 Canonical correlation analyisis . 10

3 State of the art 11
3.1 Machine translation . 11
3.2 Interlingua representation . 12

4 Architecture 14
4.1 Architecture overview . 14
4.2 Discrete latent representation . 15
4.3 Optimization . 17

5 Toy example 18
5.1 Problem description . 18
5.2 Network architecture . 18
5.3 Experimental results . 19

6 Experiments 21
6.1 Evaluation measure . 21
6.2 Data . 22
6.3 Hyper parameters . 23

6.3.1 Autoencoder architecture . 23
6.3.2 Decomposed Vector Quantization architecture 24

6.4 Results . 26

iv

7 Interlingua-visualization 28

8 Conclusion 30

Bibliography 31

v

1Introduction

Machine translation has become a usual service in our lives thanks to services such as
Google Translate. Traditionally those systems where either based on rules generated
by linguists experts in the languages to translate or based on the probabilities
calculated from a corpus of parallels sentences.

In recent years the state of the art for this task is Neural Machine Translation, in
which a neural network is trained to learn the transformation of a source sentence in
an intermediate representation that is later decoded into the target language. Even
though these architectures have been proven to perform better that the previous
paradigms they still present the limitation of requiring a great number of parallel
examples in order to train a functional model.

1.1 Motivation

Current machine translation systems are centered in using a corpus of parallel
sentences between two languages train a system that is able to learn how to translate
from one language, the source language, to another, the target language. In case we
want to be able to translate in both direction we would need to train two different
systems, with the cost of time and resources that these processes require.

Now imagine that we have more than two language, n language, in order to translate
from any language to any of the other we would need to train (n − 1)2 different
translation systems each one requiring its own training process. Also at deployment
all systems should be ready at all times waiting to be required, which also implies a
cost in maintenance and hardware of those systems.

Another aspect in which nowadays machine translation architectures are not suitable
is low resources languages. These are languages that due to have a small community
of speakers have only small data sets of parallel data available to train a machine
translation system. Additionally this data is usually available between the low
resource language and English. In order to train a system to any other language an
intermediate translation in English would be required.

1

1.2 Problem Statement

Imagine that different language could be represented in the same way, that the
meaning of a sentence could be represented in the same way for different languages
and could be understood by systems for each of those languages. This share rep-
resentation is the Interlingua, a semantic representation that is valid for all the
languages in the system.

Fig. 1.1: Example of multimodal interlingua system

Figure 1.1 shows the objective of this interlingua, not only for text but for all data
sources, If this theoretical system could be implemented a single system would
be able to perform several tasks such as machine translation, image captioning in
several languages, generate an image from its description and speech generation.

In this paper we are going to only work with one of those cases, machine transla-
tion

1.3 Contributions of the thesis

This thesis proposes a proof of concept for a neural machine translation model based
on interlingua and autoencoders. The main advantages of the proposed architecture
are:

• The number of systems required for the translation grows linearly with the
number of languages. In opposition to the standard NMT systems in which
each translation direction has to be trained individually.

• The proposed architecture trains all translation directions at once. In order to
force all modules of the system to produce a compatible latent representation
all modules are jointly trained.

1.2 Problem Statement 2

1.4 Thesis Structure

The following paper will be organized in 8 main chapters.

Chapter 2: Theoretical background of the concepts that we are going to use in the
proposed models

Chapter 3: State of the art. Discussing the current state of machine translation and
how it related with the topic of this work.

Chapter 4: Proposed architecture. Discussing the several alternatives proposed.

Chapter 5: Toy problem. A small problem to illustrate the principle applied in a
smaller task.

Chapter 6: Results. Experiments conducted during this work and model performance
discussion.

Chapter 7: Visualization. Visualization of the latent space.

Chapter 8: Conclusions. Discussing the achieved aspects of this project and future
work.

1.4 Thesis Structure 3

2Theoretical background

In this chapter we are going to discuss the theoretical aspects needed for the pro-
posed architectures. Three main techniques where employed for this development,
Transformer Architecture, Autoencoders and Canonical Correlation Analysis.

2.1 Transformer

Previous neural machine translation models where based on the use of Recurrent
Neural networks to keep information about the context of the sentence as the
different tokens where processed. Transformer[Vas+17], which is the current state
of the art, is based on applying self attention to both the input and the output of the
network.

Fig. 2.1: Transformer overview

Figure 2.1 shows the full architecture of a transformer model. Essentially it follows
the traditional Encoder-Decoder architecture in which the the input sentences are
first encoded in a fixed sized continuous representation to therefore be decoded in
the target sentence. The main idea of this architecture is applying self-attention

4

repeatedly over the transformed data to both encode and decode the final represen-
tation.

The first step of the model to feed data to the system is the embedding layer. This is
a usual embedding layer as previously employed in Sequence to Sequence models in
which for each token in the sentence will be represented as a vector of fixed size,
transforming an input of size d ∈ Nl into a continuous representation enc ∈ Re·l.
Where l is the maximum number of tokens in the sentence and e is the size of the
embedding representation.

A disadvantage of this architecture compared to previous Sequence to Sequence
[BCB14] architectures is that the full sentence is treated at once and no context is
kept of the previous tokens in the sentence. In order to add this information in the
sentence representation a positional encoding is added to the resultant embedding
of the previous layer. Two possible alternatives can be employed for this task, a
sinusoidal function that provides a different value for each position of the sentence,
or a learned transformation. The sinusoidal function even though has proven to
generalize better in case of using sentences of varying length during test.

The sum of the embedding and positional encoding are then feed into the attention
blocks as seen in figure 2.2. These blocks consist in several sub-blocks called heads
where a fragment of the input representation is processed. Each heads input consists
in the three following components:

1. Query: These values are the previous information over which calculate the
attention matrix that would be applied over the values.

