
Improving the scheduler of the
OmpSs-2 runtime

Master thesis by:

Marc Maŕı Barceló

As part of the Master in Innovation and Research in Informatics
in the specialization of High Perfomance Computing

Advisors:
Vicenç Beltran Querol
Eduard Ayguadé Parra

Facultat d’Informàtica de Barcelona
Universitat Politècnica de Catalunya - UPC BarcelonaTech

Barcelona, 27 June 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185525158?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Task parallelism is the new paradigm in parallel computing, where the programmer only
has to annotate sections of the code as tasks and the data dependences between them.
These new paradigms put a lot of pressure on the underlying runtime, in order to get
the best performance from the application.

Nanos6, the reference implementation runtime for the task-based OmpSs-2 programming
model has, therefore, to be as efficient as possible processing and distributing tasks across
shared memory systems. A special challenge are those applications that create lots of
very small tasks, which are currently bounded by the internal performance of Nanos6.

The aim of this thesis is to improve the performance of the Nanos6 runtime in the areas
of task creation and task scheduling. Specifically, it aims to make task creation and
scheduling more scalable for current and future large multi-core systems, and also make
it more efficient, to improve the execution time of applications.

ii

Acknowledgements

First, I would like to thank Eduard Ayguadé, who gave me the opportunity to work at
BSC. This has been an incredible opportunity, which I have really enjoyed, and where
I have learned lots of new things.

I would also like to thank Vicenç Beltran, my manager and mentor during my years at
BSC. He has always been very helpful in finding solutions to new problems, and he has
always been very understanding of the challenges of working and studying at the same
time.

Thanks to Josep Maria Pérez, the lead developer of the Nanos6 project. He has always
been open to questions about the runtime internals, and he has been very efficient
correcting bugs. His comments on new developments were also very helpful.

My gratitude to the whole Nanos6 team, which are all great developers and great people.
It has always been nice to chat with them while having coffee. And specially to Kevin
Sala, with whom I shared the office space.

Last, but not least, thanks to all my family. My parents, my grandmother, my brothers
and my uncle. All of them have been always very supportive of all my decisions.

Thanks to everybody. The journey has been great, and the future looks bright.

iii

Contents

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vi

List of Tables vii

List of Listings viii

1 The OmpSs-2 programming model 1
1.1 Introduction . 1
1.2 OmpSs and OmpSs-2 . 1

1.2.1 Environment . 3
1.3 Nanos6 . 3

1.3.1 Task flow . 3
1.3.2 Threads and CPUs . 5

2 Task scheduling 6

3 Current Nanos6 scheduler 7
3.1 Design . 7

3.1.1 Frontend . 7
Adding tasks . 7
Obtaining tasks and polling slots 7
Other helper methods . 8

3.1.2 Backend . 8
3.2 Design issues . 9
3.3 Performance results . 9

3.3.1 Benchmarks . 9
3.3.2 Results . 10

multiaxpy-noop . 10
cholesky . 11

4 New Nanos6 scheduler 14
4.1 Design . 14

4.1.1 Adding tasks . 15

iv

4.1.2 Getting tasks . 16
4.1.3 Queue threshold . 16
4.1.4 Local queue policy . 16
4.1.5 Resource management . 16

4.2 Improvements . 17
4.2.1 Dynamic threshold . 17
4.2.2 Load balancing . 17

4.3 Performance results . 18
4.3.1 Original design . 18

multiaxpy-noop . 18
cholesky . 19

4.3.2 Dynamic queue threshold . 19
multiaxpy-noop . 19
cholesky . 20

4.3.3 Load balancing . 20
multiaxpy-noop . 20
cholesky . 21

5 Memory allocator 23
5.1 Introduction . 23
5.2 New design . 23
5.3 Performance results . 24

5.3.1 Original scheduler . 24
multiaxpy-noop . 24
cholesky . 25

5.3.2 New scheduler . 25
multiaxpy-noop . 25
cholesky . 26

6 Final performance evaluation 27
6.1 multiaxpy-noop . 27
6.2 cholesky . 27
6.3 multiaxpy . 29
6.4 Other applications . 30

7 Conclusions 31
7.1 Future Work . 31

Bibliography 32

A Applications 33
A.1 multiaxpy-noop . 33
A.2 cholesky . 33

v

List of Figures

1.1 Stages in the lifetime of a task in the Nanos6 runtime 4
1.2 Memory organization for Nanos6 tasks 4

3.1 Execution time for multiaxpy-noop for different block sizes 10
3.2 Profile for multiaxpy-noop for block size 1024 11
3.3 Execution time for cholesky for different block sizes 12
3.4 Profile for cholesky for block size 32 × 32 12

4.1 Conceptual diagram for the new scheduler design 14
4.2 Execution time for multiaxpy-noop using the new scheduler 18
4.3 Execution time for cholesky using the new scheduler 19
4.4 Execution time for multiaxpy-noop with dynamic queue threshold . . . 19
4.5 Execution time for cholesky with dynamic queue threshold 20
4.6 Execution time for multiaxpy-noop with load balancing 21
4.7 Profile for multiaxpy-noop for block size 1024 21
4.8 Execution time for cholesky with load balancing 22
4.9 Profile for cholesky for block size 32 × 32 22

5.1 Conceptual diagram for the new memory allocator design 24
5.2 Execution time for multiaxpy-noop with the memory allocator 25
5.3 Execution time for cholesky with the memory allocator 25
5.4 Execution time for multiaxpy-noop with the memory allocator 26
5.5 Execution time for cholesky with the memory allocator 26

6.1 Execution time for multiaxpy-noop with all improvements 27
6.2 Profile for multiaxpy-noop with all improvements for block size 1024 . . 28
6.3 Execution time for cholesky with all improvements 28
6.4 Profile for cholesky with all improvements for block size 32 × 32 29
6.5 Execution time for multiaxpy-recursive with all improvements 29
6.6 Execution time for multiaxpy-recursive-10it with all improvements . 30
6.7 Speedup for several applications with all improvements 30

A.1 Multiaxpy vector splitting pattern . 33

vi

List of Tables

A.1 Number of tasks created in the multiaxpy-noop application 34
A.2 Number of tasks created in the cholesky application 34

vii

Listings

1.1 OmpSs programming model example . 2

viii

1. The OmpSs-2 programming model

1.1 Introduction

With current supercomputers, such as Marenostrum 4 [1], being composed of thousands
of compute nodes, and each of them of tens of cores, it has become a necessity to make
use of parallel programming models and runtimes such as OpenMP [2] or MPI [3] to
ease the parallelization of applications and make a better use of the available resources.
This also allows easier portability of applications between systems, as the architectural
complexities of parallel programming are inside the runtimes.

