
Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

Facultat d’Informàtica de Barcelona (FIB)

Final Master Thesis (FMT)

Master in Innovation and Research in Informatics (MIRI)

High Performance Computing (HPC)

Enhancing the Interoperability between
Distributed-Memory and Task-Based

Programming Models

Kevin Sala Penadés
(kevin.sala@bsc.es)

Advisors:
Vicenç Beltran Querol (vbeltran@bsc.es)

Eduard Ayguadé Parra (eduard@ac.upc.edu)

Computer Architecture Department (DAC)

Barcelona, 27 June 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185525161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments

I would like to thank my advisors, Vicenç Beltran and Eduard Ayguadé, for offering me
the opportunity of working with them on several interesting and motivating projects.
Also, thanks for the support that I have received and thanks for facilitating my way
in the field of research.

Thanks to Josep M. Perez and Xavier Teruel, since this project would not be possible
without all their help.

I would like to thank all my family and friends, especially my parents, for supporting me
during all this project. Every day, they encourage me to improve both professionally
and personally.

I would like to especially thank my friends Toni Navarro and Marc Maŕı, who have
supported and helped me unconditionally every day. They always make me smile and
they make me take things more humorously. Thanks for all, fellas.

Last but not least, I would like to thank all my colleagues at the BSC Programming
Models group for creating a very nice working environment.

ii

Abstract

Current high-performance computing architecture trends suggest that exascale com-
puting systems will consist of several distributed memory nodes, where each will con-
tain a large number of compute cores. Following these trends, HPC users usually
develop hybrid applications combining both distributed-memory and shared-memory
programming models to exploit the inter-node and intra-node parallelism, respectively.

However the common parallelization strategies limit the performance and the pro-
grammability of hybrid applications, since these programming models were not de-
signed to be combined. When trying to enhance the performance of hybrid application
by applying more advanced techniques, such as double-buffering, the complexity of the
code increases dramatically, and in addition, they still continue to be suboptimal.

There are several proposals which improve the interoperability between MPI and
OpenMP. Some of them propose the taskification of communications along with an
interoperability mechanism. However, most of them are specific to a particular task-
based programming model.

We propose the enhancement of the interoperability between distributed-memory and
task-based programming models in order to (1) improve the programmability of user
applications, to (2) improve significantly their performance and (3) being compatible
with any task-based programming model. We enhance an existing interoperability
mechanism for MPI and we propose a similar mechanism for the GASPI programming
model.

Our results, which include the evaluation of some benchmarks in different architectures,
reveal that our approaches for both MPI and GASPI programming models improve the
performance and programmability of hybrid applications. We also demonstrate that
the mechanism can be easily integrated into any distributed-memory programming
model, or even into any blocking service not related to programming models.

iii

Table of Contents

1 Introduction . 1

1.1 Objectives . 2

1.2 Contributions . 3

1.3 Document Structure . 4

2 Related Work . 5

3 Message-Passing Interface (MPI) . 7

3.1 History . 8

3.2 Basic Concepts . 8

3.3 Initialization . 9

3.4 Data Messages . 10

3.5 Point-to-Point Communication . 10

3.5.1 Blocking Operations . 11

3.5.2 Non-Blocking Operations . 11

3.6 Collective Communication . 12

4 Global Address Space Programming Interface (GASPI) 13

4.1 History . 14

4.2 Remote Direct Memory Access . 14

4.3 Basic Concepts . 15

4.4 Initialization . 16

4.5 Groups . 16

4.6 Memory Segments . 17

4.7 One-Sided Communication . 18

iv

4.7.1 Write & Read Operations . 18

4.7.2 Notify Operation . 19

4.7.3 Waiting Notifications . 19

4.8 Queues . 20

4.9 Other Functionalities . 21

5 OmpSs-2 Task-based Programming Model 22

5.1 Basic Concepts . 22

5.2 Influencing OpenMP . 23

5.3 Annotating Programs . 24

5.4 Execution Model . 24

5.4.1 Tasks . 25

5.4.2 Loops . 25

5.4.3 Nesting . 26

5.4.4 Explicit Synchronization . 26

5.4.5 Example . 26

5.5 Dependency Model . 27

5.5.1 Region Dependencies . 28

5.5.2 Fine-Grained Early Release . 28

5.5.3 Weak Dependencies . 29

5.6 Task Scheduling . 30

5.7 Reference Implementation . 30

6 MPI+OmpSs Interoperability Library . 31

6.1 Taskifying Communications . 32

6.1.1 Risk of Deadlock . 33

6.2 Benefits . 33

6.3 Software Requirements . 33

6.3.1 Task Condition Variable API 34

6.3.2 Polling Service API . 34

6.4 Operation . 34

v

7 Tools and Methodology . 37

7.1 Tools . 37

7.1.1 Mercurium . 37

7.1.2 Nanos6 . 38

7.1.3 MPICH . 39

7.1.4 GPI-2 . 40

7.1.5 MPI+OmpSs Interoperability Library 40

7.1.6 Extrae . 40

7.1.7 Paraver . 41

7.2 Methodology . 41

7.2.1 Relevance Cycle . 41

7.2.2 Rigor Cycle . 42

7.2.3 Design Cycle . 43

8 Enhancing the MPI Interoperability . 44

8.1 New Level of Thread Support . 44

8.2 Generalizing the API . 46

8.3 Bringing the Mechanism to Users . 48

8.4 Implementation Details . 49

9 Enhancing the GASPI Interoperability . 52

9.1 Main Ideas . 52

9.2 Initialization Modes . 53

9.3 New Blocking/Timeout Mode . 54

9.4 Local Completion . 55

9.5 Remote Completion . 56

9.6 Queue Groups . 56

9.7 Implementation Details . 58

9.7.1 Original Implementation . 59

9.7.2 Extending gaspi wait . 59

9.7.3 Extending gaspi notify waitsome 62

9.7.4 Implementing Queue Groups . 63

vi

10 Proposing a Non-blocking Interoperability Mechanism 65

10.1 Task Event Counter API . 66

10.2 Implementation Details . 67

11 Evaluation . 70

11.1 Environment . 70

11.2 Gauss–Seidel . 71

11.2.1 GASPI Versions . 74

11.2.2 Non-blocking Interoperability Variant 75

11.3 IFSker . 75

11.4 Evaluation and Discussion . 76

11.4.1 Gauss–Seidel in Marenostrum4 77

11.4.2 Gauss–Seidel in Nord3 . 80

11.4.3 IFSker in Marenostrum4 . 82

12 Conclusions . 85

13 Future Work . 86

Bibliography . 87

Appendix A Gauss–Seidel: Complete Code . 89

A.1 Taskified MPI+OmpSs-2 Gauss–Seidel 89

A.2 Taskified GASPI+OmpSs-2 Gauss–Seidel 93

vii

List of Figures

4.1 GASPI overview in a heterogeneous architecture 14

5.1 OmpSs features introduced into the OpenMP programming model. . . 24

5.2 Snippet of code highlighting tasking constructs. 27

5.3 Snippet of code combining nesting and dependencies. 29

6.1 Software stack in a hybrid MPI+OmpSs+Interoperability application. . 31

6.2 Dependency graph with both computation and communication tasks. . 32

6.3 Deadlock situation between 2 processes and 2 CPUs per process. 32

6.4 OmpSs task condition variable API. 34

6.5 OmpSs polling service API. 35

6.6 Original interception of the MPI Recv routine and implementation of
the polling function in the interoperability library. 36

7.1 Mercurium workflow for OmpSs source codes. 38

7.2 Nanos6 runtime system structure. 39

7.3 Design Science Research Cycles. 42

8.1 Example of a portable MPI initialization using MPI TASK MULTIPLE. 45

8.2 Task block/unblock API. 46

8.3 Code that performs the block operation. 47

8.4 Body of the code that handles the unblocking of the operation. 47

8.5 Callback code that handles multiple operations. 47

8.6 Callback code that handles a single operation. 48

8.7 Modified blocking code to use one callback per operation. 48

8.8 Interception of both MPI initialization and finalization routines. 49

viii

8.9 New interception of the MPI Recv routine and implementation of the
polling function in the interoperability library. 50

9.1 Example of a common GASPI+OmpSs parallelization strategy. 53

9.2 Example of the proposed GASPI+OmpSs parallelization strategy. . . . 54

9.3 Example of sending and receiving data with the pause/resume interop-
erability. 57

9.4 Proposed GASPI routines for managing queue groups. 58

9.5 Task flow when calling gaspi wait with GASPI BLOCK TASK. 60

9.6 Pseudocode of the pause/resume mechanism in gaspi wait. 61

9.7 Task flow when calling gaspi notify waitsome with GASPI BLOCK TASK. 62

9.8 Pseudocode of the pause/resume mechanism in gaspi notify waitsome. . 64

10.1 Example of the non-blocking interoperability mechanism. 66

10.2 Task event counter API. 67

10.3 Implementation of the MPI Iwait routine and the polling function in the
interoperability library. 68

11.1 2-D matrix of 3×12 blocks split in four ranks. On the hybrid versions,
for each iteration a task is created to update each block using values
of both current (top and left blocks) and previous (current, right and
bottom blocks) iterations. 72

11.2 Above: dependency graph for Pure and Fork-Join. Below: dependency
graph for N-Buffer, Sentinel (with red deps) and Interop (no red deps). . 73

11.3 Modified receiveUpperBorder to use the non-blocking interoperability
mechanism. 75

11.4 Gauss–Seidel strong scaling in Marenosturm4 with 64K x 64K total
elements and 1000 timesteps. 77

11.5 Execution traces with 4 nodes of Marenostrum4 with a 32K x 32K
matrix. The Y axis shows MPI ranks/OmpSs threads, while the X axis
shows the time-line. 79

11.6 Gauss–Seidel weak scaling in Marenosturm4 with 32K x 32K elements
per node and 1000 timesteps. 80

11.7 Gauss–Seidel strong scaling in Nord3 with 32K x 32K total elements
and 1000 timesteps. 81

11.8 Gauss–Seidel weak scaling in Nord3 with 32K x 32K elements per node
and 500 timesteps. 81

ix

11.9 Gauss–Seidel strong scaling in Nord3 with 16K x 16K total elements
and 2000 timesteps. 82

11.10IFSker strong scaling in Marenostrum4 with 653K total grid-points and
200 timesteps. 83

11.11IFSker weak scaling in Marenostrum4 with 82K grid-points per node
and 500 timesteps. 83

x

List of Tables

11.1 Table describing the software used to perform the experiments and their
versions. 71

xi

List of Code Samples

A.1 Gauss–Seidel code of the MPI+OmpSs-2 Sentinel and Interop versions. . 89

A.2 Gauss–Seidel code of the GASPI+OmpSs-2 Sentinel and Interop versions. 93

xii

1 | Introduction

Current near-term and mid-term high-performance computing (HPC) architecture
trends suggest that the first generation of exascale computing systems will consist
of distributed memory nodes, where each node contains a large number of compute
cores that provide a high computing capacity.

Following this idea, the most common practice in the HPC community is to develop hy-
brid applications combining programming models specialized in exploiting inter-node
and intra-node parallelism [1–3]. Usually, distributed-memory programming models,
such as MPI [4] or GASPI [5], are used for inter-node parallelism, while shared-memory
programming models, such as OpenMP [6] or OmpSs [7], are used for exploiting the
parallelism within each node.

Although these programming models were not originally designed to be combined in
hybrid applications, they have evolved to provide some interoperability support. How-
ever, this minimal support only determines how both models can be safely combined in
order to develop hybrid applications, and also, they usually introduce some overhead
when enabling the interoperability modes.

In the case of MPI, the standard guarantees that point-to-point communications among
two ranks are always ordered as long as these leverage the same tag and communi-
cator. However, when multiple threads communicate simultaneously, operations can
be re-ordered causing a deadlock in the execution of the application. To avoid this
kind of problems, most hybrid applications use the MPI’s thread funneled mode, and
then, they serialize communication phases, while computation phases are performed in
parallel. Therefore, these applications follow a fork-join parallelization strategy, which
opens the parallelism when entering computation phases and closes it before entering
a communication phase.

Although this is an easy approach, it presents some programmability and performance
problems. Firstly, parallelism may be potentially hindered due to the strict synchro-
nization enforced among computation phases and across nodes. Secondly, usually this
synchronization point introduces some overhead by itself. Finally, it is very difficult
to overlap computation and communication phases with this kind of approaches.

Occasionally, more advanced strategies are implemented in hybrid applications which
require the restructuring of the application code to manually overlap computation and
communication phases of the algorithm. These techniques, such as double-buffering,
use asynchronous communication primitives to start communication operations, and

1

while these operations do not complete, the application is able to perform some com-
putations. However, they require complex code modifications, which could be even
infeasible depending on the application. Moreover, most times this technique is ap-
plied, the performance achieved is still suboptimal.

An easy solution for the previous issues would be to use tasks to implement both com-
putation and communication phases, relying on task dependencies to deal with inter-
node and intra-node synchronization. However, this approach cannot be efficiently
implemented with current MPI, GASPI and OpenMP specifications. MPI provides
the MPI THREAD MULTIPLE mode that supports the concurrent invocation of MPI
functions from multiple threads, while GASPI allows concurrent calls to its proce-
dures by default. Nevertheless, this is not sufficient to efficiently support task-based
programming models such as OpenMP or OmpSs.

The main issue is that tasks are not aware of the synchronous MPI/GASPI operations,
which might block not only the task but also the underlying hardware thread that runs
it. Even if the MPI/GASPI implementation does not rely on busy-waiting to check for
operation completion and the hardware thread becomes idle, the task runtime has no
means to discover that the hardware thread is available without an explicit notification
from the MPI/GASPI side. Without this notification mechanism, if the number of
in-flight operations blocked reaches the number of available hardware threads, the
application will hang due to lack of progress [8]. With the current specifications, the
user is responsible for avoiding this situation, and therefore, it severely limits their
ability to benefit from task-based programming models.

The interoperability between the MPI and OpenMP programming models has been
discussed for several years. Most of the proposed approaches require significant changes
in both hybrid applications and involved programming models. Moreover, many of
these approaches are designed specifically for a particular task-based programming
model.

In order to solve these problems, in this project we propose the enhancement of an
existing interoperability approach for MPI [9] by (1) improving the programmability
in hybrid applications, by (2) increasing their performance and by (3) generalizing
the interface between both distributed-memory and task-based programming models.
Furthermore, we propose a new interoperability approach for GASPI by using the same
interface and trying to follow a similar strategy.

In the following sections we explain the specific objectives and contributions of our
project, and finally, we describe the organization of this document.

1.1 Objectives

The main objective of this project is to provide a well-defined mechanism for allowing
the interoperation between distributed-memory programming models, such as MPI,
and task-based programming models, such as OmpSs and OpenMP, in hybrid ap-
plication environments. In a task-based ecosystem where tasks perform synchronous

2

operations, which are provided by a distributed-memory programming model, the in-
teroperability mechanism prevents the underlying hardware threads that execute those
tasks from being blocked inside these synchronous operation procedures. Thus these
threads can execute other ready tasks while the operations do not complete.

This project aims to properly integrate the interoperability mechanism into both MPI
and GASPI distributed-memory programming models. However, it should be applica-
ble to any kind of API featuring blocking or synchronous operations, even APIs not
related to distributed-memory programming models (e.g. file accesses). Similarly, the
mechanism is designed having in mind the OmpSs programming model, however it
should work with any task-based programming model.

More specifically, the objectives of this project are the following:

• Generalize the interoperability mechanism in order to be applicable to any syn-
chronous API and to any task-based programming model.

• Enhance an existing interoperability approach for the MPI programming model.

• Design and develop a new interoperability approach for the GASPI programming
model.

By introducing these functionalities, users could improve the performance of their
hybrid applications in an easy and portable way. Furthermore, it could facilitate the
task of developing a similar interoperability mechanism for other blocking APIs.

1.2 Contributions

With the interoperability mechanism presented in this project we are able to:

1. Taskify both computation and communication phases in hybrid applications,
allowing multiple communication tasks to run in parallel, without the risk of
generating a deadlock. This can result in the overlap of computations and com-
munications, and also, the overlap of different application’s timesteps.

2. Provide a consistent and portable way to enable the aforementioned mechanism
in hybrid applications (i.e. MPI and GASPI).

3. Facilitate the integration of the mechanism into other synchronous APIs, thanks
to a generic API to block/unblock tasks, and also, thanks to the experience
gained by integrating it into both MPI and GASPI programming models.

3

1.3 Document Structure

This document starts with the current Chapter, which presents the motivations and
the general objectives of this thesis. Chapters 3 and 4 introduce the MPI and GASPI
distributed-memory programming models, respectively. Although this project does not
target any specific task-based programming model, we use the OmpSs-2 programming
model in order to exemplify the interoperability mechanism. This programming model
is introduced in Chapter 5. Chapter 6 explains the existing MPI+OmpSs interoper-
ability library, which will be the base of our contributions to the MPI interoperability.
Finally, Chapter 7 explains the tools used and the methodology followed to successfully
complete this project.

The previous chapters explaining the background are followed by the chapters defining
our proposals. Firstly, Chapter 8 explains in detail our proposal for the enhancement
of the interoperability mechanism between MPI and task-based programming models.
Similarly, Chapter 9 describes our proposal for the development of an interoperability
mechanism for GASPI and task-based programming models. Then, Chapter 10 pro-
poses a non-blocking interoperability mechanism, which does not block communication
tasks, and aims to improve the previous interoperability mechanism.

Chapter 11 explains the evaluation that we have performed using two applications,
which are also analyzed in detail. Finally, Chapter 12 presents the conclusions of this
thesis, followed by Chapter 13, which proposes the next steps for this project.

4

2 | Related Work

One of the objectives of this project is to allow the overlap between computation and
communication phases of hybrid MPI/GASPI applications in an efficient, clear and
comfortable way. The topic of overlapping computation and communication has been
studied for a long time and in several contexts.

[10, 11] propose the development of a threading library for the Cell B.E. processor,
which transparently overlaps the computation and communication phases of different
threads running on the same SPU (Synergistic Processor Unit in the Cell B.E. archi-
tecture). When a running thread is about to block on a DMA operation, the thread
execution is suspended until the DMA operation completes. Meanwhile, the execution
of another thread is resumed on the SPU, thus the communication phase of the sus-
pended thread overlaps with the computation phase of the currently executing thread.
Other techniques such as double and multi-buffering are studied. These techniques also
allow overlapping but are limited to applications with a regular and static communi-
cation patterns, while the approach based on threads supports irregular applications
with a dynamic communication pattern.

The study of hybrid approaches [1–3] combining communication libraries and shared
memory programming models has been considered over the last years both in research
and in performance analysis publications.

[8] proposes the use of the comm thread approach from the hybrid MPI+SMPSs pro-
gramming model, which allows to exploit distant parallelism separated by taskified
MPI calls. These tasks are identified as communication tasks and are executed by an
additional thread called communication thread. With this information, the scheduler
of the runtime system can reorder the execution of computation and communication
tasks so that communication can happen as soon as possible, increasing the parallelism
within and across MPI processes. This proposal requires changes to the programming
model in order to identify the tasks that perform blocking MPI operations, and also,
these are executed sequentially by the communication thread. In contrast, we propose
an approach which does not require any change in the task-based programming model,
there is no need to identify communication tasks and it supports multiple communi-
cations in parallel and out of order.

In the Habanero-C MPI (HCMPI) proposal [12], MPI calls are tightly integrated with
the task dependency system. HCMPI treats all MPI calls as tasks, which brings well-
known issues inherent to excessively fine-grained tasking, such as increased scheduling

5

overhead and load imbalance. In contrast, the approach we propose is orthogonal
to the dependency system and does not require to taskify every MPI operation. In
addition, it is especially well suited to parallelize legacy and library code, as it does
not require to taskify every MPI operation, resulting in a more natural and flexible
approach.

An interoperability library for the MPI and OmpSs programming models is proposed
in [9]. This library reproduces a behavior similar to the one proposed in [10, 11] but for
MPI. It intercepts blocking MPI calls and blocks the calling task until the operation is
complete, so the underlying hardware thread is able to execute other ready tasks. Our
project takes this library as the base for enhancing the interoperability with MPI by
introducing some extensions. The original version of the library is explained in detail
in Chapter 6.

To the best of our knowledge, this is the first approach which aims to develop an
interoperability mechanism for the GASPI and shared-memory programming models.
The usual parallelization strategy in hybrid applications (e.g. GASPI+OpenMP) is to
start RDMA operations concurrently (e.g. within a parallel for), and then, to wait for
the completion of all these operations from the master thread. The next computation
phase is started once all operations complete. However, this approach is extremely
suboptimal since most communication is serialized, the synchronization point after
the parallel region introduces overhead and does not allow the overlap of computation
and communication. Other techniques such as double buffering are also recommended,
but as mentioned above, these techniques are limited to applications with regular and
static patterns and they usually require several changes in the application.

In addition, there are some articles about the interoperability between GASPI and
MPI programming models, but they are out of the scope of our project.

6

3 | Message-Passing Interface (MPI)

MPI [4] stands for Message Passing Interface and is a well-known message-passing
library interface specification. This specification has been defined through an open
process by a community of parallel computing vendors, computer scientists and appli-
cation developers. MPI addresses mainly the message-passing parallel programming
model, in which data is moved from the address space of one process to that of another
process through cooperative operations on each process. Extensions to this classical
message-passing model are also provided in collective operations, remote-memory ac-
cess (RMA) operations, dynamic process creation and parallel I/O.

This specification is for a library interface. MPI is not a language and all MPI opera-
tions are expressed as functions, subroutines, or methods, according to the appropriate
language bindings. The MPI standard includes support for C and Fortran bindings.

The main advantages of establishing a message-passing standard are portability and
ease of use. In a distributed-memory communication environment in which the higher
level routines and/or abstractions are built upon the lower level message-passing rou-
tines, the benefits of standardization are particularly apparent. Moreover, a message-
passing standard helps vendors since it defines a clear base set of routines which they
can implement efficiently, for instance, targeting their system platforms.

The main objectives of the Message-Passing Interface are:

• Design an application programming interface.

• Allow efficient communication: avoiding memory-to-memory copying, allowing
the overlap of computation and communication and offload as much as possible
to communication co-processors, when available.

• Support for heterogeneous environments.

• Allow convenient C and Fortran bindings for the interface.

• Assume a reliable communication interface. The user does not need to take care
of communication failures, since they are managed by the underlying communi-
cation infrastructure.

• Define an interface that can be implemented on many vendor’s platforms.

• The semantics of the interface should be language independent.

7

• The interface should be designed to allow several thread safety modes.

3.1 History

A preliminary draft proposal, known as MPI-1.0, was presented in November 1992 and
a revised version was complete in February 1993. It originated aiming the standard-
ization of all message-passing systems in order to facilitate the task of both system
vendors and users. MPI was designed to use the most attractive features from sev-
eral existing message-passing libraries. Some of the most important influencers were
the work performed at the IBM T. J. Watson Research Center, the Intel’s NX/2 and
Chameleon [4].

The MPI standardization effort involved about 60 people from 40 organizations, mainly
from the US and Europe. Most of the major vendors of parallel computers were in-
volved along with researchers from universities, government laboratories and indus-
try. The standardization process started in the Workshop on Standards for Message-
Passing in a Distributed Memory Environment. The basic features of a message-
passing interface were discussed at this workshop. The standardization process con-
tinued by a working group after that workshop [4].

Since 1992 MPI has been evolving and it has been enhanced with several new func-
tionalities. The first standard, MPI-1.0, was followed by MPI-1.1, MPI-1.2, MPI-1.3,
MPI-2.0, MPI-2.1, MPI-2.2, MPI-3.0, and finally, MPI-3.1, which is the current stan-
dard and the one we describe in this project. At this moment, the MPI Forum members
are working on the new MPI-4.0.

3.2 Basic Concepts

In this section we briefly introduce the basic concepts of the MPI standard. In the
next sections we will explain more in detail the main functionalities of the standard.

MPI programs consist of autonomous processes executing their own code in a multiple
instruction multiple data (MIMD) style. Typically, each process executes in its own
address space and communicates by calling MPI operations or primitives. Each process
is identified by a unique rank throughout the execution.