2. Keys: Similar to a dictionary this input acts as the different values to calculate
the attention matrix.

3. Values: The data over which the attention matrix would be applied.

The final attention is calculated using the following expression:

Attention(Q,K, V) = softmax(QK
T√

(dk)
)V (2.1)

Where dk is the length of the input. This acts as an scale factor for the final value
of the attention matrix. Figure2.2 show this process in a block diagram. It show
an addition step of masking that diagonalizes the matrix before the softmax that
outputs the final attention matrix. The reason for this step is that during inference it

2.1 Transformer 5

prevents the attention mechanism to attend at the part of the matrix that has not
been generated jet and only contains padding.

After each attention block its output is added to the input of the block in a process
called Residual Connection. Finally layer normalization[BKH16] is performed. This
normalization consists in computing a mean and variance to normalize the summed
output of the neurons of the layer. By applying this process the authors claim that
the training process is faster and it provides improvements for convergence.

During the encoding process this attention block is repeated n times each of them
using as input the output of the previous attention block. The output of the final
block of the encoder is the encoded continuous representation of the source sentence
that would be later use for the decoding process.

The decoding part of the architecture follows a similar structure. First and embedding
layer transform the discrete representation of the tokens of the target sentence
into a continuous fixed size vector representation. During training the decoder
would use the full target sentence as input while during inference it would get a
vector containing only the token employed for padding and as each token is being
decoded if would be added to this vector until the end of sentence. The reason for
this substitution is that for the decoding of a token the model needs the encoded
representation provided by the encoder and also the previous tokens generated, in a
similar way as a recurrent network decoder would do.

The first step of the decoder analogously to the encoder would perform self-attention
over the decoder input by applying an attention block. This block is followed by a
block of attention over the encoding of the source sentence. This block is also called
vanilla attention because it is more similar to the traditional concept of attention in
Sequence to Sequence models in which the attention is performed in the decoder
over the steps of the recurrent encoder’s output.

In vanilla attention the values and the keys are the encoding of the source sentence
and the query is the output of the decoder self attention block. The resultant
attention matrix will be calculated from the context of the already decoded output
and then applied to the encoded source sentence to generate the next token.

The final step of the model is applying a linear transformation that outputs as many
values as possible tokens in the target dictionary and a softmax layer to show pick
the most probable token.

2.1 Transformer 6

Fig. 2.2: Transformer multihead attention. Original image from [Vas+17]

2.2 Autoencoders

Autoencoders can be defined as networks that are able to learn from input data x a
function h(x) that is able to reproduce x through an internal latent representation.
They are considered an unsupervised method as no labeling or extra information
is required, due to their objective of reconstructing input data. This process can be
divided in to steps:

• Encoding: In this step a space transformation is calculated from input data.
Figure 2.3 shows in blue the encoder part of the network which learns a
transformation of the data in a lower dimensionality space.

• Decoding: Process of transforming the latent representation back into the
input data.

Fig. 2.3: Example of autoencoder architecture

The rationale behind these models is that this latent encoding provides us with a
representation that can be employed for several tasks. Some of the most common
uses are, serve as feature for other models and reduction dimensionality, by reducing

2.2 Autoencoders 7

the dimensionality of the internal representation we are effectively mapping our
data in a space that from which it can be recovered back.

In order to train the system both encoder and decoder part are jointly trained and
optimized based on a reconstruction loss. This loss measures the differences between
the input data and the generated reconstruction. It is also important to notice that
only enforcing the network to reproduce its output could lead to learning an identity
function without generalization, An example of this could be a model with to many
units per layer that is able to represent each training example as a unique number
that the decode can recover, without learning any relation between data. To prevent
it some techniques such as denoising autoencoders [Vin+08], that add some noise
to the input data that the network has to learn to remove, or sparse autoencoders
[Ng11], where the neuron activation is limited by design to force sparcity in the
representation, can be employed.

We have talked about their capabilities for data representation but they also can be
used as generative data of new cases, specially variational autoencoders. Given that
our decoder has learn how to transform a latent representation into the original
input data, if a new encoding is generated from any other source, for example a
probabilistic distribution, new examples never seen in our data could be generated
that could be similar to the ones seen.

2.2.1 Variational autoencoders

Following the case of autoencoders as a generative models, any new encoding could
be generated without actual data, but the results would depend of the distribution
employed. Variational autoencoders [KW13] follow the same encoder-decoder
structure of general autoencoders but instead of learning a representation of the
examples in the training data they learn the parameters of the distribution which
encodings will be sampled from.

Given P (x) the distribution of our data and P (z) the distribution of the latent
representation we want to train, we can express P (X) as:

P (X) = P (X|z)P (z) (2.2)

Meaning that the data distribution can be expressed as the conditional probability of
P (x) given a latent representation z times the probability of z P (z). The idea is to
find as an optimization problem the distribution P (z|X) that can recover the data.

2.2 Autoencoders 8

For example, given a training set we could choose a Guassian distribution as the
distribution of our latent representation. The model would optimize the µ and σ

so that the data can be correctly recovered. Ones the model is trained we could
randomly sample from that distribution new latent representations z′ that are not
originated from actual data but the decoder is able to use to generate similar
examples to our data.

2.2.2 Vector quantization

A particular case of variational autoencoders is Vector Quantization Variational
Autoencoders (VQ-VAE) [O+17]. In this technique instead of optimizing the param-
eters of a probability distribution from which the encodings can be sampled from
what the network is defining is a table that defines all the possible values that the
latent representation can take.

