
Model-Agnostic Process Modeling

Master Thesis

Master in Innovation and Research in Informatics

Data Mining and Business Intelligence

June 18th, 2018

Student: Josep Sànchez Ferreres
Advisors: Josep Carmona Vargas

Llúıs Padró Cirera

Abstract

Modeling techniques in Business Process Management (BPM) often suffer from low
adoption due to the variety of profiles found in organizations. This project aims to
provide a novel alternative to BPM documentation with Annotated Textual Descriptions
(ATD). ATD are based on text annotations, which can be understood by non-technical
users, but are still a robust alternative for business process automation.

In order to deploy ATD-based solutions in BPM systems, the ATD reference im-
plementation, ATDlib, has been developed as part of this project. The current imple-
mentation is able to parse and manage ATD, automatically generate annotations, and
convert ATD into other business process representations.

Finally, a practical application of ATD, the Model Judge, is presented. Model Judge
is a web platform that can students learn to model business processes and guide them
with accurate diagnostics. The tool has been tested in two pilot university courses and
validated using the analytics collected during the sessions.

Acknowledgements

This Master Thesis would have not been possible without the invaluable collaboration
of many people. I want to thank everyone for their support and all the good ideas that
have arisen as part of this project.

First of all, I would like to acknowledge my advisors, Josep Carmona and Llúıs Padró,
for their feedback and support, and also for the opportunity they have given me to work
in their department as a research assistant, and as a future Ph.D. student to continue
the work we started in this thesis. Special thanks go as well to all my colleagues from
the office, the NLP4BPM project, and especially to Lúıs Delicado, for his work on Model
Judge.

Part of the work presented is the fruit of collaboration between our research group
and two other universities, Denmark’s Technical Univeristy (DTU) and the Universidad
Católica de Santa Maŕıa. I want to thank Barbara Weber, Andrea Burattin, Amine
Abbad and Guillermo Calderón for their feedback, ideas and for running the two Model
Judge pilot courses in their universities.

And last, but not least, I want to give special thanks to my parents for their invaluable
support. Also my family, friends and of course Montse, who stood next to me during
this long journey.

Contents

1 Introduction 4

1.1 Motivation . 4

1.2 Project Scope . 5

1.3 Structure of this Document . 6

2 Background 7

2.1 Business Process Management . 7

2.1.1 Business Process Notations . 8

2.2 Natural Language Processing . 9

2.2.1 Steps of Language Analysis . 10

2.2.2 Text Annotations . 11

2.3 The NLP4BPM Project . 12

3 Describing Processes with Natural Language 15

3.1 Running Example . 15

3.2 Annotated Textual Descriptions . 15

3.3 ATD Semantics . 18

3.3.1 Annotation Types . 18

3.3.2 Relation Types . 19

3.3.3 Automatic Reasoning . 20

3.4 Possible Applications of ATD . 20

4 ATDlib: A Library to Manage and Generate ATD 22

4.1 Features and Architecture . 22

4.1.1 Converting ATD to Freeling Semantic Graphs 23

4.2 Creating an ATD with ATDlib . 24

5 Model Judge: A Practical Use Case of ATD 27

1

5.1 The Model Judge Platform . 27

5.1.1 Diagnostics . 28

5.2 A Tour through Model Judge . 29

5.3 Approach . 30

5.3.1 Process Model Analysis . 31

5.3.2 ATD Exensions for Model Judge 32

5.3.3 Diagnostics Generation . 33

5.4 Aligning ATD and BPMN Process Models 34

5.4.1 Feature Extraction . 35

5.4.2 Similarity Computation . 36

5.4.3 Alignment Creation . 36

5.4.4 Predictor-based Refinement . 37

5.5 Experiments . 38

5.5.1 Analysis of the Modeling Session Data 39

5.5.2 Student Survey . 43

6 Conclusions and Future Work 44

A Source Code 49

2

List of Figures and Tables

2.1 The three abstraction levels of business process management. Adapted
from the figure in [10]. 8

2.2 Example process in different graph-based execution languages: BPMN
(top-left) YAWL (bottom-left) BPEL (right). 9

2.3 One of the example annotations provided with the Brat annotation tool. 12

2.4 One of the example annotations provided with the TAG annotation tool. 13

2.5 Example execution of the BPMNvsText module at the NLP4BPM web
interface. 14

3.1 Textual description of a patient examination process. 16

3.2 Process model for the patient examination process. 17

4.1 ATDlib feature overview . 24

4.2 UML diagram showing the public interface used for ATD representation 25

4.3 The brat user interface: (left) An automatically generated ATD. (right)
After the user performs a manual validation. 26

4.4 Workflow of the creation of an ATD using ATDlib 26

5.1 Model Judge modeling view . 30

5.2 Model Judge process overview . 31

5.3 Overview of the alignment technique presented in [33] 35

5.4 Three characteristic behaviors observed in the modeling sessions. The
blue circles represent simple validations, while green squares denote com-
plete validations. 40

5.5 Evolution of the diagnostic types for the modeling session. 40

5.6 Density plot of the diagnostic lifetimes variable. 41

5.7 Results of the student survey for the modeling courses. 42

3.1 Example fragment of Annotated Textual Description with annotations
(left) and relations (right). 18

5.1 Pearson’s correlation test results for the relevant pairs of studied variables
(shown per course and total). 43

3

Chapter 1

Introduction

1.1 Motivation

Business Process Management (BPM) is an area in operations research with the goal
of modeling, analyzing and optimizing business processes. One of the main pillars of
BPM are process models. A process model represents how a certain task is performed
in an organization, and as such, can be used to efficiently communicate the internal
operations of a company.

In the era of information systems and artificial intelligence, the focus of process
models has progressively shifted from human readability to machine readability [1]. We
have moved from the traditionally graphical models for business process documentation,
such as the flow chart, to more formal standards built on top of machine-readable
languages, like the Business Process Model and Notation (BPMN) [2] standard. This
has enabled automation for the analysis and improvement of business processes, which
in turn translates in real value for companies using these techniques.

However, this formalization of the semantics of process models results in an increase
in modeling languages’ complexity, which in turn, results in non-experts –stakeholders
and employees alike– having difficulties in understanding the processes [3]. These mis-
understandings may have serious consequences for any organization [4]

For the above reasons, no standard for process modeling has ultimately stood above
the others. This has lead to a scenario where BPM-focused organizations often have to
maintain multiple representations of the same process model. Informal versions, which
heavily rely on semi-structured or unstructured natural language, are kept next to more
formal and structured alternatives. Furthermore, in this formal spectrum, we encounter
several modeling languages, each one aiming to solve a different subset of problems [5,
6].

In this work, we propose an alternative to conventional process modeling languages
that aims to be intuitive and ergonomic, but at the same time acts as a formal rep-
resentation enabling the automation of analysis, monitoring, or simulation of business
processes. Our technique combines the flexibility of unstructured human langauge with
Natural Language Processing (NLP) techniques in order to create an Annotated Tex-
tual Description (ATD) that represents the business process. Additionally, we present a
practical application of ATD with Model Judge, a web platform designed to aid novices
in the creation of business process models which uses ATD as one of the core ideas

4

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 1

behind its algorithm.

1.2 Project Scope

The work presented in this Master Thesis project has been divided into the following
activities:

Formalization of ATD and its semantics

The goal of this task is the creation of a robust language with well defined semantics that
is able to represent business processes based on annotated natural language descriptions.

As part of this task, we have explored the common characteristics in business process
descriptions, in order to identify the relevant types of information for the documents in
our problem domain.

Next, the identified concepts have been translated in terms of an annotation lan-
guage: Annotations, and the set of relations between them.

Development of ATDlib and Integration with Annotation Tools

This task consisted in the development of a hybrid Clojure/Java library, ATDlib. This
library is intended to be a set of software tools to manage and generate ATD process
descriptions.

The two main functionalities implemented in ATDlib are the automatic generation
of partial ATD from text and the translation between ATD and FreeLing [7] semantic
graphs.

In order to operationalize the workflow presented in this work for the generation
of ATD, the functionalities presented in ATDlib must be integrated into a graphical
annotation tool. As part of this task, we explored two alternatives in the NLP field:
Brat [8] and TAG [9].

Design and Development of the Model Judge’s Algorithm

This activity consisted in the design of an algorithm behind Model Judge, a web platform
designed to aid novice students in the process of process modeling. This algorithm
is based on the notion of Annotated Textual Descriptions that was formalized and
developed in the two previous tasks.

Analysis of the Model Judge Analytics Data

In order to gain insights and evaluate the Model Judge platform, we collected analytics
information from two courses that took place in Denmark’s Technical University (DTU)
and the Universidad Catolica de Santa Maŕıa (UCSM), in Peru, which used Model Judge
as the main modeling tool.

This task consisted in the preprocessing and analysis of the data collected from the
platform.

5

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 1

1.3 Structure of this Document

The remainder of this document is structured as follows: Chapter 2, discusses the state
of the art in the several fields involved in this project and introduces all the necessary
background concepts. Chapter 3 presents Annotated Textual Descriptions and discusses
some of its theoretical applications in the field of Business Process Management. Chap-
ter 4 presents the technical details behind the implementation of ATDlib. Chapter 5
describes the Model Judge platform, a practical use case of ATD and offers an empirical
evaluation of the platform with two modeling courses. Finally, Chapter 6 concludes this
thesis and discusses some possible future research lines.

6

Chapter 2

Background

In this chapter, we analyze the state of the art of all the relevant fields involved in
this work. Business Process Management, covered in Section 2.1 is where the main
contribution of this work lies in, since we aim to define a new business process model-
ing technique. Natural Language Processing, covered in Section 2.2 is used extensively
in our work in order to automatically extract the relevant information out of unstruc-
tured business process description. Finally, Section 2.3 presents NLP4BPM, a project
developed in our research group which is very closely related to the work presented.

2.1 Business Process Management

In large companies and organizations coordination between multiple actors involved
in business processes is very important for correct operations. Business process man-
agement is a field of research focused in how to communicate, document, analyze and
enhance business processes.

Business Process Management approaches processes at three different levels [10],
illustrated in Figure 2.1:

Multi Process Management focuses on the identification of major processes of an
organization and their prioritization. This task involves the inspection of the data
repositories of a company, such as Data Warehouses, in order to discover and
extract what are the relevant business processes.

Process Model Management is concerned with the management of a single Business
Process Model. This involves discovering the process and creating a process model
using some kind of process model notation, as well as implementing the necessary
monitoring tools in order to control the process.

Process Instance Management deals with the actual execution of process: Planning
how the tasks are going to be executed, monitoring the process during its execution
and adapting the process if problems are detected.

BPM is a very wide area of research, with several sub-fields focusing on different
aspects of business processes. From very theoretical research based on Petri net the-
ory [11], to empirical psychological research about the process of process modeling [12].

7

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 2

Figure 2.1: The three abstraction levels of business process management. Adapted from
the figure in [10].

The project described in this Master Thesis is encompassed in an emerging field [13] in
BPM, focused in the relation between human natural language and the formal methods
found in other fields of research, such as Process Mining [14].

2.1.1 Business Process Notations

This Master Thesis presents an alternative to conventional Business Process Notations
(BPN). In the literature, one can find numerous approaches to BP modelling techinques.
In their survey [5], Ruopeng Lu and Shazia Sadiq, classify Business Process Notations
in graph-based and rule-based notations.

