SYNTHESISING CHARACTER
ANIMATION FOR REAL TIME CROWD
SIMULATION SYSTEMS IN UNREAL
ENGINE

LLUiS DELICADO ALCANTARA

MASTER IN INNOVATION AND RESEARCH IN INFORMATICS
COMPUTER GRAPHICS AND VIRTUAL REALITY

in the
FACULTAT D’\INFORMATICA DE BARCELONA (FIB)
UNIVERSITAT POLITECNICA DE CATALUNYA (UPC) - BarcelonaTech

Supervisor: Prof. Nuria Pelechano
Co-supervisor : Prof. Carlos Andijar
Department of Computer Science

June 2018

Acknowledgements

I would like to express my gratitude to my supervisor Nuria Pelechano for the
useful feedback and engagement through the development and writing process
of this master thesis. Furthermore , I would like to thank the participants in
my survey, who have willingly shared their precious time during the process of
interviewing. I would like to thank my family and friends, who have supported
me and helped throughout the entire process.

Abstract

Achieving realistic virtual humans is crucial in virtual reality applications and
video games. Populating large virtual environments with crowds of virtual hu-
mans is a very time consuming task, not only in terms of real time performance,
but also in terms of creating realistic looking and animated characters.

When it comes to simulation, these systems need to compute navigation, colli-
sions and Al, but also need to apply the right poses to each character for each
frame, so that the overall simulation looks real. In the case of virtual reality
applications and video games, this computations need to be performed in real
time, which is not simply 30FPS anymore, as new hardware requires higher
frame rates (60FPS for stereo, and over 120FPS for most Head Mounted Dis-

plays).

Nowadays there are several software and game development tools, that are of
great help to generate and simulate characters. They offer easy to use GUIs to
create characters by dragging and drooping features, or making small modifica-
tions. Similarly there are tools to create animation graphs and setting blending
parameters among others. Unfortunately, even though these tools are easy to
use, achieving natural animation transitions is not straight forward and thus
non-expert users tend to end up with animations full of artifacts.

In this master thesis, we have developed a framework to automate the pro-
cess of generating graphs for animation synthesis. Our system is developed
with Unreal Engine 4 and the main contributions include: the generation of
graphs for animation synthesis embedded with the UE4 tools, a tool to ease
the adaptation and configuration of new animations, a method to add different
behaviours to the characters, and finally a method to generate automatically
graphs for animation synthesis from any given set of animations.

Contents

1__Introductionl 5
LI Motivationlo 5
............................... 6
1.3 Document walk-through| 7

|12 Background| 8
2.1 Related Workl oo oo 8
2.2 Preliminariesl L 10

2.2.1 Character animation synthesis| 11
2.2.2 Anmimationchlip| L. 12
2.2.3 Game Enginelo 13
2.2.4 Blueprints Visual Scripting| 14
P25 Mixamd . . . o .o 15

13 Methodology| 17

4 Development| 19
4.1 Selection animation clipset| 19

12

Implementation using UE4 tools|

4.2.1 Displacement of the character|.

4.2.2 Blending of the animations|

4.2.3 First implementation|. 0L

4.2.4 Problems and improvements|.

3

Foot Detection problem|

4.3.1 Blend animations with inverse foot cycle.

Ex

Multi blend space|.o

4.4.1 Ambiguity of animation clips|

4.4.2 Character behaviours with 1D Blend Spacel

5

Automatic blend space|. o oo oL

[5Analysis of results|

42

42

44

46

46

47

51

52

List of Figures

2.1 Example of graph to next step controlling foot position.| 9
2.2 Example of IK motion in different terrains.| 10
2.3 Circular Decision Framework) 12
2.4 Example of blueprint code.| 0000 15
2.5 Example of Mixamo character and animation sets|. 16
4.1 Example of root motion in Unreal Engine 4.. 21
4.2 Example of blending blueprints code. 23
4.3 BlendSpace 1D interface in Uk4.| 23
4.4 BlendSpace 2D intertace in UE4|o 0oL 23
4.5 Difterent blend tools in Unreal Engine 4. 23
4.6 Frror of foot detectiond.o o oo 26
4.7 Manual Foot Detection) o000 27
4.8 Bound position curves.|.o 28
4.9 Walking animation sync markers.| 29
4.10 Running animation sync markers.|. 29
4.11 Walking animation sync markers final script.| 30
4.12 Rotation in place animation.| 31