We define a table T of size n · d where n is the number of different vectors in the
table and d is the dimensionality of each of those vectors. In order to choose the
right vector from the table the closest vector in the table is retrieved following the
expression:

zq(x) = argmin(|zi(x)− x|) (2.3)

We can imagine this algorithm as a clustering algorithm in which each vector of
the table corresponds to a centroid identifying a class from the input. During each
training batch centroids are optimized to better represent the information of the
sentences belonging to that class and during inference the closet vector is retrieved.

Fig. 2.4: VQ-VAE architecture

2.2 Autoencoders 9

2.3 Canonical correlation analyisis

Canonical Correlation Analysis(CCA)[Hot35] measures the the relationship of two
variables. It produces new bases that equal or smaller in dimensionality to the
smallest variable that we want to finds its correlation. It can be defined as finding
two vectors X and Y which correlation between their projections can be mutually
maximized.

Chandar et al. (2015) focus on the objective of common representation learning. This
work it is inspired by the classical Canonical Correlation Analysis [hotelling:1936]
and it proposes to use an autoencoder that uses the correlation information to
learn the intermediate representation. In this paper, we use this correlation infor-
mation to measure the distance among intermediate representations following the
expression:

c(h(X), h(Y)) =
∑n

i=1(h(xi − h(X)))(h(yi − h(Y)))√∑n
i (h(xi)− h(X))2 ∑n

i (h(yi)− h(Y))2
(2.4)

Where X and Y are the data sources we are trying to represent, h(xi) and h(yi)
are the intermediate representations learned by the network for a given observa-
tion and h(X) and h(Y) are the mean intermediate representation for X and Y ,
respectively.

2.3 Canonical correlation analyisis 10

3State of the art

The work presented in this paper is based in two fundamental research topics:
machine translation and interlingua representation. In this section we are going to
briefly discuss the previous work in these areas and their current state of the art.

3.1 Machine translation

Machine translation has been a research topic for a long time due to its many appli-
cations and theoretical interest in the area of text representation and understanding.
Until few years ago translation systems were based on rules generated by experts in
the languages that manually generated rules and grammars that correctly depict the
differences between those languages [Arn94].

Statistical machine translation changed the state of the art due to its ability to learn
a translation between a source and target language based on the token distribution
in a given parallel corpus. These models are based on generating a language model
to compute the conditional probability given the previous tokens in the sentence.
A variation of this principle is the phrase-based machine translation in which next
token is not generated using the previous token but the n previous tokens in the
sentence. Moses [Koe+07] is the standard software employed and it is still in use as
baseline and in some task where few parallel corpus is available.

It was in 2014 when first results [BCB14] showed that neural networks could
outperform statistical models in translation. Previous models where based on a
encoder-decoder architecture where the source sentence is encoded into a fixed size
vector representation from which later using recurrent decoder target tokens are
generated. Those vanilla sequence to sequence models present some drawbacks
such as that they can get stuck generating a token that can be repeated several
times in the decoded sentence. Also in addition to over translate a segment of the
sentence parts of the source sentence could not be translated at all. To prevent these
situations attention mechanisms [LPM15] were added. Attention mechanism consist
in an additional layer that computes the the attention that each part of the fixed size
sentence encoding and a softmax function to normalize the outcome. In [BCB14],
was proposed a bidirectional encoder that consists in two recurrent layers one that

11

read the sentence forward and one that reads it backwards and how the decoder
reads the context to generate a token.

Neural machine translation using recurrent encoder-decoder architectures where
the state of the art until 2017 where to different models where presented. First, in
[Geh+17] where a convolutional model with attention was proposed and outper-
formed recurrent models to that day with the same test data. On the other hand
in [Vas+17] the Transformer architecture was proposed where the encoding and
decoding are entirely based on self-attention over the data.

3.2 Interlingua representation

In this thesis we are defining interlingua a shared latent space where sentences are
represented by the network encoders. These sentences represented in the space can
also be retrieved into the original sentence or a translation by the decoder.

Several work has been conducted in this direction. One of the first successful
attempts was [Joh+16]. In this work they trained a single encoder-decoder network
where all languages where fed and could produce all of the trained languages. In
order to disambiguate the the decoding language a special token was added at the
beginning of the sentence to indicate the target language. This model followed the
recurrent sequence to sequence architecture presented before. In their work they
proved that the system was able to translate language pairs that where never seen
together in the training process.

More recent works such as [Sch+17] avoid the idea of a single network that has to
learn all the languages and that could be difficult to train and focus on architectures
where each source and target data have their own encoder decoder sharing a
common intermediate layer to try to force the representation to lay on the same space.
This models present and advantage over the previous one network architectures
because they are easier to employ in multimodal tasks. As each information source
only depends of their own encoding data such as text or image can be easily added
without sharing weights and modifying the encoder for the needs of each source.

Also in the same line of work in [Lu+18] they present a model in which they train
a set of language specific encoders and decoders with parallel data only between
pairs. Their model also relied on recurrent sequence to sequence models with the
addition of a shared recurrent layer with attention to transform language dependent
encodings into language independent ones. To achieve they propose a different
training schedule where for each batch only one encoder and decoder was trained

3.2 Interlingua representation 12

from a pool of system including the autoencoder ones and the systems to and from
English that acted as a pivot language during the training schedule.

Another area where shared spatial representation is commonly used is image caption-
ing. This task consists in given an image the network has to generate a description
of the image. First works such as [Vin+15] and [KF15] consist in the use of image
embeddings that are later used as initial context vector of a recurrent encoder-
decoder.

In the recent work [Gel+17] they present a model that joins both concepts of
generation of a interlingua representation between different network applied to
image captioning. In this work a convolutional model is trained to generate a
representation o a given image and then one or more recurrent encoders, each
one for a different language. The main idea is train the encoders to produce a
representation as closer to the image as possible and there close between them. They
claim that their model outperforms previous image description systems.