Graph-based BPN represent business processes as a control flow graph. They are
heavily inspired, and usually convertible to Petri Nets [15], a formal mathematical model
usually employed to describe distributed systems. In graph-based BPN, the process is

8

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 2

described as a sequence of linked nodes, indicating sequential, alternative or concurrent
execution paths. To this day, the most prominent graph-based business process notation
is the Business Process Model and Notation (BPMN) [2], with its first version published
in 2011. However, before BPMN’s quick rise in popularity, the Business Process Execu-
tion Language (BPEL) had the most widespread usage. Several other alternatives like
YAWL [16] have been proposed both from the academics and the industry. Figure 2.2
shows a comparison between the three aforementioned graph-based business process no-
tations. Despite their differences, there is a minimum subset of elements that almost
all of them have in common. (i) The notion of activity, which is a task to be exe-
cuted in the process, usually containing a text label in order to provide semantics to
the process. (ii) The XOR split, which branches the execution in two alternative paths,
and only one of them may be executed for any process instance. (iii) The AND split,
which branches the execution into two concurrent paths, the execution of which can be
interleaved arbitrarily.

D
o
ct

o
r Select two

patients

Examine
patient B

Examine
patient A

Sterylize
equipment

Figure 2.2: Example process in different graph-based execution languages: BPMN (top-
left) YAWL (bottom-left) BPEL (right).

Rule-based BPN express the process model as a set of rules. In most rule-based
systems, the rules are expressed as restrictions (e.g. “A request form can only be sent
by a manager”). The main difference of these systems with respect to Graph-based
alternatives is that they allow more flexible behaviour to be described in a more natural
way, at the cost of higher verbosity and being more error prone. For instance, consider
a variation of the process described in figure 2.2 where the order of the examinations is
irrelevant, but it is mandatory for the doctor to sterilise the medical equipment between
the two. In graph-based systems, duplication of activities cannot be avoided to express
the semantics of this rule. On the other hand, most rule-based systems can introduce
the rule that task sterilise must always happen between two examinations.

2.2 Natural Language Processing

Natural Language Processing (NLP) is a field of artificial intelligence which addresses the
interactions between computers and human languages. NLP focuses on many problems
at different levels of abstraction, from the purely linguistic ones like morphological and
syntactic analysis or determining the part-of-speech of words to very challenging tasks

9

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 2

such as the automatic summarizing of news articles.

Those tasks that go beyond parsing at a syntactic level and focus on the semantics
of written text are usually classified under the field of Natural Language Understanding
(NLU). The focus in NLU is to build complete semantic representations of texts in
a machine-friendly format. It is thus an AI-complete [17, Section 1] problem, since
text are addressed to human readers under the assumption of common sense and world
knowledge: Things very difficult to encode in a computer program.

NLP techniques are applied to address a variety of use cases in the context of Business
Process Management. Several of these focus on the text contained in process models
themselves. This includes a variety of works that focus on the quality of process model
labels, for example by restricting the use of certain labeling conventions [18, 19, 20], or
common modeling errors [21]. Other approaches use NLP to augment process models
with semantic or ontological information [22, 23, 24].

Other use cases involve texts that exist outside of process models. Several approaches
extract process models from different kinds of text, such as from use cases [25], group
stories [26], or methodological descriptions [27], while others take general textual process
descriptions as input [28, 29], that is also the case of the Text2BPMN algorithm in
NLP4BPM. However, these approaches have been found to produce inaccurate results,
which require manual inspection [30]. Other use cases involving texts include a technique
that considers work instructions when querying process repositories [31] for conformance
checking against textual process descriptions [32].

2.2.1 Steps of Language Analysis

The NLP processing software used in this work is FreeLing1 [7], an open–source library of
language analyzers providing a variety of analysis modules for a wide range of languages.
More specifically, the natural language processing layers used in this work are:

Tokenization & sentence splitting: Given a text, split the basic lexical terms (word,
punctuation signs, numbers, ZIP codes, URLs, e-mail, etc.), and group these to-
kens into sentences.

Morphological analysis: For each word in the text, find out its possible parts-of-
speech (PoS).

PoS-Tagging: Determine which is the right PoS for each word in a sentence. (e.g. the
word dance is a verb in I dance all Saturdays but it is a noun in I enjoyed our
dance together.)

Named Entity Recognition: Detect named entities in the text, which may be formed
by one or more tokens, and classify them as person, location, organization, time-
expression, numeric-expression, currency-expression, etc.

Word sense disambiguation: Determine the sense of each word in a text (e.g. the
word crane may refer to an animal or to a weight-lifting machine). We use Word-
Net [fellbaum98] as the sense catalogue and synset codes as concept identifiers.

Constituency/dependency parsing: Given a sentence, get its syntactic structure as
a constituency/dependency parse tree.

1http://nlp.cs.upc.edu/freeling

10

http://nlp.cs.upc.edu/freeling

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 2

Semantic role labeling (SRL): Given a sentence identify its predicates and the main
actors in each of them, regardless of the surface structure of the sentence (ac-
tive/passive, main/subordinate, etc. For example, in the sentence John does not
want to go, a SRL would detect two predicates (want and go), and mark that
John is Agent of both. Note that a parser could detect that John is the subject

of want but it would not detect that he is also the one supposed to go. SRL
provides a higher level of abstraction than a parser, providing slightly deeper se-
mantic knowledge. E.g. in a passive sentence such as the fish was eaten by the cat,
a SRL system would detect an event eat with cat as Agent and fish as Patient,
i.e. exactly the same that it would extract from the equivalent active sentence the
cat eats fish.

Coreference resolution: Given a document, group mentions referring to the same
entity (e.g. a person can be mentioned in the text as Mr. Peterson, the director,
or he.)

Semantic graph generation: All the information extracted by the previous analyzers
can be organized in a graph depicting events (mainly coming from predicates in the
text), entities (coming from detected coreference groups), and relations between
them (i.e. which entities participate in which events and with which role). This
graph can be converted to triples and stored in an RDF database if needed.

2.2.2 Text Annotations

Creating annotated versions of texts is usual in NLP field, where many approaches are
based on machine learning. Thus, to train a PoS-tagger, text where each word has been
annotated with its part-of-speech, is required. Similarly, parsers, semantic role labelers,
or coreference resolution systems, need example texts where this linguistic levels have
been annotated by humans. These annotated corpora are then used to train the NLP
analyzers and to evaluate their performance.

Thanks to this need for annotated data in NLP, convenient tools have been developed
to ease the annotation task. One of them is Brat [8]2, a configurable environment that
allows the annotation of texts with labelled spans, and relations. Figure 2.3 shows Brat
being used to annotate a scientific text with very specific concepts from the field of
biology.

A more recent alternative for text annotation are Text Annotation Graphs (TAG)
[9]. TAG is a web-based software which conceptually improves upon Brat in two ways:
(i) It provides the functionality of representing complex relationships between text el-
ements, allowing the definition of relationships between relationships themselves (se-
mantic hypergraphs). (ii) The visualization tool offers a more ergonomic and flexible
representation of the annotated texts, allowing the repositioning of words, or filtering
the view to only show a subset of the annotated information. Figure 2.4 shows a text
annotated using TAG.

In this work, we present Annotated Textual Descriptions as a business process mod-
eling language. ATD are based on text annotations, but its main purpose differs from
the typical use cases of annotations. Ideally, ATD would be automatically performed by
an NLP tool, instead of being used as training data. However, given the limitations of
the current NLP state of the art, we will resort to a certain amount of human annotation

2http://brat.nlplab.org

11

http://brat.nlplab.org

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 2

Figure 2.3: One of the example annotations provided with the Brat annotation tool.

to improve the quality of our semantic representation. This is discussed in further detail
in Chapter 3.

2.3 The NLP4BPM Project

When multiple business process representations are used inside an organization, it be-
comes very important to ensure availability and consistency of the existing documen-
tation. The Natural Language Tools for Business Process Management (NLP4BPM)
project, developed by our group in the Polytechnic University of Catalonia, aims to
solve several related problems in this domain.

In NLP4BPM, several different approaches are taken in order to aid organizations
in managing multiple representations of processes:

Text2BPMN Converting a natural language textual description into a BPMN business
process model.

BPMN2Text Converting a BPMN business process model into a human-readable tex-
tual description.

BPMNvsText Computing an alignment between a model and a textual description in
order to compare them. An alignment is a mapping between tasks in the model
and sentences in the text. The implementation follows the technique presented
in [33].

BPMNvsBPMN Computes an alignment between two different BPMN models. Here
the alignment is between the set of tasks of the two process models. The techniques
implemented in this module are based on Relaxation Labeling algorithms

BPMN2ChatBot Converts a BPMN diagram into an interactive chat bot that guides
a user throughout the process execution.

12

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 2

Figure 2.4: One of the example annotations provided with the TAG annotation tool.

The different techniques are developed as independent modules and unified under
the same graphical interface, which is presented in a user-friendly manner. The tool is
available online at http://nlp4bpm.cs.upc.edu/. Figure 2.5 shows a screenshot of the
web user interface.

One of the common elements in the NLP4BPM project is the use of FreeLing, and
particularly of FreeLing ’s semantic graphs in order to extract semantic information
from both texts and BPMN labels. A semantic graph is an abstract representation of
a document where entities (e.g. people, objects) are represented as nodes, and joined
by relations, such as the temporal adjunct, which joins an action with the words that
describes the particular time during which it is performed, or the manner adjunct, which
indicates the way in which the action is performed instead.

One of the goals of this Master’s thesis is to link Annotated Textual Descriptions,
the main contribution presented in this work, with FreeLing semantic graphs. This will
allow using ATD in order to improve the robustness of the algorithms presented above
without having to modify them. Section 4.1.1 describes how this is achieved.

13

http://nlp4bpm.cs.upc.edu/

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 2

Figure 2.5: Example execution of the BPMNvsText module at the NLP4BPM web
interface.

14

Chapter 3

Describing Processes with
Natural Language

In this chapter, we describe the use case of Annotated Textual Descriptions (ATD) in
natural langauge to describe business processes. Section 3.1 presents a process model
example that will be used throughout this document for illustrative purposes. Next,
Section 3.2 contains a rationale for ATD and Section 3.3 describes the semantics of the
base ATD language. Finally, Section 3.4 describes possible theoretical applications of
ATD.

3.1 Running Example

In order to provide an illustrative example for the remainder of this document, let us
consider a process of patient examination1. The textual description of this process is
provided in Figure 3.1. Additionally, figure 3.2 shows the equivalent process model in a
well-known process notation: BPMN.

3.2 Annotated Textual Descriptions

In order to support the efficient creation and communication of business processes, we
must establish notation that is close to the mental framework of all the actors involved
in the process. Natural language is an ideal tool for this task, being the most widely
used form of human communication.

However, using natural language alone has several drawbacks. Natural Language
Processing tools are getting increasingly better at extracting structure out of plain text.
However, some ambiguities remain an open issue to this day. Furthermore, we argue
that some of these issues cannot be automatically solved reliably enough, since they
require extensive domain knowledge. For instance, in the example from Figure 3.1, the
sentence ”The latter [physician] is then responsible for taking a sample to be analysed in
the lab later” highlights two important sources of ambiguity in the analysis of textual

1Based on the description provided by the Women’s Hospital of Ulm. Both the text and the model
are extracted from [34].

15

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 3

The examination process can be summarised as follows. The process starts
when the female patient is examined by an outpatient physician, who decides
whether she is healthy or needs to undertake an additional examination. In
the former case, the physician fills out the examination form and the pa-
tient can leave. In the latter case, an examination and follow-up treatment
order is placed by the physician, who additionally fills out a request form.
Beyond information about the patient, the request form includes details
about the examination requested and refers to a suitable lab. Furthermore,
the outpatient physician informs the patient about potential risks. If the pa-
tient signs an informed consent and agrees to continue with the procedure,
a delegate of the physician arranges an appointment of the patient with
one of the wards. The latter is then responsible for taking a sample to be
analysed in the lab later. Before the appointment, the required examination
and sampling is prepared by a nurse of the ward based on the information
provided by the outpatient section. Then, a ward physician takes the sample
requested. He further sends it to the lab indicated in the request form and
conducts the follow-up treatment of the patient. After receiving the sample,
a physician of the lab validates its state and decides whether the sample
can be used for analysis or whether it is contaminated and a new sample
is required. After the analysis is performed by a medical technical assistant
of the lab, a lab physician validates the results. Finally, a physician from
the outpatient department makes the diagnosis and prescribes the therapy
for the patient.