One of these progamming models is OmpSs [4], a task-based programming model for
shared-memory systems, developed at the Barcelona Supercomputing Center (BSC) [5].

1.2 OmpSs and OmpSs-2

The OmpSs [4] programming model is the result of combining ideas from the OpenMP
and StarSs programming models. On one hand, it takes from OpenMP its viewpoint
of providing a parallel version of the application by introducing annotations in the
sequential source code. These annotations do not have an explicit effect in the semantics
of the program, instead, they allow the compiler to produce a parallel version of it. This
removes the need to redesign the application like in explicit programming models, which
reduces the efforts required to debug and test.

On the other hand, it inherits from StarSs its thread-pool execution model, opposite
to OpenMP’s fork-join parallelism. It also includes features to target heterogeneous ar-
chitectures through leveraging native kernels implementation. And finally, StarSs offers
asynchronous parallelism as the main mechanism of expressing concurrency (OpenMP
only started to implement it since its version 3) and sychronization by means of task
dependences, enabling the look-ahead instantiation of tasks (OpenMP included it since
version 4).

StarSs raises the bar on how much implicitness is offered by the programming model.
In OpenMP, the developer has to find which regions of the program will be executed
in parallel, and then he has to express how the code has to be executed by the threads
forming the parallel region and, maybe, how to synchronize them. Conversely, StarSs
provides an environment where parallelism is implicitly created from the beginning of the
execution, and the definition of parallel code is done through the concept of tasks, pieces

1

of code that can be executed asynchronously in parallel, with the order of execution
defined by a dependency mechanism.

The goal of OmpSs is to combine these ideas from OpenMP and StarSs into an environ-
ment to develop applications for modern High Performance Computing systems that is
both easy to use and delivers high performance compared to other programming models
targeting the same architectures.

In OmpSs, tasks are the elementary unit of work which represents a specific instance
of an executable code. Dependences let the user annotate the data flow of the program
and specify relationships between tasks. This way, at runtime this information can be
used to determine if the parallel execution of two tasks may cause data races. Listing
1.1 shows a simple example of a code parallelized with the OmpSs programming model.

int compute () {

#pragma oss task out(x)

x = compute_x ();

#pragma oss task out(y, z)

{

y = compute_y ();

z = compute_z ();

}

#pragma oss task in(x, y, x) out(result)

result = compute_result(x, y, z);

return result;

}

Listing 1.1: OmpSs programming model example

Other ways that the user can influence the order of execution of tasks are, for example,
task priorities (assigning a higher priority to a task will indicate the scheduler that it
should schedule that task sooner),

OmpSs-2 [6] is the second generation of the OmpSs programming model. It extends
the tasking model of OmpSs to support both task nesting and fine-grained dependences
across different nesting levels, which enables the effective parallelization of applications
using a top-down methodology. Some of its most prominent features are:

• Nested dependency domain connection

• Early release of dependences

• Weak dependences

• Native offload API

2

• Task pause/resume API

1.2.1 Environment

The reference implementation of OmpSs-2 is based on the Mercurium source-to-source
compiler and the Nanos6 runtime library.

The Mercurium source-to-source compiler [7] provides the necessary support for trans-
forming the high-level directives into a parallelized version of the application.

The Nanos6 runtime [8], on the other hand, provides the services to manage all the
parallelism in the user-application, including task creation, synchronization and data
movement, and provide support for resource heterogeneity. This runtime and its per-
formance will be the focus of this thesis.

1.3 Nanos6

The goal of this project is to improve the internal performance of the Nanos6 runtime.
In specific, this project aims to evaluate and improve the performance of the Nanos6
runtime in the areas of task creation and task scheduling. These areas are part of
the critical path of the task execution lifetime, and, therefore, it is important to be
as efficient and as scalable as possible. These areas have been chosen because, as will
be seen through this document, there is room for improvement, and they also are self-
contained areas that can be completely redesigned without modifying significantly the
rest of the runtime.

Nonetheless, it is critical to understand the internal organization of Nanos6 before ap-
proaching the problems on those specific areas. In particular, it is important to take
into account the different stages in the lifetime of a task, and how it relates with the
final execution components: threads and CPUs.

1.3.1 Task flow

As mentioned, the task is the basic unit of execution in the OmpSs and OmpSs-2
programming models. It is then important to understand the different stages of a
task through its lifetime to understand how the Nanos6 runtime works and where its
performance can be improved. Figure 1.1 is a diagram of the possible stages in which a
task can be.

Before the runtime knows about the existence of a task, it is necessary to create and
fill all its information and data structures. This is handled by the compiler, who is
responsible of translating the #pragma oss statements into data structures and runtime
API calls.

3

Figure 1.1: Stages in the lifetime of a task in the Nanos6 runtime

The two main Nanos6 API calls related to task creation tasks are:

• nanos create task: allocates the necessary memory in the runtime address space
for both the task and its arguments. This is a continuous region aligned to 128
bytes, as shown in Figure 1.2.

• nanos submit task: submits a task to the runtime to be ran.

Figure 1.2: Memory organization for Nanos6 tasks

After the task is submitted to the runtime, its dependences with other tasks are checked.
If these dependences are not satisfied, this task is left pending until it can run.

Once a task is ready to run, this is, all task dependences are satisfied, this task is sub-
mitted to the scheduler. The scheduler is the responsible of assigning tasks to available
resources (idle CPUs). The first time that a task is scheduled, a thread is assigned to
it, which will not change for the lifetime of the task.

If the task is blocked while running (for example, in a taskwait), the CPU in which
it is running will be freed so other tasks can run on it. When the blocking condition
is released (when all children tasks finish, in the case of a taskwait), the task will be
sent to the scheduler again so that it can obtain a new CPU to run on. Nonetheless, as
mentioned before, the thread assigned to the task will not change, it will only migrate
CPUs.