3.2 Interlingua representation 13

4Architecture

4.1 Architecture overview

Given a parallel corpus our objective is training an encoder and decoder for each of
the languages that are compatibles with the other components through a common
intermediate representation generated by both encoders and understood by both
decoders. For this, we propose a novel architecture and within it, we experiment
with different distance measures and both discrete and continuous intermediate
representations.

The architecture consists in an autoencoder for each of the languages to translate.
Each network consists in a transformer network [Vas+17]. The advantage of using
this model instead of other alternatives such as recurrent or convolutional encoders
is that this model is based only on self attention and traditional attention over the
whole representation created by the encoder. This allows us to easily employ the
different components of the networks (encoder and decoder) as modules that during
inference can be used with other parts of the network without the need of previous
step information as seen in Figure 4.1.

Fig. 4.1: Architecture diagram. Every module is compatible with the intermediate represen-
tation.

As follows, we detail this architecture step-by-step for a particular example. Imagine
that we have a pretrained English-Turkish model using this architecture. This model

14

consists in two autoencoders, one for English and one for Turkish, which at the end
of the day, it means that we have two encoders (one for each language) and two
decoders (again, one for each language).

Fig. 4.2: Example of English to Turkish and Turkish to English translation

Given the English sentence The beach house and the Turkish sentence Çocuk oynuyor
the model will translate them as shown in Figure ??. For English-to-Turkish trans-
lation, the English sentence is fed to the English encoder (from the English au-
toencoder) which generates a fixed-size representation. This representation if used
with the English decoder would just reconstruct the input. Given that the internal
representation is shared between the two autoencoders, by using the Turkish decoder
(from the Turkish autoencoder), we can generate a translation into this language.
In this case, from the English sentence The beach house, the system will be able
to output the Turkish sentence Sahil evi. Using the same trained model we can
also generate the Turkish-to-English translation. To translate the Turkish sentence
Çocuk oynuyor, we feed the sentence into the Turkish encoder (from the Turkish
autoencoder) and use the encoded sentence as input to the English decoder (from
the English autoendoer) to generate the translation.

4.2 Discrete latent representation

The internal representation of the Transformer architecture [Vas+17] is a continuous
two dimensional representation of the input sentence e ∈ Rnd where n is the
maximum number of tokens in the sentence and d is the embedding size employed.
This high dimensional matrix representation depends on the previous self-attention
layers. Given the high dimensionality of the internal representation, it is challenging
to define a procedure to compute distances among different representations.

4.2 Discrete latent representation 15

In this paper we propose an alternative for this representation by using variational
autoencoders. In previous section 2.2.2, we have presented the idea of vector
quantization and how it can be employed in autoencoders. By having all possible
codifications in the table we have only to optimize that the right vector is selected,
instead of generating the right point in the multidimensional space. Also this table
can be shared across the encoders in the system, which ensures that all of them can
produce the same exact vectors for the same parallel sentence in all languages.

Previous work [KB18] has shown that for the task of translation this technique
presents a problem that the authors call "riches get richer" where due to the limited
number of possible representations during training only a few vectors get most of the
representations and therefore the network is not paying attention to the encoding
and it is focusing its generation on the decoder input.

To prevent this situation a variation of this techniques was implemented: Decom-
posed Vector Quantization [KB18]. In this technique instead of having a single
vector table that contains all the possible latent representations, we split the table
in k tables, each of which only encode d

k values of the vector. The final latent
representation is the concatenation of the vectors retrieved from each table. This
provides the advantage that instead of n possible encodings (being n the size of the
table), nK encodings can be represented using the same memory space (if having k
tables).

It is also worth noticing that this vector quantization approach is not differentiable.
To apply backpropagation to the network, the gradient flow from the decoder to
the encoder has to be manually handled. For each encoder-decoder in the system
its reconstruction loss can be defined as the combination of the three following
components:

• Decoder loss: Cross-entropy loss between the generated tokens and the target
sentence. This loss is the same loss employed in the not variational autoencoder
case.

• Decomposed vector quantization loss: This step is not differentiable. There-
fore gradient flow to the encoder is stopped in this layer. This loss term is
calculated as the squared difference between the generated encoding and the
vector quantization vector.

• Encoder loss: Similar to the previous term but in this case, the gradient flow
is stopped in the decomposed vector quantization layer.

4.2 Discrete latent representation 16

4.3 Optimization

In order to achieve the desired universal language that can be used by all the
modules of the system, all the components have to be optimized simultaneously.
This is a difference to traditional neural machine translation systems in which
translation is only considered between the source and target language. In the
proposed architecture, all languages are equally considered and both translation
directions are generated during the training process. To achieve it, we design the
following loss function:

Loss = LXX + LY Y + LXY + LY X + d(h(X), h(Y)) (4.1)

Where LXX is the autoencoding loss for language X, LY Y is the autoencoding loss
of language Y , LXY is the translation loss from language X to language Y and LY X

is the translation loss from language Y to language X.

The final term of the loss is the measure of the distance between the two interme-
diate representations h(X) and h(Y) of both autoencoders. For this distance, we
propose:

1. Correlation distance which measures how correlated are the intermediate
representations of the autoencoders for each batch of the training process:

d(h(X), h(Y)) = 1− c(h(X), h(Y)) (4.2)

2. Maximum distance which measures the closeness of the intermediate represen-
tations as the maximum of the difference of the representation of a source and
its target sentence:

d(h(X), h(Y)) = max(|h(X)− h(Y)|) (4.3)

4.3 Optimization 17

5Toy example

In this chapter we are going to discuss a toy problem over image data in order to
visually exemplify the objectives of the proposed training methodology.