Figure 3.1: Textual description of a patient examination process.

descriptions: (i) The action analyse is described, but it may not happen until later into
the process, as hinted by the word later. Extracting this kind of temporal relationships
from textual descriptions is a very complex task [35], with no good solutions in the
context of business processes. (ii) Depending on the purpose of the process, the same
analyze verb could actually be irrelevant from an organizational point of view, if the
lab were to be considered an external entity. This presents an issue that cannot be
solved without deep understanding of the organization. In order to solve this, while
still preserving the idea of a flexible and natural way of describing processes, we rely on
text annotations (See Section 2.2.2) as a common langauge to be used by humans and
computer systems.

We have named this new documentation format Annotated Textual Descriptions
(ATD). An ATD can be used as a replacement for any business process modeling no-
tation: A human reader can easily get a grasp of the process by simply reading the
text without the annotations, and can use the annotations to clarify any ambiguities
encountered (e.g. whether two activities can be executed concurrently). On the other
hand, a computer system can rely on the annotations to automatically extract structure
and additional semantic information from the process, without the need to leverage a
generic semantic graph [7]. The design goals of ATD can be summarized as follows:

Can Model Ambiguity Ambiguity is an inherent property of some processes. In some
cases, an organization cannot reliably document every aspect of a business pro-
cess. An example of this pehomena are error scenarios. Consider the sentence
“If everything is correct, the bank proceeds to charge the payment into the user’s
account”. This sentence is implicitly saying that, under some circumstances the

16

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 3

Figure 3.2: Process model for the patient examination process.

execution will end in an undesired state if the bank cannot proceed with the pay-
ment. However, the phrasing clearly indicates that such error scenarios are outside
the scope of the process. In cases like this, other techniques force the modeler to
disambiguate the unclear parts of the process, resulting in too restrictive models
that do not fully represent the reality of the organization. On the other hand, ATD
are designed to capture the ambiguity by being built on an open world assump-
tion: If a part of the process is not clearly documented, anything that happens is
assumed to be correct. This characterization of ambiguity also allows to automat-
ically detect and report the ambiguous elements to the user in order to improve
the process.

Rich Semantics Since natural language is used as the main building block of ATD,
any idea can be communicated with them. At the human level, the expressive
power of the language is almost on par with the mental model of the writer. At
the annotation level, ATD are designed to easily incorporate extensions into the
annotations, so they can be adapted to multiple use cases. An example of that
is seen in Chapter 5, where the base annotation language is expanded to enable
automatic evaluation of students.

Low Representational Bias Representational bias is the phenomena where the nota-
tion being used forces the author of a process to model things in a certain way [36].
For example, notations based on Petri Nets are well suited to model concurrency.
However, there is no clear built-in mechanism to express the limits of iterative
structures. This is why languages like BPMN have a built-in semantic element
to model concurrency, the parallel gateway, while loop conditions have to be ex-
pressed as text notes which cannot be interpreted by computer systems. ATD,
being close to the mental model of the actors involved in the process, have a low
representational bias.

Automation To ensure adoption of a new language, ease of use is a very important
factor to consider. Models must be easy to build and redundant constructs –i.e.
boilerplate– must be kept at a minimum. In ATD, the provided tooling ensures
that such redundant tasks are automated: On one hand, an NLP tool generates an
initial annotation for the user to refine, which typically just consists of removing
unnecessary annotations. On the other hand, intuitive rules have been encoded
in an inference engine to avoid unnecessary annotating. For example, the Coref-
erence Relation (See Section 3.3.2) is transitive and symmetric by default, saving
redundant annotations. Similarly, the Sequential Relation is added by default for
two consecutive activities in the text if no other relation is specified.

17

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 3

3.3 ATD Semantics

ATD are designed to be adaptable. In this section, we describe the base language
which aims to represent the common concepts in all business processes. Additionally,
extensions are allowed in the form of new annotation or relation specializations, to
support more specific use cases. An example of such expansion can be seen in Chapter 5.

An ATD is defined as a set of annotations on top of a base text, written in natural
language. More formally, we can define an ATD as a 〈T,A,R〉 tuple, where

T is a string of characters representing the textual description.

A is a set of annotations. Each annotation α = 〈type, start, end〉 marks a relevant
aspect of the business process. The start and end integers mark the positions of
a substring of T, and the type is used to add semantics to the annotation. The
types of annotations are defined as a hierarchy, so an annotation types can be
specialized into subtypes.

R is a set of triples 〈t, αi, αj〉 representing binary relations of type t between pairs
of annotations αi, αj . Similarly, the type of a relation is used to add particular
semantics to it, and specialization of relation types is allowed.

Next, we describe each of the annotation and relation types that we consider for the
base language of ATD. Table 3.1 shows an example of an ATD which we will use for the
remainder of this section.

Type Start, End

α1 action “an examination and follow-up treatment order is placed by the physician”
α2 action “is then responsible for taking a sample to be analysed in the lab”
α3 action “After receiving the sample, a physician of the lab validates its state”
α4 role “an examination and follow-up treatment order is placed by the physician”
α5 role “the female patient is examined by an outpatient physician”
α6 object “an examination and follow-up treatment order is placed by the physician”
α7 condition “decides whether she is healthy or needs to undertake additional examination”
α8 optional, “the patient can leave”

ending
α9 implicit “The patient is asked to sign an informed consent” (Added text)
α10 action “The required examination and sampling is prepared by a nurse”
α11 action “The required examination and sampling is prepared by a nurse”
α12 object “The required examination and sampling is prepared by a nurse”
α13 object “The required examination and sampling is prepared by a nurse”
α14 role “After receiving the sample, a physician of the lab validates its state”

Type αi αj

r1 agent α1 α4

r2 patient α1 α6

r3 sequential α2 α3

r4 coreference α4 α5

r5 patient α10 α12

r6 patient α11 α13

r7 fusionable α10 α11

Table 3.1: Example fragment of Annotated Textual Description with annotations (left)
and relations (right).

3.3.1 Annotation Types

Annotations are used to mark an important region of the text. In the base language
of ATD, we consider the following types of annotations which directly map to some
well-known concepts in the context of business processes.

Action. The action annotation is used to represent the steps of the business process
model, which are often associated with verbs. An example action would be placing

18

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 3

(α1) an examination order. Each action corresponds to a single activity in the
process model.

Entity. An anything that participates in the business process, either actively or pas-
sively. This is a generic type that is specialized in two subtypes: role and business
object.

Role. A type of Entity. The role annotation is used to represent the autonomous
actors involved in the process, like the outpatient physician (α5). Any mention of
an entity that performs some Action is considered a Role.

Business Object. The business object annotation is used to mark all the relevant
elements of the process that do not take an active part in it, such as an examination
order (α6). In other notations, correspondences with business objects are typically
found in activity labels and explicit elements such as data object references

Condition. A condition annotation indicates a part of the text that represents a pre-
requisite for some part of the process being executed, such as the patient being
healthy (α7). Conditions are typically associated with XOR-splits, their labels and
their surroundings.

3.3.2 Relation Types

Agent. A role is the agent of an action whenever the entity represented by the role
performs that action. For instance, relation r1 tells us it is the physician who
places something.

Patient. An entity, is the patient of an action whenever it acts as the recipient of the
action. Relation r2 tells us that what is placed is an examination order.

Control Flow. The sequential, exclusive and parallel binary relationships, which are
borrowed from behavioral profiles [37], are used to indicate the order between
actions in the textual description. Due to the characteristics of natural language
text, there is an open world assumption on the set of control flow relationships:
Assuming an absence of contradictions, everything that is stated as relationship
is enforced. However, no assumptions are made on things that are not specified.
In our example, analyse (α2) is sequential (r3) –i.e. happens before– to validates
(α3)

Coreferences. An entity is a coreference of another entity when they refer to the
same real world entity. The coreference relation forms a graph with one connected
component per process entity. All occurrences of the ”patient” role in the example
text are coreferences. However, there are two different ”physician” roles in the text,
the ”outpatient physician” (α4, α5) and the ”physician of the lab” (α14), which
form two disconnected coreference graphs.

Fusionable Actions. Some actions can be expressed at multiple granularity levels
depending on the context. When two actions are fusionable, it means they can be
represented as a single one without changing the semantics of the process. In the
sentence ”the required examination and sampling is prepared”, we could assume
two independent actions prepare (examination) (α10) and prepare (sampling) (α11)
or a single one prepare (examination and sampling), as indicated by r7. In our
particular use-case, this kind of relation can help the instructor annotate those
cases in which different granularity levels should be equally accepted as an answer.

19

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 3

3.3.3 Automatic Reasoning

One of the design goals of ATD is to avoid unnecessary human work by automating
the annotation of texts as much as possible. In order to achieve this goal, automatic
reasoning is built on top of the annotations in order to infer new knowledge:

Coreference Graphs The Coreference relation specifies groups of entities that rep-
resent the same concept. To avoid having to manually annotate all the pairwise
coreference relations for each coreference group, the coreference relation is defined
as both symmetric and transitive. This expanded relations are automatically in-
ferred, so the user only needs to mark n − 1 annotations to form a coreference
group of n entities.

Behavioral Profiles A behavioral profile [37] is an abstract representation of the con-
trol flow of a process. The behavioral profile of a process is a function which,
for every pair of elements in the process –i.e. places in a Petri net or activities
in a BPMN diagram–, yields a temporal relation, which can be one of sequential
(), exclusive (+) or parallel (‖). The notion of behavioral profile can also be
adapted to ATD by using the homologous relationships, but in order to compute
the full profile, the following rules must be applied to the initial set of relations:
(i) The exclusive and parallel relations are symmetric (ii) The sequential relation
is transitive. (iii) The sequential relation is automatically assumed for consecutive
actions unless some other action is stated. Rule iii can be stated more formally
as:

(@r ∈ R s.t. αi = src(r) ∧ αj = dest(r)) ∧
(@αk s.t. start(αk) > end(αi) ∧ end(αk) < start(αj))

=⇒
R← R ∪ {〈sequential, αi, αj〉}

This last rule helps avoid repetition and unnecessary annotations, but also helps
enforce the property that processes should be described in a sequential fashion,
which is a desirable characteristic.

Process Actors By considering the role annotation and the agent and coreference
relations, a reasoner can automatically infer all the roles involved in a process.
This can be reported to the user to quickly verify that all the relevant actors are
represented in the process.

3.4 Possible Applications of ATD

ATD have been designed as a form of process documentation. However, due to the
unique way in which they capture process information in natural language, we argue
that they have several potential applications beyond other process model notations:

As an Intermediate Language: Being close to natural language, the preferred method
of communication for non-experts in the BPM field, ATD can be used as an inter-
mediate format for process representation. Thanks to the robustness of curated
annotations, algorithms can be developed that reliably transform ATD into other

20

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 3

process model notations that better adapt to the different situations (e.g. because
some software tool requires that specific format). Automatically performing trans-
formations from natural language to other notations is an unreliable process, which
requires careful revision of the obtained results. Using ATD moves the revision
process to the modeler side, where all the issues in the natural language descrip-
tion are disambiguated at annotation time. This implies a text can be annotated
once and transformed to as many different representations as required.

For the Simulation of Textual Descriptions: Process simulation consists of gen-
erating an event log that conforms to a Business Process Model[38] assuming a
certain statistical model. Thanks to the robustness introduced by ATD over raw
text, simulation tools can be built on top of ATD, which would bring all the advan-
tages of simulation (i.e. detection of issues, such as bottlenecks, before execution)
to descriptions in natural language, easily understandable by all implied roles.