4.13 Result of blending two 2D blend space.|. 33

4.14 Example of 1D blend space 0. 34
4.15 Frames from drunk blend space.| 35
4.16 Frames from injured blend space| 35
MI7 Full drunk motion] oo o 36
4.18 Full injured motion.| 37
4.19 Apply automatic blend space.|o 39
4.20 Apply automatic blend space with half second| 40
4.21 Apply automatic blend space with half second.| 40
b.1 Examples difterent approaches.| 43
b.2 Example of an experiment execution.. 44
5.3 Results of the experiment.| 45

Chapter 1

Introduction

1.1 Motivation

In recent years we have seen how the game industry is creating games where
not only the main character has realistic movements, but also all the avatars
of the NPCs (Non-Player Characters) are improving in both appearance and
behaviors. In the past, we could observe that games would only use a hand-
ful of characters which very often had no behaviors at all (e.g. they would
simply stand in a place with at most a basic idle animation, or had a cyclic
animation such as walking following a pre-defined trajectory with poor synchro-
nism between trajectory and animation). Nowadays, hardware improvements in
graphics cards and the availability of popular game engines, we can find games
applications that show many NPCs that make the environment highly realistic
and dynamic. Some examples of this can be found in the games of Assassin’s
Creed [1] by Ubisoft where they show large agglomerations of people in virtual
cities.

However, crowd simulation is still a challenging problem in real time appli-
cations like games, training or other types of VR simulations. Achieving highly
realistic crowds, requires efficient algorithms for navigation around the environ-
ment, avoidance of obstacles, and animation synthesis that is consistent with the
trajectories. This last point is by far the hardest. Obtaining realistic animation
that follow the other behavior decisions in a natural manner can be very compu-
tationally expensive, and thus new algorithms need to be researched. The main
goal of those algorithms should be to provide a good trade off between perfor-
mance and plausibility. Moreover, it is very important to be able to integrate
such algorithms with existing game engines, because that would contribute to
both the gaming and academic communities.

Although there exists an extensive literature about the synthesis of character
animations, those methods cannot be easily applied to multi-character simula-
tion. There are many techniques that are designed to create realistic animations
for a single character but they are very costly and can not be extended to large
numbers of agents in real time applications.

One could think that current game engines, already solve most of these prob-
lems, but this is not really the case, unless you are an expert game developer.
Game engines such as Unreal or Unity, offer tools with nice GUI where the user
can drag&drop animations, and create transitions between them. But it is com-
pletely up to the user to determine what variables and values lead the blending
of animations. Very often, the results of this blending are quite chaotic and full
of artefacts. This was the main motivation for my master thesis: to research the
possibility of creating automatically such animation graphs to ease the work of
non-expert game programmers.

The initial motivation for this project was to enhance the visualisation of a
larger crowd simulation project. This project deals with procedural modelling
of cities 2] and the goal of our project was to provide better animations for the
avatars in the simulations to enhance the realism of those virtual cities. Since
the original project is being developed in Unreal Engine 4, we will also develop
our animation synthesis project for this platform. This was also an important
personal motivation for me, as I was interested in learning this engine.

1.2 Objectives

The goal of this project consists in developing a framework for synthesising
character animation for real time crowd simulation using Unreal Engine (UE4).
Even though, the result of this thesis will be included in the aforementioned
project, we also want to keep it as generic as possible, so that it could be easily
ported to other game engines or frameworks.