MPI has two main types of communication. On the one hand, the point-to-point
communication is the one that involves two MPI processes: the process that sends
the data and the process which receives it. Both processes are required to call the
corresponding function (i.e. send or receive) in order to successfully complete this
communication. That is why it is also referred to as two-sided communication. On the
other hand, the collective communication is the one that involves a whole subset of MPI
processes. All processes in the group are required to call the collective procedure in
order to successfully complete the operation. In addition, the MPI standard provides

8

one-sided communication operations, which are based on Random Memory Access
(RMA).

Communicators (MPI Comm) bring together the concept of process groups and context.
A communicator contains a group of valid participant processes. MPI communication
operations require a specific communicator to determine the scope and the commu-
nication universe in which a point-to-point or collective operates. In point-to-point
operations, both source and destination ranks of a message are identified by the pro-
cess rank within the group. In collective communication, the communicator specifies
the set of processes that participate in the collective operation. In this project we
will only use the default communicator (MPI COMM WORLD), which encompasses all
processes.

In addition to the communication types mentioned above, both point-to-point and col-
lective operations can also be blocking or non-blocking. A blocking operation blocks
the calling thread inside the MPI library until the corresponding operation completes.
In contrast, non-blocking operations return immediately, whilst the operation may
not be completed yet. Non-blocking procedures return a handle to the communica-
tion request (MPI Request), which can be used later to check the completeness of the
operation, either with a blocking or non-blocking procedure. Thus, non-blocking op-
erations can be used to perform other useful computation while the MPI operation is
not finished, allowing the overlap of computation and communication.

Lastly, it is important to highlight that MPI provides the user with a reliable interface.
A sent message is always received correctly, and the user does not need to check for
transmission errors, connection time-outs, or other network errors. In fact, users are
only responsible for using the interface correctly. All MPI functions return an error
code. In case the function completes correctly, it returns MPI SUCCESS. Otherwise,
it returns the specific code of the error.

3.3 Initialization

The first step in an MPI application is to initialize the MPI library. MPI offers a
simple procedure named MPI Init which initializes the MPI library. As can be seen
below, the function just takes the arguments of the main function as parameters.

int MPI_Init(int *argc, char ***argv);

As mentioned previously, MPI allows different thread safety levels. For that reason,
MPI can be initialized with several levels of thread support (or threading levels), which
are described in the following list:

• MPI_THREAD_SINGLE indicates that only one thread is executed. It is equiv-
alent to calling to MPI Init.

• MPI_THREAD_FUNNELED indicates that the process may be multi-threaded,
but the application ensures that only the main thread makes MPI calls.

9

• MPI_THREAD_SERIALIZED indicates that multiple threads in the process
can make MPI calls, but only one at a time.

• MPI_THREAD_MULTIPLE indicates that multiple threads in the process can
make MPI calls, with no restrictions.

Threading levels are only allowed in the MPI Init thread initialization function, which
is shown below. It takes the main’s arguments along with the threading level required
by the user. The communication library will enable the threading level returned in the
provided parameter. If possible, the library will provide the required mode. Failing this,
it will return the least supported level such that provided > required (thus providing a
higher mode than the required by the user). If the user requirement cannot be satisfied,
then it will provide the highest supported mode.

int MPI_Init_thread(int *argc, char ***argv, int desired, int *provided);

In addition, MPI provides a couple of functions to retrieve the process rank and the
total number of processes within a given communicator. They are shown below.

int MPI_Comm_rank(MPI_Comm comm, int *rank);

int MPI_Comm_size(MPI_Comm comm, int *size);

3.4 Data Messages

In MPI communication operations, processes are required to indicate the involved
source/destination buffer. Memory buffers are defined by its starting memory address,
the number of elements to be transmitted from the buffer and the elements’ datatype.

MPI offers several predefined types of data, e.g. MPI INT for integers, MPI DOUBLE
for double-precision floating-points and MPI BYTE for raw bytes. In addition, MPI
allows the creation of new data types. Users can specify which data fields comprise
their custom data types, the strides between elements in an array, etc.

3.5 Point-to-Point Communication

As mentioned previously, one of the main MPI functionalities is the point-to-point
communication. Point-to-point operations involve both the source and the destination
processes. The former must call the send procedure (e.g. MPI Send), while the latter
has to call the receive procedure (e.g. MPI Recv). Otherwise, the communication
may not complete properly. In addition, point-to-point messages are identified by the
sender’s rank, an integer tag and the involved communicator. Thus the receiver process
can distinguish multiple messages from the same sender.

In the following subsections we show the main procedures for sending an receiving data
in both blocking and non-blocking modes.

10

3.5.1 Blocking Operations

The MPI Send and MPI Recv functions are the blocking point-to-point operations par
excellence. Both are the most common MPI primitives in user applications.

On the one hand, the MPI Send function, shown below, sends a data message labeled
with tag to a remote process with rank dest. The message’s data consist of a memory
buffer with count elements of the type datatype, starting at address buf. This function
returns once it is safe to modify the source memory buffer. Note that it does not guar-
antee that the remote process has already received the data or that the transmission
has begun [4].

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm);

On the other hand, the destination process must call to MPI Recv to receive the mes-
sage. This function is shown below. It stores the message’s data into the receive buffer
which consists of count elements of the type datatype, starting at address buf.

The receiving procedure must select a message matching with the specified tag, the
source rank and the comm communicator. However, users can specify the MPI ANY TAG
and/or MPI ANY SOURCE constants to match a message with any tag and/or from
any source process, respectively.

MPI Recv returns once the data has been received in the receive buffer and can be
actually consumed by the application. Finally, the status can be used to get information
about the message (e.g. the source rank and the tag).

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Status *status);

3.5.2 Non-Blocking Operations

The non-blocking counterparts are similar to the previous functions, as can be seen
below. Both MPI Isend and MPI Irecv register a new communication request and they
return immediately, thus the operation may not be completed. A handle to the request
is returned through the request parameter.

int MPI_Isend(void *buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request);

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Request *request);

Later, users can check the completeness of pending requests using non-blocking or
blocking checking procedures. These are the MPI Test and MPI Wait procedures, re-
spectively, which are shown below. MPI Test just tests the completeness of the request

11

and returns whether it has completed or not through the flag parameter. In contrast,
MPI Wait blocks until the request is completed.

int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status);

int MPI_Wait(MPI_Request *request, MPI_Status *status);

In addition, MPI offers other procedures to test or wait for multiple requests, e.g.
MPI Testall and MPI Waitall. More information about them can be found in [4].

Normally, users issue multiple non-blocking operations in order to perform useful com-
putation while the MPI requests do not complete, thus overlapping computation and
communication.

3.6 Collective Communication

MPI offers several collective operations which involve all processes from a specific
communicator. All processes from the communicator must call the same collective
procedure to successfully complete the operation.

There are many collective operations in the MPI standard. For instance, the MPI Barrier
blocks until all processes have called the barrier procedure and the MPI Bcast is the
procedure which a specific process known as root sends the same data to all participat-
ing processes. Both procedures are shown below. More information about collective
operations can be found in [4].

int MPI_Barrier(MPI_Comm comm);

int MPI_Bcast(void *buf, int count, MPI_Datatype datatype, int root,

MPI_Comm comm);

In addition, MPI offers the non-blocking counterparts, which work in the same way
as the non-blocking point-to-point communications. They also return a handle to the
request, so they can be checked with MPI Test and MPI Wait procedures.

It is worth noting that MPI does not support tags for collective operations. Since the
communicator is the only operation’s identifier, users can issue multiple collectives at
the same time only when each collective uses a different communicator.

12

4 | Global Address Space Programming
Interface (GASPI)

GASPI [5] stands for Global Address Space Programming Interface and is a Parti-
tioned Global Address Space (PGAS) API. Generally, PGAS approaches offer the
developer an abstract shared address space which simplifies the programming task,
and at the same time, it facilitates the data-locality, thread-based programming and
asynchronous communication. Besides the general benefits of being a PGAS approach,
GASPI is designed specifically to provide an extreme scalability, high flexibility and
failure tolerance in distributed-memory environments.

The main objective of GASPI is to introduce a paradigm shift from bulk-synchronous
two-sided communication patterns towards an asynchronous communication and exe-
cution model. In order to achieve this objective, GASPI provides remote completion
and one-sided RDMA driven communication in a Partitioned Global Address Space.

It is worth noting that GASPI is neither a new language (e.g. Chapel from Cray), nor
an extension to a language (e.g. Unified Parallel C). In fact, GASPI follows the spirit
of MPI by complementing existing languages (i.e. C, C++ and Fortran) with a PGAS
API which allows the user application to take benefit from the PGAS approach.

Nevertheless, GASPI is not just a memory model, but also provides a way to dynam-
ically allocate and configure RDMA PGAS memory segments. It allows users to map
the memory heterogeneity of a modern supercomputer node to these PGAS segments.
For instance, GASPI allows users to map the main memory of a GPGPU or an Intel
Xeon Phi to a specific segment or to map Non-Volatile RAM to another segment.
Then, all these segments can be directly read and written from any node, either from
the same node or from a remote one [5].

Figure 4.1 shows the Partitioned Global Address Space supported by GASPI in a
heterogeneous architecture. In this case, there are two usual compute nodes (NUMA
systems) and two co-processors (e.g. Intel Xeon Phi) connected through an intercon-
nection network supporting RDMA operations.

In addition to the main features explained above, GASPI defines more interesting
mechanisms. As mentioned above, this standard is failure tolerant since it allows
the use of timeout mechanisms for all non-local operations, failure detection and the
possibility of adapting to shrinking or growing node sets. It also provides asynchronous
collectives and atomic operations for groups of processes. In addition, GASPI is very

13

Fig. 4.1: GASPI overview in a heterogeneous architecture [5].

flexible in the number of message queues (to read/write data from/to remote segments)
and the size of these queues.

Last but not least, GASPI provides a clean, consistent and convenient standard API,
which is relatively easy to use from user applications targeting distributed-memory
systems. Furthermore, it gives the maximum freedom to GASPI implementors by
leaving many details to the implementation.

4.1 History

The GASPI specification originates from the PGAS API of the Fraunhofer ITWM
(Fraunhofer Virtual Machine or FVM), which has been developed since 2005. Starting
from 2007 this PGAS API has evolved into a robust commercial product (named
GPI) which is used in the industry projects of the Fraunhofer ITWM. GPI is a highly
efficient and scalable programming model for Partitioned Global Address Spaces. In
2011, the partners of Fraunhofer ITWM launched the GASPI project to define a novel
specification for a PGAS API (GASPI, based on GPI) and to make this novel GASPI
specification a reliable, scalable and universal tool for the HPC community [5].

4.2 Remote Direct Memory Access

The only requirement of GASPI is the availability of an interconnection network sup-
porting Remote Direct Memory Access (RDMA). If that is the case, the underlying
network infrastructure manages the actual data transfers in one-sided operations, al-
lowing these operations to be fully asynchronous and non-blocking. Since the CPU
is excluded from the data transfer, the user application can continue its execution,

14

thus allowing the overlap between computation (CPU) and communication (network
infrastructure) [5].

4.3 Basic Concepts

Similarly to the previous chapter, in this section we just describe briefly the basic
concepts of GASPI. In the subsequent sections, we will explain more in detail the
functionalities showing the most important API procedures.

The most basic concepts of GASPI are the processes and the groups of processes.
GASPI preserves the concept of ranks present in the MPI standard, so each process
is identified by a unique rank throughout the execution. At the same time, processes
can be grouped allowing collective operations across member processes [5].

As stated previously, GASPI is a communication API that implements a Partitioned
Global Address Space or PGAS model. Each GASPI process can host several parts of
the global address space, also known as segments. Segments are useful for mapping a
large variety of hardware layer (e.g. SSD and GPU memory) to the software layer [5].
Moreover, segments are accessible from every thread of every process, facilitating the
use of other parallel programming models within every process (e.g. OpenMP).

Once explained the basics of segments, it is time to describe their main utility: the
one-sided asynchronous communication between processes by reading and writing to
segments. Local segments can be accessed with the usual load/store operations and
remote segments can be accessed using the GASPI read and write operations.

Write operations in GASPI apply the concept of remote completion in the form of
notifications. For instance, the user is able to write to a remote segment by posting
the write request along with a notification for the remote process. Once the remote
process receives the notification, it knows that the write operation has completed.

In addition, GASPI defines a timeout mechanism for its potentially blocking proce-
dures, which is very useful for failure tolerant applications. Timeouts are specified in
milliseconds, but there are also a couple of predefined values. These are GASPI BLOCK,
which indicates the procedure to block until it completes, and GASPI TEST, which in-
dicates the procedure to block the shortest time possible (e.g. processing a portion of
the work).

Lastly, all GASPI procedures have a return value which specifies the state of the
operation after returning from the procedure. Thus, user programs should always
check the return value of procedure calls to know whether they successfully completed
(i.e. GASPI SUCCESS), they detected an error (i.e. GASPI ERROR) or they ran into a
timeout (i.e. GASPI TIMEOUT). If a procedure call returns a timeout, the procedure
should be invoked subsequently in order to complete the operation.

15

4.4 Initialization

The first phase in a GASPI application is the setup & initialization of the GASPI
library. GASPI gives the option to the user to change some parameters of the library
configuration before actually initialize it. Some of these parameters are the maximum
number of allowed queues, the maximum number of allowed memory segments or the
number of precreated queues.

In order to change these parameters, GASPI provides a function to retrieve a configu-
ration structure with the default values. Then, users can change some of these values
directly in that structure and set it back to the library with a setter function. These
two functions are:

gaspi_return_t gaspi_config_get(gaspi_config_t *config);

gaspi_return_t gaspi_config_set(gaspi_config_t config);

Once the user has changed (or maintained) the default configuration, the library is
ready to be initialized. Similarly to MPI, GASPI provides the following functions to
initialize and finalize the GASPI process, both with a timeout parameter.

gaspi_return_t gaspi_proc_init(gaspi_timeout_t timeout);

gaspi_return_t gaspi_proc_term(gaspi_timeout_t timeout);

In the same way as MPI, GASPI has the following two procedures to get the rank
which identifies the current process and the total number of processes being used,
respectively.

gaspi_return_t gaspi_proc_rank(gaspi_rank_t *rank);

gaspi_return_t gaspi_proc_num(gaspi_rank_t *proc_num);

Once the library is initialized, users can create groups of processes, register memory
segments, communicate with other processes, etc. It is worth noting that no GASPI
functions should be called before the initialization or after the finalization (unless
configuration functions).

4.5 Groups

Users have the possibility to create custom groups, which are subsets of all pro-
cesses. Groups have to be created by invoking the gaspi group create procedure, which
creates an empty group. Processes can be added into the group by calling to the
gaspi group add function, which adds the corresponding process rank into the group.

After adding all participating processes, groups must be committed by invoking gaspi -
group commit, which is a collective operation that actually establishes the correspond-
ing group. In fact, all processes in the group have to perform the same steps to establish

16

the group. Moreover, the group must be identical in all participating processes. Once
the group is committed, group members are allowed to perform collective operations
within the group.

Finally, groups can be deleted by calling to gaspi group delete.

gaspi_return_t gaspi_group_create(gaspi_group_t *group);

gaspi_return_t gaspi_group_add(gaspi_group_t group, gaspi_rank_t rank);

gaspi_return_t gaspi_group_commit(gaspi_group_t group, gaspi_timeout_t to);

gaspi_return_t gaspi_group_delete(gaspi_group_t group);

In addition, GASPI predefines a global group containing all processes, named GASPI -
GROUP ALL, which is similar to the concept of MPI COMM WORLD in MPI. This pre-
defined group can be used after being committed by also calling to gaspi group commit
and passing GASPI GROUP ALL as the group parameter.

4.6 Memory Segments

As stated previously, GASPI provides the functionality of creating and registering
memory segments. The API contains a function named gaspi segment create, which
allocates and registers a memory segment with a specific segment identifier, the seg-
ment size (in bytes), the group of processes related to the segment and an allocation
policy (not covered in this project). This function allocates a local memory buffer (e.g.
with malloc) with the given size and then registers it as a GASPI segment. The actual
pointer to the local memory buffer can be retrieved with the function gaspi segment ptr.

gaspi_return_t gaspi_segment_create(

gaspi_segment_id_t segment_id, gaspi_size_t size,

gaspi_group_t group, gaspi_timeout_t timeout,

gaspi_alloc_t alloc_policy);

gaspi_return_t gaspi_segment_ptr(

gaspi_segment_id_t segment_id, gaspi_pointer_t *ptr);

The API also defines a function named gaspi segment use, which registers an existing
local memory buffer as a memory segment with a specific segment identifier, the pointer
to the buffer, the segment size and the group of processes. Both gaspi segment create
and gaspi segment use perform collective operations, thus the assigned group must be
already established. A segment is ready to be written from a remote process once the
segment is registered.

gaspi_return_t gaspi_segment_use(

gaspi_segment_id_t segment_id, gaspi_pointer_t ptr,

gaspi_size_t size, gaspi_group_t group, gaspi_timeout_t timeout,

gaspi_memory_description_t memory_description);

17

Finally, the gaspi segment delete function deletes a segment passing its segment identi-
fier, regardless of whether it was registered with gaspi segment create or gaspi segment use.

gaspi_return_t gaspi_segment_delete(gaspi_segment_id_t segment_id);

Users are responsible for not calling to the registration/deletion procedures more than
once with the same identifier.

4.7 One-Sided Communication

In this section we describe the GASPI procedures to perform one-sided read/write
operations, to notify remote processes and to wait for these notifications.

4.7.1 Write & Read Operations

GASPI provides several procedures to perform one-sided read/write operations. Write
operations transfer data from a local segment to a remote segment, while read opera-
tions transfer data from a remote segment to a local segment.

On the one hand, write operations support four variants that allow different commu-
nication patterns. They are 1) gaspi write, 2) gaspi write notify, 3) gaspi write list and
4) gaspi write list notify. The first two variants post a write request to a specific queue
in order to write a chunk of data from a local segment to a remote segment. In ad-
dition, the second variant posts a notification along with the write request, therefore
the remote process is notified once the write operation is completed.

The third and fourth variants are an extension of the first two. They submit multiple
write requests in order to write multiple chunks of data to the remote segment. In the
fourth variant, the remote process is notified once all write operations are completed.

Both gaspi write and gaspi write notify are shown below; the rest has been omitted.

gaspi_return_t gaspi_write(gaspi_segment_id_t segment_local,

gaspi_offset_t offset_local, gaspi_rank_t rank,

gaspi_segment_id_t segment_remote,

gaspi_offset_t offset_remote, gaspi_size_t size,

gaspi_queue_id_t queue, gaspi_timeout_t timeout);

gaspi_return_t gaspi_write_notify(gaspi_segment_id_t segment_local,

gaspi_offset_t offset_local, gaspi_rank_t rank,

gaspi_segment_id_t segment_remote,

gaspi_offset_t offset_remote, gaspi_size_t size,

gaspi_notification_id_t notification_id,

gaspi_notification_t notification_value,

gaspi_queue_id_t queue, gaspi_timeout_t timeout);

18

On the other hand, read operations do not support notification variants. This is
due to the fact that a notification can only be transferred after ensuring that the
communication request has been processed. This would imply that a subsequent wait
call has to be invoked directly after invoking the read operation. However, this can be
managed more effectively by the application [5].

The only two variants that read operations support are gaspi read and gaspi read list.
The former posts a read request to a specific queue in order to read a chunk of data
from a remote segment to a local segment. Similarly, gaspi read list submits multiple
read requests in order to read multiple chunks of data from a remote segment.

Once again, only gaspi read is shown below, while gaspi read list has been omitted.

gaspi_return_t gaspi_read(gaspi_segment_id_t segment_local,

gaspi_offset_t offset_local, gaspi_rank_t rank,

gaspi_segment_id_t segment_remote,

gaspi_offset_t offset_remote, gaspi_size_t size,

gaspi_queue_id_t queue, gaspi_timeout_t timeout);

A chunk of data in GASPI is defined by the segment that contains it, the offset within
the segment and the chunk size (both in bytes). As can be seen above, all variants
require the local segment and the local offset. Similarly, they also require the remote
segment and the remote offset. Furthermore, they need the destination rank, the target
queue and the timeout.

Finally, notify variants require the notification id and the notification value. We explain
more in detail both parameters in the next subsection.

4.7.2 Notify Operation

Besides the write & notify procedures, GASPI has an explicit function to notify a
remote process. The procedure shown below posts a notification to a remote process,
which will set the notification value in the notification id of the given remote segment.
A similar behavior is also observed in write & notify procedures. It is worth noting
that multiple calls to gaspi write or gaspi write list followed by a call to gaspi notify
implies that the remote process will be notified once all writes are completed.

gaspi_return_t gaspi_notify(gaspi_segment_id_t segment_remote,

gaspi_rank_t rank, gaspi_notification_id_t notification_id,

gaspi_notification_t notification_value,

gaspi_queue_id_t queue, gaspi_timeout_t timeout);

4.7.3 Waiting Notifications

In order to wait for notifications from remote processes, GASPI provides the function
shown below. The gaspi notify waitsome function waits until a notification id within

19

the range [notification begin, notification begin+notification num) is notified. Once a
notification id from the range has been notified, its id is returned through the first id
parameter. Since it is a blocking procedure, it requires a timeout. It is worth noting
that multiple threads can wait for the same range of notification, so all of them may
return from the procedure when a notification is received.

gaspi_return_t gaspi_notify_waitsome(gaspi_segment_id_t segment_local,

gaspi_notification_id_t notification_begin,

gaspi_number_t notification_num,

gaspi_notification_id_t *first_id,

gaspi_timeout_t timeout);

To solve the risk of multiple threads waiting the same notification range, GASPI pro-
vides the function shown below to reset a notification. The gaspi notify reset function
atomically resets the value of the notification id to zero and returns the old value before
the reset. Therefore, only one thread will get the actual notification value, while the
rest will get a zero. This is very useful in applications where multiple threads wait for
the same notifications and perform some actions when one of them is notified. It is
important to mention that a notification id has to be reset before receiving another
notification in that position.

gaspi_return_t gaspi_notify_reset(gaspi_segment_id_t segment_local,

gaspi_notification_id_t notification_id,

gaspi_notification_t *old_notification_value);

4.8 Queues

As explained in the previous section, one-sided read/write requests are posted to a
specific queue. GASPI offers to users the possibility to create multiple queues, which
are totally independent of each other. The specification recommends the use of several
queues to multiplex the different types of requests, so users can maximize the scalability
of their programs.

To do so, the API contains two functions to create and delete GASPI queues. On the
one hand, gaspi queue create creates a new queue and assigns an identifier to it. On
the other hand, gaspi queue delete deletes a queue given its identifier. The maximum
number of allowed queues is relatively limited in order to keep resources requirements
low. Users are recommended to keep the lifetime of queues as long as possible, since
the creation of a queue is an expensive operation.

gaspi_return_t gaspi_queue_create(

gaspi_queue_id_t *queue_id, gaspi_timeout_t timeout);

gaspi_return_t gaspi_queue_delete(gaspi_queue_id_t queue_id);

20

One of the most important GASPI procedures is the gaspi wait function. It waits until
all requests posted to a specific queue have been processed by the network infrastruc-
ture. The successful completion of this procedures does not mean that write requests
have already completed on the remote side, but only indicates their local completion.

It is worth noting that this procedure is thread exclusive and it needs privileged access
to the queue. Thus other threads calling to this procedure with the same queue or
posting read/write operations to that queue may block. Notice that threads calling to
gaspi wait passing different queues can run totally in parallel.

In addition, a timeout can be used to wait for the local completion of the requests.

gaspi_return_t gaspi_wait(gaspi_queue_id_t queue, gaspi_timeout_t timeout);

4.9 Other Functionalities

In addition to the previous features, GASPI provides several functionalities that we
will not cover in detail. The API includes some collective operations involving groups
of processes, such as gaspi barrier which block the caller until all group members have
invoked the procedure and gaspi allreduce which performs a reduction across all par-
ticipating processes, and in which everyone gets the final result.

Moreover, GASPI provides two-sided communication procedures to send and receive
data, which are gaspi passive send and gaspi passive receive, respectively. Furthermore,
it defines some procedures to deal with global atomic variables.