When the task finishes, it will free its dependences (which, in turn, may make new tasks
ready), and its data structures will be deleted.

4

1.3.2 Threads and CPUs

As mentioned in the previous section, a task is assigned to one and only one thread
during its lifetime. Nonetheless, a thread may have more than one task assigned to
it. All the tasks that are assigned to the same thread are always descendants of one
another, to avoid deadlocks. These limitations are because these threads are standard
Linux pthreads. Therefore, it is not possible to reorder the stack of the thread, and it is
necessary to release the stacked tasks in the proper order.

When a task is scheduled, a free CPU is assigned to it. Therefore, the thread that is
running that task must be pinned to that specific CPU and, if the task is rescheduled
after a blocking condition (a taskwait for example), the thread must migrate and pin
itself to a new CPU. If a thread was to fetch a task from the scheduler that already had
a thread assigned, the fetching thread would release the CPU to allow the new thread
to run.

When all tasks assigned to one thread finish and there are no more tasks pending in the
scheduler, that thread is marked as idle and it is stored in an idle thread pool. When
a new task requires a thread, this idle thread will be reused, instead of creating a new
one.

5

2. Task scheduling

The problem of scheduling in task-based parallel runtimes has been widely discussed,
specially since the introduction of tasks in OpenMP. As mentioned in [9], an efficient
task scheduler must meet challenging and sometimes conflicting goals: exploit cache and
memory locality, maintain load balance and minimize overhead.

In [10] and [11] multiple scheduling policies are discussed, each with its pros and cons:

• Predetermined scheduling: for very regular applications, it is possible obtain an
excellent performance with an static schedule. But for most applications it will
not be possible to precalculate a good schedule.

• Opportunistic scheduling: uses a centralized or distributed list of ready tasks
associated to load balancing mechanisms. This approach is the most natural but
does not use affinity information from the compiler or the programmer, and thus
cannot achieve the best performance.

• Negotiated scheduling: intermediate solutions between predetermined and oppor-
tunist. This includes programming languages like OpenMP where the programmer
just has to give suggestions and clues, sometimes indirectly, and the compiler and
runtime adapt the scheduling to different parallel architectures. This is also the
case in OmpSs and OmpSs-2, where, for example, dependences can indicate the
relationships between data used by two tasks.

According to [12], a hierarchy of task lists generally brings better performance than
simple per-processor lists. And it also makes task binding to processor sets easier.

Authors in [9] tested several scheduling policies for OpenMP, and compared them. Their
results show that hierarchical approaches that respect data locality in the underlying
architecture give the best performance. In specific, they implemented a scheduler with
one shared LIFO queue per NUMA node, with work stealing that obtained better per-
formance than other implementations such as single queue schedulers or schedulers with
a queue per core with and without work stealing.

Other authors such as [10] have also developed a hierarchical scheduler, in this case aimed
to better data distribution. This approach also obtained a significant improvement.

6

3. Current Nanos6 scheduler

3.1 Design

In Nanos6, the scheduler is the responsible of assigning resources (CPUs) to the tasks
that are ready to run. As mentioned previously, a task is ready to run (and therefore,
queued on the scheduler) when all its dependences are satisfied.

The current implementation of the Nanos6 scheduler is based on a single-queue model,
protected by a lock, which allows much more control, but becomes a bottleneck in
systems with a high number of CPUs or with applications that create lots of small
tasks, as already studied by other authors, and mentioned in Chapter 2.

This scheduler is composed of two sections clearly defined: its frontend (how it interacts
with the rest of the runtime), and its backend (how it manages the tasks internally, and
how this behaviour can be changed).

3.1.1 Frontend

Adding tasks

There are two different ways to add tasks to the scheduler. One one side, the method
addReadyTask adds a newly created task to the scheduler and returns an idle CPU if
there is one. If an idle CPU is returned, an idle thread needs to be woken up on that
CPU, so that it can get the newly added task from the scheduler.

On the other side, the method taskGetsUnblocked adds a recently unblocked task to
the scheduler. It does not return anything.

Obtaining tasks and polling slots

The method getReadyTask returns a task from the scheduler, if there are any available.

It is also possible to obtain tasks by means of polling slots. A polling slot is basically
an atomic variable that can store a task. A thread that wants to actively wait for tasks
for a period of time can set up a polling slot, and as soon as a task becomes ready to
be scheduled, it will be set on the polling slot so that the thread can start running it
immediately.

7

These polling slots reduce the overhead on the scheduler, as polling threads will not
be continuously requesting the lock of the scheduler queue (which would be the case
if getReadyTask was called repeatedly). They also reduce overhead on the threading
system, as suspending and resuming a thread is an expensive operation (as mentioned
previously, threads are Linux pthreads, therefore suspending means locking on a condi-
tion variable and switching context on the OS, and resuming is the opposite operation).

To work with polling slots the methods requestPolling and releasePolling are avail-
able, which set and free the internal scheduler’s polling slot, respectively. These methods
return a boolean value indicating if the operation was or not successful.

Other helper methods

Generally, the resources assigned to the runtime are set in the initialization phase and
are not modified throughout the execution. But, in cases where Nanos6 needs to share
its resources with other runtimes or applications running in the system, it is possible to
increase or reduce the number of CPUs assigned to it. To notify the scheduler of these
changes, the methods disableComputePlace and enableComputePlace are available.

It is also possible to obtain a CPU that is currently idle through the getIdleComputePlace
method. This is useful, for example, in cases where a task is unblocked and it is necessary
to run it as soon as possible.

3.1.2 Backend

This generic interface with the rest of the runtime explained in the previous section
allows for different scheduling policies to be implemented and tested. The main scheduler
implementations currently available are:

• LIFO and FIFO schedulers: a simple single queue LIFO or FIFO scheduler. These
basic implementations don’t have polling slots available. These are implemented
with a call to getReadyTask.

• LIFO and FIFO schedulers with polling slots: similar to the previous ones, but
with polling slots available.

• LIFO and FIFO schedulers with polling slots and immediate successor awareness:
similar to the previous ones, but these also try to schedule the first successor of
the currently running task in the same CPU to increase data locality and reduce
scheduling time.