The first objective of this project was to study and evaluate how UE4 handles
character animation. Even though it provides a very powerful tool to achieve
natural looking animation, there are many steps that require manual interven-
tion. This has as a consequence that only expert users can obtain those natural
animation. However any beginner, will end up with animations full of artifacts
due to wrong blending parameters, of bad transitions between states. Once
we had identified those difficult manual steps, our next goal was to research
alternatives to provide automatic ways to solve those issues with as little user
interaction as possible. The final result of this work is a semiautomatic char-
acter animation pipeline. The use can specify some high level decisions, then

the pipeline automatically sets the graphs and parameters for synthesising an-
imations, and finally the user can do minor modifications if needed using UE4
interface.

1.3 Document walk-through

The next sections are structured as follows. In section 2.I] we introduce the
state of the art and different contributions related to our project. In section [2.2
we provide some background terms that we need to know before continuing. In
section [3] we explain the key idea of what we have developed and details on how
it works. Section [] contains all the different steps that we carried out during
the development of this project, providing details on the different approaches
that we explored, and indicating the limitations of those that we finally decided
not to include in our method. In section [l we discuss the results that our
framework obtains and some comparison against other approaches. Finally,
section [f] contains the conclusions of the project and the future work.

Chapter 2

Background

2.1 Related Work

This project aims at generating a method to synthesise character animations for
real time crowd simulation to obtain more realistic behaviours. Before starting
with our project it is important to review which approaches are the most used
in the state of the art for this field. This section shows several frameworks, with
some of them not only focusing in character animation synthesise, but also in
developing the full pipeline for planning character behaviour. Moreover, we will
not only review approaches for real time applications, but also non real time
applications for crowd simulation techniques where it is possible to achieve more
realistic animations without worrying about performance.

Most of the previous works employs some kind of animation graphs for charac-
ter animations synthesis. Those animation graphs can be used for structuring
the animations in a way that we can the automatically find the closest (or the
x closest) animations fast. The work by Pelechano et al. classifies animations
based on speed and angle between velocity vector and torso orientation. This
graph representation is then used to determine the most similar animation to the
crowd simulation input. Instead of generating the new animation by blending
between several animation clips, it simply selects the closest node and applies
it directly using time warping and adjusting the torso orientation by rotating
directly the skeleton back joints [3]. One important detail that this paper uses,
and that we will use for our work, is that they update the root position of the
character without considering the feet position on the ground. This is not sim-
ple to compute, because in many cases it might lead to unnatural simulations.

There exists other research approaches in this field that also use animation

graphs, but with their main goal being to control the foot position @
These approaches avoid the problems that can have the previous approach. This
problem manifest as foot-slice and is caused because the animation goes faster
or slower than the motion. This is why the previous approach can induce unnat-
ural simulations. It avoids this problem, but is harder in computer complexity
because usually needs to use two graphs, one for each foot.The figure shows
an example of graph [6].

Figure 2.1: Example of graph to next step controlling foot position.

Other applications, focus on combining animation synthesis with collision
avoidance . They use the possible motions of the foot and detect which ones
are able to continue the trajectory while avoiding the obstacles.

Recently, there have been some approaches based on learning which offer a
completely new point of view. One of the latest methods uses a kind of neural
network to find the correct pose for the next frame . This method works with
a very complex neural network that changes the weight of the nodes cyclically.
Moreover, it uses a huge input for the neural network in which it needs the

future step positions, so a predictor is involved. This method provides good
results and can be applied in a simulation of one or two characters in real time,
but it can not support a crowd simulation.

Furthermore, there are more ways to generate animations. One of them that
is very used in video games is using inverse kinematic, IK “EI] This method
needs the position of some of the bones of the skeleton, usually the feet and
the hands, and it calculates the rotations of the other joins following a set of
rules(some bones do not allow some degrees). A recent example is presented
by Ubisoft with the name of IK Rig that allows to use the same IK animations
for any character or skeleton . The figure shows an example of motion
with different terrains using IK . The IK methods have a realistic results
but they spend a lot of time.