21

5 | OmpSs-2 Task-based Programming
Model

OmpSs-2 [13] is the second generation of the OmpSs programming model [7], both
developed at the Barcelona Supercomputing Center (BSC). The name originates from
merging the name of the OpenMP and StarSs programming models. The design prin-
ciples of both programming models constitute the fundamental ideas used to conceive
the OmpSs philosophy [13].

On the one hand, OmpSs takes from OpenMP the main idea of providing a way to
produce a parallel version of a sequential program by introducing compiler annotations
(or directives) in the source code. These annotations do not imply an explicit effect on
the semantics of the program, but they allow the compiler to produce a parallel version
of it. This functionality allows users to parallelize their applications incrementally by
adding new OmpSs directives to different parts of the application [13].

On the other hand, Star SuperScalar (StarSs) is a family of programming models that
also offers implicit parallelism through a set of compiler annotations. StarSs differs
from OpenMP in some important areas. Firstly, StarSs uses a thread-pool execution
model, whilst OpenMP implements a fork-join parallelism model. Secondly, StarSs
provides an environment where parallelism is implicitly created from the beginning of
the execution, thus users can omit the declaration of parallel regions. Parallelism is de-
fined by tasks, which are pieces of code that can be executed asynchronously. Thirdly,
StarSs provides a dependency mechanism to define data dependencies between tasks,
allowing tasks to be run in the correct order. Finally, StarSs targets heterogeneous
architectures through leveraging native kernel implementations.

5.1 Basic Concepts

OmpSs-2 is a programming model composed of several directives and library routines
which can be used along with a high level programming language (C, C++ and For-
tran) in order to develop concurrent applications. OmpSs-2 extends the tasking model
of OmpSs and OpenMP to support both task nesting and fine-grained dependencies
across different nesting levels.

22

The main goal of OmpSs-2 is to provide a productive environment to develop par-
allel applications for modern HPC systems. In order to achieve it, the programming
model should provide a competitive performance, but also and more important, it must
be easy to use for all users. Furthermore, OmpSs-2 aspires to extend the OpenMP
standard with new directives, clauses and API services.

As mentioned previously, OmpSs-2 is a task-based programming model, in which the
elementary units of work are the tasks. Tasks represent pieces of code which can be
executed asynchronously. In addition, OmpSs-2 defines a powerful dependency model
for tasks. Users annotate tasks using dependencies in order to determine the data flow
of their applications. This information is then analyzed at runtime to determine if the
parallel execution of any two tasks may cause data races.

There are several functionalities supported by the OmpSs-2 programming model. The
most distinguished features are:

• The lifetime of task data environment. A task is completed once the last
statement of its code is executed, and it becomes deeply completed once all its
children tasks become deeply completed. The data environment of a task, which
refers to the variables captured at task creation, is preserved until the task is
deeply completed. Note that the stack is lost when the task completes.

• The nested dependency domain connection. Incoming dependencies of a task
are propagated to its children. When a task finishes, its outgoing dependencies
are replaced by those generated by its children.

• The early release of dependencies. When a task completes, it releases all de-
pendencies that are not included on any uncompleted children task. In addition,
a wait clause specified in a task declaration makes all its dependencies to be
released once the task is deeply completed.

• The weak dependencies. The weakin/weakout clauses specifies potential depen-
dencies only required by children tasks. Thus, these annotations do not delay
the execution of the task.

• The native offload API. An asynchronous API to execute OmpSs-2 kernels on
a specified set of CPUs from any kind of application.

5.2 Influencing OpenMP

Over the years, OmpSs and StarSs have introduced several ideas into the OpenMP
programming model. Figure 5.1 shows the main contributions in each OpenMP stan-
dard. Asynchronous tasks, task dependencies, taskloops and task priorities are some
of these contributions. Upcoming OpenMP versions will include multi-dependencies,
task reductions and commutative dependencies, among others [13].

23

Fig. 5.1: OmpSs features introduced into the OpenMP programming model [13].

5.3 Annotating Programs

In this section, we describe how to annotate programs in order to enable OmpSs-2
functionalities. For the sake of simplicity, from now on we just show the annotations
for C/C++. More information about Fortran annotations is presented in [13].

OmpSs-2 annotations must be written following a specific format. Directives are spec-
ified with the sentinel oss followed by the directive name and the clauses applied to it,
as shown below.

#pragma oss directive-name [clause[[,] clause] ...]

5.4 Execution Model

One of the most notable differences between OpenMP and OmpSs-2 is that the latter
does not require a parallel directive in the user application. Since OpenMP has a
fork-join execution model, users have to indicate where starts and ends the parallel
region by using that directive. In contrast, OmpSs-2, following the ideas of StarSs,
implements a thread-pool execution model, so it implicitly creates the parallelism at
the beginning of the application. Parallel resources can be seen as a pool of threads
that the underlying runtime system will use to execute user tasks. However, the user
is not able to control the pool of threads, since it is efficiently managed by the runtime
system.

At the beginning of the execution, the OmpSs-2 runtime system creates an initial pool
of worker threads (i.e. there is no master thread in OmpSs-2). The main function is
wrapped in an implicit task, which is called the main task, and it is added into the
queue of ready tasks. Then, once one of the worker threads gets that task from the

24

queue, it starts to execute it. Meanwhile, the rest of threads wait for more ready tasks,
which could be instantiated by the main task, or even by other running tasks.

Multiple threads execute tasks defined explicitly or implicitly by OmpSs-2 directives.
In the next sections, we explain the functionalities of creating tasks, OmpSs-2 loops
and the explicit synchronization points.

5.4.1 Tasks

OmpSs-2 allows the expression of parallelism through tasks, which are independent
pieces of code that are executed by parallel resources at runtime. Once the program
flow reaches a task declaration, it does not execute the task code, but it creates an
instance of a task and delegates its execution to the OmpSs-2 runtime system. The
runtime system uses the dependency information provided by the user to compute
the dependencies with the previously created tasks, allowing the runtime to know the
correct execution order of tasks. Once all dependencies of a task are satisfied, the task
becomes ready and it will be eventually executed on a parallel resource. The execution
can be immediate or deferred until later, according to task scheduling constraints and
thread availability. In addition, a task execution blocks yielding the resources to
another ready task once a task scheduling point (e.g. a taskwait) is reached.

In a program, users can declare a task using the following syntax:

#pragma oss task [clauses...]
{ ... }

Tasks allow multiple clauses in their declaration, e.g. the variable’s data-sharings. The
private data-sharing privatizes the variable with an uninitialized value. firstprivate also
privatizes the variable, but it is initialized with the original value when the construct
was encountered. Finally, the shared data-sharing makes the task to work with the
original variable.

Since some tasks can depend on data produced by other tasks, OmpSs-2 allows depen-
dencies to be added into the task’s clauses. Input, output and input-output depen-
dencies on multiple variables can be defined for a task with the clauses in(variable-list),
out(variable-list) and inout(variable-list), respectively. Dependencies are explained in
more detail in Section 5.5.

In addition, other clauses can be specified like priority, final and if, among others. More
information can be found in [13].

5.4.2 Loops

In addition to tasks, parallelism can be also explicitly defined by OmpSs-2 loops. The
OmpSs-2 loop construct is similar to an OpenMP/OmpSs taskloop, however, it does
not explicitly create a specific number of tasks. In contrast, the runtime system creates

25

as many internal tasks as the number of CPUs involved in the loop computation. These
internal tasks execute chunks of consecutive iterations, so it is a similar concept to the
OpenMP for clause. The chunk size can be specified using the clause chunksize(size).

Dependencies can be also added into the loop’s clauses. The dependency is over the
whole iteration space, so loop iterations can be executed once all its dependencies are
satisfied. Notice that loop iterations must be independent of each other.

The syntax to define a loop covering one or more for loops is the following:

#pragma oss loop [clauses...]
for (int i = 0; i < N; ++i) {

...

}

5.4.3 Nesting

Any directive that defines a task or a series of tasks can also appear within a task
definition, allowing multiple levels of parallelism. The definition of multiple levels
of parallelism can lead to a better performance of applications, since the OmpSs-2
runtime system can exploit factors like data or temporal locality between tasks. This
functionality allows the implementation of recursive algorithms, e.g. the Fibonacci
program.

5.4.4 Explicit Synchronization

OmpSs-2 also allows explicit synchronization points with the taskwait stand-alone di-
rective. It specifies a wait on the deep completion of children tasks. Its use should be
avoided as much as possible, since it totally cuts the parallelism of the parallel context
from which is called. In addition, the OmpSs-2 dependency model provides alternative
techniques to avoid the use of taskwait’s, which are discussed in Section 5.5.

5.4.5 Example

An example of the previously explained concepts can be seen in Figure 5.2. In the
example, the main function creates 500 individual tasks which initialize all positions
of the array A. Then, it creates an OmpSs-2 loop which updates the values from the
100th to the 199th position in chunks of 20 positions (5 chunks). Both tasks and loop
declare their corresponding dependencies defining a correct execution order. Finally,
a taskwait is executed in order to wait for the previous tasks before returning from
the main function. Note that this code is just an example to show the basic tasking
constructs.

26

1 void func(int *B, int size) {

2 for(int i = 0; i < size; ++i) {

3 #pragma oss task out(B[i])

4 { B[i] = 10; }

5 }

6 }

7

8 int main () {

9 int A[500];

10 func(A, 500);

11

12 #pragma oss loop chunksize(20) inout(A[100;100])

13 for (int i = 100; i < 200; ++i) {

14 A[i] *= 2;

15 }

16 #pragma oss taskwait

17 }

Fig. 5.2: Snippet of code highlighting tasking constructs.

5.5 Dependency Model

In OmpSs-2, asynchronous parallelism is enabled by the use of data-dependencies
between the different tasks of the application. Tasks usually require data in order to
perform useful computation. For instance, a task could use some input data to do
computation, producing new data that could be the input of other tasks.

When an OmpSs-2 program is being executed, the runtime system uses the information
of data dependencies and the creation order of each task. Both information is used to
produce execution-order constraints between tasks, which result in a correct execution
order of the program. These execution-order constraints are called task dependencies.

When a new task is created, its dependencies are matched against of those of existing
tasks. If a dependency, either Read-after-Write (RaW), Write-after-Write (WaW) or
Write-after-Read(WaR), is found the task becomes a successor of the corresponding
existing tasks. Tasks are scheduled once all their predecessors have finished or at
creation if no predecessors have been found [13].

Dependencies allow the user to indicate which data is waiting for and producing each
task. Notice that the user is the responsible for correctly setting the dependencies in
each task. OmpSs-2 offers four basic types of dependencies:

• A task with in(variable-list) will not be able to run until all out, inout and con-
current predecessors are finished.

• A task with out(variable-list) will not be able to run until all in, out, inout and
concurrent predecessors are finished.

27

• Declaring a task with inout(variable-list) is the same as declaring both in and out
dependencies.

• A task with concurrent(variable-list) will not be able to run until all in, out and
inout predecessors are finished. It is able to run concurrently with concurrent
predecessors.

In addition, OmpSs-2 allows the declaration of a dependency on a memory position
pointed by a pointer. Note that if the pointer is NULL, the dependency is ignored.
For instance, the following example actually declares an output dependency on the a
variable.

int a = 10;

int *ptr = &a;

#pragma oss task out(*ptr)

{ ... }

5.5.1 Region Dependencies

OmpSs-2 enables the possibility to declare dependencies on multiple elements of an
array in a single expression. The runtime system is the responsible for efficiently
managing these region dependencies. Users can define them in two different ways,
which are shown in the example below. In the first, all elements of array in the range
[lower, upper] (both included) are referenced. In the second, all elements of array in
the range [lower, lower+(size-1)] (both included) are referenced.

#pragma oss task inout(array[lower:upper]) out(array[lower;size])

{ ... }

In addition, OmpSs-2 offers shaping expressions which allow the recasting of pointers
into array types to recover the size of the dimensions that could have been lost across
function calls. A shaping expression is one or more [size] expressions before a pointer.
For instance, the following example declares an output dependency on the first two
elements of the third and fourth rows of the ptr matrix.

int *ptr = malloc(N * N * sizeof(int));

...

#pragma oss task out(([N][N]ptr)[3:4][0;2])

{ ... }

5.5.2 Fine-Grained Early Release

In OmpSs-2 task nesting and dependencies can be perfectly combined, allowing some
applications to take profit of this technique. In OpenMP/OmpSs, the dependency

28

1 #pragma oss task out(a, b, c) // Task T1

2 {

3 #pragma oss task out(a) // Task T1.1

4 { a = 100; }

5 #pragma oss task out(b) // Task T1.2

6 { b = 420; }

7

8 c = 10;

9 }

10 #pragma oss task inout(a, b) // Task T2

11 {

12 #pragma oss task inout(b) // Task T2.1

13 { ++b }

14 #pragma oss task in(b) inout(a) // Task T2.2

15 { a += b * 10; }

16 }

Fig. 5.3: Snippet of code combining nesting and dependencies.

domain of a parent task and the dependency domains of its children tasks can be
connected using a taskwait at the end of the parent’s code. With this, the parent
releases all its dependencies once all its children have finished. However, the taskwait
prevents the parent from finishing its execution, in addition to the fact that some
dependencies could be released before all children tasks have finished.

To solve it, OmpSs-2 presents a new model of dependencies in which the user is able
to connect dependency domains from parents and children without using a taskwait.
When a parent task finishes its execution, the runtime knows that it does not need
the enforcement of its own dependencies and it will not create any further subtask.
Therefore, all dependencies declared by the parent that are not declared by any alive
subtask can be released. Only the dependencies needed by its alive subtasks need to
be preserved.

This can be seen in Figure 5.3. In this example, T1 can finish its execution without
waiting for its subtasks T1.1 and T1.2. In case they are still alive, T1 can only release
the dependency on the variable c. Once T1.1 finishes, it will release the dependency
on the variable a. The same will happen with T1.2 and the variable b. Finally, T2 will
not be executed until T1, T1.1 and T1.2 have finished, although it does not access any
of the conflicting variables.

5.5.3 Weak Dependencies

Some of the elements in the dependency clauses may be needed by the task itself, others
may be needed only by its subtasks and others may be needed by both. Dependencies
needed only by its subtasks only serve as a mechanism to connect the outer dependency

29

domain to the inner one. Therefore, it is not necessary to defer the task execution for
these kind of dependencies, since the task does not perform any access by itself.

In order to solve it, OmpSs-2 provides weak counterparts of in, out and inout de-
pendencies. The weak variants indicate that the task does not perform by itself any
action that requires the enforcement of the dependency, but it will be performed by
its subtasks.

In the previous example (Figure 5.3), T1 and T2’s dependencies on variables a and b
could be changed to weakout(a, b) and weakinout(a, b), respectively. This is because
T1 and T2 do not actually access these variables. However, the dependency of T1 on
c must remain as a strong dependency, since it is accessed by T1.

5.6 Task Scheduling

When a task reaches a scheduling point, the runtime system can decide to switch to
another eligible task. A scheduling point may occur in a task generating code, in a
taskyield directive, in a taskwait directive or just after completing a task.

The set of eligible tasks is initially formed by the tasks in the ready queue (i.e.
tasks with all dependencies satisfied). Task switching implies the beginning of a
non-previously executed task or resuming the execution of partially executed tasks.
However, once a task has been executed by a thread, it can only be resumed by the
same thread.

In addition, when a task is created with the if clause evaluating to false, the current
task must suspend its execution until the new created task completes. Similarly, when
a task generating code is encountered in a final context, the children task is immediately
executed just after creating it.

5.7 Reference Implementation

The reference implementation of OmpSs-2 is based on Mercurium and Nanos6 tools.
On the one hand, Mercurium is a source-to-source compiler which provides the nec-
essary support for transforming the OmpSs-2 directives into a parallelized version of
the application. On the other hand, Nanos6 is a runtime system which provides all
services to manage the parallelism in user applications. We describe more in detail
both tools in Section 7.1.

30

6 | MPI+OmpSs Interoperability Library

Normally, hybrid applications have different phases of computation and communi-
cation. Computation phases are usually parallelized with a parallel region or tasks,
however communication phases are only executed by a single thread. Thus, parallelism
is open at the beginning of computation phases and it is closed before entering commu-
nication phases, following a fork-join approach. The synchronization point at the end
of the computation phase prevents the overlap of computation and communication.
Furthermore, if the application performs several timesteps repeating the computation
& communication pattern, the fork-join mechanism introduces a significant overhead
as well as it prevents the overlap of different timesteps.

These problems can be avoided when using the MPI+OmpSs Interoperability library [9]
which seeks the enhancement in performance and programmability of hybrid applica-
tions by managing the interaction between both MPI and OmpSs programming models.

Figure 6.1 shows the different software levels involved in a hybrid MPI+OmpSs appli-
cation along with the interoperability library. The MPI implementation library and
the OmpSs’ runtime system, which is called Nanox [14], work on top of the operating
system. Then it is the turn of the interoperability library which redefines all blocking
MPI routines and interacts with the OmpSs runtime library. Finally, the application
is placed on top of those three libraries.

Hybrid Application

MPI Library

Operating System

OmpSs Runtime
Library

Interoperability
Library

Fig. 6.1: Software stack in a hybrid MPI+OmpSs+Interoperability application.

31

Ti
m

es
te

p

Taskwait

C
om

pu
te

ta

sk
s

C
om

m
.

ta
sk

s

Fig. 6.2: Dependency graph with both
computation and communication tasks.

Pr
oc

es
s

1
Pr

oc
es

s
2

MPI_Send
tag=0

MPI_Send
tag=1

MPI_Send
tag=2

MPI_Send
tag=3

MPI_Recv
tag=2

MPI_Recv
tag=3

MPI_Recv
tag=0

MPI_Recv
tag=1

CPU 0 CPU 1

CPU 0 CPU 1 Ready queue
(not running)

Ready queue
(not running)

depends on

Fig. 6.3: Deadlock situation between 2
processes and 2 CPUs per process.

6.1 Taskifying Communications

To make the most of the interoperability mechanism, users should taskify both compu-
tation and communication phases of the hybrid application with multiple tasks in each
phase, in order to exploit the parallelism in both of them. Computation phases should
be parallelized in a similar way than the original hybrid application. Communication
phases could create a task for sending/receiving blocks of data. All tasks must declare
the corresponding dependencies on its input and output data, thus guaranteeing a cor-
rect execution order of the tasks. In this way, tasks from different timesteps are also
connected through dependencies, thus avoiding the use of an explicit synchronization
point (e.g. taskwait) between timesteps.

An example of this behavior is shown in Figure 6.2. In this case the application
performs two iterations/timesteps, where each one is composed by a computation and
a communication phase. Tasks are ordered using the corresponding dependencies and
the only synchronization point is located at the end of the program.

We discussed dependencies in computation tasks in Section 5.5. Dependencies of com-
munication tasks follow the same idea. From the local point of view of a process,
tasks sending data (e.g. with MPI Send) to another process must declare an input
dependency on the source data buffer. In contrast, tasks receiving data (e.g. with
MPI Recv) from another process must declare an output dependency on the destina-
tion data buffer.

In the following subsection, we explain the risk of a deadlock which appears when
taskifying blocking MPI operations.

32

6.1.1 Risk of Deadlock

As stated in [8], tasks that encapsulate blocking MPI calls have an unpredictable
execution time depending on the MPI synchronization with the matching call in the
remote process. This may cause deadlocks if the runtime system assigns cores to
communication tasks and the task execution-order in the remote process is different.

Figure 6.3 shows a simple deadlock situation. The first MPI process devotes its two
CPUs to execute the first two communication tasks which send data with tags 0 and
1, respectively. At the same time, the second MPI process devotes its two CPUs to
execute the last two communication tasks which receive data messages with tags 2
and 3, respectively. Since they are not sending and receiving the same messages, both
processes end up in a deadlock within the MPI blocking procedures.

Without the interoperability mechanism, deadlocks can be avoided by declaring a sen-
tinel dependency in communication tasks. This guarantees the same execution-order of
communication tasks in all processes. Although it does not allow the overlap of differ-
ent communication operations, one communication task can be executed concurrently
with computation tasks.

6.2 Benefits

The interoperability mechanism prevents processors from blocking inside the MPI li-
brary when calling blocking MPI operations. With this, the aforementioned risk of
deadlocks disappears, so sentinel dependencies of communication tasks can be totally
removed. This allows multiple communication tasks to run in parallel with other
computation tasks, without any risk. Furthermore, if the application has multiple
timesteps, the library allows the overlap of different timesteps. In summary, this li-
brary allows the overlapping of multiple computation and communication tasks, and
also between different application timesteps.

In addition, the interoperability library supports applications which use non-blocking
operations. Although non-blocking routines are not intercepted, the interoperability
mechanism will be enabled when calling to blocking wait procedures as MPI Wait.

6.3 Software Requirements

This library requires an MPI implementation supporting the multi-threaded mode (i.e.
MPI THREAD MULTIPLE) and non-blocking MPI operations. These requirements are
very easy to fulfill, since almost all MPI implementors (e.g. MPICH, Intel MPI and
OpenMPI) integrated these features a long time ago. In addition, it requires an OmpSs
implementation supporting the condition variable and the polling service APIs, which
are explained in the next subsections.

33

// An opaque condition variable object

typedef void* nanos_wait_cond_t;

// Creates a new condition variable

void nanos_create_wait_condition(nanos_wait_cond_t *cond);

// Blocks current task on the condition variable

void nanos_block_current_task(nanos_wait_cond_t *cond);

// Wakes a task waiting on a condition variable

void nanos_signal_wait_condition(nanos_wait_cond_t *cond);

Fig. 6.4: OmpSs task condition variable API.

6.3.1 Task Condition Variable API

The Nanox [14] runtime library has to provide an API routine to block a task in a
condition variable and another one to signal the condition variable in order to resume
the task. The interoperability library uses both API routines to block a task within
the interception code of a blocking MPI operation and to resume it once the MPI
request has completed, respectively. The complete API is shown in Figure 6.4.

6.3.2 Polling Service API

The interoperability library defines a function that checks the completeness of all pend-
ing MPI requests, which have been produced when intercepting blocking MPI routines.
In order to guarantee program progress, this function should be called periodically by
the OmpSs runtime system.

The polling service API (Figure 6.5) provides the capability of registering polling
functions with an opaque parameter, which will be periodically called passing the cor-
responding parameter. The same function can be registered with different parameters,
considering them as different polling services. A polling service can be unregistered in
two ways: 1) by returning a ’1’ from the polling service or 2) by explicitly unregistering
it through the corresponding API routine. The API should be implemented by the
OmpSs runtime system.

6.4 Operation

The interoperability library takes advantage of the fact that MPI defines the functions
starting with the ”MPI ”prefix as weak symbols. This means that they can be redefined
in order to intercept calls performed by user applications. Furthermore, MPI routines
starting with the ”PMPI ” prefix implement the original MPI operations and cannot

34

// An opaque condition variable object

typedef int (*nanos_polling_function_t)(void *service_data);

// Registers a function and a parameter to be called periodically

// Registering the same function with different parameters is allowed

// The function is unregistered automatically if it returns a ’1’

void nanos_register_polling_service(const char *service_name,

nanos_polling_function_t service_function, void *service_data);

// Unregisters a function and parameter combination

void nanos_unregister_polling_service(const char *service_name,

nanos_polling_function_t service_function, void *service_data);

Fig. 6.5: OmpSs polling service API.

be redefined. Thus, calls to the PMPI interface cannot be intercepted and they are
usually used by external libraries to directly call to the authentic MPI routines.

We explain the interoperability mechanism through an example. Figure 6.6 shows the
code that is executed when the application performs an MPI Recv call from inside a
task. The first operation performed at line 3 is to transform the blocking call to its
non-blocking counterpart, in this case an MPI Irecv. The code then checks whether
the operation is immediately completed with MPI Test (line 6). In such case, the
function returns without blocking the task, since the MPI operation has completed.
Otherwise, a ticket object is created and filled with the information about the ongoing
MPI operation and a new condition variable (line 9). The ticket is next added into
the internal list of pending tickets.

In case the interoperability mechanism is not enabled, the polling function is called
(line 14) until the current operation completes (i.e. to make progress). In fact, when
it is not enabled, the library code simulates the blocking routine’s behavior. The
task is then blocked on the condition variable (line 17) independently of whether the
mechanism is enabled or not. However, in case it is not enabled, the task should return
almost immediately, since the condition variable may have already been signaled by
the polling function.