As Training Data: ATD are based on text annotations, originally conceived to serve
as training data for machine learning algorithms in NLP. By creating ATD, an
organization doesn’t only get the benefits of such notation, but additionally can
contribute to generate training data for the automatic analysis of Business Process
Descriptions. This, in turn, can lead to improved algorithms specific to the BPM
use case, which would not need as much human intervention in the generation of
new ATD.

21

Chapter 4

ATDlib: A Library to Manage
and Generate ATD

This chapter presents ATDlib, a reference implementation of the ATD language de-
scribed in Chapter 3 which implements parsing, automatic generation and transforma-
tions of ATD. ATDlib is built using Clojure [39], a dynamic language for the Java Virtual
Machine and thus can be used from any language in the JVM ecosystem. Section 4.1
focuses on the several tools provided in ATDlib and offers implementation details. Then,
Section 4.2 shows an overview of the process of creating an ATD from raw text data.

4.1 Features and Architecture

The main goal behind ATDlib is to provide the necessary tooling in order to support
the implementation of ATD in organizations as a way of describing business processes.
This major goal can be split into the following functionalities:

Parsing and Representation of ATD ATD are stored as BRAT annotation files in
standoff format [40]. The standoff format is a text-based file that represents an-
notations and relations which reference a plain text file. Therefore, an ATD
will consist of a Process.txt with the textual description and a complementary
Process.ann file with the annotations. ATDlib can parse this format and con-
vert it to its internal schema, exposed in a public interface as shown in the UML
diagram of Figure 4.2

Automatic Annotation ATDlib can perform an initial annotation of a raw text in
natural language. The goal is to perform the most accurate annotations possible.
However, due to limitations in NLP, the annotations generated need to be currently
reviewed by a human. All annotation and relation types described in Section 3.3
are generated except the sequential, exclusive and parallel relations, which must
be manually annotated.

Easy Manual Annotation One of the goals of ATDlib is to facilitate the manual an-
notation of ATD in order to refine an automatically derived annotation. Instead
of implementing a custom annotation tool, we use well-established tools from the
NLP field in order to provide an annotation front-end. For this project, we con-
sidered BRAT [8] and TAG [9]. Despite TAG having a more rich feature set,

22

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 4

ultimately we chose BRAT due to its more mature implementation and documen-
tation availability.

Automatic Translation Several transformations are implemented in ATDlib in or-
der to convert ATD to other process representations that interface with existing
software. The goal is to establish ATD as a unique language for which any other
representation can be automatically derived. These transformations can then be
implemented as additional modules in ATDlib. Currently, the implemented trans-
formations are to convert ATD into a FreeLing [7] semantic graphs and a behavioral
profiles [37]

ATDlib is structured as a single library with several entry points, corresponding
to its different modules. Figure 4.1 shows an overview of the different entry points,
and their main functionalities. The brat parser module is intended to be used as a
library, and can be used to read an annotation file into a more friendly format. The
text2atd entry point can be used as a standalone tool or as a library, and converts
textual descriptions into partially annotated ATD, which should then be checked by a
human using any compatible annotation tool, such as BRAT. Finally, the atd2fl and
atd2bp modules can be used as libraries to extract a FreeLing semantic graph and a
behavioral profile respectively. The inference rules described in Section 3.3.3 are applied
during the transformations. As mentioned in Section 2.3, the semantic graph and the
behavioral profiles can then be applied directly as input data to the algorithms in the
NLP4BPM project.

4.1.1 Converting ATD to Freeling Semantic Graphs

ATD and Freeling semantic graphs hold very similar information. Given the graph-
based nature of both representations, this conversion can be thought of as a schema
mapping problem. However, some aspects need to be taken into consideration to perform
the conversion in a way that improves the quality of the algorithms in the NLP4BPM
project, which is one the main application of this library.

The conversion performed by the atd2fl module consists of translating the concepts
in ATD to a semantic graph, which contains the following information:

• A list of entities, which are nodes in the graph that correspond to the groups of
connected components of entities in the ATD when considering the coreference
relation.

• A list of frames, nodes that correspond to action annotations in the ATD

• Relations between entities and frames. Currently supported are A0 (agent) and
A1 (patient). However, some ATD expansions could map new relations such as
the AM-MNR (manner adjunct) or AM-LOC (location adjunct).

But in order to have a complete textual representation for other tools to use, the
following information must also be extracted from an ATD:

• Lists of paragraphs, sentences and tokens

• For each token

– The word’s form and lemma.

23

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 4

Figure 4.1: ATDlib feature overview

– The part-of-speech (PoS) of the word.

– For nouns, verbs, adjectives and adverbs; a WordNet reference to the sense
of the word.

This information is necessary because FreeLing’s semantic graph is expressed by ref-
erencing certain words in the text, but including this information in the ATD would
require extensive unnecessary annotation, which doesn’t align well with the ATD’s ra-
tionale. That is why atd2fl performs a low-level analysis on the text (up to the sense
disambiguation stage) using FreeLing to automatically extract that information. This
low-level information is then merged with the ATD, in order to build a full semantic
graph. During this conversion, only the tokens that are part of some annotation in the
ATD are kept in the final structure, and all other words are removed.

4.2 Creating an ATD with ATDlib

Figure 4.4 illustrates the steps that must be taken in order to generate a full ATD
with ATDlib. First, a human actor must describe the business process using natural
language, creating a MyProcess.txt file. Next, the text2atd module is used in order

24

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 4

Figure 4.2: UML diagram showing the public interface used for ATD representation

to obtain an annotation file, MyProcess.ann. The user can then inspect the generated
annotation using the BRAT web interface. Figure 4.3 (left) shows an example of what
the user will see in the screen at this point. The user must then refine the annotation,
usually this process consists of deleting the irrelevant actions detected by ATDlib, as
well as marking the control flow for the final set of actions, resulting in an annotation
file similar to the one shown in Figure 4.3 (right). Finally, if necessary, ATDlib can
be used to generate other process model representations, such as a FreeLing semantic
graph using the atd2fl module.

25

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 4

Figure 4.3: The brat user interface: (left) An automatically generated ATD. (right)
After the user performs a manual validation.

G
en

er
at

io
n

of
 a

n
A

T
D

U
se

r
A

T
D

lib

Textual
Description

Final ATD

Refine
Annotation

Create
Automatic
Annotation

Describe
process in

natural
language

Generate
FreeLing

Document
Structure

Partial ATD

Figure 4.4: Workflow of the creation of an ATD using ATDlib

26

Chapter 5

Model Judge: A Practical Use
Case of ATD

Due to the wide usage of process models in organizations, correctness and quality of
models directly influences the correct execution of processes. However, research has
shown that industrial process models often contain errors, which can lead to increased
costs in production.

Automating the detection of syntactic errors is a common feature in modelling soft-
ware. However, the error types more closely related to the natural language sections of
the model are usually not checked, due to the difficulties in the automatic analysis of
such elements. Part of this Master thesis’ work consisted in exploring a practical appli-
cation of Annotated Textual Descriptions by designing the main algorithm behind Model
Judge. Model Judge is a web platform supporting students in the creation of business
process models by automatically detecting and reporting the most common sources of
semantic and pragmatic errors in modeling The motivation behind the platform and its
functionalities are discussed in Sections 5.1 and 5.2.

The algorithm, which is described in detail in Section 5.3 is based on the technique for
automatic computation of alignments between process model and textual descriptions
presented in [33]. Section 5.4 explains how the alignment technique in [33] has been
adapted to use ATD instead of plain text.

The Model Judge platform has been used as the main modeling tool as part of
two Computer Science courses: One in Denmark’s Technical University (DTU) and
another in the Catholic University of Santa Maŕıa (UCSM). Section 5.5 describes the
experimental setting and analyzes the results obtained from the modeling sessions.

5.1 The Model Judge Platform

Model Judge is a web platform designed to provide diagnostics regarding issues on
syntactic, pragmatic and semantic quality in business process diagrams. Students are
presented with a statement describing a business process in natural language, and are
asked to model the corresponding diagram.

The framework behind Model Judge is based on computing an alignment between
the process model diagram to be evaluated and a reference textual description, which

27

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 5

is an ATD based on the exercise’s statement. This ATD is generated only once, with
intervention from the course instructors, and can be used to support multiple students
simultaneously.

5.1.1 Diagnostics

Model Judge is based on computing quality diagnostics on business process models.
Instead of providing the user with a difficult to interpret numerical score, we believe
more detailed feedback helps students and contributes to continuous self-improvement.

By observing the grading process of several modeling courses, we have established a
set of diagnostics that are suitable for being computed automatically. We have split these
diagnostics in three different categories: Syntactic diagnostics consider the structure of
the model. Pragmatic diagnostics verify the phrasing of the process model labels and
can be tuned to enforce certain grammatical rules. Finally, Semantic diagnostics check
if there is no missing information from the underlying process and all the information
provided is relevant. Next, the concrete diagnostics for the three aforementioned types
are detailed.

Syntactic Diagnostics

A good process model should have a clear and unambiguous control flow. Syntactic
diagnostics identify common patterns that typically result in less understandable and
maintainable process models.

Gateway Reuse and Implicit Gateways. Gateway reuse refers to a gateway that
acts both as a split (more than two outputs) and a join (more than two inputs).
Implicit Gateways exist when an activity has multiple input or output flows. The
semantics for these two constructs are not clear and can lead to hidden modeling
errors. Because of that, avoiding gateway reuse and implicit gateways is a well-
known best practice in business process models [41].

Non-Natural Loops. Due to their similarity, some desirable properties of program’s
control flow graphs are also relevant in the context of process model diagrams.
Ideally, process models should contain only of Natural Loops. That is, there is
only a single way to enter the loop. We have observed non-natural loops are a
common pattern among novice students.

Soundness. A well-known desirable property of process models is soundness [42], which
guarantee the process model is free from livelocks, deadlocks, and other anomalies
that can be detected without domain knowledge.

Pragmatic Diagnostics

Process model diagrams define a large portion of their semantics using natural language.
It is desirable to restrict the language to a strict writing style (e.g, the verb-object rule
in [41], G6), in order to avoid ambiguous phrasing [43]. A simple and strict style is
also important when considering automatic analysis of the process model language. For
example, while it is acceptable in the text to include the sentence: “The latter is then
responsible for taking a sample to be analysed in the lab later”, having that sentence as

28

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 5

an activity label in the process model adds unnecessary complexity, since the aim is to
have label text to be as simple as possible.

Previous studies [44, 43, 19] have established the common structures in label descrip-
tions. However, these structures are not always followed by novice students. Because
of that, an automatic detection of invalid writing styles is beneficial for student self-
improvement.

Semantic Diagnostics

A process model diagram has to communicate the semantics of the underlying process
in a clear and unambiguous way. All the information provided has to be correct, and in
the right order. On the other hand, unnecessary information introduces noise that can
generate confusion. Semantic diagnostics help enforcing these properties on the process
model.

Missing/Unnecessary activities. This problem arises when a relevant activity of the
process is omitted from the process model, or symmetrically when additional ac-
tivities are added which are either wrong or add no relevant information. This can
be caused by an oversight or a poor understanding of the process being modeled.

Missing/Unnecessary Roles. When process models use role information, such as
swimlanes in BPMN, the same diagnostics of missing and unnecessary roles can
be applied as well, to ensure all the relevant actors are properly modeled.

Control-Flow Consistency. All the information in the process model should be con-
sistent with the control flow of the process being described. If some temporal
relationship described in the text is not accurately incorporated in the process
model, then a control-flow consistency violation would be communicated to the
novice modeler.