Figure 2.2: Example of IK motion in different terrains.

2.2 Preliminaries

This section explains some concepts that we need to know before starting the
project and the explanation of some tools that we will use and the reasons why
we decided to use them.

10

2.2.1 Character animation synthesis

This project is about generating automatically or easily a graph for synthesising
character animations that provides a large variety of continuous motion from
small set of animation. In the previous section we provided an overview of some
papers that use this idea of synthesis the necessary pose of the character in run
time [11]. In this section we will go into more detail to explain how works the
character animation synthesis.

This process, as it is mentioned before, is about generate a variety of animations
from a small set of animations. To do that, the methods use different kinds of
interpolations between animations. The interpolation is applied to each bone
and the result of the rotations can be calculate with different algorithms, like a
linear interpolation between the animations involved or baricentric coordinates,
like in some examples explained before [3]. Other important think is the method
of classify animations. This is the part that selects which animations will be
involved to synthesis the new animation. A usual method is generate a 2D para-
metric space where allocates the animations and then this space is divided using
the animations as nodes of a graph. It usually is divided in triangles or quads,
but it exists alternatives. An example of an animation classification framework

is in the figure 13].

11

."'-"- Vi -EI: T
A W i
d
ﬁ' Wi, e : ‘
A.a W _rl. e) I]-:.
i Ve Vo WV . -
|
H i i, Az, 3
As |
LY B
A = Fime
Ae " S
J‘E'I.ii—{'lul'uuim Iy ﬂal:irl'l.l]'. | '."1
=th...8 [

Figure 2.3: Circular Decision Framework.

One of the problems that this method needs to handle is the time warping
cased by the blending animations with different time duration. Moreover, the
animations need to be aligned to obtain a good result. To do that, the frame-
works can use different strategies like use markers for alight, method that will
be use in this project, or use more complex detectors.

2.2.2 Animation clip

The animation clip is a very generic concept, so its meaning can change de-
pending on the context. For some people it can be any piece of animation and
for other can be an animation with specific characteristics like time or behaviour.

The definition given in Unity is the most adequate one for our project: ” Anima-
tion Clips are the smallest building blocks of animation in Unity. They represent
an isolated piece of motion, such as RunLeft, Jump, or Crawl, and can be ma-
nipulated and combined in various ways to produce lively end results” [12].

In the case of this project, an animation clip is an isolated piece of motion

than represents a step. A step is considered as an animation that starts with
one foot on the floor and ends when it is again on the floor after lifting it. The

12

format used in the animations is FBX which are compatible with many game
engines including Unreal Engine 4.

2.2.3 Game Engine

A game engine is a software development environment designed mainly to cre-
ate videogames. The reason why there are so many different game engines in
the industry, is because in the past every company would develop and use its
own game engine. Sometimes they would even design a new game engine for a
specific project. Nowadays, there are still a few private game engines, but some
companies have recently made theirs free to use (with some commercial condi-
tions), or even open source. The most popular game developing environments
are currently Unreal Engine 4 [13], Unity3D [14] and CRYENGINE [15].

In this project we use Unreal Engine 4 to implement our ideas, but we could
have used any other option, such as Unity3D or CRYENGINE. In this section,
we describe how the different game engines work, what are the differences be-
tween them and why we use UE4 and not the others.

The first game engine that we considered was Unity3D developed by Unity
Technologies. Until a few years ago, the versions went to Unity 5 with incom-
patibility between them, but in 2017 they launched started by Unity 2017.1 and
kept updating version until arriving to the last 2018.1.2. It is a good engine
to develop in 2D and in 3D but is the least powerful of the three game en-
gines that we considered. The principal scripting language is C#, however, in
previous versions you could use UnityScript which was basically their own inter-
preter of JavaScript, which is now deprecated [16]. One of the technical reasons
why we decided not to choose Unity was that, although in recent months Unity
Technologies has started to release their source code [17], it is not a open-source
project since users are not allowed to change the code without paying a license.
Users are only allowed to report bugs. This issue was a bit drawback for us,
since we wanted to have the possibility of modifying components if needed. We
could say that Unity is typically very popular among game developers, and re-
searchers looking to easily create 3D content for VR applications, but when it
comes to doing research in animation or simulation, sometimes Unity presents
many limitations, as it makes it impossible to modify the core of the engine or
to have access to certain information that is needed for the development of new
algorithms.