• Priority scheduler with polling slots and immediate successor awareness: like the
previous ones, but with a priority queue instead of a FIFO or LIFO, for those cases
where tasks have priorities. This is currently the default scheduler in Nanos6.

8

3.2 Design issues

Aside from the obvious performance and scalability issues of using a single queue in
systems with a high number of cores (analyzed in Section 3.3), there are also design
problems with the frontend of the scheduler that need to be taken into account for a
redesign:

• Adding unblocked tasks: there is no real need of having a specific method for
adding tasks that are unblocked. The addReadyTask method already provides a
parameter to give a “hint” to the scheduler, which is used to indicate, for example,
if the task currently being added to the scheduler is a child or a sibling of the
currently running task. This hint could be used to also indicate if the task is an
unblocked task.

• Polling slots: these were introduced to reduce the overheads caused by the internal
scheduler lock and the thread suspension and resumption process. But polling
slots also expose part of the internal scheduler workings to the rest of the runtime,
which is not desirable. They could be scrapped completely, and its functionality
could be integrated in the getReadyTask method: if there are no tasks available,
instead of returning immediately, poll for a certain period of time.

• Thread resumption: it is also important to address who should be the responsible
of waking up threads when tasks are added to the scheduler. The current imple-
mentation returns an idle CPU, and the calling code is responsible of waking up
a thread on that CPU. This means that all calls to addReadyTask across the run-
time are followed by a call to wake up a thread on a certain CPU if it is non-null.
These code snippets could be easily integrated inside the scheduler, if desired.

3.3 Performance results

3.3.1 Benchmarks

Before analyzing the current performance of the Nanos6 scheduler, its shortcomings
and possible improvements, it is very important to decide on a set of benchmarks that
will serve as a basic metric. For this purpose, two benchmarks have been selected:
multiaxpy-noop and cholesky.

The application multiaxpy-noop, described in Appendix A.1, is a very synthetic ap-
plication, purely aimed to stress as much as possible the task creation and scheduling
subsystems of Nanos6. Very few, if any, real-world applications will create as many
tasks as fast as this example. But this extreme example will serve as a good metric of
how efficient and scalable task creation is on Nanos6.

9

The application cholesky, described in Appendix A.2, on the other hand, is a very
classic benchmark. It has only one task creator, it has dependences, and creates much
fewer tasks than the previous example. Therefore, it has been chosen as a complete
opposite of the previous application, in order to avoid designing and implementing
solutions based on very specific scenarios.

Apart from these basic benchmarks used through the design and development of new
solutions, several more applications have been tested against the proposed final solution,
to verify that it is a valid solution that improves or, at least, does not hinder the
performance with respect to the original implementation.

All these applications have been run in multiple machines at BSC, but this thesis focuses
on Marenostrum 4, as results were similar across machines. Marenostrum 4 [1] is a
supercomputer composed of 3456 nodes, each of them with 2 24-core Intel Xeon Platinum
8160 at 2.1 GHz and 96 GB of RAM.

3.3.2 Results

multiaxpy-noop

(a) (b)

Figure 3.1: Execution time for multiaxpy-noop for different block sizes

Figure 3.1a shows the results of running the benchmark multiaxpy-noop with a vector
size of 1G elements and 10 iterations for different block sizes, and the default Nanos6
scheduler, the priority scheduler.

From these results, it is clear that, for block sizes bigger than 219, the execution time
is bounded by the application itself. But for smaller block sizes, the execution time is
bounded by the scalability and the load of the runtime. In specific, it is bounded by the
runtime’s task creation and scheduling times, as this application is not accessing data
(so there can be no effect from caches or NUMA nodes) and it has no dependences or
other constructs (so there can be no effect from other parts of the Nanos6 runtime). For

10

this reason, only the lower part of the plot (more interesting) is shown in the rest of the
analysis.

Figure 3.1b, on the other hand, shows the speedup of the different backends implemented
in Nanos6 with respect to the priority scheduler shown before. From this plot, it is clear
that, for this benchmark, the scheduler with both polling slots and immediate successor
slots achieves the best performance.

Figure 3.2: Profile for multiaxpy-noop for block size 1024

A detailed profile of the execution for the smallest block size, in Figure 3.2, shows that
in this application most of the execution time is spent waiting for permission to access
the scheduler’s lock. Specifically, when accessed from the functions requestPolling

(first) and addReadyTask (second). This is mainly because of the centralized nature of
the current scheduler implementations.

Other calls that take an important amount of time are the atomic loads of the polling
slots.

In conclusion, this benchmark shows that there is a lot of margin in the Nanos6 scheduler
to improve its throughput and scalability.

cholesky

Figure 3.3a shows the perfomance of the priority scheduler to solve a Cholesky factor-
ization on a 16K × 16K element matrix for different block sizes. Figure 3.3b, on the
other hand, shows the relative performance of different schedulers with respect to the
priority scheduler.

These figures show that this application also looses performance with very small sizes.
But, in this case, due to the characteristics of the application, it may be because of
multiple factors, not only lack of performance in task creation.

11

(a) (b)

Figure 3.3: Execution time for cholesky for different block sizes

With respect of the different scheduler backends, the highest performance is achieved
by the scheduler with immediate successor slots and polling slots, independent of its
internal queue (LIFO or priority).

Figure 3.4: Profile for cholesky for block size 32 × 32

The profile of the execution of this benchmark for the smallest size (Figure 3.4) shows
a much better picture than in the case of multiapxy-noop.

Most of the time is spent in the function handleServices, part of the polling services
API subsystem. This function is called periodically from the threads that are idle, which
means that there are no ready tasks available in the scheduler. If the thread that is
creating tasks was able to create and schedule tasks faster, the rest of the threads may
be able to obtain tasks faster, which would improve overall performance.

The next most time consuming section is the actual body of the benchmark, followed
by the Nanos6 thread body function. After that come functions related to task memory
allocation and release, and dependence management.

12

In conclusion, this benchmark shows that, for complex applications, the time spent in
the runtime is distributed in many different areas. In particular, threads polling the
scheduler for tasks represent an important amount of time (as polling services are called
when the scheduler returns no tasks) which could be reduced by making the task creation
and scheduling process faster.