The library implements a polling function (line 22) which is periodically called by the
OmpSs runtime system. This function checks the completeness of all pending MPI
operations (line 25). When an MPI operation completes, the task waiting for the MPI
operation is signaled (line 28) and returned to the runtime system’s ready queue.

It is worth noting that all other point-to-point and collective blocking MPI primitives
are intercepted and managed similarly. This mechanism can be enabled and disabled
through the MPI Pcontrol routine, which is designed for external tools and libraries.

In addition, some changes were made in the Nanox runtime system [14] to efficiently
support the interoperability library. For instance, a new scheduler was implemented
in order to dedicate one or more threads to executing communication tasks [9]. This

35

idea is similar to the one proposed in [8], which marks communication tasks with the
target(comm thread) clause in order to execute them in a communication thread.

1 int MPI_Recv(void *buf, ..., MPI_Status *status) {

2 MPI_Request request;

3 int err = MPI_Irecv(buf, ..., &request);

4

5 int completed = 0;

6 MPI_Test(&request, &completed, status);

7 if (!completed) {

8 Ticket ticket(&request, status);

9 nanos_create_wait_condition(&ticket._cond);

10 _pendingTickets.add(ticket);

11

12 if (!Interop::isEnabled()) {

13 while (!ticket.isFinished()) {

14 Interop::poll();

15 }

16 }

17 nanos_block_current_task(&ticket._cond);

18 }

19 return err;

20 }

21

22 void Interop::poll() {

23 for (Ticket &ticket : _pendingTickets) {

24 int completed = 0;

25 MPI_Test(ticket._request, &completed, ticket._status);

26 if (completed) {

27 _pendingTickets.remove(ticket);

28 nanos_signal_wait_condition(&ticket._cond);

29 }

30 }

31 }

Fig. 6.6: Original interception of the MPI Recv routine and implementation of the
polling function in the interoperability library.

36

7 | Tools and Methodology

This chapter describes the main tools used to develop this project and the methodology
followed.

7.1 Tools

As stated in Section 1.1, the main objectives of this project are to improve the inter-
operability between MPI and task-based programming models as well as to propose
a similar interoperability mechanism for GASPI. Although the mechanism is for any
task-based programming model, we use OmpSs-2 in order to exemplify the use of the
mechanism. In the following subsections, we describe the implementations of OmpSs-2,
MPI and GASPI used in this project.

Moreover, we describe the MPI+OmpSs interoperability library, given that some of
our contributions relate to the improvement of that library.

Finally, we briefly explain the Extrae and Paraver tools, which we will use in the
evaluation of our approach. Extrae and Paraver are a tracing tool and a visualization
tool, respectively.

7.1.1 Mercurium

Mercurium [15] is a source-to-source compilation infrastructure developed at the BSC,
which supports the C, C++ and Fortran languages. Mercurium is mainly used in the
Nanos environment to implement OpenMP but since it is easily extensible, it has been
used to implement other programming models and compiler transformations. Some
examples include Cell Superscalar(CellSs) and Software Transactional Memory.

Mercurium is designed using a plugin-based architecture, where plugins represent dif-
ferent phases of the compiler. These plugins are written in C++ and dynamically
loaded by the compiler according to the chosen configuration. Code transformations
can be implemented in terms of source code, thus there is no need to modify or know
the internal syntactic representation of the compiler.

Mercurium supports the family of OmpSs programming models. It is in charge of
processing the OmpSs compiler directives and transforming them into runtime library

37

OmpSs
code Mercurium

(mcc, mcxx, imcc, imcxx, …)

Native
compiler

gcc

Native
compiler

icc

Native
compiler...

Nanos
(Nanox, Nanos6, ...)

Binary Linker

#pragma oss task
...

Fig. 7.1: Mercurium workflow for OmpSs source codes.

function calls. Moreover, Mercurium is able to generate code for different platforms
depending on its target device (e.g. CPU, GPU and FPGA).

The workflow of Mercurium for OmpSs is shown in Figure 7.1. As can be seen, the
user is responsible for delivering a directive-based source code which is processed by
Mercurium. This latter transforms the OmpSs directives into the corresponding func-
tion calls of the Nanos runtime system. The transformed code is then compiled by the
chosen native compiler (e.g. gcc and icc). Finally, the binary is linked to the Nanos
runtime system’s library.

7.1.2 Nanos6

Nanos6 [16] is a runtime system library developed at the BSC, which provides the
services to manage all the parallelism in user applications. Nanos6 is responsible
for scheduling and executing the tasks annotated in user applications, preserving the
implied task dependency constraints.

Actually, Nanos6 is the successor of the Nanox [14] runtime system and it provides
support for all constructs of the OmpSs-2 programming model, which is explained in
Section 5. Some of the services that Nanos6 provides are task creation, synchronization,
data movement, several task scheduling policies and support for resource heterogeneity.
The Nanos6 structure is shown in Figure 7.2.

The Nanos6 library provides a well-defined API which can be called from any user
application. Nevertheless, it is highly recommended to use it along with Mercurium,

38

Binary

Nanos6 API

In
st

ru
m

en
ta

tio
n

Thread
Management

Task
Management

Dependency
Management

Data
Coherence

and
Movement

Task
Scheduling

Architecture Interface

Scheduling
Policies

Fifo, Lifo, Priority...

SMP GPU Cluster ...

Extrae

Traces
Paraver
Traces

Fig. 7.2: Nanos6 runtime system structure.

which will transform the OmpSs directives from the desired application into calls to
the Nanos6 API, and then, it will execute the native compiler passing the transformed
code.

In addition, Nanos6 provides an instrumented version which allows the generation of
execution traces with Extrae. Basically, Nanos6 calls the Extrae API to report when
tasks are started, threads are paused/resumed, etc. The generated traces can be then
visualized with Paraver for a post-mortem analysis. For instance, users are able to
visualize what tasks and threads are being executed at each moment of the execution.
Both tracing tools are explained in the following subsections.

7.1.3 MPICH

MPICH [17] is a high-performance and widely portable implementation of the Message
Passing Interface (MPI) standard. This implementation is developed at the Argonne
National Laboratory along with other collaborators.

The MPICH implementation is distributed as an open-source license and it has two
main objectives. The first is to provide an MPI implementation that efficiently sup-
ports different computation and communication platforms, including commodity clus-
ters (e.g. multicore architectures), high-speed networks (e.g. 10 Gigabit Ethernet,
InfiniBand and Myrinet) and proprietary high-end computing systems (e.g. Blue Gene
and Cray). The second objective is to enable cutting-edge research in MPI through an
easy-to-extend modular framework for other derived implementations. In summary,
MPICH is a high-quality reference implementation of the latest MPI standard.

39

7.1.4 GPI-2

GPI-2 [18] is an implementation of the GASPI specification and it is developed and
maintained by the Fraunhofer ITWM. In fact, GASPI is an API specification which
originates from the ideas and concepts from GPI (Global address Programming In-
terface). GPI-2 is the next generation of the original GPI, extending it with more
features.

GPI-2 is mainly designed for asynchronous communication and provides a flexible,
scalable and fault tolerant interface for parallel applications. By default, its inter-
face is totally thread-safe and it is implemented taking into account that many user
applications are multi-threaded. Moreover, it provides a mechanism to define mem-
ory segments to support heterogeneous systems (e.g. Intel Xeon Phi). In addition,
it supports synchronous point-to-point primitives, which could be equivalent to the
MPI Send and MPI Recv operations from the MPI standard.

7.1.5 MPI+OmpSs Interoperability Library

The MPI+OmpSs Interoperability Library [9], which was developed at the BSC, seeks
to improve the interoperability between these two programming models. This library
targets hybrid MPI+OmpSs applications, specifically the ones that taskify computa-
tion and MPI communication across the processes. Thus, computation and communi-
cation can overlap. This mechanism allows the execution of other ready tasks when a
communication task is blocked inside MPI.

This library intercepts each blocking MPI call (e.g. MPI Recv) and converts it to a
call to its non-blocking counterpart (i.e. MPI Irecv). The resulting MPI requests are
stored and managed internally. Then, the calling task is blocked through a specific
API. Furthermore, thanks to a polling service API, these pending requests are checked
periodically to find out which of them are complete. When all the requests of a task
are complete, the task is resumed, and finally, it can return from the MPI call.

7.1.6 Extrae

Extrae [19] is a library, also developed at the BSC, devoted to generating Paraver
trace-files for a post-mortem analysis. Extrae is a tool that uses different interposition
mechanisms to inject probes into the target application in order to gather information
regarding the application performance. In summary, it collects performance metrics
at known application points to finally provide the performance analyst a correlation
between performance and the application execution. In addition, Extrae supports
multiple platforms (e.g. Linux clusters, Cray and nVidia GPUs) as well as several
parallel programming models (e.g. MPI, OpenMP and OmpSs).

40

7.1.7 Paraver

Paraver [20] is a visualization tool developed at the BSC, which allows users to have
a qualitative global perception of the application behavior by visual inspection, and
then, to be able to focus on the detailed quantitative analysis of the problems.

The analytical power of Paraver is based on two main pillars. The first is that its
trace format has no semantics. This means that extending the tool to support new
performance data or new programming models requires no changes to the visualizer,
just to capture such data in a Paraver trace.

The second pillar is that the metrics are not hardwired on the tool but programmed.
To compute them, the tool offers a large set of time functions, a filter module, and a
mechanism to combine two time lines. This approach allows to display a huge number
of metrics with the available data (e.g. cache misses, frequency and IPC).

Along with Extrae, they form a very powerful tool to analyze application executions.
They are especially useful when an application does not achieve the desired perfor-
mance, thus users can look in detail which are the performance problems. In addition,
they allow to easily understand the application’s behavior, even without having seen
the application’s code.

7.2 Methodology

In this section we describe the methodology followed to satisfactorily develop this
project. We followed the Design Science Research Cycles [21] methodology, which clearly
identifies three different research cycles: the Relevance cycle, the Rigor cycle and the
Design cycle.

As an introduction, the relevance cycle bridges the contextual environment of the re-
search project with the design science activities. The rigor cycle links these design
science activities with the knowledge base of scientific foundations. Finally, the design
cycle iterates between the core activities of designing, building and evaluating the arti-
facts and processes of the research [21]. Figure 7.3 shows the flow of this methodology
and these cycles. The following subsections describe them more in detail.

7.2.1 Relevance Cycle

Design science research is motivated mainly by the desire to improve the environment
by introducing new and innovative artifacts, and also, the processes for building these
artifacts. The environment or application domain is formed by the people, the organi-
zational systems and the technical systems that interact to work toward an objective.
Finally, opportunities and problems are identified from this application domain, being
the ones to address during the research project [21].

41

Design Science Research
Environment Knowledge Base

- Requirements
- Field Testing

Relevance Cycle

Evaluate Artifacts

Design & Build Artifacts

Design
Cycle

Rigor Cycle
- Grounding
- Additions to KB

- People

- Organizations

- Technical Systems

- Problems

- Opportunities

- Foundations

- Theories

- Methods

- Experience

- Meta-Artifacts

Fig. 7.3: Design Science Research Cycles.

The relevance cycle initiates design science research with an application domain which
provides the requirements of the research (e.g. opportunities and problems to solve) as
inputs, along with the acceptance criteria for the ultimate evaluation of the research
results. The output of the design science research is then returned to the environment
to evaluate whether more iterations are needed or not. This evaluation is performed
by field testing, which should detect whether the artifact has functionality deficien-
cies or whether the input (e.g. the requirements) for the design science research was
incorrect [21].

The application environment and the relevance cycle can be seen on the left side of
the Figure 7.3. As stated above, the relevance cycle mainly provides the input for the
design science research.

7.2.2 Rigor Cycle

Design science draws from a large knowledge base (also KB in Figure 7.3) of scientific
theories and engineering methods that provides the foundations for rigorous design
science research. The knowledge base also includes 1) the experience and expertise
that define the state-of-the-art in the application domain and 2) the existing artifacts
and processes (or meta-artifacts) found in the application domain [21].

The rigor cycle provides past knowledge to the research project to ensure that the
produced designs are actually research contributions and not routine designs based
upon the application of well-known processes. In the cycle, there are additions to the
knowledge base which include extensions to the original theories and methods made
during the research, the new meta-artifacts and all experience gained while performing
the research. These knowledge base contributions are important to produce an impact
on the academic audience as well as the environment contributions for the professional
audience [21].

In this case, the knowledge base and the rigor cycle can be seen on the right side of
the Figure 7.3.

42

7.2.3 Design Cycle

The design cycle is the core of the design science research, as can be seen in Figure 7.3.
It iterates between the design and construction of an artifact, its evaluation and the
subsequent feedback to refine the next designs [21]. The nature of this cycle is the
generation of design alternatives and its evaluation against the requirements until a
satisfactory design is achieved [22].

The requirements are provided by the relevance cycle, whilst the design and process
theories and methods are provided by the rigor cycle. The design cycle is where the
hard work of design science research is done. It is worth noting that the design cycle
has a relative independence on the other cycles while the research is performed. In
addition, it is important to maintain a proper balance between the efforts spent in the
building and the evaluation of an artifact. In case these efforts are not well-balanced,
the resulting artifact could have important deficiencies [21].

43

8 | Enhancing the MPI
Interoperability

This chapter covers the details of our proposal for enhancing the interoperability mech-
anism between the MPI and task-based programming models. On the one hand, we
explain the design of our proposal. The design part is one of the most important ones,
since it defines the way users can enable and take benefit from the interoperability
mechanism.

It also defines the interface that the distributed-memory and shared-memory pro-
gramming models should use to interact with each other. In this case, the interface is
designed thinking in MPI and OmpSs, but it should be completely generalized to any
programming model.

On the other hand, we explain how the proposed functionalities have been integrated
into the interoperability library in order to offer a competitive performance and an
appropriate programmability to users.

Notice that this chapter is part of the Design Cycle of the Design Research Method,
which is described in Section 7.2.

8.1 New Level of Thread Support

One of the most important aspects, if not the most important, should be to facilitate
the use of the proposed functionalities to users. Designers must define what the users
can expect from the functionality, which is its exact behavior and how can be activated.
For that reason, in this section we define how the interoperability mechanism can
be enabled from user applications. We also explain which is the behavior when the
mechanism is enabled and disabled.

The MPI standard already defines a way to initialize the MPI library with different
levels of thread support. This is explained in detail in Section 3.3. The highest level
defined by the current MPI standard is MPI THREAD MULTIPLE, which is in turn the
least restrictive when using multiple threads.

Following the idea of MPI levels of thread support, we propose a new threading level
called MPI TASK MULTIPLE, being its constant value monotonically greater than the

44

existing MPI THREAD MULTIPLE constant. This threading level activates the inter-
operability mechanism (Chapter 6) during all the execution of the hybrid application.
Note that MPI implementors could easily support this mechanism through this new
level of thread support.

By initializing MPI with this threading level, users can call blocking MPI operations
from an infinite number of tasks at the same time. The risk of a deadlock (Section 6.1.1)
disappears, since underlying hardware threads are never blocked within blocking MPI
routines and they are able to execute other ready tasks while the corresponding oper-
ations are not completed. Even so, the original blocking semantics is maintained, since
a blocking MPI procedure does not return until the operation completes.

Figure 8.1 shows an example of how a hybrid MPI+OmpSs code may use this new
thread support level to write portable applications. First, the application initializes
the MPI library passing MPI TASK MULTIPLE as the desired threading level (line 6).
The MPI initialization routine returns (in provided) the provided threading level.

If the new threading level is supported, the application defines a sentinel variable to
NULL (line 7), which will be ignored by the runtime system. Otherwise, it sets the
sentinel variable to one (line 8), so that communication tasks will be serialized. This
is used in lines 12-13, where the communication tasks are created featuring a regular
dependency on the block these will work on, as well as an artificial inout annotation
of the sentinel variable to serialize the execution of these tasks and avoid deadlocks.
Note that this can be also performed using a regular if statement by instantiating tasks
with or without the artificial dependency depending on the provided threading level.

1 int *sentinel; // Sentinel used to serialize communication tasks

2

3 int main(int argc, char * argv[]) {

4 int provided;

5 // MPI_TASK_MULTIPLE = MPI_THREAD_MULTIPLE + 1

6 MPI_Init_thread(&argc, &argv, MPI_TASK_MULTIPLE, &provided);

7 if (provided == MPI_TASK_MULTIPLE) sentinel = NULL;

8 else sentinel = (int *) 1;

9

10 for (int i = 0; i < NT; i++) {

11 // Dependency enforced only if *sentinel != 0

12 #pragma oss task inout(tile[i]) inout(*sentinel)

13 communication_task(tile[i]);

14 }

15 #pragma oss taskwait

16 }

Fig. 8.1: Example of a portable MPI initialization using MPI TASK MULTIPLE.

45

8.2 Generalizing the API

Another important matter is the definition of a generic programming interface (or
API) between the distributed-memory and the task-based shared-memory program-
ming model. In our case, these are the MPI and OmpSs programming model, however
the interface should be as generic as possible, allowing other programming models to
easily implement it. The main idea is to facilitate the task of designing and imple-
menting the interoperability mechanism for other programming models. Furthermore,
we will use this same interface when we propose the interoperability mechanism for
GASPI, detailed in Chapter 9.

In this section we propose a generic API to block and unblock tasks, replacing the
previous task condition variable API (Section 6.3.1). This task block/unblock API
aims to support efficient execution of blocking operations in any task-based runtime
system. It is composed of three functions, which are shown in Figure 8.2. This API is
also known as the pause/resume API.

The first function, get current blocking context, informs the runtime system that the
current task is about to enter a block-unblock cycle. The function configures everything
needed to handle one round trip, and returns an opaque pointer to runtime-specific
data. This data is also known as a blocking context. A blocking context is valid only
for one pause-resume cycle, and requesting a new context invalidates the currently
active one.

Once obtained a blocking context, the block current task function can be called in
order to suspend the execution of the current task. The parameter must be the current
blocking context of the invoking task. The unblock task function indicates that the
task associated to the blocking context can be resumed. This function can be called by
any thread over a valid blocking context. In addition, this API does not enforce any
specific order in which block current task and unblock task should be called in a block-
unblock cycle. For instance, it is correct to call to unblock task before the task has
actually called to block current task. In this case, the calling task should return from
block current task as soon as possible. Therefore, the only requirements are that (1)
each block current task call must match to an unblock task call and (2) each blocking
context can be used in a single block-unblock cycle.

// Get the blocking context of the current task

void *get_current_blocking_context();

// Block the current task

void block_current_task(void *blocking_context);

// Unblock a task passing its blocking context

void unblock_task(void *blocking_context);

Fig. 8.2: Task block/unblock API.

46

1 async_handler = start_async_op(...);

2 void *blocking_ctx = get_current_blocking_context();

3 associate(async_handler, blocking_ctx);

4 block_current_task(blocking_ctx);

Fig. 8.3: Code that performs the block operation.

1 async_handler = wait_until_one_async_op_finishes();

2 void *blocking_ctx = get_assigned_blocking_context(async_handler);

3 unblock_task(blocking_ctx);

Fig. 8.4: Body of the code that handles the unblocking of the operation.

The general usage pattern consists in replacing blocking operations by either asyn-
chronous or non-blocking counterparts, and to let the runtime perform the actual
blocking. The runtime should then schedule other ready tasks during the blocking
period. This usage scheme is shown in Figure 8.3.

Asynchronous operations that support callbacks can use the callback function to un-
block the task. However, some operations do not support callbacks, so a different
thread has to periodically check their completion and unblock the corresponding tasks
when they finish. Figure 8.4 shows the pattern that the body of the main loop of that
thread could contain. Note that the thread that checks the completeness of operations
and unblocks the corresponding tasks must have access to their blocking contexts.

In addition, the task block/unblock API can be used in conjunction with the polling
service API (Section 6.3.2). The main idea is that a single polling service callback
can be used for checking the completeness of multiple blocking operations. Figure 8.5
shows that pattern. During initialization, the function should be registered to ensure
that the runtime calls it periodically. The body of the function is basically the code
already shown in Figure 8.4, but adapted to work in a non-blocking fashion and with
multiple operations.

In addition, this API also supports the registration of a callback for each operation.
This is possible by passing the operation information through the service data parame-

1 int polling_callback(void *service_data) {

2 while(have_ready_operations()) {

3 async_handler = get_ready_operation();

4 void *ctx = get_assigned_blocking_context(async_handler);

5 unblock_task(ctx);

6 }

7 return 0;

8 }

Fig. 8.5: Callback code that handles multiple operations.

47

1 int polling_callback(void *service_data) {

2 operation_info_t *oi = (operation_info_t *) service_data;

3 int finished = operation_has_finished(oi->async_handler);

4 if (finished) {

5 unblock_task(oi->blocking_ctx);

6 }

7 return finished;

8 }

Fig. 8.6: Callback code that handles a single operation.

1 operation_info_t oi;

2 oi.async_handler = start_async_op(...);

3 oi.blocking_ctx = get_current_blocking_context();

4 register_polling_service("single-operation", polling_callback, &oi);

5 block_current_task(oi.blocking_ctx);

Fig. 8.7: Modified blocking code to use one callback per operation.

ter and by automatically unregistering the callback through its return value. Figure 8.7
shows the blocking-side code. In this case the callback is not registered during initial-
ization. Instead, before blocking the current task, a callback function is registered
along with the data associated with the operation. The callback function, which is
shown in Figure 8.6, uses that data to recover the actual asynchronous operation and
its associated blocking context. If it detects that the operation has finished, in addition
to unblocking the task, it also returns a value that indicates that the callback should
be automatically unregistered.

8.3 Bringing the Mechanism to Users

These proposals can be easily implemented inside any MPI implementation. However,
we have implemented them on top of the existing interoperability library [9]. In this
way, users can enable the pause/resume mechanism by just linking their hybrid appli-
cations to the library and requesting the new MPI TASK MULTIPLE threading level.
The underlying MPI library can be any unmodified MPI implementation supporting
at least the multi-threading level (e.g. MPICH, Intel MPI and OpenMPI).

When the interoperability library is properly linked to an application, it intercepts
all MPI initialization/finalization function calls issued by the application. Thus the
underlying MPI library is not initialized directly by the application, but by the inter-
operability library. This latter activates its interoperability mechanism if and only if
the user has requested MPI TASK MULTIPLE and the MPI library does not support
it. If the underlying MPI library already supports the new threading level or the user
has requested a lower threading level, the interoperability library fully disables the

48

pause/resume mechanism. Although the mechanism is disabled, the library still inter-
cepts all blocking MPI calls by default. In this case, when a blocking MPI function
call is intercepted, the call is redirected to the original MPI blocking function defined
by the underlying MPI library (i.e. using the PMPI interface).

8.4 Implementation Details

As mentioned above, we have implemented our proposals on top of the interoperability
library. The first thing to do was to intercept both MPI initialization and finalization
function in order to decide whether the interoperability mechanism should be enabled
or not.

This is shown in Figure 8.8. When the library intercepts MPI Init thread, it calls the
actual initialization function of the underlying MPI library (line 2). The interoperabil-
ity mechanism is enabled if the user requests the new MPI TASK MULTIPLE threading
level and the MPI library provides MPI THREAD MULTIPLE (lines 4-5). Otherwise, it
is disabled (line 7). Note that a polling service is registered (line 5) so that the polling
function is periodically called by the runtime system.

1 int MPI_Init_thread(..., int required, int *provided) {

2 int err = PMPI_Init_thread(..., required, provided);

3 if (required == MPI_TASK_MULTIPLE && *provided == MPI_THREAD_MULTIPLE) {

4 Interop::enable();

5 register_polling_service("interop", Interop::poll, NULL);

6 ...

7 } else Interop::disable();

8 return err;

9 }

10

11 int MPI_Finalize() {

12 int err = PMPI_Finalize();

13 if (Interop::isEnabled()) {

14 Interop::disable();

15 unregister_polling_service("interop", Interop::poll, NULL);

16 ...

17 }

18 }

Fig. 8.8: Interception of both MPI initialization and finalization routines.