5.2 A Tour through Model Judge

The Model Judge can be accessed using any modern web browser at http://modeljudge.
cs.upc.edu. It is designed both for helping students in the process of creating a process
model, and instructors in the task of designing modeling activities in an agile way.

The application requires registration, and users with the instructor role are able to
create and manage courses. Additionally, support is planned to allow instructors to
create and manage their exercises for the application, in the form of ATD, which is
currently restricted to the developers of the application.

All registered users are able to access the exercise list and attempt solving any of
them. After selecting an exercise, the user is brought to the modeling view, which is
displayed in Figure 5.1. In the modeling view, the user has access to a textual description
of the process, and a BPMN editor.

During the exercise, students can use the Validation functionality to obtain aggre-
gated diagnostics about the process model, for example, how many unnecessary activities
it contains. A more detailed version is the Complete Validation, which offers more
fine-grained information about the diagnostics, such as the exact labels of the unneces-
sary activities in the process model.

29

http://modeljudge.cs.upc.edu
http://modeljudge.cs.upc.edu

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 5

Finally, for users that allow it during registration, analytics are enabled. The ana-
lytics functionality which is built into the platform periodically records snapshots of the
student’s process model for the duration of the validation session. Additional snapshots
are created each time a user performs a validation or complete validation. Section 5.5
describes the analysis performed on this analytics data.

Figure 5.1: Model Judge modeling view

5.3 Approach

At the Model Judge’s core, there is the algorithm that produces a list of diagnostics for
their current business process model. The design and implementation of this algorithm
has been implemented as a part of this Master Thesis.

In Figure 5.2, we can see a BPMN diagram of the diagnostic generation process.
The inputs to the system are the Textual Description, which corresponds to the exercise
statement, and the Process Model created by the student. First, the textual description
is analyzed by the Text Annotation module (See text2atd, Section 4.1) to automati-
cally produce an Annotated Textual Description, which is then completed with human
intervention to include the domain expertise not available to the NLP algorithms. This
step is only performed once and can be used to evaluate any number of students in that
exercise. Once a particular student wants to validate a partial model, the process model
is sent to Model Judge. First, the process model is analyzed: A behavioral profile is
computed, and semantic roles are extracted from the text labels in the model using a
specialised chart parser. After the model is analyzed, the alignment between the pro-
cess model elements, such as activities or gateways and the annotations in the ATD is
established. Finally, using all the previous information, the process model is checked
against a textual description by the diagnostics module.

The next sections describe the multiple steps in Model Judge’s algorithm in more
detail. Section 5.3.1 covers the analysis of the process model. Next, Section 5.3.2
covers the ATD extensions necessary to support Model Judge. In Section 5.3.3, the
necessary steps for obtaining the diagnostics are explained. Finally, the details behind
the alignment of ATD and process models are discussed in Section 5.4.

30

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 5

G
en

er
at

io
n

of
 D

ia
gn

os
tic

s

S
tu

de
nt

In
st

ru
ct

or
M

od
el

 J
ud

ge

Create
Automatic
Annotation

Refine
Annotation

Compute
Alignment

Compute
Diagnostics

Textual
Description

Annotated Textual
Description

(partial)

Annotated Textual
Description

Analyze
Process Model

A partial model is
created

Process Model

Diagnostics

Receive
Diagnostics

Figure 5.2: Model Judge process overview

5.3.1 Process Model Analysis

Model Judge performs two separate analysis of a Process Model sent by a student. First,
a behavioral profile of the process is computed, in order to compare it to the one from
the ATD during the alignment computation (See Section 5.4.3). The computation of a
behavioral profile has well known algorithms and can be performed as long as the process’
Petri net is bounded [45, Section IV.B]. Analyzing a process model, thus, consists of
three steps:

1. Convert the BPMN process into a Petri Net, this sometimes results in unbounded
Petri nets.

2. Check the boundedness of the resulting Petri net, only if the property is fulfilled,
the next step is executed.

3. Compute the behavioral profile of the Petri net.

The necessary operations to compute the behavioral profile are implemented in JBPT
[46], a Java library consisting of several utilities to manage business process models.

The second step in Model Judge’s analysis of process models is extracting semantic
roles from its text labels from activities, gateways, events, swimlanes and pools. Using
FreeLing’s generic parser and SRL module for this analysis, however, has some draw-
backs: NLP parsers are generally trained on large corpora of written text, such as books
or newspaper articles. However, this training data doesn’t represent well the kind of
sentences found in a process model, which are typically incomplete and use excessive
capitalization1. A very common confusion of NLP tools when parsing text labels in
models written in the english language occurs in the case of noun-verb homographs2.
Consider, for example, the phrase “mail confirmation”. A typical NLP parser would
identify this as a noun phrase, the confirmation of the mail ; this is because the prior
probability of the “mail” word occurring as a noun is far higher in the typical training

1Excessive capitalization happens when all the words in a sentence are capitalized in order to high-
light its importance. This is considered good writing style in section headers or process model labels,
but most NLP parsers are not trained to recognise the phenomena and confuse some words for proper
nouns when it is used.

2Two words are homographs when they share the same spelling

31

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 5

data used. However, in business process models, labels usually start with a verb. When
consider this information, we see that the real meaning of the label is that someone
mails a confirmation.

To deal with this, we built a custom SRL module which encodes the most common
label styles classified in [19] in order to build a chart parser specific to process model
labels. Due to the simplicity of most label structures, the parse tree can be directly used
to extract the semantic roles using a custom set of rules. In our current implementation,
we consider the most common types of labels:

Verb-Object This label style consists of a verb in imperative form (the main action),
followed by a noun, representing the business object and additional complements.
For example, “Examine patient” is a label in Verb-Object style.

Action-Noun In this label style, the main action is represented as a noun, and is
usually preceded by the business object. An example of this label style would be
“Patient examination”.

Double-Action This is a compound structure, where two or more actions are described
in a single label, using Verb-Object style. “Examine Patient and Request Sample”
could be an example label using that style.

The grammar for the custom chart parser tries to identify any of the above structures,
and is written in such a way that that the root node of the parse tree will be labeled
with the identified writing style, if found. For example, a label written in the noun-
action style will have this information reflected at the root node of the tree. Using this
grammar, the parsing is then done as follows:

1. The n most likely PoS-tag sequences of the label are computed.

2. For each PoS tagging, the label is parsed using a chart parser with the aforemen-
tioned context-free grammar.

3. If some parse tree’s root is tagged with one of the aforementioned writing styles,
the grammar the action and patient (i.e. business object) roles will be extracted by
following the identified structure of the label. Note that due to BPMN’s semantics,
the agent of the action is never described in the activity label, as that is the purpose
of swimlanes.

5.3.2 ATD Exensions for Model Judge

In order to support the automatic evaluation of students, several extensions are included
to the base language described in Chapter 3. This extensions are in the form of special-
izations of the Action annotation type, which help better represent the semantics of the
process for this particular use-case. For each annotation, multiple specializations are
allowed. The descriptions in this section follow the running example from Figure 3.1.

Optional. An optional action annotation is used to indicate that the associated action
could be elided from the process description without a substantial change in its
semantics. For instance, in the sentence ”the patient can leave”, the action of
leaving could be considered as part of the process. However, that action does not
add a substantial amount of semantic value, and thus can be considered optional.

32

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 5

In Model Judge, optional actions can be used by the instructor to allow for a more
flexible answer to the exercise, since both the solution that contains the action
and the one that does not will be considered correct.

Ending. An ending action annotation is used to represent an action that ends the
process. A process may have multiple ending actions to represent multiple success
or failure scenarios. In the previous sentence, ”the patient can leave”, leave is also
an ending action, as well as prescribe in ”Finally, a physician (...) prescribes the
therapy”. Ending actions in BPMN must correspond, or immediately follow an
end event. This information can be used by Model Judge to derive its diagnostics.

Implicit. Sometimes, action descriptions are not present as words in the text but can
be inferred. In Model Judge, this means that students are supposed to introduce a
task for which a description is not explicit in the process. Since this sort of implicit
description is not suited for automatic analysis, our approach consists of adding
additional text that makes the inferred assumption explicit. This text, however,
is only visible to the instructor. An implicit action annotation is used to highlight
this fact. In our example text, we can read ”If the patient signs an informed
consent and agrees to continue (...)”. However, no explicit mention is made as to
what will happen in case the patient refused to sign the informed consent.

5.3.3 Diagnostics Generation

The generation of the diagnostics is the final step in Model Judge’s algorithm. The goal
is to generate human-friendly diagnostics by identifying the differences between the ATD
and the business process model. Most diagnostics can be computed a two granularity
levels. Either at a general level –e.g. The process is missing some activities–, or at a
concrete level –e.g. The process is missing a label about the “Patient Examination”–.
The general level is used when performing an validation, while the concrete diagnostics
are only emitted for complete validations. The computation of the diagnostics uses the
information in the ATD, the analysed process model and the alignment between the
two. In this section we detail which diagnostics are currently generated by Model Judge
and how they are computed.

Syntactic Diagnostics

The computation of syntactic diagnostics only requires the process model. Most checks
implemented use well-known algorithms. Particularly, checking the use of implicit gate-
ways or gateway reuse consists of a very simple structural check. On the other hand, the
presence of non-natural loops can be determined by checking for cycles in the process
graph after removing all its back edges, computed from the dominator tree [47].

Pragmatic Diagnostics

The approach we use for checking adherence to a writing style is based on using the
custom parser for labels described in Section 5.3.1. Particularly, we use the identification
of the label writing style in the root of the label’s parse tree in order to restrict the labels
to a certain set of accepted styles, which can be configured.

In the current implementation, the writing style check focuses on looking for double
actions, that is, activity labels that consist of two actions, such as “Close Ticket and

33

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 5

Inform the Manager”, for which the students are encouraged to write two separate
activities. However, this technique can be adapted so any organization can enforce a
label writing style in a flexible way. This adaptation would consist of expanding the
grammar to handle the newly accepted new label styles, if necessary, and adding those
styles to a list in Model Judge’s configuration files.

Semantic Diagnostics

Semantic checks are concerned with the underlying process semantics. Computing these
diagnostics requires all the information from the annotated textual description, the
process model and the alignment.

To detect that an activity is missing from the process model, the alignment infor-
mation is used. Particularly, if there is an action in the ATD with no correspondences
from the process model, the activity is considered missing from the process model. The
system can then inform the modeler by generating a detailed error message using the
annotated data from the textual description.

Detecting unnecessary activities also relies on the alignment. In this case, there will
be a process model activity p aligned to some ATD action a. If the similarity between
p and a is low enough, according to the result of computing the predictor (as described
later in Section 5.4.4), the activity is considered unnecessary, as there is no good match
for the activity in the text.

The coverage of roles is computed similarly to activities. In this case, the similarity
function is used to assess the similarity between role annotations and the process model’s
swimlanes. An unrestricted alignment is performed and the matches are used to detect
missing and unnecessary roles as previously described with activities.

Finally, in order to detect control flow consistency, we focus on the differences be-
tween the constrained and unconstrained alignment. Particularly, if the objective func-
tion –that is, the sum of correspondence similarities– between the two alignments differs
greatly, a warning is displayed to the user informing that the control flow in their pro-
cess may be wrong. This careful phrasing is intended, since our testing has shown this
method to not be completely reliable to detect subtle control flow errors, both in terms
of false positives and false negatives.

5.4 Aligning ATD and BPMN Process Models

Establishing the correspondence between the annotations in the textual description and
the elements in the business process model is necessary in order to compute some diag-
nostics, such as the semantic-related ones. The goal of this computation is to be able
to assess which parts of the process model have been correctly modeled by the student,
according to the textual description.