The second engine that we considered was CRYENGINE developed by CRY-
TEK. This is maybe the least known of the three engines, although the games
generated with it are very well known, like the saga Crysis or some of the Far
Cry games. It has many versions with the latest being CRYENGINE V. Ama-
zon bought a license to generate its own game engine based on it called Amazon

13

Lumberyard [18]. The principal scripting languages is C# and C++. A typical
technique that more and more game engines are acquiring consists in having
one interpreted language (in this case C#), for beginners or to develop small
scripts, but using a compiled language (in this case C++) to create big games,
since it provides higher performance. This engine is really quite similar to UE4
in performance and learning curve, and so either one could have been used for
our project. However, if we had to give a reason to discard it, we can say
that the community around it is much smaller than the UE4 community, which
makes it harder to solve doubts and problems during development. Moreover,
the first goal when CRYTEK created this engine was to have an engine to de-
velop shooter games. This does not mean that you cannot make other kind of
games or applications, but it increases the difficulty and makes this engine less
versatile than others.

Finally, the third engine that we considered was Unreal Engine developed by
Epic Games, Inc. As we have commented before, this was the engine chosen
for the project and the main reason was the possibility of integrating it with
another project that is currently being developed in UE4. It also has as many
versions as the other two and the latest one is Unreal Engine 4.19, which is the
one being used in the project. One of the differences between UE4 an the other
two engines, is that not only it has incompatibilities between main versions like
UE3 and UE4, but also the intermediate versions such as 4.18 and 4.19 can be
very different in some parts and can be incompatible at least for parts of the
project. The main languages are Blueprints and C++4-, which follow the same
idea than before: using a interpreted and a compiled language. In this engine,
they use their own language that are Blueprints Visual Scripting, which will be
explained in the next section.

The main reasons therefore to work with Unreal were compatibility with the
procedural crowd simulation project [2] |19], the possibility to develop code in
C++, and the fact that it is open source.

2.2.4 Blueprints Visual Scripting

The Blueprints Visual Scripting used in UEA4 is a scripting system based on con-
necting nodes to create gameplay elements. It is used to define object-oriented
classes or objects in the engine [20]. There are many different kinds of blueprints.

The basic one is the Blueprint Class that allows to create functionalities on
top of existing classes, but there are other types that are more specific, like the
Level Blueprint that defines a global event graph for every level and each level
of your project has one. One example of blueprint code is in the figure 2:4]

14

W Cutputs
True B ——— B Apply

Path Filter

tion~ False D

“ GetPath Name

Object Return Value

Path Filter

Figure 2.4: Example of blueprint code.

This language is really useful beginning people who have never programmed.
To add some function or instruction it has a list with all the possible nodes that
you can add separated classified by the field of the instructions. Moreover, to be
faster, it has a search bar to specify the name function or part of it. Then, the
method to connect nodes is so easy. Each node have the input and the output
represented with circles at left and right respectively. The type of the variables
are represented by colors, so connect nodes is as easy as connect colors between
inputs and outputs. If we need to connect an input and an output with different
types the interface generates a cast node, if is a simple variable, or apply the
relevant function to connect these two types.