Similarly, the finalization function is intercepted in order to unregister the polling
service and finalize the mechanism, if it was enabled. Note that the MPI Init is not
shown since it automatically enables the lowest threading level.

Moreover, we have improved the processing of blocking MPI calls by using the proposed
task block/unblock API and other minor improvements. Figure 8.9 shows the new code

49

that is executed when the application performs an MPI Recv call from inside a task.
The first operation performed at line 3 is to check if the interoperability mechanism is
enabled. If this is not the case, the original blocking MPI Recv operation is executed
(line 15) using the PMPI interface. Otherwise, the blocking call is transformed into
its non-blocking counterpart, in this case an MPI Irecv (line 5). The code then checks
if the operation is completed immediately. In such case, the function returns without
blocking the task, since the MPI operation has been completed. Otherwise, a ticket
object is created and filled with the information about the ongoing MPI operation and
the current task blocking context (line 9). The ticket is next registered in an internal
list of pending tickets and the task is paused (line 11).

MPI asynchronous operations do not feature a callback to wake up the thread once
the operation is completed. To handle this, the library implements a polling service
(line 18), that periodically checks if any pending MPI operation has completed (line
21). When an MPI operation completes, the task waiting for that MPI operation is

1 int MPI_Recv(void *buf, ..., MPI_Status *status) {

2 int err, completed = 0;

3 if (Interop::isEnabled()) {

4 MPI_Request request;

5 err = MPI_Irecv(buf, ..., &request);

6 MPI_Test(&request, &completed, status);

7 if (!completed) {

8 Ticket ticket(&request, status);

9 ticket._blocking_ctx = get_current_blocking_context();

10 _pendingTickets.add(ticket);

11 block_current_task(ticket._blocking_ctx);

12 }

13 return err;

14 }

15 return PMPI_Recv(buf, ..., status);

16 }

17

18 void Interop::poll() {

19 for (Ticket &ticket : _pendingTickets) {

20 int completed = 0;

21 MPI_Test(ticket._request, &completed, ticket._status);

22 if (completed) {

23 _pendingTickets.remove(ticket);

24 unblock_task(ticket._blocking_ctx);

25 }

26 }

27 }

Fig. 8.9: New interception of the MPI Recv routine and implementation of the
polling function in the interoperability library.

50

resumed (line 24) and returned to the runtime system’s ready queue. Note that it uses
the approach of having a single polling service for multiple blocking operations.

For the sake of simplicity, locking is omitted in Figure 8.9. However, in both the
original and our updated implementation, threads must acquire a mutex to safely
perform operations on the pendingTickets list. The statement which registers a new
ticket into the list (line 10) and the whole body of the polling function (line 18) should
be protected with a mutex.

It is worth noting that in our implementation the polling function is only called by
the polling thread, while in the original implementation [9] it is constantly called
by all communication tasks inside the interception code when the interoperability
mechanism is not enabled. This could degrade the overall performance, since it could
produce significant overhead and contention. For this reason, our implementation is
more efficient when the mechanism is not enabled (i.e. standard behavior).

Finally, other secondary tasks were performed as minor bug-fixes, simplification of the
original code, etc.

51

9 | Enhancing the GASPI
Interoperability

This chapter contains the details of the interoperability mechanism that we propose for
the GASPI and task-based programming models. This chapter follows an organization
similar to the previous one.

One the one hand, we explain in detail the design of our approach. We first introduce
the main specific hindrances when trying to build a scalable hybrid GASPI+OpenMP
application. We also explain which are the main ideas behind our proposal to solve all
these problems. Then, we define how the user can enable our mechanism through a new
GASPI initialization routine which offers the possibility of requesting a GASPI mode,
as in MPI Init thread. Next, we explain in detail how the mechanism is applied to
the waiting routines for both local completion (i.e. gaspi wait) and remote completion
(i.e. gaspi notify waitsome). Finally, we introduce our proposal for grouping different
GASPI queues in order to facilitate and improve the queue’s multiplexing in user
applications.

On the other hand, we explain how the GPI-2 implementation has been extended to
support our proposed functionalities. Our extension benefits from the generic task
block/unblock API (Section 8.2) and the polling service API (Section 6.3.2).

Notice that this chapter is also part of the Design Cycle of the Design Research Method,
which is described in Section 7.2.

9.1 Main Ideas

Generally, hybrid applications only parallelize computation phases, while communi-
cation phases are executed by a single thread. As explained in Chapter 6, these
techniques are suboptimal and prevent applications from being scalable.

In addition, hybrid GASPI+OpenMP applications take advantage of the asynchronous
operations (e.g. gaspi write and gaspi read). As explained in Section 4.7, their routines
are asynchronous and return immediately, so they cannot produce a deadlock. There-
fore, hybrid applications usually instantiate a different task for each communication
operation to be performed. A taskwait is declared after creating the communication
tasks. Once these tasks are finished, the main thread waits for the completion of all

52

1 // Parallel communication

2 for (int i = 0; i < NT; ++i) {

3 #pragma oss task

4 communicate(tile[i]);

5 }

6 #pragma oss taskwait

7 wait_all_communications(NT);

8 // Parallel computation ...

Fig. 9.1: Example of a common GASPI+OmpSs parallelization strategy.

operations by using gaspi wait or gaspi notify waitsome, depending on the communica-
tion pattern. Figure 9.1 shows this strategy. Note that this parallelization could be
easily implemented with an OpenMP for.

Nevertheless, this parallelization strategy is still suboptimal, since the application has
to wait until all communications finish in order to execute the next computation phase.
Further advanced strategies could be implemented, but they are extremely complex
and they require a major change in applications.

The idea we propose is to instantiate multiple tasks performing one or more commu-
nication operations. These tasks could wait their own operations, independently of
the operations performed by other tasks. Figure 9.2 shows the strategy which we are
proposing. The function that waits the operations performed by a task should apply
the pause/resume mechanism in order to execute other ready tasks while the opera-
tions are not completed, thus avoiding deadlocks. Notice that the application should
be taskified following the ideas presented in Section 6.1.

The two available GASPI routines for waiting operations are gaspi wait and gaspi notify -
waitsome for local and remote completion, respectively. The gaspi notify waitsome rou-
tine allows to wait for a specific range of notifications, thus users can wait for the
remote completion of a specific group of operations. However, gaspi wait waits for the
local completion of all operations posted to a specific queue. Since users cannot wait
for specific operations, we should reconsider the functionality of this routine. This is
discussed in the following sections.

9.2 Initialization Modes

GASPI provides a basic initialization routine, which is called gaspi proc init, and it
does only accept a single timeout parameter. However, we want to offer to users the
possibility of enabling the interoperability mechanism in a similar way than in MPI.
For this reason, we propose a new concept for the GASPI standard, which we call
GASPI modes. This will be really useful in the future when other modes have to be
supported. The proposed modes are the following ones:

53

1 // Parallel communication

2 for (int i = 0; i < NT; ++i) {

3 #pragma oss task inout(tile[i])

4 {

5 communicate(tile[i]);

6 wait_operation(i);

7 }

8 }

9 // Parallel computation ...

Fig. 9.2: Example of the proposed GASPI+OmpSs parallelization strategy.

• GASPI_MODE_STANDARD enables the original GASPI operation, and it is
equivalent to calling to gaspi proc init.

• GASPI_MODE_TASK enables the interoperability mechanism on top of the
original GASPI operation.

These values are monotonic, being GASPI MODE STANDARD < GASPI MODE TASK.

The proposed initialization function is called gaspi proc init mode, which is shown
below. The idea is that users can initialize the GASPI library requesting a specific
mode. If possible, the library will provide the required mode. Failing this, the call will
return the least supported level such that provided > required (thus providing a higher
mode than the required by the user). If the user requirement cannot be satisfied, then
the call will provide the highest supported mode. Note that this function works exactly
like MPI Init thread.

gaspi_return_t gaspi_proc_init_mode(gaspi_mode_t required,

gaspi_mode_t *provided, gaspi_timeout_t timeout);

By properly initializing the library with GASPI MODE TASK, all functionalities related
to the interoperability mechanism will be enabled. In this case, we do not show how
to perform a portable GASPI initialization since Figure 8.1 already shows the same
for MPI.

9.3 New Blocking/Timeout Mode

In addition to GASPI modes, we also propose a new timeout (or blocking mode)
to define the behavior of specific blocking calls. Since all blocking routines already
accepts a timeout parameter, no routine has to be modified. The new blocking mode
is called MPI BLOCK TASK. When passing this blocking mode to a blocking call, the
pause/resume mechanism will be enabled and the calling task will be blocked, allowing
other ready tasks to be executed. The runtime services will unblock the task once the
event or the operation is complete.

54

This mode can be used only when the GASPI MODE TASK is enabled. Note that
although this mode is enabled, users have to explicitly specify in which routine calls
want to apply the interoperability mechanism. This is useful since sometimes users
may not want to enable this mechanism in some blocking function calls. This blocking
mode is valid only in gaspi wait and gaspi notify waitsome, since they are the only ones
in which we could take benefit from the pause/resume mechanism.

9.4 Local Completion

As mentioned above, the gaspi wait routine allows to wait for the local completion of
all operations in a specific queue. This means that a task cannot wait only for its
own operations. One of the solutions is to use as many queues as possible in order
to multiplex operations. However the maximum number of queues allowed by GASPI
implementations is usually low (i.e. 16 queues in GPI-2), so this technique could not
be enough when a lot of communication tasks are being executed simultaneously.

Another possible solution could be to extend the GASPI API to return a handle to
a pending request (equivalent to MPI Request) in GASPI routines as gaspi write and
gaspi write notify. In addition, a new wait function could be defined to wait for specific
requests (equivalent to MPI Wait). Nevertheless, this approach is dismissed since it
requires a lot of effort and a major change in the GASPI API.

The last solution, which is the one that we propose, is to change slightly the seman-
tics of the gaspi wait when passing the GASPI BLOCK TASK timeout. When passing
this timeout value, the routine waits for all operations performed by the calling task,
independently of the queue used. Note that the queue parameter in this case is just a
hint. In addition, the pause/resume mechanism is enabled so the task is blocked and
the underlying hardware thread can execute other ready tasks while its operations do
not complete. Thus, the calling task returns from the gaspi wait function once all its
operations complete.

Figure 9.3 shows an example in which a process, known as the sender process, executes
the sender code function and another one, known as the receiver process, executes the
receiver code function. The sender process instantiates one task for each tile to be
written to the other process. The write is performed through the gaspi write notify
function, which starts a write operation and notifies the remote process once the data
is ready on the remote side. The notification id is the id of the tile to be sent. Then,
the task blocks (but not the underlying hardware thread) until the write and notify
operation is completed locally. Notice that this is similar to a sender task in MPI, and
the dependencies of the communication task are released once the source buffer can
be modified.

55

9.5 Remote Completion

The remote completion in GASPI is performed through gaspi notify waitsome. This
function waits for at least one notification from a range of consecutive notification ids.
The notification is actually sent by a remote process. The pause/resume mechanism
can be enabled passing GASPI BLOCK TASK as the timeout parameter.

Figure 9.3 shows in the receiver code function how to wait for a specific notification
from inside a task. The task i from the sender process sends the tile i and a notifi-
cation, which is being waited by the task i from the receiver process. Since it uses
the GASPI BLOCK TASK timeout, the task is blocked and the underlying hardware
thread can execute other ready tasks while the notification does not arrive.

The runtime services unblock the task once the notification arrives. When it arrives,
the data sent by the remote process is guaranteed to be already written in the corre-
sponding tile. Note that this is similar to a receiver task in MPI, and the dependencies
of the communication task are released once the received data is ready.

9.6 Queue Groups

Generally, GASPI recommends multiplexing write/read operations into multiple queues,
instead of using a single one. However, it is difficult to use different queues in an ap-
plication, since usually requires to change substantially the application code. These
changes are necessary to know which queues are the best candidates for being the tar-
get queue of new operations (e.g. which are the emptier ones) and which operations
have been posted to each queue. For this reason, we propose a new GASPI functional-
ity to create and manage queue groups, but being consistent with the original GASPI
API.

The new GASPI functions for queue groups are shown in Figure 9.4. The idea is that a
group of queues can be created by calling to gaspi queue group create, passing the de-
sired queue group id, the range of queues which composes the group (i.e. [queue begin,
queue begin+queue num)) and a queue distribution policy. Note that the participating
queues should be already created before calling to this routine.

The API provides a routine to get a queue from a queue group, which is called
gaspi queue group get queue. The distribution policy defines how queues from the
group are distributed between different calls to the gaspi queue group get queue. For
the moment, it provides the following distribution policies:

• GASPI_QUEUE_GROUP_POLICY_DEFAULT provides a different queue in
each call to gaspi queue group get queue (i.e. Round-Robin).

• GASPI_QUEUE_GROUP_POLICY_CPU_RR distributes the forming queues
across CPUs using Round-Robin. Each CPU will always get the same queue.

56

1 // Code executed by the sender

2 void sender_code(tile_t *tiles, int NT) {

3 for (int i = 0; i < NT; ++i) {

4 #pragma oss task in(tiles[i])

5 {

6 gaspi_queue_id_t queue;

7 gaspi_queue_group_get_queue(0, &queue);

8 gaspi_write_notify(...,

9 i, /* Notification id */

10 1, /* Notification value */

11 queue, GASPI_BLOCK);

12

13 gaspi_wait(queue, GASPI_BLOCK_TASK);

14 }

15 }

16 }

17

18 // Code executed by the receiver

19 void receiver_code(tile_t *tiles, int NT) {

20 for (int i = 0; i < NT; ++i) {

21 #pragma oss task out(tiles[i])

22 {

23 gaspi_notification_id_t notified_id;

24 gaspi_notification_t value;

25

26 gaspi_notify_waitsome(...,

27 i, /* First notification id */

28 1, /* Number of notifications */

29 ¬ified_id, GASPI_BLOCK_TASK);

30 assert(notified_id == i);

31

32 gaspi_notify_reset(..., notified_id, &value);

33 assert(value == 1);

34 }

35 }

36 }

Fig. 9.3: Example of sending and receiving data with the pause/resume
interoperability.

57

gaspi_return_t gaspi_queue_group_create(gaspi_queue_group_id_t queue_group,

gaspi_queue_id_t queue_begin,

gaspi_number_t queue_num,

gaspi_queue_group_policy_t policy);

gaspi_return_t gaspi_queue_group_get_queue(

gaspi_queue_group_id_t queue_group,

gaspi_queue_id_t * queue);

gaspi_return_t gaspi_queue_group_delete(gaspi_queue_group_id_t queue_group);

gaspi_return_t gaspi_queue_group_max(gaspi_number_t *queue_group_max);

Fig. 9.4: Proposed GASPI routines for managing queue groups.

When the number of CPUs exceeds the number of queues, these are distributed
in a Round-Robin way. In addition, it tries to not provide the same queue to
CPUs from different NUMA nodes.

Moreover, it provides a routine to delete a group of queues and another one to get the
maximum number of allowed queue groups. These routines are gaspi queue group delete
and gaspi queue group max, respectively.

An example of its usage is shown in Figure 9.3. Sender tasks get a queue from
the queue group 0, where each task uses a different queue to post an operation.
To take the maximum benefit of the queue group, it should be created with the
GASPI QUEUE GROUP POLICY CPU RR distribution policy. For instance, it could
be created with the following parameters:

gaspi_queue_group_create(

0, /* Queue group id */

0, /* First queue id */

16, /* Number of queues */

GASPI_QUEUE_GROUP_POLICY_CPU_RR);

9.7 Implementation Details

In this section, we explain the details of our extension in GPI-2. Our changes follow
the development rules established by GPI-2 developers and their code style.

Before implementing our approach, some GASPI types and constants were declared.
For instance, the types for GASPI modes (gaspi mode t), for queue groups (e.g. gaspi -
queue group id t) and the new timeout constant (GASPI BLOCK TASK).

58

The next section describes briefly the original implementation of GPI-2, which is the
base for our extensions. The following sections explain how we have integrated the
interoperability mechanism into the gaspi wait and gaspi notify waitsome procedures,
and also, we explain the implementation of queue groups.

9.7.1 Original Implementation

In this section, we briefly explain the original implementation of GPI-2. GPI-2 works
directly on top of the Infiniband library interface, also called libverbs. This library
allows to use Remote Direct Memory Access (RDMA) by creating queues and posting
RDMA requests into these queues. Furthermore, GPI-2 can be used with a simple
TCP mode, which defines a similar interface for posting requests.

These internal requests can be configured for writing, reading or notifying the remote
process. In addition, each request has an id and a pointer to the next request. This
pointer allows to create a linked list of requests in order to post them together into a
specific queue. For instance, gaspi write notify operation translates to a write request
and a special notification request at the remote side. These two requests are linked
using the aforementioned pointer.

Once a request completes locally, the libverbs library adds it into a queue of completed
requests, which corresponds to the source queue. Thus, each libverbs queue has its
own completion queue. In addition, libverbs provides a routine to poll the completed
requests from a specific completion queue. When a request is retrieved from the
completion queue, it is possible to get its id. It is worth noting that only one thread
can poll a completion queue at a time, so it must be protected with a mutex.

9.7.2 Extending gaspi wait

The gaspi wait function does not provide information about which requests have to be
waited for. When calling to it and passing GASPI BLOCK TASK, the routine has to
wait for all operations performed by the calling task. The only way to know which
operations have performed a task is to take note of which is the calling task in routines
as gaspi write notify, gaspi read, etc.

Figure 9.5 shows the flow of the tasks when they call to the gaspi write routine, and
then, they call to gaspi wait in order to wait the local completion of that operation.
Figure 9.6 shows the pseudocode of the pause/resume mechanism in gaspi wait.

Firstly, when a task calls to a routine like gaspi write, the task handle or its id is
retrieved by calling to the get current task API function (line 8). This is used to
identify the different operations performed by the task. Then, the structure which
contains information about the task’s requests, also called info t, is retrieved by calling
to get assigned info. This internal function should access a structure indexed by the
task handle (or id) and it should return a pointer to its information structure. If
there is no entry for the calling task, it should create a new entry initializing the

59

pending requests counter to 1. After returning the info structure, the pending request
counter should be increased with as many units as the number of generated requests
(line 10). In this case, gaspi write generates a single request. Finally, the libverbs
request is identified with the pointer to the information structure (line 11), and it is
posted into the corresponding queue (line 12).

Once the task calls the gaspi wait routine passing GASPI BLOCK TASK, its info struc-
ture is retrieved again (line 19). The counter of pending requests is decremented (line
20), and if the resulting value is zero, it means that all its requests are completed.
Otherwise, there are still some pending requests, so the task should block. In this
case, it saves its blocking context into the information structure and it blocks using
the block/unblock API (lines 21-22).

When initializing GPI-2 with GASPI MODE TASK, a polling service is registered to
execute the poll queues function periodically. This function polls all active completion
queues (line 29). When a request finishes, it gets the pointer pointing to the corre-
sponding info structure, which is saved in the request id (line 31). Then, the counter of
pending requests is decreased. If it becomes 0, the task is unblocked using its blocking
context (line 33), which was saved in its information structure.

Note that the original GPI-2 implementation did not use the request ids, since it waited
for all requests without the need of identifying them. Also notice that all operations on
the pending requests counter must be atomic. In addition, this implementation needs
the void* get current task() API function, which is present in almost all task-based
programming models. This function should return a handle to the current task or its
identifier.

Polling Service

Task

Task

Task

TCP/IB Send
Queue

TCP/IB
Complete

Queue

gaspi_write(...)

unblock_task(...)

gaspi_wait(...):
 block_current_task(...)

Network library

poll complete
requests

(running)

(blocking)

(blocked)

Fig. 9.5: Task flow when calling gaspi wait with GASPI BLOCK TASK.

60

1 struct info_t {

2 int pending_requests;

3 void *blocking_ctx;

4 };

5

6 int gaspi_write(...) {

7 ...

8 void *task_handle = get_current_task();

9 info_t *info = get_assigned_info(task_handle);

10 ++info->pending_requests;

11 request.id = info;

12 queue->post(request);

13 ...

14 }

15

16 int gaspi_wait(...) {

17 ...

18 void *task_handle = get_current_task();

19 info_t *info = get_assigned_info(task_handle);

20 if (--info->pending_requests > 0) {

21 info->blocking_ctx = get_current_blocking_context();

22 block_current_task(info->blocking_ctx);

23 }

24 ...

25 }

26

27 int poll_queues(...) {

28 ...

29 request = complete_queue->poll();

30 if (request != NULL) {

31 info_t *info = request->id;

32 if (--info->pending_requests == 0) {

33 unblock_task(info->blocking_ctx);

34 }

35 }

36 ...

37 }

Fig. 9.6: Pseudocode of the pause/resume mechanism in gaspi wait.

61

9.7.3 Extending gaspi notify waitsome

The gaspi notify waitsome function waits for at least one of the notifications from the
specified range. This function is totally lock-free, therefore the extension for supporting
the interoperability mechanism should maintain this property. This mechanism is
enabled when passing GASPI BLOCK TASK as the timeout parameter.

Figure 9.7 shows the flow of tasks when they call to gaspi notify waitsome with the
interoperability mode enabled. Figure 9.8 shows the pseudocode of the pause/resume
mechanism in this function.

Firstly, there is a new internal type called waiting range t, which holds the required
information about a particular task when waits for a range of notifications. It has the
begin id and the num ids fields that define the range of notifications. It also has a field
to save the first notified id once the waiting has finished. Finally, blocking ctx stores
the blocking context of the calling task, so it can be unblocked later.

The gaspi notify waitsome function creates a waiting range with the parameters passed
to that function (line 10). This range is immediately tested by calling to test waiting -
range (line 11), which checks if any of the notifications has arrived. This function
returns the first notified id in its second argument, if any of them has been notified.
In case no notification has arrived, the task should block. The task saves its blocking
context in the waiting range (line 13), it enqueues the range to a lock-free queue (line
14), and finally, it blocks through the block/unblock API (line 15). Once the task is
unblocked, it returns the notified id through the first id parameter.

In turn, there is a polling service devoted to checking all active waiting ranges, which
calls to the poll waiting ranges function periodically. The first thing it does is to
dequeue all waiting ranges from the lock-free queue and add them into a regular

Segment 0 Segment 0
Task

Task

Task

Task

Task

Task

Polling Service

(1) enqueue

(2) dequeue

(3) add(4) poll

Single-linked List

MPSC
Lock-free

Queue

Fig. 9.7: Task flow when calling gaspi notify waitsome with GASPI BLOCK TASK.

62

single-linked list (line 23). The lock-free queue is a multiple producer (communi-
cation tasks) and a single consumer (polling service) queue. With this, we get the
gaspi notify waitsome function to be lock-free, allowing multiple tasks to call to it
without generating too much contention. Note that the polling function is protected
through a mutex, so the list can be modified from there without any risk. Then, the
polling thread goes through all waiting ranges testing their notifications. In case a noti-
fication has arrived, it removes the range from the list and unblocks the corresponding
task (lines 27-28).

Note that notifications belong to a specific segment. Therefore, we define a different
queue and list for each segment, basically to reduce the overhead and contention.

9.7.4 Implementing Queue Groups

The implementation of queue groups follows the GPI-2’s implementation of queues,
segments, etc. The maximum number of allowed queue groups is limited by the imple-
mentation itself, and in this case, it is set to 16. Since they are very limited, a static
array can hold the information about all possible queue groups, indexed by the queue
group id.

On the one hand, the GASPI QUEUE GROUP POLICY DEFAULT distribution policy
does not need to compute anything when a queue group is created with this policy. It
provides different queues each time the getter function is called. Thus, it only needs
an integer which is increased each time it is called, and takes the values of the queue
ids from the range. Operations over the integer are atomic (but relaxed), since the
getter function can be called from multiple threads.

On the other hand, the GASPI QUEUE GROUP POLICY CPU RR distribution policy
needs to compute the actual distribution of queues across CPUs when creating a queue
group. This policy needs a static array with as many integers as CPUs. Once con-
figured, tasks can call the getter function which will return the assigned queue to the
current CPU.

63

1 struct waiting_range_t {

2 gaspi_notification_id_t begin_id;

3 gaspi_number_t num_ids;

4 gaspi_notification_id_t notified_id;

5 void *blocking_ctx;

6 };

7

8 int gaspi_notify_waitsome(..., begin_id, num_ids, first_id, ...) {

9 ...