5.1 Problem description

Having parallel image data, in this example handwritten numbers. We create an
artificiall parallel data set in which for each image we generate a new transformed
image that has been transposed and color inverted. The aim of this example is
to prove that it is possible to train two autoencoders on the parallel data. These
autoencoders are able to learn a common representation with only the shared
distance-based loss as source of information.

To test the model’s performance we will try to encode an image using one of the
encoders, either the one that has only seen original images or the one that has
only seen the transformed ones. And feed the encoding to the other autoencoder’s
decoder. If learned representation is shared and provides meaningful information
for the task we would either obtain a transformed version of the image or reverse
the transformation.

As dataset we use MNIST [LCB10] which is a database of handwritten numbers in
gray-scale. In this particular implementation we are using the data packed with the
standard Tensorflow library which consists in 60.000 training images and 10.000 test
images.

5.2 Network architecture

In this simplified example we are going to define a reduced network architecture
and a new simpler distance measure to use as distance term of the loss.

The employed network consists of an autoencoder with a single fully connected
layer of 300 units and linear activation and output layer of 784 units with also linear
activation. This way the hidden layer produces a coding of 300 dimensions from the

18

784 input dimensionality of the flattened MNIST images that will be decoded back
into the original dimensionality by the output layer.

The loss function is based on three main terms, the reconstruction loss of the first
autoencoder, the reconstruction loss of the second autoencoder and the distance loss.
By reconstruction loss we define the mean square difference of the input image and
the generated image of the autoencoder following the expression:

loss = recloss(x1, h1(x1)) + recloss(x2, h2(x2)) + distloss(h1(x1), h2(x2)) (5.1)

recloss(x, h(x)) = squarex− h(x) (5.2)

distloss(h1(x1), h2(x2)) = �(x− y)2 (5.3)

The network has been trained for 10.000 updates with batch size 100. As optimizer
was used Adam[KB14] with the default parameters, learning rate equals 0.001,
beta1 equals 0.9, beta2 equals 0.999 and epsilon equals 1e-08

5.3 Experimental results

Once the networks are trained we can analyze the reconstructed images. Given
the latent representation generated from one of the encoders we can try to decode
it using both decoders and compare their results. In figure5.1 we can see how
both reconstructions correctly represent the characteristics of the number such as
the line overlap on top of the 0 or how the 6 in the last image is not closed. It
is also important to notice that the cross decoded images present noisier edges
than the original ones, but mostly the important information about the number is
preserved.

5.3 Experimental results 19

Fig. 5.1: Examples of generated outputs. Upper row autoencoder generated. Bottom row
cross generated.

5.3 Experimental results 20

6Experiments

In this chapter, we report details on the experimental framework and results. We in-
clude a brief description of the evaluation measure, the dataset, the hyper parameters
of the system and finally, the results.

6.1 Evaluation measure

To evaluate the quality of the proposed translations in this work, we are going to use
the standard metric BLEU[Pap+02]. This measure is the most widely used metric in
the area. BLEU consists in measuring the accuracy of the proposed translation for
different sizes of n-grams, generally from 1 to 4, using the expression:

Pn =
∑

C∈candidates

∑
n−gram∈C count(n− gram)∑

C′∈references

∑
n−gram′∈C′ count(n− gram′)

(6.1)

Generating the right n-grams is important for the translation because it means that
the right words in the right order are being generated by the system. A problem than
can arise from this measure is that we can create a system that correctly generates
the first n-grams of the sentence but then it stops. This candidate sentence even
producing the right n-grams is missing the meaning of the sentence by not fully
translating it. The following brevity penalty is introduced to prevent this undesired
behavior:

BP =
{

1 if c > r

e1− r
c

(6.2)

If the candidate sentence c is longer that the reference r no penalty is applied but,
if not, its value in the metric is reduced. Also for each n-gram size a weight is
calculated. In the general case, we can assume wn = 1

N where N is the number of
n-gram sizes evaluated. Finally, the BLEU metric is calculated as:

21

BLEU = BPėxp(
N∑

n=1
wn l̇og(Pn)) (6.3)

Measuring the distance between the intermediate representations produced by the
networks depends on the relative distance of the vectors in those representations for
the sentences in their own language. To overcome this difficulty, we propose a novel
approach to measure their quality based on the performance of the models for the
autoencoding and translation tasks.

The intuition behind this concept is that, independently of the quality of the transla-
tion, an effective universal language should produce close results when a decoder is
fed with an intermediate representation created by the encoder of the same language
or a different language. We propose to measure this difference with the BLEU score
of both outputs using the autoencoder output as the reference to compare with the
translation output.

6.2 Data

The dataset employed for these experiments is the SETIMES2 dataset consisting in
sentences extracted from parallel news in Turkish and English. To prepare the data
to be used with the model several preprocessing steps were required. We employed
the following pipeline using standard scripts from the statistical machine translation
tool Moses[Koe+07]:

1. Elimination of empty sentences. Empty lines in addition to not provide useful
information for training could raise errors when training the Moses baseline.

2. Tokenization. In order to create a vocabulary that represents the occurrences of
words in the training set is important to have a consistent separation of tokens
in the corpus. For example, splitting words from punctuation marks prevents
the system from identifying those words as new words with low frequency
instead of two already known tokens.

3. Cleaning. Sentences length may affect the performance of the system. In this
step sentences longer than 50 tokens are removed from the training corpus. In
case just one of the two parallel sentences is too long both are deleted.

4. True Casing. In languages were there are differences between upper and lower
case is important to correctly capitalize words in the same way for training

6.2 Data 22

and test sets. In this step a model is trained to learn which words have to be
capitalized in addition to beginning of sentences and words that appear just
after a period or punctuation marks.

Table6.2 shows the number of sentences, words and number of unique words in the
corpus. It is a small dataset with approximately 200.000 sentences but Turkish is not
a language in which a lot of parallel corpus can be found and having a small dataset
allows us to perform more experiments. Training a competitive machine translation
system for high resource language pair such as German-English could take several
days to train.