In order to achieve this goal, the technique presented in [33] is used, which computes
an alignment from process model activities to a textual description’s sentences. The
most important adaptation for Model Judge is the alignment input, which now considers
ATD’s annotationss instead of the plain sentences. In order to achieve this goal, the
atd2fl and atd2bp modules from ATDlib are used to accurately transform the input text
to a FreeLing ’s semantic graph and behavioral profile, which are the original expected
inputs of the alignment algorithm.

34

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 5

Figure 5.3 shows an overview of the alignment approach presented in [33]. Next,
we cover each of the steps in the algorithm, and the necessary adaptations that were
performed to use the algorithm as part of Model Judge:

Textual process
description

Process model

1. Feature
extraction

2. Similarity
computation

Model-Text 
Alignment

3. Alignment
creation

4. Predictor-
based

Refinement

Figure 5.3: Overview of the alignment technique presented in [33]

5.4.1 Feature Extraction

In order to establish a distance metric for two essentially different sources, such as an
ATD and a BPMN Process Model, the elements in the two representations are converted
into a canonical representation, the Feature Vector. Feature vectors are extracted for
each Action or Condition in the ATD, and each process element (i.e. activity, gateway
or event) in the business process model

A feature vector v ∈ R∞ is a sparse real vector computed in an infinite dimensional
space. Each of the dimensions of the space correspond to a linguistic feature of the
element. For instance, the first non-zero dimension of some vector ve may represent
that the agent of the element e is associated with a certain word. The strength of this
association –i.e. the weight of the feature– is indicated by the magnitude of the vector
in that dimension.

We will refer to each individual dimension as a feature instance. Additionally, we
group conceptually similar feature instances in feature families. Each feature family
corresponds to all the parametrizations of a certain linguistic feature:

contains action(a) This feature family denotes the actions contained in a step p or
sentence s. For instance, when comparing a process step “Examine Patient” to
the annotated sentence “The process starts when the female patient is examined
by an outpatient physician”, we extract the action “examine”. This implies the
extracted feature vectors from the ATD and process model would share a non-zero
value for the feature instance contains action(examine)

contains role word(w) & role main word(w) This feature family denotes the roles that
execute steps in a process. The former feature, contains role word, is extracted
for each word w that is part of a role. For instance, the “outpatient physician”
actor comprises the two words “outpatient” and “physician”. By contrast, we use
the role main word feature to denote the main word of the role, typically repre-
sented as the main noun, e.g., to explicitly capture the word “physician”. This
separation allows us to give a different weight to the main word with respect to
the others.

contains object word(w) & object main word(w) These features encode the same in-
formation for business objects as the previously described features do for roles.

35

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 5

contains lemma(l, pos) This feature is extracted from the target text if it contains a
word3 with the lemma l and part-of-speech pos. In case of ATD, this would cor-
respond to all the words contained within the Action and its related Agent and
Patient Entity annotations, if any. This feature has a lower abstraction level
than the previous ones and is included as a fall-back solution whenever the actor,
role or action cannot be determined due to natural language ambiguity in the
process model. In those cases the algorithm works at the word level. For exam-
ple, for the annotated sentence “A ward physician takes the sample requested“,
the features contains lemma(physician, noun), contains lemma(take, verb) con-
tains lemma(sample, noun) and contains lemma(requested, adjective) will be ex-
tracted.

contains synset(s) This feature is extracted whenever the WordNet synset s appears
in the text sentence. It captures the semantics of words to help identify similarity
when synonyms are used. For example, the WordNet synset 10020890-n recognizes
that “physician” is a synonym of “doctor”, such as used in the running example.

contains hypernym(s) This feature is extracted from a target text containing a word
for which s is an hypernym4 at distance HL or less. HL is a parameter of the
algorithm. In the running example, a hypernym of “physician” is “medical prac-
titioner” (10305802-n)

By using ATD, which are accurately annotated, this feature extraction phase is
improved. Particularly, the high level features from the text can be reliably extracted
for all Actions, since they are available through the Agent and Patient relations. This
means the algorithm doesn’t need to rely as much on the word-based features.

5.4.2 Similarity Computation

Once the heterogeneous sources are converted into a canonical representation, a standard
similarity metric can be used to compare them. As shown in [33], the metric that gives
best results for our problem domain is the Weighted Overlapping Index, computed as:

WeightedOverlapping(a, b) =
a · b

min{‖a‖1, ‖b‖1}
(5.1)

Where ‖v‖1 represents the L1 norm of the vectors.

5.4.3 Alignment Creation

The next step is the computation of the alignment between process model elements and
the annotations of an ATD. The alignment contains the corresponding ATD action for
each activity, gateway and event of the process model.

Formally, we define an alignment σ to be a set of correspondences of the form nk ∼
ai for some nk ∈ N, ak ∈ A, where N denotes the set of elements of a process model
and A is the set of actions of the ATD.

3Note that in all feature types stopwords are not considered.
4A word w1 is a hypernym of w2 if w1 describes a superclass of w2 (e.g. mammal is a hypernym of

cat, and document is a hypernym of letter). Hypernymy is obtained from WordNet.

36

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 5

In order to establish an alignment between process model elements and sentences, we
impose two types of constraints on the alignment: cardinality constraints and ordering
constraints.

Process step-to-sentence cardinality. For process model activities and events, we
enforce that each of them is aligned to exactly one ATD action, whereas we allow
multiple steps to be aligned to the ATD action. This, accounts for an activity
being described once in the text, but being duplicated in the model, due to some
requirement in the control flow.

Process step ordering. Assuming there are no contradictions between the control
flow of the ATD and the process model, we can restrict the set of possible align-
ments for those that would violate the natural order of the process. This is one
of the points where Model Judge’s approach differs from the technique described
in [33, Section 5.6], where the temporal relations in the text could not be com-
puted. By using accurately annotated ATD, we are able to extract a full behavioral
profile for the text. This allows us to set the restriction that, for each pair of cor-
respondences, a ∼ s, a′ ∼ s′, the temporal relation between a and a′ is the same
for sentences s and s′. More formally expressed as: ∀(a ∼ s, a′ ∼ s′) ∈ σ2 :
bppm(a, a′) = bpatd(s, s′), where bppm and bpatd are the behavioral profiles of the
process model and annotated textual description respectively.

However, this restriction can lower the quality of the alignment when there are
consistency errors in the control flow of the process. That is why two alignments
are computed in our approach. One with ordering restrictions and one where this
set of restrictions is disabled.

The optimal alignment is then found, which is the one that maximizes the sum of
the similarities of the alignments, while preserving the aforementioned constraints. This
problem can be solved in linear time where the ordering restrictions are disabled, but
becomes difficult when considering them. For the latter case, we modelled the problem
as an ILP optimization, which was found to be fast enough for the use case of student
evaluation5.

5.4.4 Predictor-based Refinement

This is one of the key steps in order to compute the unnecessary activity diagnostics
in Model Judge. The optimal alignment described in the previous section, is computed
under the assumption that the process model and the ATD describe the same set of pro-
cess activities. However, this is not the case when evaluating partial models performed
by students. Particularly, the following inconsistencies may result in an alignment that
is incorrect:

1. The student has modeled an activity which is not in the ATD, meaning it is not
relevant to the process.

2. The student has not modeled an activity which is in the ATD, meaning it is missing

3. The order in which the activities are described in the model

5Using the Gurobi [48] ILP solver, an answer from the optimization can be found in less than a
second, thus, the NLP analysis becomes the bottleneck of the process

37

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 5

Model Judge works by considering the alignment in order to generate its diagnostics
corresponding to points 1 and 2, as seen in Section 5.3.3. However, the alignment
computed at this point is not sufficient to determine which unnecessary activities the
student introduced. The similarity scores of the correspondences are highly valuable
indicators in order to detect this information. Because of that, we introduce a refinement
step after the alignment which consists in applying a threshold on the similarity function,
to discard the correspondences with very low similarity from the process.

In the refinement step, instead of applying the threshold directly to the similarity
function, we introduce the concept of predictors. A predictor is a function of the cor-
respondences in the alignment which assigns a likelihood value of that correspondence
being valid (i.e. not unnecessary). This value will be always in the interval [0, 1], but
does not represent a probability. In our approach, we defined the following predictors:

• p-sim(n ∼ a): the likelihood that a correspondence n ∼ a relates to an unnecessary
activity, given as the similarity score between the step n and the ATD action a i.e.
sim(n, a).

• p-rel-S (n ∼ a): the value of the previous predictor, normalized by the maximum
similarity between a and any other process step, i.e.

sim(n,a)
max {sim(n′,a) | n′∈N}

• p-harm(n ∼ a) The harmonic mean between p-sim(n, s) and p-rel-S (p, s)

The choice of predictors is greatly influenced by the similarity function. In our
approach, the similarity function uses the Weighted Overlapping Index and thus is con-
tained in [0, 1]. However, in practice, we have observed that depending on how different
is the level of verbosity in the text and model, the similarity functions will vary over-
all. This motivates the choice for a relative predictor, which won’t be affected by the
differences of the discourse in the ATD and process model. However, using a relative
predictor alone like p-rel-S would fail in the event that all the activities introduced by
the user are unnecessary. In order to have a predictor that is robust to such scenarios,
we take the harmonic mean between p-rel-S and p-sim, using p-harm as the predictor
for Model Judge

5.5 Experiments

Model Judge has been tested in two separate modeling courses. The first was performed
on the Technical University of Denmark (DTU) during February 2018. as part of a
graduate course on business process management. The second course was performed at
the Catholic University of Santa Maŕıa (UCSM) in Peru during March 2018 as part of a
practical session in the Business Process Management course in the Computer Science
degree.

In order to validate how the Model Judge helps novice modelers, we performed two
evaluations. The first one consisted in analyzing the recorded data from the modeling
sessions (Section 5.5.1). The second evaluation arises from a survey that was handed
to the students at the end of the modeling course (Section 5.5.2). Below, we detail the
results obtained in both evaluations.

38

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 5

5.5.1 Analysis of the Modeling Session Data

There were substantial differences in the setting of the two courses. On the DTU course,
students were allowed to complete the exercise at home without a time limit. On the
other hand, the UCSM course consisted in two exercises that had to be completed in
a two-hour session. Additionally, some technical issues affecting DTU students were
corrected before the UCSM course. Despite the differences, we believe the information
recorded is still relevant for the analysis we present in this session.

For every student6, we periodically stored (every minute) information for the whole
modeling session. Additionally, the same information was also saved each time the user
performed a simple or complete validation. In particular, we recorded a total of 8410
intermediate models for 72 students. For the snapshots, we stored: (i) A unique user
identifier. (ii) The process model in BPMN (XML) format. (iii) The timestamp of the
snapshot. (iv) The type of information: automatic, validation or complete validation.
(v) The validation results of our tool for the particular process model. Note that the
validation results were computed for all snapshots, despite the students only seeing the
ones they explicitly requested.

After the end of modeling course, we analyzed the snapshots with the aim of ob-
serving the evolution of the number of validation errors during the modeling sessions.
The dataset used to perform this analysis can be found in the following address: http:
//www.cs.upc.edu/~pads-upc/ModelJudgeData.zip.

Modeling Behaviours

By manual inspection, we identified several modeling profiles when analyzing the sessions
data. Figure 5.4 shows a representative for each of the identified profiles, when plotting
number of validation errors vs. time (in seconds)7. An instructor can have a good
summary of the student evolution by looking at these student’s plots: (i) The first
group is composed of students that frequently use the validation and complete validation
functions, and ended up with almost no bad diagnostics. This group corresponds to
19.0% of the students (30.4% in the DTU course and 12.5% in the UCSM course).
(ii) The students from the second group frequently use the simple validation, however,
only check the complete validation at the end of the session. The final amount of bad
diagnostics for this group is comparable to the previous one. This group corresponds
to 60.3% of the students (56.5% in the DTU course and 62.5% in the UCSM course).
(iii) The students from the third group started working on the exercise but finished
before fixing the majority of bad diagnostics. We have observed that the students in
this group performed substantially less validations. This group corresponds to 20.6% of
the students (13.0% in the DTU course and 15.8% in the UCSM course).