2.2.5 Mixamo

In the previous section we explained what an Animation clip is, but now will
explain how to create them. There are different ways to create Animation clips
for a character. One option is to use motion capture to obtain the animations,
but it is not typically used for short movements such as single steps or jumps,
but instead it is used when the clips are longer like a dance that is hard to
recreate by hand. Other option is use programs like Maya Autodesk [21] or
Blender [22], these are well known programs that allow the user to create an
animation moving the skeleton of the character manually. These frameworks
are usually not easy to use, so only experts can create natural looking anima-
tions by spending long periods of time manually polishing every aspect of the
animation (posture, velocity and acceleration of joints, expressiveness, and so
on).

Many animation artist and labs equipped with high quality motion capture
systems, have created large databases of animation that are publicly available

15

on the internet. However, the main problem with those animations is that they
are typically created for a specific character with its own skeleton, and this
causes that often you can not use one animation from one character in another
one (due to incompatibilities between skeletons). For that reason, we decided to
use Mixamo . Mixamo is an online service that offers a huge set of animation
clips and a set for characters that are designed with the same skeleton so all of
them can use all the animations provided. An example of these sets are shown
in the figure 2.5 It is a good tool if you are not acquainted with the character
design, and is a great help for obtaining big sets of animations. Moreover, this
characters and animations are easy to import in Unreal Engine 4.

Figure 2.5: Example of Mixamo character and animation sets

16

Chapter 3

Methodology

In this section we explain how the development of this project is distributed in
different parts. We describe the key ideas for the solutions proposed to each
of the problems that were raised along the development of this project. We
will also briefly described alternative solutions that were tested but latter on
replaced by an alternative solution.

The development of this project followed an incremental approach. This means
that we start with a simple solution, and then as the project advances, the
framework gets extended to include additional parts. The global solution that
we created is a framework that allows users to easily create animation synthesis
graphs for character animations in Unreal Engine 4. Our goal is that the frame-
work created will offer both good performance and realistic looking results for
crowd simulation.

The first part of this project was to get familiar with the UE4 environment
and to study the different kinds of tools that it provides to handle character
animation. Then, using the powerful tools provided by UE4 we worked on gen-
erating manually an initial synthesis graph to determine the kind of animations
that it could handle. This allowed us to study and evaluate its limitations and
the complexity involved in setting a good graph with good transitions. From
this part of the project we collected information regarding the parameters that
control this graph, and how sensible the resulting animation was to any small
inaccuracy in the manually created graph.

After this part of the project we had a good knowledge on the strengths and
weaknesses of the given tool. The main thing that we noticed was how strongly
the manual interventions could affect the output. So from this point on, we
focused on identifying which parts of the tool could be made automatic or at

17

least semi-automatic (minimising user input to make the process of creating
graphs easier and faster). In order to proceed, the next step to explore was the
preparation of a small data base of animations clips. This task can be quite
tedious because it needs to be done for each animation individually and doing
it manually is not accurate. Therefore, to carry out this part, we searched for
existing software and adapt it to our necessities.

The second part is the core of the project, and consisted on developing algo-
rithms to automatise the generation of such graphs in UE4. To be more precise,
the intention was to allocate the different animations in the space following
some rules. To develop this part, we researched how we could programmatically
allocate animations in the UE4 space, and then we designed the rules that will
be used.

Finally, another part will was developed. The goal of this part was to im-
prove the set of behaviours in the simulation. To do so, the idea that we present
in this project, consisted on using more than just one graph and then develop
an algorithm, to blend between them. We tried different possibilities to achieve
a variety of behaviours. This part goes from allowing more kinds of motions for
the characters to adding some kind of human behaviour to the character.

18

Chapter 4

Development

After explaining the background, the tools and the motivation of this project,
this part will explain the full development of the project. This section explains
the evolution of the project describing the different problems and solutions that
we evaluated and tested. We also present the different improvements that we
achieved, and discuss those alternatives that were tested but did not work as
well as we expected.

4.1 Selection animation clip set

The first part is to study in depth how Unreal Engine works and what kind of
tools it offers for solve our problem. Before starting to work with UE4, it is
necessary to select the set of animation clips that will be used for the graph.