13

4. New Nanos6 scheduler

4.1 Design

Figure 4.1: Conceptual diagram for the new scheduler design

With the ideas from literature from Chapter 2, and the ideas from the current implemen-
tation, a new scheduler was designed, trying to modify as little as possible the interface
with the rest of the runtime. This new scheduler is a distributed scheduler in the shape
of a tree, as shown in Figure 4.1, where each of the nodes has a direct correspondence
with a hardware component in the underlying hardware architecture.

The two components of this tree structure are:

• Leaf nodes: there is one of these nodes for each CPU in the system. They are
the entry point to the scheduler (so several operations can take place in parallel
in different CPUs), and each of them has a local queue of pending tasks.

• Internal nodes: there is one of these nodes for each NUMA node in the system
(with the CPU nodes as children), and one node as the the root (with the NUMA
nodes as children). Each of them has a local queue of pending tasks, and a local
queue of idle children.

This design allows for more scheduling work done locally in each CPU, without the need
to interfere with the execution of other CPUs, which reduces locking and contention.
However, a design based on local queues must also enable mechanisms of work stealing

14

or, at least, load balancing, so that no CPUs are idle while others have big backlogs of
tasks.

For this reason, a queue threshold has been introduced, which is the responsible of
keeping all scheduler nodes with a similar load (a similar number of tasks enqueued).
This way, it is not necessary for CPUs to steal work from other nodes, as the nodes
themselves send their extra backlog of tasks to their nearest idle neighbor.

In the future, if a task creation cutoff mechanism was introduced in Nanos6, the number
of tasks in the scheduler can be estimated from this queue threshold value, giving a
reasonable estimate, at the cheap cost of checking one atomic variable.

This tree-shaped distributed scheduler also improves data locality, as it is prioritized
that tasks are scheduled in the same node where they are created, or, if not possible,
the same NUMA node.

In the following sections, it is explained how these nodes interact with each other in the
different scenarios they can encounter.

4.1.1 Adding tasks

When the method addReadyTask of the scheduler is called, the task is added to the
local task queue of leaf node that corresponds to the calling thread’s CPU. It is directly
added to the queue because it is impossible for that CPU to be creating tasks and be
idle (and requesting tasks) at the same time.

The only two exceptions to this are the main task, and tasks that are unblocked from
an external thread. In these special cases the task is sent to a random leaf node which
may be idle (then, the task must be stored in the polling slot) or may not be idle (the
task is added to the local task queue of the node).

When a task is pushed to the local task queue, it might be the case that there are too
many tasks in that queue (the queue size is over the threshold). In this case half of the
queue tasks are submitted to the parent node. The parent node checks if there are any
children in its idle children queue to submit the set of tasks that it received, and if there
were none, it enqueues the set of tasks locally. If the queue size of this node is also over
the threshold, the process is repeated recursively.

If, on the other hand, there were idle children available, the set of tasks is sent to one of
those children, who stores them locally. If the child is a leaf node, it will store one task
in the polling slot and, if there is no thread polling, start a thread on its corresponding
CPU to start running the newly added tasks. Therefore, with this design there is no
need for addReadyTask to return an idle CPU as it was the case in the previous design.

15

4.1.2 Getting tasks

When the method getReadyTask of the scheduler is called, a task is fetched from the
leaf node that corresponds to the calling thread’s CPU. First, the polling slot is checked.
If no tasks are pending on the polling slot, a task is extracted from the queue. If there
are no tasks in the queue, tasks are requested from the parent node and polling starts.
If after some time polling no tasks are obtained, the corresponding CPU is marked as
idle, and the thread can be suspended.

When tasks are requested from the parent node, first the parent’s local queue is checked.
If there are tasks in the local queue, some of them are returned to the child. Otherwise,
the child is pushed to the idle children queue, and tasks are requested to the parent
recursively.

4.1.3 Queue threshold

A very important concept for the correct load balancing of this scheduler design is the
queue threshold. This threshold determines the maximum number of tasks that can be
stored in the local queue of a node. It also determines how many tasks will be sent to
other nodes when requested or when there is an overflow, which is defined at half of the
threshold value.

Therefore, it is important to set properly this value to obtain good performance results.

4.1.4 Local queue policy

One aspect not mentioned about this design is the policy of the internal local queue.
This is on purpose, because there are no requirements on the internal policy of this
queue. It can be implemented as a FIFO, LIFO or any other policy that may seem
fit. The only requirement is the interface, which must provide get and add methods for
both one task and a set of tasks.

The queue policies that were implemented in this initial version are:

• FIFO: when only one task is requested, the least recently added tasks (oldest) are
returned. But when a set of tasks is requested, the youngest are returned.

• LIFO: when one task is requested, the youngest is returned. But when a set of
tasks is requested, the oldest are returned.

4.1.5 Resource management

Enabling and disabling resources is also possible in this scheduler. When a CPU is
disabled, the leaf node corresponding to that CPU will push all its locally queued tasks

16

(if any) to its parent, and request its parent to unqueue it from the idle children queue
(if it is idle).

To enable CPUs, no further work is necessary, as the responsible of enabling the CPU
will take care of resuming a thread to start getting tasks.

4.2 Improvements

Once the basic design was implemented and tested, several improvements were proposed
and implemented. These improvements addressed several shortcomings of the initial
design. These are detailed in the sections following.

4.2.1 Dynamic threshold

The first improvement was to make the threshold independent of the application or the
stage the application is in. When the threshold was static, for cases with only one task
creating tasks and not many tasks created in total (like the choleksy benchmark with
a big block size), a lot of work was left pending in one CPU’s local scheduler, while the
rest of CPUs were idle.

For this reason, a dynamic queue threshold was implemented. The threshold starts with
the value 0, which means that no tasks can be stored in the local queues. Therefore, at
the beginning of the application, all CPUs will receive tasks irregardless of its creator.
When overflowing tasks arrive to the topmost scheduler node, the threshold is doubled
(or set to 2) for all nodes. This way, all scheduler nodes will have a similar number of
tasks pending.

On the other hand, when tasks are requested from the root node, which means that
some leaf node is idle, the threshold of the system is halved.

4.2.2 Load balancing

The dynamic threshold solved the problem of load balancing during task creation. But
it did not solve the problem of load balancing at the end of the application. In this
case, there could be lots of (presumably long) tasks queued on a CPU, while the rest of
CPUs are idle.