Evolution of Diagnostic Types

We analyzed how the frequency of different diagnostics varies during the session. Fig-
ure 5.5 shows the evolution of the average amount of diagnostics for all students, per
diagnostic type. To better observe the relative behaviour of each type regardless of the
amount of diagnostics in the category, we plot the values relative to the maximum of
each category. We have encountered substantial differences between diagnostic types.

6We did not record information for those students that didn’t opt-in to the analytics
7There exists few outlier profiles that do not match any of the three representatives shown in Fig. 5.4.

39

http://www.cs.upc.edu/~pads-upc/ModelJudgeData.zip
http://www.cs.upc.edu/~pads-upc/ModelJudgeData.zip

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 5

Figure 5.4: Three characteristic behaviors observed in the modeling sessions. The blue
circles represent simple validations, while green squares denote complete validations.

Figure 5.5: Evolution of the diagnostic types for the modeling session.

40

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 5

Figure 5.6: Density plot of the diagnostic lifetimes variable.

Missing Activity diagnostics decrease as the session advances, since less activities
will be missing as the modeling session progresses.

Unnecessary Activity and Double Action Writing Style increase for the first half of
the session, then decrease. This behavior is consistent with the fact that most students
do not start using the complete validation feature until the second half of the session.
The more detailed feedback of the complete validation then helps them finding the more
subtle errors in their process model.

The remaining diagnostic types have an oscillatory behaviour, but still increase for
the duration of the session. This can be explained by the fact that, as the model session
progresses, there is a greater chance of a student introducing an error leading to one
of these diagnostics. However, the drops after 75% progress could indicate that some
students delay the correction of this errors until the end of the modeling session.

Lifetime of the Diagnostics

To get a deeper insight into the modeling session data, we computed the lifetime of the
diagnostics given to the students. We define the diagnostic lifetime as the elapsed time
between the moment a student introduces a mistake in the model, and the moment that
mistake is corrected. Note that this metric is independent of the validations made by
the student, since diagnostics are computed for all snapshots regardless of the student
used the validation function or not.

The average lifetimes follow a long-tailed distribution (Figure 5.6). That is, in the
average case mistakes are quickly corrected by the students. However, for a few cases,
it can take a very long time to solve those mistakes.

Relation of Number of Validations and Errors

Finally, we studied whether there was a correlation between the number of validations
performed by the students, and the number of bad diagnostics obtained. To that end,
we performed a Pearson’s correlation test on the following variables, measured for each
modeling session: Vs = “Number of validations”, Vc = “Number of complete vali-
dations”, Davg = “Average number of bad diagnostics during the modeling session”,

41

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 5

Figure 5.7: Results of the student survey for the modeling courses.

42

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 5

Correlation Coefficient Test p-value
DTU UCSM TOTAL DTU UCSM TOTAL

Vs ˜Davg -0.693 -0.626 -0.664 8.77× 10−5 9.04× 10−8 3.33× 10−12

Vs ˜Dend -0.636 -0.498 -0.558 4.74× 10−4 5.07× 10−5 2.34× 10−8

Vc ˜Davg -0.540 -0.305 -0.443 4.42× 10−3 1.77× 10−2 1.91× 10−5

Vc ˜Dend -0.219 -0.406 -0.397 3.85× 10−2 1.27× 10−3 1.57× 10−4

Table 5.1: Pearson’s correlation test results for the relevant pairs of studied variables
(shown per course and total).

Dend = “Number of bad diagnostics at the end of the exercise”.

Besides the obvious correlations Vc ˜Vs and Davg ˜Dend, we also found strong nega-
tive correlations between the two pairs of variables, as seen in Table 5.1. That is, when
the number of validations grows, the number of errors decreases. While all the corre-
lations were statistically significant, we can see how the ones concerning the number
of complete validations are weaker than the other two. This can be explained by the
fact that a large group of students did not use the complete validation, or did so only
at the end of the session without addressing the feedback, while almost all students
used the simple validation. Additionally, we observed that the correlations found for
the individual courses are less strong than considering the 72 students as one group.

5.5.2 Student Survey

In the survey, the students were asked demographic information, native language and
line of work, as well as their degree of agreement on some aspects of the application
with four questions, aimed at independently evaluating the accuracy and usefulness of
the validation and complete validation functionalities. Finally, the students also were
asked to write down any complaints and/or improvement suggestions.

Figure 5.7 shows the results of the survey: A majority (75.4% in average) of stu-
dents either agreed or strongly agreed in all questions. So we can say that the general
perception is that using Model Judge was beneficial to the students.

When looking separately at the questions regarding usefulness versus the ones re-
garding accuracy, we can see a difference, with the students having a stronger level of
agreement with the usefulness (84.0% on average) than accuracy (67.0% on average).
We can thus conclude the student’s perception was that the tool was useful, but not as
accurate. This can be validated from the student’s written suggestions, where in some
cases they complained about the tool not understanding their process model labels.

By comparing independently the results of the two modeling courses, we can see the
students from DTU were more critical with the tool (58.3% on average either agreed
or strongly agreed) than the ones from UCSM (83.6% on average). We believe this
difference can be partly explained by the presence of some technical issues during the
DTU modeling course that were fixed for the UCSM one.

43

Chapter 6

Conclusions and Future Work

This Master Thesis project has been divided in three major goals. The design of ATD,
the implementation of ATDlib, and the development of the algorithm behind the Model
Judge platform. We conclude that the three main initial goals have been achieved
successfully.

ATD are a novel alternative for business process documentation based on natural
language. Being a more understandable alternative to classical graphical and rule-based
notations, we expect ATD to be a useful documentation format for organizations, as
well as enable the same automation capabilities as more formal languages, like BPMN.
Finally, being annotated texts, mainstream adoption of ATD can help fill the lack of
training data in the field of Natural Language Processing for Business Process Manage-
ment. Future work in the development of ATD will involve solidification of the language:
Deploy ATD-based solutions in different application domains to see how to adapt the
base language to the wide variety of requirements in organizations.

ATDlib is the reference implementation of ATD. It can parse, automatically annotate
and convert ATD to various useful representations. The current implementation is still
in a very early stage, but it has been successfully deployed in the Model Judge platform.
However, further effort is necessary to allow easy integration of ATDlib into any BPM
system. One of the action points in that direction is to provide a Java interface into
the library to aid in ATD adoption for organizations using any other JVM language.
Another remaining functionality is to add support for ATD extensions into the library.
Finally, to allow for easy generation and annotation of ATD, a visual front-end must be
developed by fully integrating ATDlib into a text annotation interface.

Model Judge can help students learn modeling notations, such as BPMN, and has
already been tested in two pilot university courses. It is thus an example of the usage of
Annotated Textual Descriptions in a real use-case. Future work directions with Model
Judge will come in two ways. In one hand, we want to expand the usage of Model
Judge to more courses and universities. This will require considering new kinds of
useful diagnostics, and especially implementing a robust way for fine-grained detection
of control flow inconsistencies in process models. On the other hand, we want to get
more detailed insights into the students’ process of process modeling. By collecting
anonymised and consented analytics information with Model Judge, we believe we can
help get a better grasp of how people learn to model information, which will in turn
help us develop better and more intuitive models.

44

Bibliography

[1] Arthur HM ter Hofstede, Wil MP van der Aalst, Michael Adams, and Nick Rus-
sell. Modern Business Process Automation: YAWL and its support environment.
Springer Science & Business Media, 2009.

[2] Michele Chinosi and Alberto Trombetta. “BPMN: An introduction to the stan-
dard”. In: Computer Standards & Interfaces 34.1 (2012), pp. 124–134.

[3] Henrik Leopold, Jan Mendling, and Artem Polyvyanyy. “Supporting process model
validation through natural language generation”. In: IEEE Transactions on Soft-
ware Engineering 40.8 (2014), pp. 818–840.

[4] Han van der Aa, Henrik Leopold, Felix Mannhardt, and Hajo A Reijers. “On the
fragmentation of process information: Challenges, solutions, and outlook”. In: In-
ternational Conference on Enterprise, Business-Process and Information Systems
Modeling. Springer. 2015, pp. 3–18.

[5] Ruopeng Lu and Shazia Sadiq. “A Survey of Comparative Business Process Mod-
eling Approaches”. In: Business Information Systems. Ed. by Witold Abramowicz.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 82–94. isbn: 978-3-540-
72035-5.

[6] Wil MP van Der Aalst, Arthur HM Ter Hofstede, Bartek Kiepuszewski, and Al-
istair P Barros. “Workflow patterns”. In: Distributed and parallel databases 14.1
(2003), pp. 5–51.

[7] Llúıs Padró and Evgeny Stanilovsky. “FreeLing 3.0: Towards Wider Multilingual-
ity”. In: Proceedings of the Eighth International Conference on Language Resources
and Evaluation, LREC 2012, Istanbul, Turkey, May 23-25, 2012. 2012, pp. 2473–
2479. url: http://www.lrec-conf.org/proceedings/lrec2012/summaries/
430.html.

[8] P Stenetorp, Sampo Pyysalo, Goran Topic, Tomoko Ohta, Sophia Ananiadou, and
Jun’ichi Tsujii. brat: a Web-based Tool for NLP-Assisted Text Annotation. Apr.
2012.

[9] Angus Graeme Forbes, Kristine Lee, Gus Hahn-Powell, Marco Antonio Valenzuela-
Escárcega, and Mihai Surdeanu. “Text Annotation Graphs: Annotating Complex
Natural Language Phenomena”. In: CoRR abs/1711.00529 (2017). arXiv: 1711.
00529. url: http://arxiv.org/abs/1711.00529.

[10] Jan Mendling, Bart Baesens, Abraham Bernstein, and Michael Fellmann. “Chal-
lenges of Smart Business Process Management: An Introduction to the Special
Issue”. In: 100 (July 2017).

[11] Wil MP Van der Aalst. “The application of Petri nets to workflow management”.
In: Journal of circuits, systems, and computers 8.01 (1998), pp. 21–66.

45

http://www.lrec-conf.org/proceedings/lrec2012/summaries/430.html
http://www.lrec-conf.org/proceedings/lrec2012/summaries/430.html
http://arxiv.org/abs/1711.00529
http://arxiv.org/abs/1711.00529
http://arxiv.org/abs/1711.00529

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 6

[12] Jakob Pinggera, Stefan Zugal, and Barbara Weber. “Investigating the Process of
Process Modeling with Cheetah Experimental Platform–Tool Paper–”. In: ER-
POIS 2010 13 (2010).

[13] Han van der Aa, Josep Carmona, Henrik Leopold, Jan Mendling, and Llúıs Padró.
“Challenges and Opportunities of Applying Natural Language Processing in Busi-
ness Process Management”. In: (in press).

[14] Wil MP Van der Aalst. Process mining: data science in action. Springer, 2016.

[15] Niels Lohmann, Eric Verbeek, and Remco Dijkman. “Petri net transformations
for business processes–a survey”. In: Transactions on petri nets and other models
of concurrency II. Springer, 2009, pp. 46–63.

[16] Wil MP Van Der Aalst and Arthur HM Ter Hofstede. “YAWL: yet another work-
flow language”. In: Information systems 30.4 (2005), pp. 245–275.

[17] Roman V. Yampolskiy. “Turing Test as a Defining Feature of AI-Completeness”.
In: (2012).

[18] Jörg Becker, Patrick Delfmann, Sebastian Herwig, L. Lis, and Armin Stein. “For-
malizing Linguistic Conventions for Conceptual Models”. In: Conceptual Modeling
- ER 2009. LNCS. Springer Berlin Heidelberg, 2009, pp. 70–83.