Language Set Sentences Words Vocabulary

Turkish
Train 200290 4248508 158276
Dev 1001 16954 6463
Test 3000 54128 15898

English
Train 299290 4713025 73906
Dev 1001 22136 4318
Test 3000 66394 9503

Tab. 6.1: Corpus Statistics. Number of sentences (S),words (W), vocabulary (V)

6.3 Hyper parameters

In this section, we report the hyper parameters used for each architecture proposed.
All experiments have been implemented using Tensorflow using a NVIDIA TITAN gpu
with 12 GB of RAM memory.

6.3.1 Autoencoder architecture

Translation models usually take days to train and perform so due to hardware and
time constraints limited parameter tuning could be performed on the models. Most of
the following parameters are the chosen parameters in the original paper [Vas+17].
The principal changes are the hidden representation size, that has been reduced
from 512 to 128 in order to fit both autoencoders in a single gpu and batch size that
has been also reduced due to gpu memory constraints. The full list of parameters is
shown in tabke 6.2

6.3 Hyper parameters 23

Hparam Value
Embedding size 128
Hidden units 128
Training steps 30000
Encoder attention blocks 6
Decoder attention blocks 6
Attention heads 8
batch size 32
maximum sentence length 50
optimizer Adam
learning rate 0.0001

Tab. 6.2: Autoencoder architecture hyper parameters

As stopping criterion we choose to finish the training process if translation loss was
not decreasing for 1000 batches sampled every 100 batches. Figures 6.2 and 6.1
show how loss converges for the different network scenarios. It is worth noticing
how both accuracy and loss start to converge faster in the autoencoder task than
in the translation task. But at the end of the training process they arrive to similar
values of over 90% accuracy for the training data.

Fig. 6.1: Accuracy through the training process for the English autoencoder, Turkish autoen-
coder, English-Turkish translation and Turkish-English translation repectively.

Fig. 6.2: Loss through the training process for the English autoencoder, Turkish autoencoder,
English-Turkish translation and Turkish-English translation repectively.

6.3.2 Decomposed Vector Quantization architecture

For this alternative most of the parameters are chosen equally that the non variational
model due to the same limitations of time and gpu memory. The Decomposed Vector

6.3 Hyper parameters 24

Quantization specific parameters of this model, number of tables and tables size are
maintained from [KB18]. Table 6.3

Tab. 6.3: Decomposed Vector Quantization hyper parameters

Hparam Value
Embedding size 128
Hidden units 128
Training steps 90000
vq tables 4
table size 5000
Encoder attention blocks 6
Decoder attention blocks 6
Attention heads 8
batch size 32
maximum sentence length 50
optimizer Adam
learning rate 0.0001

It is surprising that this alternative took 3 times more to converge than the non
variational alternative and that the final accuracy of the model for the training set
was approximately of 75% compared to the 90% of the other model.

Fig. 6.3: Accuracy through the training process for the English autoencoder, Turkish autoen-
coder, English-Turkish translation and Turkish-English translation repectively.

Fig. 6.4: Loss through the training process for the English autoencoder, Turkish autoencoder,
English-Turkish translation and Turkish-English translation repectively.

6.3 Hyper parameters 25

6.4 Results

In order to measure the performance of the proposed architecture we are going to
compare its performance to the following baselines:

• Moses: This statistical machine translation model was trained using

• Character-based neural machine translation: For the embedding of the
source sentence, we use set of convolutional layers which number kernels are
(200-200-250-250-300-300-300- 300) and their lengths are (1-2-3-4-5-6-7-8)
respectively. Additionally 4 highway layers are employed. And a bidirectional
LSTM layer of 512 units for encoding. The maximum source sentence’s length
is 450 during training and 500 for decoding both during training and inference.

• Default transformer: A default transformer model trained to translate from a
source to a target language with the default optimization and the same param-
eters as the non variational autoencoder version of the proposed architecture.

• DVQ transformer: A transformer model using decomposed vector quanti-
zation as latent representation. Trained with the same parameters as the
variational autoencoder alternative of the proposed architecture.

Tab. 6.4: BLEU results for the different system alternatives, Moses, RNN, Transformer
baseline, and different configurations of our architecture, Universal (Univ) with
and without decomposed vector quantization (dvq), and correlation distance
(corr) and maximum of difference (max)

EN-TR TR-EN
Moses 7.25 11.10
RNN Char/Char 5.87 6.23
Transformer 8.32 12.03
Transformer dvq 2.89 8.14
Univ + corr 8.11 12.00
Univ + max 6.19 10.38
Univ + dvq + corr 7.45 7.56
Univ + dvq + max 2.40 5.24

After evaluating how the proposed systems perform compared to the baseline systems,
we can also evaluate how the internal representation affects the text generated. To
do so we are going to evaluate the results of each decoder in the three following
scenarios:

• Autoencoder: Each decoder’s input is the latent representation produced by
the encoder of the same language.

6.4 Results 26

• Translation: Each decoder’s input is the latent representation produced by
the encoder or the other language.

• BLEU between Autoencoder and Translation: How the performance changes
from using the decoder as autoencoder or as translation. In the ideal case,
autoencoder and translation should provide the same results and therefore
100 BLEU would be obtained.

These results are shown in Table 6.5 only for the best performing model from Table
6.4, the non variational autoencoder model with correlation distance, performs in
autoencoding and translation. A big performance gap can be observed between the
autoencoder and translation results.

Tab. 6.5: Comparison of BLEU scores on the univ+corr architecture when performing as
autoencoder and translation (MT). The third column (A-T) is the BLEU between
autoencoder and translation outputs.