10 waiting_range_t range = {begin_id, num_ids, NULL, NULL};

11 notified = test_waiting_range(&range, &range.notified_id);

12 if (!notified) {

13 range.blocking_ctx = get_current_blocking_context();

14 range_queue->enqueue(&range);

15 block_current_task(range.blocking_ctx);

16 }

17 *first_id = range.notified_id;

18 ...

19 }

20

21 int poll_waiting_ranges(...) {

22 ...

23 range_list->dequeue_and_add(range_queue);

24 for (waiting_range_t *range : range_list) {

25 notified = test_waiting_range(range, &range->notified_id);

26 if (notified) {

27 range_list->remove(range);

28 unblock_task(range->blocking_ctx);

29 }

30 }

31 ...

32 }

Fig. 9.8: Pseudocode of the pause/resume mechanism in gaspi notify waitsome.

64

10 | Proposing a Non-blocking
Interoperability Mechanism

The interoperability mechanism presented previously blocks the current task when
calling to a blocking MPI/GASPI procedure and returns from that procedure once the
operation completes. However, there are some cases in which the task that performs
operations does not need to wait for the completion of these operations, since it does
not access the sent/received data. For instance, a task could receive data by calling to
MPI Recv, while another task could consume the received data by declaring the proper
dependencies between both tasks. In this case, the receiving task could avoid blocking,
thus avoiding the overhead of performing a block/unblock cycle.

For this reason, we propose a new interoperability mechanism which avoids the blocking
of tasks. The new approach proposes two new MPI-like non-blocking functions called
MPI Iwait and MPI Iwaitall, which have the same parameters as the original MPI Wait
and MPI Waitall, respectively. They bind the pending requests passed as parameters
to the calling task, preventing the release of its dependencies until all these requests
complete. It is worth noting that the task can finish its execution, although the requests
are not completed. Also note that the data cannot be reused/consumed after calling
to these new functions.

Figure 10.1 shows an example of this new interoperability approach. The first task
performs two non-blocking receive and send, and it declares the dependencies on the
destination/source buffers. Then, it binds the generated requests to itself, so its de-
pendencies will be released once both requests complete. Finally, the task can finish
its execution without blocking, becoming a zombie task until the dependencies can be
released.

Once both requests complete, the dependencies are released and the next two tasks
become ready. In that moment, the received data can be consumed and the sent data
can be modified again safely.

Note that statuses are also saved at the address provided at the second and third
parameter of MPI Iwait and MPI Iwaitall, respectively. In this way, the statuses can be
checked later (e.g. to know the source rank or the number of received elements). The
statuses will not be saved when passing MPI STATUS IGNORE and MPI STATUSES -
IGNORE, respectively.

65

1 MPI_Status statuses[2];

2 ...

3 #pragma oss out(dataA) in(dataB)

4 {

5 MPI_Request requests[2];

6 MPI_Irecv(&dataA, ..., &requests[0]);

7 MPI_Isend(&dataB, ..., &requests[1]);

8 MPI_Iwaitall(2, &requests, &statuses);

9 }

10

11 #pragma oss in(dataA)

12 processDataAndStatus(dataA, statuses[0]);

13

14 #pragma oss out(dataB)

15 resetData(dataB);

Fig. 10.1: Example of the non-blocking interoperability mechanism.

This mechanism is enabled when initializing MPI with the MPI TASK MULTIPLE
threading level. Calls to the MPI Iwait and MPI Iwaitall functions when the inter-
operability is not enabled will result in the behavior of the original MPI Wait and
MPI Waitall functions, respectively. In addition, it is worth noting that that both
blocking and non-blocking interoperability mechanism can coexist without any prob-
lem, since the first is applied to blocking procedures and the second is only applied to
those two new functions.

We are currently working on this new approach, which have been implemented but not
evaluated yet. Therefore, this is just a proposal, which we will evaluate properly in the
near future. In the next sections we explain the new API proposed for the interaction
between the involved programming models and some details of the changes needed in
the interoperability library.

In addition, this new non-blocking mechanism could be integrated into the GASPI
programming model. In this case, we could define two new functions similar to the
gaspi wait and gaspi notify waitsome functions. The first could register all GASPI
requests performed by the calling task, so its dependencies could be released once all
requests complete. In contrast, the second could bind the range of notifications to the
calling task, so its dependencies could be released once one of the notifications from
the range arrives.

10.1 Task Event Counter API

In this section we propose a new API to allow the non-blocking interoperability mech-
anism, which is called the task event counter API. Figure 10.2 shows the complete
API, which has to be implemented by the task-based programming model. As can be

66

// Get the event counter of the current task

void *get_current_event_counter();

// Increase the event counter of the current task

// to prevent the release of its dependencies

void increase_current_task_event_counter(void *event_counter,

unsigned int increment);

// Decrease the event counter of a task and release

// its dependencies if the counter becomes zero and

// the task has finished its execution

void decrease_task_event_counter(void *event_counter,

unsigned int decrement);

Fig. 10.2: Task event counter API.

seen, its format is very similar to the task block/unblock API. The main idea is that
each task has an integer counter, which counts the number of pending external events.

The get current event counter function provides a handle to the event counter of the
current task. Then, new events can be registered by calling to the increase current task -
event counter function, which increases the event counter of the current task as many
units as increment. Notice that only the task itself can increase the number of events,
since otherwise, we could increase the counter of finished tasks.

The decrease task event counter decreases the corresponding event counter, which can
be the counter of any task, even the counter of the current task. Once the event
counter becomes zero and the task finishes its execution, the dependencies of that task
are released. Therefore, if a task finishes, but it has pending events to be fulfilled,
the task cannot release its dependencies and it becomes zombie. In this case, the
dependencies will be released when someone calls to decrease task event counter and
the number of pending events becomes zero.

Note that this API follows the format of task block/unblock API and it can be also
used in the interoperability library along with the polling service API. Notice also that
the user of this API is responsible for increasing and decreasing the same number of
events of each task. In case the number of unregistered events is greater than the
registered ones, the behavior is undefined. In contrast, if the number of unregistered
events is smaller than the registered ones, the dependencies of the task will not be
released.

10.2 Implementation Details

This section covers the implementation details of the new task event counter API and
the integration of the new non-blocking interoperability mechanism into the updated

67

interoperability library. On the one hand, we have implemented this API in the Nanos6
runtime system by initializing the counter of each task to one. The dependencies of a
task cannot be released while executing, since the counter is at least one, independently
of the number of pending events. Once the task finishes its execution, the counter is
decremented in one unit. In case this results in a value of zero, the dependencies
can be released. Otherwise, it means that there are still some pending events, and
the dependencies will be released when calling to decrease task event counter and the
event counter resulting in zero. Note that this is just an implementation and it is
totally transparent to the user.

On the other hand, we have integrated the new non-blocking interoperability mecha-
nism into the improved interoperability library, which has been presented in Chapter 8.
Figure 10.3 shows the pseudocode of the implementation of both MPI Iwait and the
polling function in the interoperability library. As can be seen, the implementation is
very similar to the one presented in Chapter 8.

1 int MPI_Iwait(MPI_Request request, MPI_Status *status) {

2 int err, completed = 0;

3 if (Interop::isEnabled()) {

4 MPI_Test(&request, &completed, status);

5 if (!completed) {

6 Ticket ticket = new Ticket(request, status);

7 ticket->_event_cnt = get_current_event_counter();

8 increase_current_task_event_counter(ticket->_event_cnt, 1);

9 _pendingTickets.add(ticket);

10 }

11 return err;

12 }

13 return MPI_Wait(request, status);

14 }

15

16 void Interop::poll() {

17 for (Ticket *ticket : _pendingTickets) {

18 int completed = 0;

19 MPI_Test(ticket->_request, &completed, ticket->_status);

20 if (completed) {

21 _pendingTickets.remove(ticket);

22 decrease_task_event_counter(ticket->_event_cnt, 1);

23 delete ticket;

24 }

25 }

26 }

Fig. 10.3: Implementation of the MPI Iwait routine and the polling function in the
interoperability library.

68

In MPI Iwait, the ticket cannot reside on the stack, since the function returns immedi-
ately and the stack will not be valid. For this reason, a ticket is dynamically created
at line 6. Then, the event counter of the current task is saved in the ticket (line 7)
and the number of pending events is increased (line 8).

In the polling function, each time a request completes, the number of events of the
corresponding task must be decreased. When all events of a task are fulfilled, the
runtime system releases its dependencies. In this case, the ticket must be deleted since
it was created dynamically.

The implementation of MPI Iwaitall is very similar to the one shown in that figure.
In our implementation, both blocking and non-blocking interoperability mechanisms
coexist at the same time. Each ticket needs a boolean field to distinguish between the
tickets of the blocking mechanism and the tickets of the non-blocking mechanism.

69

11 | Evaluation

This chapter covers the evaluation of our proposals for MPI and GASPI applications.
Firstly, we explain the environment in which we have performed all our evaluation
experiments. Secondly, we provide an in-depth analysis of the two applications which
we have used to evaluate our approaches. These are an iterative Gauss–Seidel method
and a mock-up of a meteorological forecasting application called IFSker. There is a
section dedicated to each of these two applications. Finally, we show and discuss the
performance results obtained with our approaches.

Notice that this chapter is also part of the Design Cycle of the Design Science Research
methodology used in this project, which is described in Section 7.2.

11.1 Environment

The experiments were carried out on the Marenostrum4 and Nord3 supercomputers
from the Barcelona Supercomputing Center (BSC). On the one hand, each compute
node in Marenostrum4 is equipped with 2 sockets of Intel Xeon Platinum 8160 CPUs,
with 24 cores each, totaling 48 cores per node and 96 GB of main memory (2 GB
per core). The interconnection network is based on 100 Gbit/s Intel Omni-Path HFI
technology.

On the other hand, each compute node in Nord3, which is a sub-part of the old
Marenostrum3, is equipped with 2 sockets of Intel E5–2670 SandyBridge-EP CPUs,
with 8 cores each, totaling 16 cores per node and 128 GB of main memory (8 GB per
core). The interconnection network is based on Infiniband Mellanox FDR10 technol-
ogy.

The MPI interoperability proposal has been evaluated in Marenostrum4 and Nord3.
However, the proposed extensions for GASPI have only been evaluated in Nord3, since
GPI-2 does not support Omni-Path technology yet. It only supports the common TCP
mode and the Infiniband technology, which is present in Nord3 supercomputer. We
could evaluate our approach in Marenostrum4 using the TCP mode, however this could
deteriorate significantly the performance of the applications.

In addition, Table 11.1 shows the software and the versions used for our experiments.

70

Table 11.1: Table describing the software used to perform the experiments and
their versions.

Software Version

OmpSs-2 17.1
GNU C/Fortran Compilers 4.9.4
MPICH 3.2.1
Intel MPI 2017.1
GPI-2 1.3.0

11.2 Gauss–Seidel

In this section we explain the iterative Gauss–Seidel method [23] to solve the Heat
equation [24], which is a parabolic partial differential equation that describes the dis-
tribution of heat in a given region over time. We developed this application from
scratch and it features five different version of the Gauss–Seidel method for 2-D ma-
trices. Two of these five versions are parallelized with MPI only, while the rest are
hybrid MPI+OmpSs-2 implementations. We first developed these versions with MPI,
and then, we translated them into GASPI variants, which follow the same paralleliza-
tion strategy but using RDMA operations. These GASPI variants are described later.
The next two are the MPI-based versions:

• Pure MPI: This version is a straightforward implementation of the algorithm
using synchronous MPI primitives to exchange boundaries among neighboring
ranks. The computation phase of the algorithm is sequential. The 2-D matrix is
distributed across ranks assigning a consecutive set of rows to each one (a single
block per rank). Boundary exchanges correspond to whole rows.

• N-Buffer MPI: This version is significantly more elaborate than Pure MPI. In this
case the rows of each rank are horizontally divided by blocks, hence a distinct
boundary exchange is performed for each block. This version starts to exchange
block boundaries as soon as possible using asynchronous MPI primitives. For
instance, a rank starts to send (MPI Isend) its last row of a block once it has
been computed, but also starts to receive (MPI Irecv) the lower boundary for the
next iteration. Before starting the computation of a block, it waits (MPI Wait)
for the completion of all pending MPI requests related to the block. Thus, the
computation is partially overlapped by boundary exchanges.

The rest are hybrid MPI+OmpSs-2 versions which divide the matrix into squared
blocks and these are distributed across MPI ranks. The left-hand side of Figure 11.1
shows how a domain of 3 × 12 blocks would be split across four MPI ranks. These
hybrid versions are:

71

i

i i-1 i-1

i-1

Rank 0

Rank 1

Rank 2

Task that computes a block
on the i-th iterationRank 3

Fig. 11.1: 2-D matrix of 3×12 blocks split in four ranks. On the hybrid versions, for
each iteration a task is created to update each block using values of both current
(top and left blocks) and previous (current, right and bottom blocks) iterations.

• Fork-Join: This is a hybrid version with a sequential communication phase and a
parallel computation phase. The communication phase uses synchronous primi-
tives to exchange boundaries among neighbors as in Pure MPI. On the computa-
tion phase, a task is created to update each block using the top and left blocks of
the current iteration, and the current, left and bottom blocks of the previous it-
eration, as shown in Figure 11.1. Tasks use fine-grained dependencies to exploit
the spatial wave-front parallelism. However, there is a global synchronization
point after each computation phase that prevents this version from exploiting
parallelism across iterations (temporal wave-front).

• Sentinel: A hybrid version where both communication and computation are im-
plemented using tasks. The communication phase uses tasks to execute the
synchronous MPI primitives that exchange boundary blocks among neighbors.
These communication tasks are serialized by a sentinel dependency to avoid
deadlocks, as explained in Section 6.1. This version avoids the global synchro-
nization (taskwait) by leveraging fine-grained dependencies between computation
and communication tasks.

• Interop: This version uses the MPI TASK MULTIPLE multi-threading level pro-
posed in this project to avoid the serialization of communication tasks. This is
the only difference with the Sentinel version. This version has been evaluated
with the enhanced interoperability library presented in Chapter 8.

In Pure MPI each process holds a single block of total_rows/num_procs rows and to-
tal_cols columns, while in N-Buffer MPI each block has total_rows/num_procs rows and
1K columns. In the hybrid versions, each compute task processes a block of 1K×1K
elements. This is the smallest block size required to attain peak performance.

The complete code for both the Sentinel and Interop versions is shown in Appendix A.1.

72

Time

R
an

k
0

R
an

k
1

R
an

k
2

R
an

k
3

R
an

k
0

R
an

k
1

R
an

k
2

R
an

k
3 Data dependency

MPI communication

MPI serialization Time

Fig. 11.2: Above: dependency graph for Pure and Fork-Join. Below: dependency
graph for N-Buffer, Sentinel (with red deps) and Interop (no red deps).

As can be seen, both computation and communication phases are totally taskified us-
ing fine-grained dependencies between tasks. The Sentinel version corresponds to the
application initializing the MPI library with MPI THREAD MULTIPLE. Then the ar-
tificial dependencies on communication tasks (i.e. inout dependency on sentinel) are
enforced, allowing only a single communication task to be executed at a time. In
contrast, the Interop version corresponds to the MPI library being initialized with
MPI TASK MULTIPLE. In that case, the artificial dependencies on communication
tasks are ignored, allowing communication tasks to run in parallel without any risk.

The rest of versions are omitted since they can be inferred from the taskified code.
Firstly, the Pure MPI version uses the same code but ignoring the OmpSs directives,
and setting the BSX constant to total_rows/num_procs and BSY to total_cols. Secondly,
the Fork-Join version can be obtained by removing the OmpSs directives from the
communication phases and adding a taskwait directive at the end of the computation
phase. Finally, the N-Buffer MPI can obtained by changing several parts of the code
and increasing the complexity of the algorithm, as explained previously.

Figure 11.2 compares the dependency graph of the Pure MPI and Fork-Join versions
(above) and N-Buffer MPI, Sentinel, Interop versions (below). For the sake of clarity,
both graphs have been simplified by showing up to the first six iterations, fusing
the explicit communication tasks with the tasks that compute boundary blocks and
also other redundant dependencies such as anti-dependencies. In the Pure MPI and
Fork-Join versions, the execution of each iteration inside an MPI rank depends on the
completion of the previous iteration of their neighbor MPI ranks, which results in a
strong serialization effect that affects the execution of the whole program.

73

In the N-Buffer MPI version, the strong serialization effect can be avoided by exchang-
ing block boundaries as soon as possible, performing calls to the corresponding asyn-
chronous MPI primitives right after processing each block. The Sentinel version also
exchanges block boundaries at the earliest, using tasks with fine-grained dependencies
to execute MPI primitives. Nevertheless, given that this version uses synchronous
primitives, it still has to serialize the communication tasks to avoid deadlocks. This
introduces the red dependencies that also reduce significantly the parallelism within
and across iterations.

Finally, the Interop version that uses MPI TASK MULTIPLE removes the red depen-
dencies and thus can fully exploit both spatial and temporal wave-front parallelism.
Moreover, in this version, tasks blocked on MPI calls never block the underlying hard-
ware thread, so resource under-subscription is also avoided. In summary, MPI TASK -
MULTIPLE allows the programmer to parallelize applications in a more natural way,
without requiring artificial dependencies that hinder the available parallelism.

11.2.1 GASPI Versions

After developing the Gauss–Seidel application for MPI, we developed the same ver-
sions for the GASPI programming model. In this case, the complete code of the
GASPI Sentinel and Interop versions is shown in Appendix A.2. The Sentinel version
corresponds to the GASPI library being initialized with GASPI MODE STANDARD.
In contrast, the Interop version corresponds to the MPI library being initialized with
GASPI MODE TASK. The enforcement of the artificial dependencies on sentinel works
exactly the same as in MPI.

As can be seen, each sending task gets a specific queue which will be used for posting
all its GASPI requests. Next, it calls to the gaspi write notify function, which starts a
write operation of the boundary to its corresponding neighbor process. Furthermore,
the neighbor process will be notified once the data is actually written. Finally, the
task waits for the local completion of its operations to ensure that the source buffer
can be modified again safely, before finishing and releasing its dependencies.

In contrast, the receiving tasks just wait for the notification sent by the sender process.
When the notification arrives, the destination buffer can be safely consumed by the
computation tasks.

Notice that the parallelization strategy is almost the same as in MPI. The rest of
versions can be also inferred from this code. In the Pure and Fork-Join versions, some
gaspi wait calls can be omitted, since the order of transmissions is always the same
and some assumptions can be made. For instance, if a process A writes and notifies
a remote process B, and then, a notification of a dependent operation arrives at the
process A from the remote process B, it can be assumed that the first operation is
completed.

Finally, N-Buffer GASPI is a more advanced version which starts to send and receive
boundaries as soon as possible. Notice that the idea is the same as in the N-Buffer
MPI. However the implementation is still more complex.

74

1 void receiveUpperBorder(block_t *matrix, int nbx, int nby, int rank) {

2 for (int by = 1; by < nby-1; ++by) {

3 #pragma oss task out(([nbx][nby]matrix)[0][by]) inout(*sentinel)

4 {

5 MPI_Request request;

6 MPI_Irecv(&matrix[by][BSX-1], BSY, MPI_DOUBLE, rank - 1,

7 by, MPI_COMM_WORLD, &request);

8 MPI_Iwait(&request, MPI_STATUS_IGNORE);

9 }

10 }

11 }

Fig. 11.3: Modified receiveUpperBorder to use the non-blocking interoperability
mechanism.

11.2.2 Non-blocking Interoperability Variant

Although we have not evaluated the proposed non-blocking interoperability mecha-
nism yet, in this section we explain the few changes that the Gauss–Seidel application
needs in order to work with this mechanism. The code presented in Appendix A.1
just needs some modifications in the communication tasks. Firstly, the blocking MPI
calls, MPI Send and MPI Recv, should be replaced by their non-blocking counterparts,
MPI Isend and MPI Irecv, respectively. Secondly, the generated MPI request should
then be passed to MPI Iwait, which will prevent the release of the dependencies un-
til the request completes. For instance, Figure 11.3 shows the modified code of the
receiveUpperBorder function.

11.3 IFSker

IFSker is a mock-up application written in Fortran and parallelized with MPI. It
mimics the communication and computational patterns of the Integrated Forecasting
System (IFS), which is a meteorological forecasting model developed and maintained by
the European Centre For Medium-Range Weather Forecasts (ECMWF). IFS employs a
spectral transform method which represents fields by using a set of coefficients of a basis
function (e.g. a sine function). This mock-up application was evaluated also in [9].
We have adapted it to the OmpSs-2 programming model and we have reevaluated it.

The algorithmic structure consists in timestep cycles divided into two phases: Grid-
point Physics computations (GP) and Fast Fourier Transforms (FFT). Each MPI pro-
cess holds a specific set of Earth’s latitudes and both phases perform computations on
these latitudes. Nevertheless, data representation and distribution among MPI pro-
cesses is different in each phase. Therefore, the communication of latitudes between
processes takes place during the transitions from one phase to the next one, where the
data needs to be transposed and redistributed among the processes.

75

Each timestep in this mock-up application performs:

1. Grid-point physics computation phase.

2. Transition from GP to FFT. Each process should send all latitudes from GP that
are not needed by the FFT phase to the corresponding processes, and it should
receive all latitudes needed by FFT that were not present in the GP phase.

3. Fast Fourier Transform phase.

4. Transition from FFT to GP. Each process should send all latitudes from FFT
that are not needed by the GP phase to the corresponding processes, and it
should receive all latitudes needed by GP that were not present in the FFT
phase.

This means that processes should know the assigned process of each latitude in each
computation phase.

The original implementation is based on MPI (Pure MPI), but we have implemented a
new version (Interop) that uses tasks for both the compute and communication phases.
However, in this application the compute phase is very fine-grained so it is not worth to
fully parallelize it. Hence, we are only using tasks to have more in-fly MPI operations
and to overlap communication and computation phases. In this evaluation there is one
MPI rank per core for both the Pure MPI and Interop versions, so the Fork-Join and
Sentinel versions used on the Gauss-Seidel version will be equivalent to the Pure MPI
version.

With this application we want to demonstrate that even using a single thread, the
interoperability mechanism still improves the performance of the application, since it
allows the out-of-order execution of communication tasks. Notice that this application
has only been implemented for MPI.

11.4 Evaluation and Discussion

In this section, we show the evaluation and we discuss the performance obtained with
the applications explained previously. Firstly, we discuss the performance results of
the Gauss–Seidel benchmark in Marenostrum4. This only evaluates the MPI variants,
since GPI-2 does not support the Intel Omni-path network infrastructure. Secondly,
we show the evaluation of Gauss–Seidel in Nord3, which in this case we evaluate both
MPI and GASPI variants. We seize this moment to compare the performance between
the MPI and GASPI variants. Finally, we evaluate the IFSker mock-up application in
Marenostrum4.

76

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

1 / 48 2 / 96 4 / 192 8 / 384 16 / 768 32 / 1536 64 / 3072

S
pe

ed
up

Nodes / Cores

Gauss-Seidel Strong Scaling (MN4, 64K x 64K total, 1000 its)

Pure MPI
N-Buffer MPI

Fork-Join
Sentinel
Interop

(a) Speedup graph.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 / 48 2 / 96 4 / 192 8 / 384 16 / 768 32 / 1536 64 / 3072

P
ar

al
le

l E
ffi

ci
en

cy

Nodes / Cores

Gauss-Seidel Strong Scaling (MN4, 64K x 64K total, 1000 its)

Pure MPI
N-Buffer MPI

Fork-Join
Sentinel
Interop

(b) Parallel efficiency graph.

Fig. 11.4: Gauss–Seidel strong scaling in Marenosturm4 with 64K x 64K total
elements and 1000 timesteps.

11.4.1 Gauss–Seidel in Marenostrum4

This section covers the evaluation of the MPI variants of the Gauss–Seidel application.
Pure MPI and N-Buffer MPI experiments have been performed using 48 MPI ranks per
node, while hybrid versions have used 1 rank per node and 48 OmpSs threads per
rank. All experiments in Marenostrum4 have been performed using MPICH 3.2.1.