As is mentioned in the preliminaries section, the animations that we use, are
from Mixamo and we select a small set of animations for the first approach that
are contain between 10 and 12 clips with animations like idle, walk forward,
run. This set includes animations with different speeds and degrees for turning
left and right. As it is mentioned before, the huge set of animation clips and the
number of different avatars that Mixamo offers, is a great help for people without
knowledge in character design. However, we need to keep in mind some aspects
when we use these animations in UE4. First, the skeleton that Mixamo uses for
its avatars is different in terms of structure and nomenclature when compared
to the default skeleton in UE4 so the animation clips from Mixamo cannot be
used directly with avatars from UE4. Second, the Mixamo’s animation clips
have the root motion animation, that will allows us to move our character more

19

realistically and we will use and explain it later in the section UE4 can
use or lock such root animation, but the animations that it provides do not have
the information of root motion. So, as the skelentons from UE4 and Mixamo
are incompatible and Mixamos animations have the root motion information,
which UE4 animations does not have, we will use only the animations an the
skeleton from Mixamo’s stack.

In the section [£:4] we extend the number of clips adding animations like side
steps or rotations in place to solve problems that we encountered or to make
the results more realistic.

4.2 Implementation using UE4 tools

Once we have the first animation set that we will use is time to research about
what we need to develop our first automatic approach. What we want to do
for it is to create a 2d parameterized space where every animation is a vertex
and the space is triangulated. Then, at run time the simulation generates a
parametric point in this space. With it, the triangle that encloses this point
is selected. Finally, the pose of the character is obtained by blending between
the animations of the selected triangle. Note that the manual step consists in
placing the animation clips in the parametric space, and our goal is to do such
allocation automatically.

The result of this process will generate the behaviour of the character and the
displacement. To calculate them we need to see the different ways that allows
us to move the character and how to generate the parameterized space in UE4
to blend the animation behaviour.

4.2.1 Displacement of the character

To displace the character there are two main strategies. First, you can apply the
animation independently of the motion, which is a fast method and is provides
an easy control over the direction and position at all times, because you set
exactly the character in the position that you calculate. The problem with this
method is that since you are controlling the behaviour and the displacement
separately they are not synchronised and thus have many foot-slide problems,
which creates the effect of very unrealistic simulations.

Second, you can use the root motion of the animations. If an animation has

root motion it builds the motion of the root node of the skeleton around the
space in addition to the rotations of the bones. This means that, for example,

20

if we use motion capture to obtain the animations it saves the displacement
of the skeleton so it avoids the foot-slide. The problem is that it is harder to
control because you are applying the animation and the root motion is fixed so
the final character position is where the animation indicates. One example of a
root motion from the documentation of UE4 is the figure where the red line
is the root motion of the animation . This avoids foot sliding, as long as you
are simply doing a play back of the original animation, but if any user control
over the trajectory is needed, then problems arise.

Moreover, there exist approaches that offer a combinations of both. For exam-
ple, use animations like walk and run with root motion but the rotation is con-
trolled by the code . This method was applied in the game Uncharted .
In the case of this project, we use the root motion of the animations, which as
mentioned before, is provided by Mixamo.

AdA44OP Pz

Figure 4.1: Example of root motion in Unreal Engine 4.

4.2.2 Blending of the animations

Once we know what animations we will use and what method will be used for
the motion of the characters, is time to explore how we can create the 2D pa-
rameter space to blend the different animations. To blend animations, UE4 has
two main forms that correspond to figure [£.5

First, it offers some tools and function nodes in its blueprints visual scripting
system or in C++. These functions do basically blending between two anima-
tions where the percentage used of the animation A is i and the percentage of
the animation B is 1 — 4. It also provides functions that blend two or more
animations but the total contribution does not need to add to 1. This method
is not intuitive to generate the 2D space, because it needs to handle every clip

21

individually and the blends, which is not an easy calculation for this purpose,
but could be useful in future improvements.