Decoder Autoencoder MT A-T
EN 63.32 12.00 11.90
TR 59.33 8.11 6.02

Finally, Table 6.6 show some examples of generated output by the systems in both
directions

Tab. 6.6: Example of generated sentences in both directions English-Turkish and Turkish-
English respectively

Language Example
Input English in 911 Call , Professor Admits to Shooting girlfriend
Target Turkish Profesör 911 ’ i arayarak Kız arkadaşını öldürdüğünü İtiraf Etti
Output Output Profesör 9 ’ i arayarak Kız İtiraf Etti
Input Turkish bunlar artık Lamb ’ in yanıtlayamayacağı sorular .
Target English those are questions lamb can no longer answer .
Output Output a question lamb cannot answer.

6.4 Results 27

7Interlingua-visualization

In order to fully understand how data is represented in the latent space and the
relation of sentence pairs, we developed a REST API version of the model and the
server infrastructure to settle a visualization tool. This tool consists in a preprocessing
step that queries the server until n sentences representations are downloaded and
then, UMAP[MH18] is applied as reduction of dimensionality technique to plot the
sentences in 2D [Aje18].

Figure 7.3 shows the plot of the latent representation of 100 parallel sentences
obtained from the best performing model from Table 6.5, which is the non variational
architecture with correlation distance.

A clear separation can be observed between the English (green) sentences and
Turkish (yellow) sentences. Even though points are close in the space, having two
different clusters means that there are some transformations that are not correctly
reduced by the objective distance that we are using. As a consequence, it is the
decoder who has to remove this extra noise from the encoding in order to use
the representation as context for the translation. These two different clusters that
we have in the representation may also cause the BLEU differences between the
autoencoder and the translation generation.

Fig. 7.1: Overview of the interlingua space. Showing 100 English(green) sentences and
their Turkish translations(yellow)

28

Fig. 7.2: Example of close sentences in the space. Showing 100 english(green) sentences
and their Turkish translations(yellow)

Fig. 7.3: Example of far sentences in the space. Showing 100 english(green) sentences and
their Turkish translations(yellow)

29

8Conclusion

This thesis has proposed and developed a new neural machine translation architec-
ture capable of learning an interlingua representation for different languages. Our
experimental results show that our proposed variational architecture not only shows
evidences of learning an interlingua representation, but it also achieves comparable
results to current state-of-the-art in translation and it is also able to outperform
some other strong models. Our variational autoencoder architecture is specially
designed to scale to more languages and multimodal tasks. Additionally, this thesis
has proposed an evaluation metric for translation which is able to evaluate the
quality of the interlingua representation.

Even though our proposed system is able to translate using only the interlingua
representation (without the source information), there is still room for improvement
in unifying the intermediate representation of different languages. These results
are coherent with the fact that there is still a gap in the performance between the
autoencoder and translation results. To solve this gap, it may be required to define a
most suitable distance loss or a post process that allows us to learn a transformation
between representations.

Additional further work towards improving the architecture include testing several
aspects like the scalabilty of the architecture and how add new languages to a
pretrained architecture. From another side and based on the explained MNIST toy
problem, it would be interesting to test the architecture in multimodal tasks such as
image captioning or even speech translation. Finally, another future extension could
be a semi-supervised approach that would allow to train a system without parallel
corpus between all languages in the system.

30

Bibliography

[Aje18] R. Ajenjo. „Visualizacion de representaciones intermedias en traducciones real-
izadas por redes neuronales“. Bachelor’s Thesis. 2018 (cit. on p. 28).

[Arn94] Doug Arnold. Machine translation: an introductory guide. Blackwell Pub, 1994
(cit. on p. 11).

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. „Neural machine transla-
tion by jointly learning to align and translate“. In: arXiv preprint arXiv:1409.0473
(2014) (cit. on pp. 5, 11).

[BKH16] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. „Layer normalization“.
In: arXiv preprint arXiv:1607.06450 (2016) (cit. on p. 6).

[Geh+17] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.
„Convolutional Sequence to Sequence Learning“. In: CoRR abs/1705.03122
(2017). arXiv: 1705.03122 (cit. on p. 12).

[Gel+17] Spandana Gella, Rico Sennrich, Frank Keller, and Mirella Lapata. „Image Pivot-
ing for Learning Multilingual Multimodal Representations“. In: arXiv preprint
arXiv:1707.07601 (2017) (cit. on p. 13).

[Hot35] H Hotelling. „Canonical correlation analysis (cca)“. In: Journal of Educational
Psychology (1935) (cit. on p. 10).

[Joh+16] Melvin Johnson, Mike Schuster, Quoc V Le, et al. „Google’s multilingual neural
machine translation system: enabling zero-shot translation“. In: arXiv preprint
arXiv:1611.04558 (2016) (cit. on p. 12).

[KB14] Diederik P. Kingma and Jimmy Ba. „Adam: A Method for Stochastic Optimization“.
In: CoRR abs/1412.6980 (2014). arXiv: 1412.6980 (cit. on p. 19).

[KB18] Lukasz Kaiser and Samy Bengio. „Discrete Autoencoders for Sequence Models“.
In: CoRR abs/1801.09797 (2018). arXiv: 1801.09797 (cit. on pp. 16, 25).

[KF15] Andrej Karpathy and Li Fei-Fei. „Deep visual-semantic alignments for generating
image descriptions“. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2015, pp. 3128–3137 (cit. on p. 13).

[Koe+07] Philipp Koehn, Hieu Hoang, Alexandra Birch, et al. „Moses: Open source toolkit
for statistical machine translation“. In: Proceedings of the 45th annual meet-
ing of the ACL on interactive poster and demonstration sessions. Association for
Computational Linguistics. 2007, pp. 177–180 (cit. on pp. 11, 22).