This problem is solved by rebalancing tasks when the threshold is reduced. If the node
has tasks over the threshold when it is reduced, these extra tasks are pushed to the
parent node following the same algorithm as the other cases.

17

4.3 Performance results

4.3.1 Original design

multiaxpy-noop

(a) (b)

Figure 4.2: Execution time for multiaxpy-noop using the new scheduler

Figure 4.2 shows the absolute execution time and the speedup with respect to the original
scheduler for two different policies of the internal local queues with a threshold of 20
tasks.

It is clear from these plots that there is a significant performance improvement, specially
in those cases with a very small block size (and therefore, a high number of tasks). With
this new design, the cases where execution time is practically constant extend up to block
size 214 for the scheduling policy FIFO.

It is also interesting to see the influence of the internal scheduling policy on the exe-
cution time. This influence is mainly due to the lack of load balancing mechanisms in
the current design. For this benchmark in particular, the thread that runs the main
task will enqueue to its local queue the highermost nodes in the recursion tree of the
application. If these highermost tasks are executed as soon as possible (FIFO policy),
more parallelism will be enabled for the rest of the threads. If, on the other hand, the
highermost tasks are delayed (LIFO policy), there will not be enough parallelism and
threads will have to wait more.

With these results in mind, it is clear that it is necessary to introduce load balancing
mechanisms in this new design.

18

(a) (b)

Figure 4.3: Execution time for cholesky using the new scheduler

cholesky

The cholesky benchmark (Figure 4.3), also executed with a queue threshold of 20, does
not show an improvement as big as the multiaxpy-noop benchmark. But, for the cases
with a small block size, it shows an improvement of up to 50%.

However, what this benchmark also shows is that for big block sizes there is a very
significant drop in performance. This is also due to lack of load balancing, because
there is only one task creator, which will enqueue tasks locally and keep the rest of
CPUs idle until enough tasks are created to produce an overflow.

4.3.2 Dynamic queue threshold

multiaxpy-noop

(a) (b)

Figure 4.4: Execution time for multiaxpy-noop with dynamic queue threshold

19

Figure 4.4 shows that introducing a dynamic queue threshold makes the execution with
the LIFO scheduling policy much faster than the FIFO scheduling policy. But, in this
case, both are slower than the initial implementation.

Nonetheless, even with this performance drop with respect to the first implementation,
the performance with respect to the original scheduler is still significantly improved (30
times faster for small block sizes).

cholesky

(a) (b)

Figure 4.5: Execution time for cholesky with dynamic queue threshold

In the case of this benchmark, Figure 4.5 indicates that the dynamic queue threshold
does indeed help with load balancing, as now there is no performance drop even for
small block sizes.

Like in the case with the multiaxpy-noop benchmark, performance drops for very small
block sizes with respect to the initial implementation, but it still provides a 30% im-
provement with the LIFO policy. And, for big block sizes, performance is up to 10%
better than the original scheduler.

4.3.3 Load balancing

multiaxpy-noop

The introduction of a load balancing mechanism (Figure 4.6) introduces a significant
speedup on the LIFO scheduling policy for very small block sizes with respect to only
having a dynamic threshold. More importantly, execution time stays nearly constant up
to a block size of 212, a dramatic improvement with respect to the original case. There
is also a very slight improvement of the FIFO scheduling policy, but not as important
as in the LIFO scheduling policy.

20

(a) (b)

Figure 4.6: Execution time for multiaxpy-noop with load balancing

Figure 4.7: Profile for multiaxpy-noop for block size 1024

With this final version, it can be seen in Figure 4.7 that now the most time consuming
section for the case with a very small block size is the task itself. This is a dramatic
improvement over the original version.

Nonetheless, a significant amount of time is spent on the allocation and release of mem-
ory for tasks (posix memalign and free). This may also be an area where improvements
can be made.

cholesky

For this benchmark in particular, as seen in Figure 4.8, the introduction of a load
balancing mechanism reduced slightly the performance of this new scheduler design,
specially with small block sizes.

In this final version, profiling (Figure 4.9) shows that most of the time is now spent in

21

(a) (b)

Figure 4.8: Execution time for cholesky with load balancing

Figure 4.9: Profile for cholesky for block size 32 × 32

releasing tasks’ memory. This is also an area where improvements can be made.

22

5. Memory allocator

5.1 Introduction

Currently, Nanos6 does not have any mechanism of data structure reusal. When tasks
are created, all its memory and data structures are allocated as explained in Section
1.3.1, and when they finish, their memory is freed.

As was seen in the profiles in Figures 3.2 and 3.4, and more significantly in Figures 4.7
and 4.9, calls to posix memalign and free take a significant percentage of the execution
time. Although Linux libc allocation functions try to manage memory very efficiently,
it may be possible to improve the perfomance of Nanos6 in the area of task creation
and destruction by implementing a memory allocator and data structure reusal system
specifically designed for the needs of Nanos6.

5.2 New design

The design parameters for this memory management mechanism are very similar to
those of the new scheduler: fast and scalable. Therefore, some of the design principles
used in the scheduler may be used in this subsystem. In particular, this new memory
management system is also distributed mimicking the underlying hardware architecture.
This, again, allows for an implementation with less locks, as most of the time work can
be done locally.

In order to make this component as fast as possible, two simplifications are made:

• It is only used in those data structures that are allocated and freed repeatedly
inside the runtime. This is, it is only used for tasks and for dependences.

• All block sizes are rounded to a number of full cache lines.

The final design of this allocator is depicted in Figure 5.1. At the CPU level, it is
composed of several stacks of memory chunks of the same size (multiples of the cache
line size, as mentioned) per CPU. At the NUMA node level, it is composed of a pool of
available memory aligned to the page size.

In order to reduce the memory required to store a local stack of chunks, and to reduce
the number of data structures used, the links between nodes are stored in the memory
chunks themselves.

23

Figure 5.1: Conceptual diagram for the new memory allocator design

When a CPU requests memory, a chunk of the requested size (rounded to a number of
cache lines) is obtained from its local chunk stack. If there are no chunks available (or
the stack doesn’t exist yet), the stack is filled from the pool of available memory at the
NUMA node level. If there is no memory available at the NUMA node level pool, it is
refilled by calling posix memalign.