[19] Henrik Leopold, Rami-Habib Eid-Sabbagh, Jan Mendling, Leonardo Guerreiro
Azevedo, and Fernanda Araujo Baião. “Detection of naming convention violations
in process models for different languages”. In: Decision Support Systems 56 (2013),
pp. 310–325.

[20] Bram Van der Vos, Jon Atle Gulla, and Reind van de Riet. “Verification of con-
ceptual models based on linguistic knowledge”. In: Data & Knowledge Engineering
21.2 (1997), pp. 147–163.

[21] V. Gruhn and R. Laue. “Detecting Common Errors in Event-Driven Process
Chains by Label Analysis”. In: Enterprise Modelling and Information Systems
Architectures 6.1 (2011), pp. 3–15.

[22] Henrik Leopold, Christian Meilicke, Michael Fellmann, Fabian Pittke, Heiner Stuck-
enschmidt, and Jan Mendling. “Towards the automated annotation of process
models”. In: International Conference on Advanced Information Systems Engi-
neering. Springer. 2015, pp. 401–416.

[23] C. Francescomarino and P. Tonella. “Supporting Ontology-Based Semantic An-
notation of Business Processes with Automated Suggestions”. In: International
Conference on Enterprise, Business-Process and Information Systems Modeling.
Vol. 29. LNBIP. Springer, 2009, pp. 211–223.

[24] M. Born, F. Dörr, and I. Weber. “User-Friendly Semantic Annotation in Business
Process Modeling”. In: WISE 2007 Workshops. Vol. 4832. LNCS. Springer, 2007,
pp. 260–271.

[25] A. Sinha and A. Paradkar. “Use Cases to Process Specifications in Business Process
Modeling Notation”. In: IEEE International Conference on Web Services. 2010,
pp. 473–480.

[26] João Carlos de Gonçalves, Flavia Maria Santoro, and Fernanda Araujo Baiao.
“Business process mining from group stories”. In: Computer Supported Cooperative
Work in Design, 2009. CSCWD 2009. 13th International Conference on. IEEE.
2009, pp. 161–166.

46

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 6

[27] Elena Viorica Epure, Patricia Mart́ın-Rodilla, Charlotte Hug, Rebecca Deneckère,
and Camille Salinesi. “Automatic process model discovery from textual method-
ologies”. In: Research Challenges in Information Science (RCIS), 2015 IEEE 9th
International Conference on. IEEE. 2015, pp. 19–30.

[28] Aditya Ghose, George Koliadis, and Arthur Chueng. “Process discovery from
model and text artefacts”. In: Services, 2007 IEEE Congress on. IEEE. 2007,
pp. 167–174.

[29] Fabian Friedrich, Jan Mendling, and Frank Puhlmann. “Process model generation
from natural language text”. In: International Conference on Advanced Informa-
tion Systems Engineering. Springer. 2011, pp. 482–496.

[30] Matt Selway, Georg Grossmann, Wolfgang Mayer, and Markus Stumptner. “For-
malising natural language specifications using a cognitive linguistic/configuration
based approach”. In: Information Systems 54 (2015), pp. 191–208.

[31] Henrik Leopold, Han van der Aa, Fabian Pittke, Manuel Raffel, Jan Mendling, and
Hajo A Reijers. “Searching textual and model-based process descriptions based on
a unified data format”. In: Software & Systems Modeling (2017), pp. 1–16.

[32] Han van der Aa, Henrik Leopold, and Hajo A Reijers. “Checking Process Com-
pliance against Natural Language Specifications using Behavioral Spaces”. In: In-
formation Systems (2018).

[33] Josep Sànchez-Ferreres, Josep Carmona, and Llúıs Padró. “Aligning Textual and
Graphical Descriptions of Processes Through ILP Techniques”. In: Advanced Infor-
mation Systems Engineering. Ed. by Eric Dubois and Klaus Pohl. Cham: Springer
International Publishing, 2017, pp. 413–427. isbn: 978-3-319-59536-8.

[34] Cristina Cabanillas, David Knuplesch, Manuel Resinas, Manfred Reichert, Jan
Mendling, and Antonio Ruiz Cortés. “RALph: A Graphical Notation for Resource
Assignments in Business Processes”. In: Advanced Information Systems Engineer-
ing - 27th International Conference, CAiSE 2015, Stockholm, Sweden, June 8-12,
2015, Proceedings. 2015, pp. 53–68.

[35] Paramita Mirza. “Extracting Temporal and Causal Relations between Events”.
PhD thesis. International Doctorate School in Information and Communication
Technologies, University of Trento, 2016.

[36] Wil MP van der Aalst. “On the representational bias in process mining”. In:
Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE),
2011 20th IEEE International Workshops on. IEEE. 2011, pp. 2–7.

[37] Sergey Smirnov, Matthias Weidlich, and Jan Mendling. “Business process model
abstraction based on behavioral profiles”. In: Service-Oriented Computing. Springer,
2010, pp. 1–16.

[38] Andrea Burattin. “PLG2: multiperspective processes randomization and simula-
tion for online and offline settings”. In: arXiv preprint arXiv:1506.08415 (2015).

[39] Rich Hickey. “The Clojure Programming Language”. In: Proceedings of the 2008
Symposium on Dynamic Languages. DLS ’08. Paphos, Cyprus: ACM, 2008, 1:1–
1:1. isbn: 978-1-60558-270-2. doi: 10.1145/1408681.1408682. url: http://doi.
acm.org/10.1145/1408681.1408682.

[40] Pontus Stenetorp, Sampo Pyysalo, Goran Topić, Tomoko Ohta, Pierre-Francois
Laquerre, Illés Solt, Jörn Kottmann, David McClosky, Antony Scerri, and Jon
Crump. brat standof format. http://brat.nlplab.org/standoff.html. Accessed: 21-
05-2018.

47

https://doi.org/10.1145/1408681.1408682
http://doi.acm.org/10.1145/1408681.1408682
http://doi.acm.org/10.1145/1408681.1408682

MIRI Master Thesis: Model-Agnostic Process Modeling Chapter 6

[41] Jan Mendling, Hajo A. Reijers, and Wil M. P. van der Aalst. “Seven process
modeling guidelines (7PMG)”. In: Information & Software Technology 52.2 (2010),
pp. 127–136. doi: 10.1016/j.infsof.2009.08.004. url: https://doi.org/10.
1016/j.infsof.2009.08.004.

[42] Wil M. P. van der Aalst, Kees M. van Hee, Arthur H. M. ter Hofstede, Natalia
Sidorova, H. M. W. Verbeek, Marc Voorhoeve, and Moe Thandar Wynn. “Sound-
ness of workflow nets: classification, decidability, and analysis”. In: Formal Asp.
Comput. 23.3 (2011), pp. 333–363. doi: 10.1007/s00165- 010- 0161- 4. url:
https://doi.org/10.1007/s00165-010-0161-4.

[43] Henrik Leopold, Sergey Smirnov, and Jan Mendling. “On the refactoring of activity
labels in business process models”. In: Inf. Syst. 37.5 (2012), pp. 443–459. doi:
10.1016/j.is.2012.01.004. url: https://doi.org/10.1016/j.is.2012.01.
004.

[44] Jan Mendling, Hajo A Reijers, and Jan Recker. “Activity labeling in process mod-
eling: Empirical insights and recommendations”. In: Information Systems 35.4
(2010), pp. 467–482.

[45] Tadao Murata. “Petri nets: Properties, analysis and applications”. In: Proceedings
of the IEEE 77.4 (1989), pp. 541–580.

[46] Artem Polyvyanyy and Matthias Weidlich. “Towards a compendium of process
technologies: The jBPT library for process model analysis”. In: Proceedings of the
CAiSE’13 Forum at the 25th International Conference on Advanced Information
Systems Engineering (CAiSE). Sun SITE Central Europe. 2013, pp. 106–113.

[47] Thomas Lengauer and Robert Endre Tarjan. “A Fast Algorithm for Finding Domi-
nators in a Flowgraph”. In: ACM Trans. Program. Lang. Syst. 1.1 (1979), pp. 121–
141. doi: 10.1145/357062.357071. url: http://doi.acm.org/10.1145/

357062.357071.

[48] Inc. Gurobi Optimization. Gurobi Optimizer Reference Manual. 2016. url: http:
//www.gurobi.com.

48

https://doi.org/10.1016/j.infsof.2009.08.004
https://doi.org/10.1016/j.infsof.2009.08.004
https://doi.org/10.1016/j.infsof.2009.08.004
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1016/j.is.2012.01.004
https://doi.org/10.1016/j.is.2012.01.004
https://doi.org/10.1016/j.is.2012.01.004
https://doi.org/10.1145/357062.357071
http://doi.acm.org/10.1145/357062.357071
http://doi.acm.org/10.1145/357062.357071
http://www.gurobi.com
http://www.gurobi.com

Appendix A

Source Code

All the source code that has been developed for this Master Thesis is available as a Git
repository at https://github.com/setzer22/master_thesis_source. This appendix
covers the relevant parts of the project and the necessary dependencies to build and
execute it.

The repository presented consists of three main projects, divided in three subfolders
in the repository root. All three projects are built using Maven and follow the Maven
convention of folder structure: A pom.xml file specifies the build instructions and de-
pendencies, and the src/main/{java,clojure} subfolders contain the source code for
the corresponding project.

nlp4bpm commons This project contains several utilities that are used across atdlib and
all the algorithms of the NLP4BPM project. The relevant source files for this
project are freeling api.clj and Freeling.clj, which wrap FreeLing’s JNI
interface and label parser.clj which implements the custom SRL module for
BPMN labels described in Section 5.3.1.

atdlib ATDlib implements all functionalities described in Chapter 4. The source file
names correspond to the same module names used in this document and thus
should be self-explanatory.

modeljudge This project contains the implementation for the Model Judge algorithm.
The major part of this module consists of an adaptation of the alignment between
textual descriptions and BPMN process models. The parts that are specific to
Model Judge are in the core students.clj namespace.

To build some of the projects, some Java dependencies not available in any maven
repository must be included. These are distributed inside the jars folder of the relevant
project, with a bash script that installs them into the local Maven repository. Addi-
tionally, there are two native dependencies that cannot be bundled into the project due
to size and/or license restrictions: FreeLing 4.0 or higher1 and the Gurobi ILP solver2.
Please note that Gurobi requires an academic or commercial license. These must be
installed in the target system and listed in the system’s PATH and LD LIBRARY PATH

variables (or the equivalent in Windows operating systems).

1http://nlp.lsi.upc.edu/freeling/index.php/node/30
2http://www.gurobi.com/downloads/download-center

49

https://github.com/setzer22/master_thesis_source

	Introduction
	Motivation
	Project Scope
	Structure of this Document

	Background
	Business Process Management
	Business Process Notations

	Natural Language Processing
	Steps of Language Analysis
	Text Annotations

	The NLP4BPM Project

	Describing Processes with Natural Language
	Running Example
	Annotated Textual Descriptions
	ATD Semantics
	Annotation Types
	Relation Types
	Automatic Reasoning

	Possible Applications of ATD

	ATDlib: A Library to Manage and Generate ATD
	Features and Architecture
	Converting ATD to Freeling Semantic Graphs

	Creating an ATD with ATDlib

	Model Judge: A Practical Use Case of ATD
	The Model Judge Platform
	Diagnostics

	A Tour through Model Judge
	Approach
	Process Model Analysis
	ATD Exensions for Model Judge
	Diagnostics Generation

	Aligning ATD and BPMN Process Models
	Feature Extraction
	Similarity Computation
	Alignment Creation
	Predictor-based Refinement

	Experiments
	Analysis of the Modeling Session Data
	Student Survey

	Conclusions and Future Work
	Source Code