Figure 11.4a shows a strong-scaling experiment of the five MPI versions using the
performance of the Pure MPI version running on one node as a baseline. On a sin-
gle node, all the hybrid versions experience higher performance than the Pure MPI
version. When the hybrid versions run on a single node (one rank), the MPI primi-
tives are completely avoided. Thus, the rigid serialization effect introduced by MPI is
fully removed and these versions can fully exploit the spatial and temporal wave-front
parallelism.

It is worth noting that the Fork-Join version is significantly slower than the other
task-based versions due to the global synchronization point after each iteration that
prevents the exploitation of the temporal wave-front. As we increase the number of
nodes, the performance of the Pure MPI version also increases, but the scalability is
clearly sub-optimal. On the other hand, both Fork-join and Sentinel stop scaling at
two and four nodes, respectively. In addition, these versions are the only that can be
easily implemented with current OpenMP and MPI standards.

The N-Buffer MPI version outperforms all previous versions since it avoids the strong
serialization of iterations between ranks, which is observed in Pure MPI and Fork-Join.
In addition, this version allows to overlap computation and communication phases.
However, the scalability is still sub-optimal and it increases the complexity of the
code.

The Interop version has good scalability with up to 32 nodes. With 64 nodes the curve
flattens because the problem size is too small to get sufficient parallelism to exploit 48
cores.

77

Figure 11.4b shows the parallel efficiency of all five versions. In this case each version
uses as a baseline its own performance on a single node. From 1 to 16 nodes the
efficiency of Interop is almost the same, but then it quickly decreases, since the problem
size becomes too small to feed all the cores. The parallel efficiency of Pure MPI and
N-Buffer MPI steadily decrease from 1 to 0.1 at 64 nodes. Fork-Join and Sentinel have
a big drop of parallel efficiency at two and four nodes, respectively.

Figure 11.5 shows five traces of Pure MPI, N-Buffer, Fork-Join, Sentinel and Interop,
respectively, running on four nodes (192 cores) with the same time-scale, and with
a 32K x 32K matrix. The traces show the time-line on the X axis and the MPI
ranks/OmpSs threads on the Y axis. In Pure MPI and N-Buffer there are 192 ranks,
while in the hybrid versions there are four ranks (i.e. one rank per node) and each
rank has 48 OmpSs threads. On the three hybrid versions, the red lines correspond to
the execution of the Gauss–Seidel tasks.

In the Pure MPI version (Figure 11.5a), the last rank (191) cannot start computing
the first iteration until all the other ranks have completed the first iteration. This
introduces a big delay at the beginning that is also symmetrically reproduced at the
end.

The same effect can be observed in the Fork-Join (Figure 11.5c) and Sentinel (Fig-
ure 11.5d) versions, but in this case there are only four ranks, so only four full iter-
ations are required to have all the MPI ranks working. In the Fork-Join version, the
global synchronization at the end of each iteration produces a strong serialization ef-
fect among iterations (that is the same effect found on the Pure MPI version), so one
iteration cannot start until the same iteration of the previous MPI rank has been fully
completed. Moreover, the global synchronization at the end of the compute phase
also limits the available parallelism, so only 8 out of the 48 cores can work in parallel
(running computation tasks).

The Sentinel version improves over the Fork-Join version because one MPI rank can
start computing an iteration as soon as the previous rank has completed the computa-
tion of the first boundary block of the same iteration. This allows to partially overlap
the computation of the same iteration across MPI ranks. However, the artificial de-
pendencies introduced to serialize the communication tasks still hinder the available
parallelism inside one iteration. In this case, 8 cores can run computation tasks in par-
allel with another core running a communication task. Although these hybrid versions
take less time to complete a single iteration, Pure MPI pipelines iterations in a better
way and ends up outperforming them in overall iteration throughput.

N-Buffer MPI (Figure 11.5b) does not show the big delay at the first iteration seen
in Pure MPI and Fork-Join. This is because it exchanges boundaries as soon as possi-
ble, thus ranks can process different blocks from the same iteration concurrently. In
addition, it is more flexible than the previous ones due to the use of asynchronous
MPI primitives. The aforementioned reasons make this version outperform previous
versions both in iteration latency and overall iteration throughput. However, it does
not reach Interop’s performance and it requires more development effort than them.

78

Rank 0

Rank 191

MPI_Send
1st iteration

MPI_Barrier

All Iterations

MPI_Send + MPI_Recv + Calculation

10 Iterations

(a) Pure MPI.
Rank 0

Rank 191

All Iterations
10 Iterations

MPI_Isend + MPI_Irecv

+ MPI_Wait + Calculation

MPI_Barrier

MPI_Wait

(b) N-Buffer MPI.
Rk0, 0

Rk3, 47

10 Iterations

Calculation

MPI_Send + MPI_Recv

Communication

(c) Fork-Join.
Rk0, 0

Rk3, 47

10 Iterations

MPI_Send

Calculation

MPI_Recv

(d) Sentinel.
Rk0, 0

Rk3, 47

All Iterations

MPI_Send
+ MPI_Recv

+ Calculation

(e) Interop.

Fig. 11.5: Execution traces with 4 nodes of Marenostrum4 with a 32K x 32K matrix.
The Y axis shows MPI ranks/OmpSs threads, while the X axis shows the time-line.

79

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

1 / 48 2 / 96 4 / 192 8 / 384 16 / 768 32 / 1536 64 / 3072

S
pe

ed
up

Nodes / Cores

Gauss-Seidel Weak Scaling (MN4, 32K x 32K per node, 1000 its)

Pure MPI
N-Buffer MPI

Fork-Join
Sentinel
Interop

(a) Speedup graph.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 / 48 2 / 96 4 / 192 8 / 384 16 / 768 32 / 1536 64 / 3072

P
ar

al
le

l E
ffi

ci
en

cy

Nodes / Cores

Gauss-Seidel Weak Scaling (MN4, 32K x 32K per node, 1000 its)

Pure MPI
N-Buffer MPI

Fork-Join
Sentinel
Interop

(b) Parallel efficiency graph.

Fig. 11.6: Gauss–Seidel weak scaling in Marenosturm4 with 32K x 32K elements
per node and 1000 timesteps.

Finally, the Interop (Figure 11.5e) version avoids any global synchronization or serial-
ization of communication tasks, so an iteration can be almost fully overlapped across
the ranks. Moreover, this version is the only that can exploit both spatial wave-front
and temporal wave-front parallelisms, benefiting from the 48 cores.

To finalize the performance analysis of Gauss–Seidel in Marenostrum4, we have per-
formed a weak-scaling experiment. The speedup graph, shown in Figure 11.6a, uses
the performance of the Pure MPI version on a single node as a baseline for all versions.
For the parallel efficiency graph (Figure 11.6b), each version uses its own performance
on one node as the baseline. This experiment shows again the good scalability of the
Interop version which scales linearly up to 64 nodes. The parallel efficiency of Pure
MPI and N-Buffer MPI steadily decrease from 1 to 0.3 at 64 nodes, while the Fork-Join
and Sentinel versions feature a parallel efficiency of 0.4 and 0.2, respectively, with only
four nodes.

11.4.2 Gauss–Seidel in Nord3

This section covers the evaluation of the Gauss–Seidel application in Nord3. We have
evaluated both GASPI and MPI versions. However, we have only evaluated the most
interesting MPI versions, which are Pure MPI, N-Buffer MPI and Interop MPI. These
three programs have been executed with Intel MPI 2017.1.

In this case, the Pure MPI, N-Buffer MPI, Pure GASPI and N-Buffer GASPI have been
executed with 16 ranks per node, while the hybrid versions have been executed with
one rank per node and 16 OmpSs threads per rank.

Figure 11.7 shows both the speedup and parallel efficiency from the strong scaling
experiment using a matrix of 32K x 32K elements and 1000 timesteps. Firstly, the
difference in performance between MPI and GASPI is almost imperceptible. For in-
stance, Pure MPI and Pure GASPI have the same performance in almost all cases. The
same effect is seen in the N-Buffer versions.

80

 1

 2

 4

 8

 16

 32

1 / 16 2 / 32 4 / 64 8 / 128 16 / 256

S
pe

ed
up

Nodes / Cores

Gauss-Seidel Strong Scaling (Nord3, 32K x 32K total, 1000 its)

Pure MPI
Pure GASPI

N-Buffer MPI
N-Buffer GASPI

Fork-Join GASPI
Sentinel GASPI

Interop MPI
Interop GASPI

(a) Speedup graph.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 / 16 2 / 32 4 / 64 8 / 128 16 / 256

P
ar

al
le

l E
ffi

ci
en

cy

Nodes / Cores

Gauss-Seidel Strong Scaling (Nord3, 32K x 32K total, 1000 its)

Pure MPI
Pure GASPI

N-Buffer MPI
N-Buffer GASPI

Fork-Join GASPI
Sentinel GASPI

Interop MPI
Interop GASPI

(b) Parallel efficiency graph.

Fig. 11.7: Gauss–Seidel strong scaling in Nord3 with 32K x 32K total elements and
1000 timesteps.

In this case, the difference between Pure and N-Buffer is still present, since the N-Buffer
versions outperform both Pure versions. The parallel efficiency of Pure and N-Buffer
steadily decreases from 1 to 0.35 and 0.4, respectively. In addition, the Fork-Join
GASPI and Sentinel GASPI reproduces exactly the performance behavior from their
MPI equivalents in Marenostrum4.

Both Interop versions scale linearly up to 8 nodes, thus maintaining a parallel efficiency
greater than 0.95. With 16 nodes, the curve starts to flatten since the size is too small
to get the maximum parallelism. Even so, Interop still improve more than 2X the
N-Buffer versions.

In addition, we have performed a weak scaling study, which is shown in Figure 11.8.
In this experiment, each node is in charge of 32K x 32K elements and the algorithm
performs 500 timesteps. We have reduced the number of timesteps in order to fit the
execution time into the maximum allowed execution time of a job.

 1

 2

 4

 8

 16

 32

1 / 16 2 / 32 4 / 64 8 / 128 16 / 256

S
pe

ed
up

Nodes / Cores

Gauss-Seidel Weak Scaling (Nord3, 32K x 32K per node, 500 its)

Pure MPI
Pure GASPI

N-Buffer MPI
N-Buffer GASPI

Fork-Join GASPI
Sentinel GASPI

Interop MPI
Interop GASPI

(a) Speedup graph.

 0.2

 0.4

 0.6

 0.8

 1

1 / 16 2 / 32 4 / 64 8 / 128 16 / 256

P
ar

al
le

l E
ffi

ci
en

cy

Nodes / Cores

Gauss-Seidel Weak Scaling (Nord3, 32K x 32K per node, 500 its)

Pure MPI
Pure GASPI

N-Buffer MPI
N-Buffer GASPI

Fork-Join GASPI
Sentinel GASPI

Interop MPI
Interop GASPI

(b) Parallel efficiency graph.

Fig. 11.8: Gauss–Seidel weak scaling in Nord3 with 32K x 32K elements per node
and 500 timesteps.

81

 0.5

 1

 2

 4

 8

 16

 32

1 / 16 2 / 32 4 / 64 8 / 128 16 / 256

S
pe

ed
up

Nodes / Cores

Gauss-Seidel Strong Scaling (Nord3, 16K x 16K total, 2000 its)

Pure MPI
Pure GASPI

N-Buffer MPI
N-Buffer GASPI

Fork-Join GASPI
Sentinel GASPI

Interop MPI
Interop GASPI

(a) Speedup graph.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 / 16 2 / 32 4 / 64 8 / 128 16 / 256

P
ar

al
le

l E
ffi

ci
en

cy

Nodes / Cores

Gauss-Seidel Strong Scaling (Nord3, 16K x 16K total, 2000 its)

Pure MPI
Pure GASPI

N-Buffer MPI
N-Buffer GASPI

Fork-Join GASPI
Sentinel GASPI

Interop MPI
Interop GASPI

(b) Parallel efficiency graph.

Fig. 11.9: Gauss–Seidel strong scaling in Nord3 with 16K x 16K total elements and
2000 timesteps.

In this case, the N-Buffer versions are a bit better than Interop with 1 and 2 nodes.
However, the former start to drop their parallel efficiency from 4 to 16 nodes, and
it ends up with a parallel efficiency of 0.7 at 16 nodes. In turn, the Interop versions
scale linearly again up to 16 nodes, and outperforms the N-Buffer versions at 8 and
16 nodes. Probably, we could see more difference between the Interop and N-Buffer
versions when increasing the number of timesteps, since the Interop versions can overlap
more efficiently multiple timesteps.

In addition, we have repeated the strong scaling study, but with a 16K x 16K matrix
and 2000 timesteps. This experiment is shown in Figure 11.9. Although the problem
size is extremely small, the Interop versions still get a more than 2X speedup with
respect to the N-Buffer versions. Note that the parallel efficiency of Interop drops to
0.4 with 16 nodes.

These experiments indicate that the difference between the interoperability mechanism
integrated into the MPI interoperability ibrary and the one proposed for GASPI have
a similar behavior and performance.

11.4.3 IFSker in Marenostrum4

In this section we discuss the performance results of the IFSker application executed
in Marenotrum4. As mentioned previously, it features the Pure MPI and the Interop
versions. Both versions are evaluated using an MPI rank per core, and the Interop
version leverages a single OmpSs thread (in addition to the helper thread) per rank.
As in Section 11.4.1, the following experiments have been executed with MPICH 3.2.1.

Figure 11.10 shows both the speedup and parallel efficiency graphs of the two versions
on a strong-scaling scenario. In the speedup graph we have used the performance of
the Pure MPI version running on a single node as a baseline. In contrast, in the parallel
efficiency graph, each version uses as a baseline its performance on a single node.

82

 1

 2

 4

 8

 16

 32

 64

1 / 48 2 / 96 4 / 192 8 / 384 16 / 768 32 / 1536 64 / 3072

S
pe

ed
up

Nodes / Cores

IFSker Strong Scaling (MN4, 653K total gridpoints, 200 its)

Pure MPI
Interop

(a) Speedup graph.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 / 48 2 / 96 4 / 192 8 / 384 16 / 768 32 / 1536 64 / 3072

P
ar

al
le

l E
ffi

ci
en

cy

Nodes / Cores

IFSker Strong Scaling (MN4, 653K total gridpoints, 200 its)

Pure MPI
Interop

(b) Parallel efficiency graph.

Fig. 11.10: IFSker strong scaling in Marenostrum4 with 653K total grid-points and
200 timesteps.

 1

 2

 4

 8

 16

 32

 64

 128

 256

1 / 48 2 / 96 4 / 192 8 / 384 16 / 768 32 / 1536 64 / 3072

S
pe

ed
up

Nodes / Cores

IFSker Weak Scaling (MN4, 82K gridpoints per node, 500 its)

Pure MPI
Interop

(a) Speedup graph.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

1 / 48 2 / 96 4 / 192 8 / 384 16 / 768 32 / 1536 64 / 3072

P
ar

al
le

l e
ffi

ci
en

cy

Nodes / Cores

IFSker Weak Scaling (MN4, 82K gridpoints per node, 500 its)

Pure MPI
Interop

(b) Parallel efficiency graph.

Fig. 11.11: IFSker weak scaling in Marenostrum4 with 82K grid-points per node
and 500 timesteps.

Figure 11.10a shows that, on a single node, the performance of the Interop version is 4x
higher than that of the Pure MPI version. The Interop version scales linearly up to 16
nodes; after this point, the problem size becomes too small. It is worth noting that the
Pure MPI version scales superlinearly and with 16 nodes it reaches the performance of
the Interop version. This effect is clearly reflected on its parallel efficiency as shown in
Figure 11.10b. The parallel efficiency of the Pure MPI version grows until it reaches
3.2x at 8 nodes. There are probably some performance problems with the Pure MPI
version, which could be caused by the fact that when it runs on a single node the
performance is much worse.

Lastly, we have performed a weak-scaling experiment, which is shown in Figure 11.11.
The Interop version scales linearly up to 16 nodes, and after this point, the problem
size becomes too small. The Pure MPI version repeats the superlinearly scaling up to
8 nodes, and then, it reaches the performance of the Interop version at 32 nodes.

83

As stated in Section 11.3, this application is useful to show that the interoperability
mechanism allows applications to execute communication tasks in out-of-order, even
with a single thread per MPI rank.

84

12 | Conclusions

In this project we have introduced a generic API to pause and resume the execution
of tasks based on external events. This API has been used for developing a new
MPI threading level called MPI TASK MULTIPLE, which notifies task-based runtime
systems when a task blocks in a synchronous MPI operation, and also, when the
operation completes and the task can be resumed. This mechanism prevents the
underlying hardware thread from blocking inside the operation and allows the thread
to execute other ready tasks. This new threading level has been integrated into the
interoperability library that targets hybrid MPI applications.

By taking advantage of the new block/unblock API, we have also designed and devel-
oped a similar interoperability mechanism for the GASPI programming model. This
mechanism is enabled from the application by using a new initialization procedure,
which allows users to initialize the GASPI library with a specific mode. This mecha-
nism is applied when waiting for the local and remote completion of RDMA operations.
In addition, we provide other GASPI extensions and we propose some programming
techniques for the user.

These mechanisms allow to improve the programmability of applications as well as
offering the possibility of parallelizing communications without the risk of generating
a deadlock. By taskifying computation and communication phases and using fine-
grained dependencies between tasks, the mechanism is able to obtain a better perfor-
mance from hybrid applications. Usually, this speedup cannot be obtained even when
implementing very complex parallelization strategies, such as double-buffering. In ad-
dition, the presented API facilitates the task of implementing a similar mechanism for
other distributed-memory programming models, or even other blocking services not
related to programming models, such as file accesses.

We have evaluated both approaches in MPI and GASPI hybrid applications. The
results show that applications can easily get a significant performance speedup with
respect to other parallelization strategies, including the most advanced techniques that
require important changes in user applications. We also show that applications require
very few changes to enable and take advantage of the interoperability mechanism.
Finally, we show that both interoperability approaches achieve similar performance
results in the same application.

85

13 | Future Work

This chapter covers the future work that we propose for this project. Firstly, we plan
to complete the integration of the proposed API for task event counters. We will
repeat the evaluation after adapting the Gauss–Seidel application to use non-blocking
MPI calls, thus we will be able to compare the performance of both external events
and task block/unblock APIs.

Secondly, another part of our plan is to find and adapt larger applications which could
potentially benefit from the interoperability mechanism that we have presented. For
instance, communication-intensive applications could be interesting to analyze.

Finally, we want to study how the presented APIs perform in the MPI RMA operations.
In addition, we plan to use the interoperability mechanism to improve the integration
of task-based programming models with other synchronous APIs.

86

Bibliography

[1] R. Rabenseifner and G. Wellein. Comparison of parallel programming models on
clusters of SMP nodes. In Proceedings of the International Conference on High
Performance Scientifc Computing, March 2003. 1, 5

[2] Rolf Rabenseifner. Hybrid parallel programming: Performance problems and
chances. In 45th Cray User Group Conference, pages 12–16, 2003.

[3] Gabriele Jost, Haoqiang Jin, and Ferhat F. Hatay. Comparing the OpenMP, MPI,
and hybrid programming paradigms on an SMP cluster. Technical report, NASA,
September 2003. 1, 5

[4] MPI Forum. MPI: A Message-Passing Interface Standard. Version 3.1, June 4th
2015. Available at: https://www.mpi-forum.org/docs/ (2018-05-28). 1, 7, 8,
11, 12

[5] GASPI Forum. GASPI: Global Address Space Programming Interface. Version
17.1, February 7th 2017. Available at: http://www.gaspi.de/gaspi/ (2018-05-
25). 1, 13, 14, 15, 19

[6] OpenMP Architecture Review Board. OpenMP Application Programming In-
terface. Version 4.5, November 2015. Available at: https://www.openmp.org/

(2018-06-18). 1

[7] Barcelona Supercomputing Center. OmpSs Specification, . URL https://pm.

bsc.es/ompss-docs/specs/. Accessed: 2018-05-31. 1, 22

[8] Vladimir Marjanović, Jesús Labarta, Eduard Ayguadé, and Mateo Valero. Over-
lapping communication and computation by using a hybrid MPI/SMPSs ap-
proach. In Proceedings of the 24th ACM International Conference on Super-
computing, pages 5–16, 2010. ISBN 978-1-4503-0018-6. doi: 10.1145/1810085.
1810091. 2, 5, 33, 36

[9] Jorge Bellón Castro. Improving interoperability between OmpSs and MPI. Mas-
ter’s thesis, Universitat Politècnica de Catalunya, 2017. 2, 6, 31, 35, 40, 48, 51,
75

87

https://www.mpi-forum.org/docs/
http://www.gaspi.de/gaspi/
https://www.openmp.org/
https://pm.bsc.es/ompss-docs/specs/
https://pm.bsc.es/ompss-docs/specs/

[10] V. Beltran, D. Carrera, J. Torres, and E. Ayguadé. CellMT: A coopera-
tive multithreading library for the Cell/B.E. In 2009 International Confer-
ence on High Performance Computing (HiPC), pages 245–253, Dec 2009. doi:
10.1109/HIPC.2009.5433205. 5, 6

[11] V. Beltran and E. Ayguadé. Optimizing resource utilization with software-
based temporal multi-threading (stmt). In 2012 19th International Conference
on High Performance Computing, pages 1–10, Dec 2012. doi: 10.1109/HiPC.
2012.6507499. 5, 6

[12] Sanjay Chatterjee, Sagnak Tasirlar, Zoran Budimlic, Vincent Cave, Milind
Chabbi, Max Grossman, Vivek Sarkar, and Yonghong Yan. Integrating asyn-
chronous task parallelism with MPI. In 27th International Symposium on Parallel
& Distributed Processing (IPDPS), pages 712–725. IEEE, 2013. 5

[13] Barcelona Supercomputing Center. OmpSs-2 Specification, . URL https://pm.

bsc.es/ompss-2-docs/spec/. Accessed: 2018-05-31. 22, 23, 24, 25, 27

[14] Barcelona Supercomputing Center. Nanox Runtime System Library, . URL
https://github.com/bsc-pm/nanox. Accessed: 2018-06-14. 31, 34, 35, 38

[15] Barcelona Supercomputing Center. Mercurium Compiler, . URL https://

github.com/bsc-pm/mcxx. Accessed: 2018-05-21. 37

[16] Barcelona Supercomputing Center. Nanos6 Runtime System Library, . URL
https://github.com/bsc-pm/nanos6. Accessed: 2018-05-21. 38

[17] Argonne National Laboratory. MPICH. URL https://www.mpich.org. Accessed:
2018-05-21. 39

[18] Fraunhofer ITWM. GPI-2. URL http://www.gpi-site.com/gpi2. Accessed:
2018-05-21. 40

[19] Barcelona Supercomputing Center. Extrae, . URL https://tools.bsc.es/

extrae. Accessed: 2018-05-21. 40

[20] Barcelona Supercomputing Center. Paraver, . URL https://tools.bsc.es/

paraver. Accessed: 2018-05-21. 41

[21] Hevner, Alan R. A Three Cycle View of Design Science Research. Scandinavian
Journal of Information Systems, 19(2):4, 2007. 41, 42, 43

[22] Simon, Herbert A. The Sciences of the Artificial. MIT Press, 1996. 43

[23] Anne Greenbaum. Iterative Methods for Solving Linear Systems. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1997. ISBN 0-
89871-396-X. 71

[24] Giampiero Esposito. The Heat Equation, pages 329–334. Springer Inter-
national Publishing, Cham, 2017. ISBN 978-3-319-57544-5. doi: 10.1007/
978-3-319-57544-5_23. URL https://doi.org/10.1007/978-3-319-57544-5_

23. 71

88

https://pm.bsc.es/ompss-2-docs/spec/
https://pm.bsc.es/ompss-2-docs/spec/
https://github.com/bsc-pm/nanox
https://github.com/bsc-pm/mcxx
https://github.com/bsc-pm/mcxx
https://github.com/bsc-pm/nanos6
https://www.mpich.org
http://www.gpi-site.com/gpi2
https://tools.bsc.es/extrae
https://tools.bsc.es/extrae
https://tools.bsc.es/paraver
https://tools.bsc.es/paraver
https://doi.org/10.1007/978-3-319-57544-5_23
https://doi.org/10.1007/978-3-319-57544-5_23

A | Gauss–Seidel: Complete Code

This chapter shows the complete code for the Gauss–Seidel benchmark for both MPI
and GASPI programming models.