31

http://arxiv.org/abs/1705.03122
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1801.09797

[KW13] Diederik P Kingma and Max Welling. „Auto-encoding variational bayes“. In: arXiv
preprint arXiv:1312.6114 (2013) (cit. on p. 8).

[LCB10] Yann LeCun, Corinna Cortes, and CJ Burges. „MNIST handwritten digit database“.
In: AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist 2 (2010)
(cit. on p. 18).

[LPM15] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. „Effective Ap-
proaches to Attention-based Neural Machine Translation“. In: CoRR abs/1508.04025
(2015). arXiv: 1508.04025 (cit. on p. 11).

[Lu+18] Yichao Lu, Phillip Keung, Faisal Ladhak, et al. „A neural interlingua for multilin-
gual machine translation“. In: arXiv preprint arXiv:1804.08198 (2018) (cit. on
p. 12).

[MH18] L. McInnes and J. Healy. „UMAP: Uniform Manifold Approximation and Projec-
tion for Dimension Reduction“. In: ArXiv e-prints (Feb. 2018). arXiv: 1802.03426
[stat.ML] (cit. on p. 28).

[Ng11] Andrew Ng. CS294A Lecture notes. Feb. 2011 (cit. on p. 8).

[O+17] Aaron van den Oord, Oriol Vinyals, et al. „Neural discrete representation learn-
ing“. In: Advances in Neural Information Processing Systems. 2017, pp. 6309–6318
(cit. on p. 9).

[Pap+02] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. „BLEU: a method
for automatic evaluation of machine translation“. In: Proceedings of the 40th
annual meeting on association for computational linguistics. Association for Com-
putational Linguistics. 2002, pp. 311–318 (cit. on p. 21).

[Sch+17] Holger Schwenk, Ke Tran, Orhan Firat, and Matthijs Douze. „Learning joint
multilingual sentence representations with neural machine translation“. In: arXiv
preprint arXiv:1704.04154 (2017) (cit. on p. 12).

[Vas+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. „Attention is all you need“. In:
Advances in Neural Information Processing Systems. 2017, pp. 6000–6010 (cit. on
pp. 4, 7, 12, 14, 15, 23).

[Vin+08] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
„Extracting and composing robust features with denoising autoencoders“. In:
Proceedings of the 25th international conference on Machine learning. ACM. 2008,
pp. 1096–1103 (cit. on p. 8).

[Vin+15] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. „Show
and tell: A neural image caption generator“. In: Computer Vision and Pattern
Recognition (CVPR), 2015 IEEE Conference on. IEEE. 2015, pp. 3156–3164 (cit. on
p. 13).

Bibliography 32

http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426

List of Figures

1.1 Example of multimodal interlingua system 2

2.1 Transformer overview . 4
2.2 Transformer multihead attention. Original image from [Vas+17] . . . 7
2.3 Example of autoencoder architecture 7
2.4 VQ-VAE architecture . 9

4.1 Architecture diagram. Every module is compatible with the intermediate
representation. 14

4.2 Example of English to Turkish and Turkish to English translation 15

5.1 Examples of generated outputs. Upper row autoencoder generated.
Bottom row cross generated. 20

6.1 Accuracy through the training process for the English autoencoder,
Turkish autoencoder, English-Turkish translation and Turkish-English
translation repectively. 24

6.2 Loss through the training process for the English autoencoder, Turkish
autoencoder, English-Turkish translation and Turkish-English translation
repectively. 24

6.3 Accuracy through the training process for the English autoencoder,
Turkish autoencoder, English-Turkish translation and Turkish-English
translation repectively. 25

6.4 Loss through the training process for the English autoencoder, Turkish
autoencoder, English-Turkish translation and Turkish-English translation
repectively. 25

7.1 Overview of the interlingua space. Showing 100 English(green) sen-
tences and their Turkish translations(yellow) 28

7.2 Example of close sentences in the space. Showing 100 english(green)
sentences and their Turkish translations(yellow) 29

7.3 Example of far sentences in the space. Showing 100 english(green)
sentences and their Turkish translations(yellow) 29

33

List of Tables

6.1 Corpus Statistics. Number of sentences (S),words (W), vocabulary (V) 23
6.2 Autoencoder architecture hyper parameters 24
6.3 Decomposed Vector Quantization hyper parameters 25
6.4 BLEU results for the different system alternatives, Moses, RNN, Trans-

former baseline, and different configurations of our architecture, Uni-
versal (Univ) with and without decomposed vector quantization (dvq),
and correlation distance (corr) and maximum of difference (max) . . . 26

6.5 Comparison of BLEU scores on the univ+corr architecture when per-
forming as autoencoder and translation (MT). The third column (A-T)
is the BLEU between autoencoder and translation outputs. 27

6.6 Example of generated sentences in both directions English-Turkish and
Turkish-English respectively . 27

34

List of Tables 35

	Cover
	Abstract
	Acknowledgement
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Contributions of the thesis
	1.4 Thesis Structure

	2 Theoretical background
	2.1 Transformer
	2.2 Autoencoders
	2.2.1 Variational autoencoders
	2.2.2 Vector quantization

	2.3 Canonical correlation analyisis

	3 State of the art
	3.1 Machine translation
	3.2 Interlingua representation

	4 Architecture
	4.1 Architecture overview
	4.2 Discrete latent representation
	4.3 Optimization

	5 Toy example
	5.1 Problem description
	5.2 Network architecture
	5.3 Experimental results

	6 Experiments
	6.1 Evaluation measure
	6.2 Data
	6.3 Hyper parameters
	6.3.1 Autoencoder architecture
	6.3.2 Decomposed Vector Quantization architecture

	6.4 Results

	7 Interlingua-visualization
	8 Conclusion
	Bibliography