When a CPU frees memory, the chunk is pushed to the local stack of the correspond-
ing size. Chunks are not returned to the higher level (NUMA node level) to reduce
complexity and execution time.

The allocation size for the NUMA level pool can be configured, but it is set to 8MB by
default (2048 memory pages of 4KB). The size of the memory retrieved from the NUMA
level pool when a local stack is empty can also be configured, but it is set to 128KB by
default.

5.3 Performance results

5.3.1 Original scheduler

multiaxpy-noop

The results of this allocator combined with the original Nanos6 scheduler show a very
small improvement for the application multiaxpy-noop (Figure 5.2). This is because
of two reasons: on one hand, time spent in memory allocation and release relative to
the whole execution is small. On the other hand, an improvement in memory allocation
does not need to be directly correlated with an improvement in time, as faster task
creation may contribute to even slower scheduling times.

24

(a) (b)

Figure 5.2: Execution time for multiaxpy-noop with the memory allocator

cholesky

(a) (b)

Figure 5.3: Execution time for cholesky with the memory allocator

For this application, as seen in Figure 5.3, speedup is slightly better than with the
previous application with a very small block size. But for the rest of block sizes, the
improvement is really small. The causes are similar to the ones discussed earlier.

5.3.2 New scheduler

multiaxpy-noop

In the case of the new scheduler designed in Chapter 4, the relative speedup when
introducing the memory allocator is much more significant (Figure 5.4). This is because
the percentage of execution time spent in memory allocation and release functions for
this case is much bigger.

25

(a) (b)

Figure 5.4: Execution time for multiaxpy-noop with the memory allocator

The introduction of the memory allocator also makes the execution time of multiaxpy-noop
much closer to a constant value independent of the number of tasks created. This, as
mentioned before, means that task creation and scheduling in Nanos6 is close to a con-
stant time, independent of the load of the system.

cholesky

(a) (b)

Figure 5.5: Execution time for cholesky with the memory allocator

For cholesky (Figure 5.5), there is also a significant improvement when introducing
the memory allocator. In this case, it is not as dramatic as in the previous application,
due to the many more complexities of this application. But it is still a remarkable
improvement.

26

6. Final performance evaluation

6.1 multiaxpy-noop

(a) (b)

Figure 6.1: Execution time for multiaxpy-noop with all improvements

As mentioned through this document, this application was chosen as a synthetic bench-
mark for extensive task creation. Final results in Figure 6.1 show that the optimizations
designed and developed really increase task creation and scheduling scalability and con-
currency, even for bigger block sizes not shown in previous results.

For Marenostrum 4, these results show more than a 350x improvement with very small
sizes, and a smaller 50% improvement for the biggest block sizes tested. Results also
show a very small increase in execution time related to the number of tasks created,
varying between 0.1s and less than 0.3s, a significant improvement when compared with
the 0.15s to 100s range of the original version.

A final profile of this application with the smallest block size, shown in Figure 6.2,
indicates that most of the execution time is now spent in the task itself, followed by
calls to the scheduler.

6.2 cholesky

A less synthethic application used throughout this document is the Cholesky factoriza-
tion algorithm. Figure 6.3 shows the final results with all the improvements previously

27

Figure 6.2: Profile for multiaxpy-noop with all improvements for block size 1024

(a) (b)

Figure 6.3: Execution time for cholesky with all improvements

described. For a small block size (32 × 32), performance has doubled. And for com-
monly used block sizes, such as 512 × 512 or 1024 × 1024, performance is up to 20%
better.

These are still significant improvements, taking into account that the application has
not been modified in any way, only the internal runtime has been modified.

Figure 6.4 shows a profile of this final version for the smallest block size tested. The
highest percentage of the execution time is now spent in the task itself, followed by
dependence management. This indicates that the next bottleneck that could be studied
in Nanos6 is the dependence subsystem.

28

Figure 6.4: Profile for cholesky with all improvements for block size 32 × 32

6.3 multiaxpy

As mentioned in appendix A.1, the benchmark multiaxpy-noop is based on performing
an axpy between two vectors by splitting them into smaller chunks recursively. Two
versions of this original code have also been tested against these improvements.

(a) (b)

Figure 6.5: Execution time for multiaxpy-recursive with all improvements

The first one, seen in Figure 6.5, is a simple axpy, without any dependence (and, there-
fore, only one iteration). It behaves very similarly to the multiaxpy-noop application
shown before, and it also benefits from this scheduler, as its execution time becomes
quasi constant.

The second version, in contrast, runs the axpy 10 times, with dependences between
iterations. In this case (Figure 6.6), the improvements in Nanos6 only obtain up to
40% speedup with very small block sizes, and also a very poor absolute execution time.
This is because of dependences: as there are two vectors with 1G elements each, with

29

(a) (b)

Figure 6.6: Execution time for multiaxpy-recursive-10it with all improvements

very small block sizes there will be a lot of small dependence regions, and dependence
registration and checking will take more time.

6.4 Other applications

Figure 6.7: Speedup for several applications with all improvements

Other applications have been also tested with this new scheduler and memory allocator,
as seen in Figure 6.7. Like with the rest of results, some applications show some big
improvements, like N-Queens, and others, like SparseLU show a slight slowdown, of less
than 10%.

30

7. Conclusions

This project has consisted in the analysis of the performance of the Nanos6 runtime,
and its improvement in the areas of task creation and scheduling. In specific, a new
scheduler and a new memory allocator have been designed, implemented and tested.
These new components have been designed with the purpose of being fast, scalable, and
also flexible for the future needs of the runtime.

As seen in Chapter 6, results are very satisfactory, achieving very good performance
in applications bounded by task creation and scheduling time, while keeping the same
performance for other applications with other requirements.

These new features will allow some OmpSs-2 developers to run their applications faster
without the need to modify their applications, and will allow Nanos6 to obtain good
performance in a wider range of applications, specially those with very fine grained tasks
with very few dependences.

7.1 Future Work

Even if good results have been achieved, it is still necessary to test both the new scheduler
and the memory allocator against a wider range of applications to ensure that they
behave as expected in all of them.