A.1 Taskified MPI+OmpSs-2 Gauss–Seidel

In this section we show the taskified code of the Gauss–Seidel application for MPI and
OmpSs-2, specifically the Sentinel and Interop versions. When launching the applica-
tion, the user can decide whether to enable or disable the interoperability (e.g. with
an argument). If he enables it, the execution will correspond to the Interop version.
Otherwise, it will correspond to the Sentinel version, so the sentinel dependency of
communication tasks will be enforced. In addition, there are some auxiliary functions
which have been omitted since they are not relevant (e.g. initializeMatrix).

1 #include <mpi.h>

2 #include ...

3

4 // Number of rows in each block

5 #ifndef BSX

6 #define BSX 1024

7 #endif

8

9 // Number of columns in each block

10 #ifndef BSY

11 #define BSY BSX

12 #endif

13

14 // Block and row definitions. Each block has BSX x BSY

15 // consecutive elements

16 typedef double row_t[BSY];

17 typedef row_t block_t[BSX];

18

19 // Structure to save parameters of the execution

20 struct conf_t {

21 int timesteps; // Timesteps to perform

89

22 int rows; // Total number of rows

23 int cols; // Total number of cols

24 block_t *matrix; // Pointer to the matrix of blocks

25 bool interop; // Indicate if the interop should be enabled

26 ...

27 };

28

29 // Sentinel used to serialize communication tasks

30 // when the interoperability is disabled

31 int *sentinel;

32

33 void solveBlock(block_t *matrix, int nbx, int nby, int bx, int by) {

34 block_t &block = matrix[bx*nby + by];

35 block_t &topBlock = matrix[(bx-1)*nby + by];

36 block_t &leftBlock = matrix[bx*nby + (by-1)];

37 block_t &rightBlock = matrix[bx*nby + (by+1)];

38 block_t &bottomBlock = matrix[(bx+1)*nby + by];

39

40 for (int x = 0; x < BSX; ++x) {

41 row_t &topRow = (x > 0) ? block[x-1] : topBlock[BSX-1];

42 row_t &bottomRow = (x < BSX-1) ? block[x+1] : bottomBlock[0];

43

44 for (int y = 0; y < BSY; ++y) {

45 double left = (y > 0) ? block[x][y-1] : leftBlock[x][BSY-1];

46 double right = (y < BSY-1) ? block[x][y+1] : rightBlock[x][0];

47 block[x][y] = 0.25 * (topRow[y] + bottomRow[y] + left + right);

48 }

49 }

50 }

51

52 void sendFirstComputeRow(block_t *matrix, int nbx, int nby, int rank) {

53 for (int by = 1; by < nby-1; ++by) {

54 #pragma oss task in(([nbx][nby]matrix)[1][by]) inout(*sentinel)

55 MPI_Send(&matrix[nby+by][0], BSY, MPI_DOUBLE, rank - 1,

56 /* tag */ by, MPI_COMM_WORLD);

57 }

58 }

59

60 void sendLastComputeRow(block_t *matrix, int nbx, int nby, int rank) {

61 for (int by = 1; by < nby-1; ++by) {

62 #pragma oss task in(([nbx][nby]matrix)[nbx-2][by]) inout(*sentinel)

63 MPI_Send(&matrix[(nbx-2)*nby+by][BSX-1], BSY, MPI_DOUBLE, rank + 1,

64 /* tag */ by, MPI_COMM_WORLD);

65 }

66 }

67

68 void receiveUpperBorder(block_t *matrix, int nbx, int nby, int rank) {

69 for (int by = 1; by < nby-1; ++by) {

90

70 #pragma oss task out(([nbx][nby]matrix)[0][by]) inout(*sentinel)

71 MPI_Recv(&matrix[by][BSX-1], BSY, MPI_DOUBLE, rank - 1,

72 /* tag */ by, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

73 }

74 }

75

76 void receiveLowerBorder(block_t *matrix, int nbx, int nby, int rank) {

77 for (int by = 1; by < nby-1; ++by) {

78 #pragma oss task out(([nbx][nby]matrix)[nbx-1][by]) inout(*sentinel)

79 MPI_Recv(&matrix[(nbx-1)*nby+by][0], BSY, MPI_DOUBLE, rank + 1,

80 /* tag */ by, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

81 }

82 }

83

84 void solve(block_t *matrix, int nbx, int nby, int rank, int rank_size) {

85 if (rank != 0) {

86 // Create tasks to send the first row to the previous rank

87 sendFirstComputeRow(matrix, nbx, nby, rank, rank_size);

88

89 // Create tasks to receive the upper border from the previous rank

90 receiveUpperBorder(matrix, nbx, nby, rank, rank_size);

91 }

92

93 if (rank != rank_size - 1) {

94 // Create tasks to receive the lower border from the next rank

95 receiveLowerBorder(matrix, nbx, nby, rank, rank_size);

96 }

97

98 // Create a task to compute each block

99 for (int bx = 1; bx < nbx-1; ++bx) {

100 for (int by = 1; by < nby-1; ++by) {

101 #pragma oss task inout(([nbx][nby]matrix)[bx][by]) \

102 in(([nbx][nby]matrix)[bx-1][by]) \

103 in(([nbx][nby]matrix)[bx][by-1]) \

104 in(([nbx][nby]matrix)[bx][by+1]) \

105 in(([nbx][nby]matrix)[bx+1][by])

106 solveBlock(matrix, nbx, nby, bx, by);

107 }

108 }

109

110 if (rank != rank_size - 1) {

111 // Create tasks to send the last row to the next rank

112 sendLastComputeRow(matrix, nbx, nby, rank, rank_size);

113 }

114 }

115

116 void gaussSeidel(block_t *matrix, int nbx, int nby, int timesteps) {

117 int rank, rank_size;

91

118 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

119 MPI_Comm_size(MPI_COMM_WORLD, &rank_size);

120

121 for (int t = 0; t < timesteps; ++t) {

122 solve(matrix, nbx, nby, rank, rank_size);

123 }

124

125 #pragma oss taskwait

126 MPI_Barrier(MPI_COMM_WORLD);

127 }

128

129 int main(int argc, char **argv) {

130 int required, provided;

131 conf_t conf;

132

133 // Read input parameters

134 readConfiguration(argc, argv, &conf);

135

136 // Require the new threading level if the user wants to enable

137 // the interoperability mechanism

138 required = (conf.interop) ? MPI_TASK_MULTIPLE : MPI_THREAD_MULTIPLE;

139

140 // Initialize safely the MPI library

141 MPI_Init_thread(&argc, &argv, required, &provided);

142 if (provided < MPI_THREAD_MULTIPLE) {

143 printf("Error: Multi-threading level is not supported!");

144 return 1;

145 } else if (required == MPI_TASK_MULTIPLE && provided < required) {

146 printf("Task level is not supported! Enabling sentinel...");

147 conf.interop = false;

148 }

149

150 // Enable/disable the sentinel dependency

151 if (provided == MPI_TASK_MULTIPLE) {

152 sentinel = NULL;

153 } else {

154 sentinel = (int *) 1;

155 }

156

157 int rank, rank_size;

158 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

159 MPI_Comm_size(MPI_COMM_WORLD, &rank_size);

160

161 // Add an additional block in each border

162 int rowBlocks = (conf.rows / BSX) + 2;

163 int colBlocks = (conf.cols / BSY) + 2;

164 int rowBlocksPerRank = rowBlocks / rank_size + 2;

165 int blocksPerRank = rowBlocksPerRank * colBlocks;

92

166

167 // Allocate memory for the partial matrix corresponding to a rank

168 conf.matrix = (block_t *) malloc(blocksPerRank * sizeof(block_t));

169

170 // Initialize the matrix

171 initializeMatrix(conf, rowBlocksPerRank, colBlocks);

172 MPI_Barrier(MPI_COMM_WORLD);

173

174 // Solve the problem

175 double start = get_time();

176 gaussSeidel(conf.matrix, rowBlocksPerRank, colBlocks, conf.timesteps);

177 double end = get_time();

178

179 free(conf.matrix);

180 MPI_Finalize();

181 return 0;

182 }

Code A.1: Gauss–Seidel code of the MPI+OmpSs-2 Sentinel and Interop versions.

A.2 Taskified GASPI+OmpSs-2 Gauss–Seidel

Similarly, in this section we show the taskified code of the Gauss–Seidel application for
GASPI and OmpSs-2, specifically the Sentinel and Interop versions. When launching
the application, the user can decide whether to enable or disable the interoperability.
If he enables it, the execution will correspond to the Interop version. Otherwise, it will
correspond to the Sentinel version, so the sentinel dependency of communication tasks
will be enforced.

There are also some auxiliary functions and macros which have been omitted since
they are not relevant, such as the macros to compute relative offsets in a segment. For
instance, the UB OFFSET macro computes the base offset of the upper border of the
matrix. If the previous base offset is saved to the baseOffset variable, the actual offset
to the upper border of the column of blocks by can be computed by executing the macro
OFFSET(baseOffset, by). The rest of macros work similarly. These computations have
been encapsulated in order to improve the readability of the code.

1 #include <GASPI.h>

2 #include ...

3

4 // Number of rows in each block

5 #ifndef BSX

6 #define BSX 1024

7 #endif

8

93

9 // Number of columns in each block

10 #ifndef BSY

11 #define BSY BSX

12 #endif

13

14 // GASPI segment identifier

15 #define SEGMENT 0

16

17 // Macros to compute the offset (in bytes) of the boundaries in the matrix

18 #define FCR_OFFSET(...) ...

19 ...

20

21 // Block and row definitions. Each block has BSX x BSY

22 // consecutive elements

23 typedef double row_t[BSY];

24 typedef row_t block_t[BSX];

25

26 // Structure to save parameters of the execution

27 struct conf_t {

28 int timesteps; // Timesteps to perform

29 int rows; // Total number of rows

30 int cols; // Total number of cols

31 block_t *matrix; // Pointer to the matrix of blocks

32 bool interop; // Indicate if the interop should be enabled

33 ...

34 };

35

36 // Structure to save some GASPI information

37 struct gaspi_info_t {

38 int numQueues; // Number of queues used

39 int precreatedQueues; // Number of precreated queues at initialization

40 ...

41 }

42

43 // Sentinel used to serialize communication tasks

44 // when the interoperability is disabled

45 int *sentinel;

46

47 // Blocking mode (or timeout) used in blocking calls

48 gaspi_timeout_t blockMode;

49

50 void solveBlock(block_t *matrix, int nbx, int nby, int bx, int by) {

51 block_t &block = matrix[bx*nby + by];

52 block_t &topBlock = matrix[(bx-1)*nby + by];

53 block_t &leftBlock = matrix[bx*nby + (by-1)];

54 block_t &rightBlock = matrix[bx*nby + (by+1)];

55 block_t &bottomBlock = matrix[(bx+1)*nby + by];

56

94

57 for (int x = 0; x < BSX; ++x) {

58 row_t &topRow = (x > 0) ? block[x-1] : topBlock[BSX-1];

59 row_t &bottomRow = (x < BSX-1) ? block[x+1] : bottomBlock[0];

60

61 for (int y = 0; y < BSY; ++y) {

62 double left = (y > 0) ? block[x][y-1] : leftBlock[x][BSY-1];

63 double right = (y < BSY-1) ? block[x][y+1] : rightBlock[x][0];

64 block[x][y] = 0.25 * (topRow[y] + bottomRow[y] + left + right);

65 }

66 }

67 }

68

69 void sendFirstComputeRow(block_t *matrix, int nbx, int nby, int rank) {

70 const gaspi_offset_t baseOffset = FCR_OFFSET(nbx, nby);

71 const gaspi_offset_t remoteBaseOffset = LB_OFFSET(nbx, nby);

72

73 for (int by = 1; by < nby-1; ++by) {

74 #pragma oss task in(([nbx][nby]matrix)[1][by]) inout(*sentinel)

75 {

76 gaspi_queue_id_t queue;

77 gaspi_queue_group_get_queue(0, &queue);

78

79 gaspi_write_notify(SEGMENT, OFFSET(baseOffset, by),

80 rank - 1, SEGMENT, OFFSET(remoteBaseOffset, by),

81 BSY * sizeof(double), nby + by, 1, queue, GASPI_BLOCK);

82

83 gaspi_wait(queue, blockMode);

84 }

85 }

86 }

87

88 void sendLastComputeRow(block_t *matrix, int nbx, int nby, int rank) {

89 const gaspi_offset_t baseOffset = LCR_OFFSET(nbx, nby);

90 const gaspi_offset_t remoteBaseOffset = UB_OFFSET(nbx, nby);

91

92 for (int by = 1; by < nby-1; ++by) {

93 #pragma oss task in(([nbx][nby]matrix)[nbx-2][by]) inout(*sentinel)

94 {

95 gaspi_queue_id_t queue;

96 gaspi_queue_group_get_queue(0, &queue);

97

98 gaspi_write_notify(SEGMENT, OFFSET(baseOffset, by),

99 rank + 1, SEGMENT, OFFSET(remoteBaseOffset, by),

100 BSY * sizeof(double), by, 1, queue, GASPI_BLOCK);

101

102 gaspi_wait(queue, blockMode);

103 }

104 }

95

105 }

106

107 void receiveUpperBorder(block_t *matrix, int nbx, int nby, int rank) {

108 gaspi_notification_id_t notifiedId;

109 gaspi_notification_t notifiedValue;

110

111 for (int by = 1; by < nby-1; ++by) {

112 #pragma oss task out(([nbx][nby]matrix)[0][by]) inout(*sentinel)

113 {

114 gaspi_notify_waitsome(SEGMENT, by, 1, ¬ifiedId, blockMode);

115 assert(notifiedId == by);

116

117 gaspi_notify_reset(SEGMENT, notifiedId, ¬ifiedValue);

118 assert(notifiedValue == 1);

119 }

120 }

121 }

122

123 void receiveLowerBorder(block_t *matrix, int nbx, int nby, int rank) {

124 gaspi_notification_id_t notifiedId;

125 gaspi_notification_t notifiedValue;

126

127 for (int by = 1; by < nby-1; ++by) {

128 #pragma oss task out(([nbx][nby]matrix)[nbx-1][by]) inout(*sentinel)

129 {

130 gaspi_notify_waitsome(SEGMENT, nby+by, 1, ¬ifiedId, blockMode);

131 assert(notifiedId == nby+by);

132

133 gaspi_notify_reset(SEGMENT, notifiedId, ¬ifiedValue);

134 assert(notifiedValue == 1);

135 }

136 }

137 }

138

139 void solve(block_t *matrix, int nbx, int nby, int rank, int rank_size) {

140 if (rank != 0) {

141 // Create tasks to send the first row to the previous rank

142 sendFirstComputeRow(matrix, nbx, nby, rank, rank_size);

143

144 // Create tasks to receive the upper border from the previous rank

145 receiveUpperBorder(matrix, nbx, nby, rank, rank_size);

146 }

147

148 if (rank != rank_size - 1) {

149 // Create tasks to receive the lower border from the next rank

150 receiveLowerBorder(matrix, nbx, nby, rank, rank_size);

151 }

152

96

153 // Create a task to compute each block

154 for (int bx = 1; bx < nbx-1; ++bx) {

155 for (int by = 1; by < nby-1; ++by) {

156 #pragma oss task inout(([nbx][nby]matrix)[bx][by]) \

157 in(([nbx][nby]matrix)[bx-1][by]) \

158 in(([nbx][nby]matrix)[bx][by-1]) \

159 in(([nbx][nby]matrix)[bx][by+1]) \

160 in(([nbx][nby]matrix)[bx+1][by])

161 solveBlock(matrix, nbx, nby, bx, by);

162 }

163 }

164

165 if (rank != rank_size - 1) {

166 // Create tasks to send the last row to the next rank

167 sendLastComputeRow(matrix, nbx, nby, rank, rank_size);

168 }

169 }

170

171 void gaussSeidel(block_t *matrix, int nbx, int nby, int timesteps) {

172 gaspi_rank_t rank, rank_size;

173 gaspi_proc_rank(&rank);

174 gaspi_proc_num(&rank_size);

175

176 for (int t = 0; t < timesteps; ++t) {

177 solveGaussSeidel(matrix, nbx, nby, rank, rank_size, info);

178 }

179

180 #pragma oss taskwait

181 gaspi_barrier(GASPI_GROUP_ALL, GASPI_BLOCK);

182 }

183

184 void setupGaspiInfo(conf_t &conf, int nbx, int nby, gaspi_info_t &info) {

185 // Commit the default group

186 gaspi_group_commit(GASPI_GROUP_ALL, GASPI_BLOCK);

187

188 // Register a segment for the local buffer of particles

189 gaspi_segment_use(SEGMENT, conf.matrix,

190 rowBlocks * colBlocks * sizeof(block_t),

191 GASPI_GROUP_ALL, GASPI_BLOCK, 0);

192

193 // Set the desired number of queues

194 gaspi_queue_num(&info.precreatedQueues);

195 gaspi_queue_max(&info.numQueues);

196 if (!conf.interop) info.numQueues = 1;

197

198 // Create the rest of queues

199 gaspi_queue_id_t i, queue;

200 for (i = info.precreatedQueues; i < info.numQueues; ++i) {

97

201 gaspi_queue_create(&queue, GASPI_BLOCK);

202 }

203

204 // Create the queue group with the previous queues

205 gaspi_queue_group_policy_t policy;

206 if (conf.interop) {

207 policy = GASPI_QUEUE_GROUP_POLICY_CPU_RR;

208 } else {

209 policy = GASPI_QUEUE_GROUP_POLICY_DEFAULT;

210 }

211 gaspi_queue_group_create(0, 0, info.numQueues, policy);

212 }

213

214 void freeGaspiInfo(gaspi_info_t &info) {

215 gaspi_segment_delete(SEGMENT);

216

217 gaspi_queue_id_t q;

218 for (q = 0; q < info.numQueues; ++q) {

219 gaspi_wait(q, GASPI_BLOCK);

220 }

221

222 gaspi_queue_group_delete(0);

223

224 for (q = info.precreatedQueues; q < info.numQueues; ++q) {

225 gaspi_queue_delete(q);

226 }

227 }

228

229 int main(int argc, char **argv) {

230 int required, provided;

231 gaspi_info_t gaspiInfo;

232 conf_t conf;

233

234 // Read input parameters

235 readConfiguration(argc, argv, &conf);

236

237 // Require the new task mode if the user wants to enable

238 // the interoperability mechanism

239 required = (conf.interop) ? GASPI_MODE_TASK : GASPI_MODE_STANDARD;

240

241 // Initialize safely the GASPI library

242 gaspi_proc_init_mode(required, &provided, GASPI_BLOCK);

243 if (required == GASPI_MODE_TASK && provided < required) {

244 printf("Task mode is not supported! Enabling sentinel...");

245 conf.interop = false;

246 }

247

248 // Enable/disable the sentinel dependency and set the

98

249 // corresponding blocking mode for blocking calls

250 if (provided == GASPI_MODE_TASK) {

251 sentinel = NULL;

252 blockMode = GASPI_BLOCK_TASK;

253 } else {

254 sentinel = (int *) 1;

255 blockMode = GASPI_BLOCK;

256 }

257

258 gaspi_rank_t rank, rank_size;

259 gaspi_proc_rank(&rank);

260 gaspi_proc_num(&rank_size);

261

262 // Add an additional block in each border

263 int rowBlocks = (conf.rows / BSX) + 2;

264 int colBlocks = (conf.cols / BSY) + 2;

265 int rowBlocksPerRank = rowBlocks / rank_size + 2;

266 int blocksPerRank = rowBlocksPerRank * colBlocks;

267

268 // Allocate memory for the partial matrix corresponding to a rank

269 conf.matrix = (block_t *) malloc(blocksPerRank * sizeof(block_t));

270

271 // Initialize the matrix

272 initializeMatrix(conf, rowBlocksPerRank, colBlocks);

273

274 setupGaspiInfo(conf, rowBlocksPerRank, colBlocks, &gaspiInfo);

275 gaspi_barrier(GASPI_GROUP_ALL, GASPI_BLOCK);

276

277 // Solve the problem

278 double start = get_time();

279 solve(conf.matrix, rowBlocksPerRank, colBlocks, conf.timesteps);

280 double end = get_time();

281

282 freeGaspiInfo(gaspiInfo);

283 free(conf.matrix);

284 gaspi_proc_term(GASPI_BLOCK);

285 return 0;

286 }

Code A.2: Gauss–Seidel code of the GASPI+OmpSs-2 Sentinel and Interop versions.

99

	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Objectives
	1.2 Contributions
	1.3 Document Structure

	2 Related Work
	3 Message-Passing Interface (MPI)
	3.1 History
	3.2 Basic Concepts
	3.3 Initialization
	3.4 Data Messages
	3.5 Point-to-Point Communication
	3.5.1 Blocking Operations
	3.5.2 Non-Blocking Operations

	3.6 Collective Communication

	4 Global Address Space Programming Interface (GASPI)
	4.1 History
	4.2 Remote Direct Memory Access
	4.3 Basic Concepts
	4.4 Initialization
	4.5 Groups
	4.6 Memory Segments
	4.7 One-Sided Communication
	4.7.1 Write & Read Operations
	4.7.2 Notify Operation
	4.7.3 Waiting Notifications

	4.8 Queues
	4.9 Other Functionalities

	5 OmpSs-2 Task-based Programming Model
	5.1 Basic Concepts
	5.2 Influencing OpenMP
	5.3 Annotating Programs
	5.4 Execution Model
	5.4.1 Tasks
	5.4.2 Loops
	5.4.3 Nesting
	5.4.4 Explicit Synchronization
	5.4.5 Example

	5.5 Dependency Model
	5.5.1 Region Dependencies
	5.5.2 Fine-Grained Early Release
	5.5.3 Weak Dependencies

	5.6 Task Scheduling
	5.7 Reference Implementation

	6 MPI+OmpSs Interoperability Library
	6.1 Taskifying Communications
	6.1.1 Risk of Deadlock

	6.2 Benefits
	6.3 Software Requirements
	6.3.1 Task Condition Variable API
	6.3.2 Polling Service API

	6.4 Operation

	7 Tools and Methodology
	7.1 Tools
	7.1.1 Mercurium
	7.1.2 Nanos6
	7.1.3 MPICH
	7.1.4 GPI-2
	7.1.5 MPI+OmpSs Interoperability Library
	7.1.6 Extrae
	7.1.7 Paraver

	7.2 Methodology
	7.2.1 Relevance Cycle
	7.2.2 Rigor Cycle
	7.2.3 Design Cycle

	8 Enhancing the MPI Interoperability
	8.1 New Level of Thread Support
	8.2 Generalizing the API
	8.3 Bringing the Mechanism to Users
	8.4 Implementation Details

	9 Enhancing the GASPI Interoperability
	9.1 Main Ideas
	9.2 Initialization Modes
	9.3 New Blocking/Timeout Mode
	9.4 Local Completion
	9.5 Remote Completion
	9.6 Queue Groups
	9.7 Implementation Details
	9.7.1 Original Implementation
	9.7.2 Extending gaspi_wait
	9.7.3 Extending gaspi_notify_waitsome
	9.7.4 Implementing Queue Groups

	10 Proposing a Non-blocking Interoperability Mechanism
	10.1 Task Event Counter API
	10.2 Implementation Details

	11 Evaluation
	11.1 Environment
	11.2 Gauss–Seidel
	11.2.1 GASPI Versions
	11.2.2 Non-blocking Interoperability Variant

	11.3 IFSker
	11.4 Evaluation and Discussion
	11.4.1 Gauss–Seidel in Marenostrum4
	11.4.2 Gauss–Seidel in Nord3
	11.4.3 IFSker in Marenostrum4

	12 Conclusions
	13 Future Work
	Bibliography
	Appendix A Gauss–Seidel: Complete Code
	A.1 Taskified MPI+OmpSs-2 Gauss–Seidel
	A.2 Taskified GASPI+OmpSs-2 Gauss–Seidel