It would also be possible to improve even more the results of this new scheduler design
by taking into account data distribution of the tasks, expressed by their dependences.
With this information it could be possible to better select which node of the scheduler
hierarchy is the most suitable to run a specific task.

Support for heterogeneous architectures in Nanos6 is currently under development. This
scheduler design can also be extended for these architectures just by using a leaf sched-
uler on each of the resources available, and making them aware of which type of tasks
they can run.

Finally, task creation and scheduling are not the only points of the runtime that in-
troduce significant overhead in applications. Subsystems like dependences need to be
studied carefully in order to obtain the best performance possible, while keeping all
the range of features. This is a continuous improvement work that is as important as
introducing new useful features to OmpSs-2.

31

Bibliography

[1] Barcelona Supercomputing Center. Marenostrum IV. https://www.bsc.es/

marenostrum/marenostrum/technical-information. Accessed: 2018-06-02.

[2] OpenMP. OpenMP. https://www.openmp.org/. Accessed: 2018-06-02.

[3] MPI Forum. MPI. https://www.mpi-forum.org/. Accessed: 2018-06-02.

[4] Programming Models @ Barcelona Supercomputing Center. The OmpSs program-
ming model. https://pm.bsc.es/ompss. Accessed: 2018-06-02.

[5] Barcelona Supercomputing Center. Barcelona Supercomputing Center. https:

//www.bsc.es/. Accessed: 2018-06-02.

[6] Programming Models @ Barcelona Supercomputing Center. The OmpSs-2 pro-
gramming model. https://pm.bsc.es/ompss-2. Accessed: 2018-06-02.

[7] Programming Models @ Barcelona Supercomputing Center. Mercurium. https:

//pm.bsc.es/mcxx. Accessed: 2018-06-02.

[8] Programming Models @ Barcelona Supercomputing Center. Nanos6. https://

github.com/bsc-pm/nanos6. Accessed: 2018-06-02.

[9] Stephen L Olivier, Allan K Porterfield, Kyle B Wheeler, Michael Spiegel, and
Jan F Prins. OpenMP task scheduling strategies for multicore NUMA systems. The
International Journal of High Performance Computing Applications, 26(2):110–124,
2012.

[10] Samuel Thibault. A flexible thread scheduler for hierarchical multiprocessor ma-
chines. arXiv preprint cs/0506097, 2005.

[11] Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. Building
portable thread schedulers for hierarchical multiprocessors: The bubblesched frame-
work. In European Conference on Parallel Processing, pages 42–51. Springer, 2007.

[12] Sivarama P Dandamudi and SP Cheng. Performance impact of run queue organi-
zation and synchronization on large-scale NUMA multiprocessor systems. Journal
of systems architecture, 43(6-7):491–511, 1997.

32

https://www.bsc.es/marenostrum/marenostrum/technical-information
https://www.bsc.es/marenostrum/marenostrum/technical-information
https://www.openmp.org/
https://www.mpi-forum.org/
https://pm.bsc.es/ompss
https://www.bsc.es/
https://www.bsc.es/
https://pm.bsc.es/ompss-2
https://pm.bsc.es/mcxx
https://pm.bsc.es/mcxx
https://github.com/bsc-pm/nanos6
https://github.com/bsc-pm/nanos6

A. Applications

A.1 multiaxpy-noop

Originally, this application performed a vector axpy (a ∗ x + y) by means of recursively
splitting the vector until a minimum block size is obtained, which is then calculated
sequentially. This can be seen in Figure A.1.

Figure A.1: Multiaxpy vector splitting pattern

The implementation used to test the performance of Nanos6 is a modified version of
this code where the axpy is executed several times iteratively, there are no dependences
between tasks, and the innermost task (which would be the responsible of calculating
the vector axpy sequentially) does not really access or modify any data, it just spins for
the same number of iterations as the vector size.

This implementation is focused on stressing the creation and scheduling of tasks in
Nanos6, as tasks will be created recursively from all CPUs at the same time. For
example, running this application for a vector size of 1G elements, a block size of 1024
and 10 iterations, will create around 2M tasks per iteration as fast as it can. The number
of tasks created for a vector size of 1G and 10 iterations for different block sizes can be
seen in Table A.1

A.2 cholesky

This application is a traditional implementation of an iterative Cholesky factorization.
Therefore, this application creates tasks from only one thread, with dependences between
them. Furthermore, in cases where the block size is big with relation to the matrix size,

33

Block size Tasks created
1024 20971511
2048 10485751
4096 5242871
8192 2621431
16384 1310711
32768 655351
65536 327671
131072 163831

Table A.1: Number of tasks created in the multiaxpy-noop application

the number of tasks created will be small. Table A.2 shows the number of tasks generated
for a matrix of 16384 × 16384 elements, for different block sizes.

Block size Tasks created
64 × 64 2829057

128 × 128 357761
256 × 256 45761
512 × 512 5985

1024 × 1024 817
2048 × 2048 121
4096 × 4096 21
8192 × 8192 5

Table A.2: Number of tasks created in the cholesky application

34

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Listings
	The OmpSs-2 programming model
	Introduction
	OmpSs and OmpSs-2
	Environment

	Nanos6
	Task flow
	Threads and CPUs

	Task scheduling
	Current Nanos6 scheduler
	Design
	Frontend
	Adding tasks
	Obtaining tasks and polling slots
	Other helper methods

	Backend

	Design issues
	Performance results
	Benchmarks
	Results
	multiaxpy-noop
	cholesky

	New Nanos6 scheduler
	Design
	Adding tasks
	Getting tasks
	Queue threshold
	Local queue policy
	Resource management

	Improvements
	Dynamic threshold
	Load balancing

	Performance results
	Original design
	multiaxpy-noop
	cholesky

	Dynamic queue threshold
	multiaxpy-noop
	cholesky

	Load balancing
	multiaxpy-noop
	cholesky

	Memory allocator
	Introduction
	New design
	Performance results
	Original scheduler
	multiaxpy-noop
	cholesky

	New scheduler
	multiaxpy-noop
	cholesky

	Final performance evaluation
	multiaxpy-noop
	cholesky
	multiaxpy
	Other applications

	Conclusions
	Future Work

	Bibliography
	Applications
	multiaxpy-noop
	cholesky