Second, UE4 has a component called Blend Space that is an element very sim-
ilar to the principal idea that we want to implement. This system allows the
user the possibility of generating a space in 1D or 2D depending in the number
of parameters that it will use. This Blend Space is graphically represented as a
grid and the idea is to assign a minimum and a maximum value for the param-
eters and subdivide the grid in each dimension. Then, the user can assign an
animation clip to every intersection between each vertical and horizontal lines
(in the case of 1D you have only horizontal lines and you put one animation in
each line). After adding all the animations, it automatically triangulates the
space (in the case of 1D this is not needed) and then it is applicable to a char-
acter or in a blueprint script if you want.

If we consider what we mentioned in the previous section about the root mo-
tion, both tools blend the behaviour and the root displacement of the character
interpolating the positions of the animations that are being blended. For our
first implementation we will use the second tool since it is very similar to our
initial idea of the ideal approach, but in the section [£:4] which is about use more
than one blend space, we will use both.

22

Play Walking_Right_Turn

[Final Animation Pose

Figure 4.2: Example of blending blueprints code.

Running_Backward (3) & Walking_Backward (4) & Idle (1) & Walking (0) Running (2)

Figure 4.3: BlendSpace 1D interface in UEA4.
Running (5) Run_Forward_Arc_Right (4) #
Click and Drag or Hold Shift to move the Preview (Green) Pin P—

 Walking_Left_Tum (9) Walking (8) Walking_Right_Turn (10) #

Speed @ Left Turn (1) Idie (0) Right_Tur

ard_Right_Turn (13) Walking_B: a1 ac _Left_Turn (12) &

Running_Backward (6)

n

Figure 4.4: BlendSpace 2D interface in UE4.

Figure 4.5: Different blend tools in Unreal Engine 4.

4.2.3 First implementation

After evaluating what we need for our first implementation, this section explains
how it is done and what are the problems and improvements for this first design.

23

As it is explained before, it will use the root motion of the animations for
the displacement and 2D Blend Space from UE4 to blend the animations. The
first thing that is needed is activate the root motion in the settings panel for all
the animations that the Blend Space will use. This seems obvious since there is
a checkbox in the options of the animations to do so. But the UE4 interface is
anti-intuitive because the animation viewer, when the root motion is disabled,
shows the animation in a loop, starting in each loop step in the same position
but moving in the space, but when the root motion is enabled it only moves the
skeleton in place and does not move for the terrain, behaviour that is contrary
to the expected.

After enabling the root motion, the next step is to create the Blend Space. To
do so, it is necessary to understand the meaning of each parameter. As in the
first case, it uses two parameters: one encodes the velocity, which only encodes
the magnitude because it is a float and it can be negative to allow backward
walking, and the second encodes the angle between the forward direction of the
character and the velocity direction. The maximum and minimum values for
the parameters are the following: the module of the velocity is an abstract pa-
rameter, which means that it is not a representation of an international system
of units. In this first approach, we set the speed parameter with a maximum of
300 and a minimum of -300 for going backward. The angle between the velocity
and the character position is determined based on the animations selected and it
goes from -90 to 90, which means that the forward displacement has a 0 degrees.

Once all the elements are configured, the next step is to position the anima-
tions in the grid. This is done by hand and to make it easy, the grid is only
divided by three intermediate lines since so it is easy to differentiate whether
one animation is closer to 45 or to 90 degrees, but it is not easy if the difference
between one angle and the following in the grid is too small. Once this is fin-
ished, you get a functional implementation, but given that it is done manually
it is an error pruned process with room for improvements.

4.2.4 Problems and improvements

With the aforementioned implementation we have created a 2D parameterized
space to blend animation clips, but also to compute the root displacement for
the character interpolating between the root motions of the blended animations.
If the aniamtions had been correctly created, this alone would avoids problems
such as foot-sliding, and would achieve an overall natural looking animation.
However, since many of the parts that are needed to generate the final animation,
have been done by hand, the end result is likely to have artifacts. Moreover,
there is another source of artifacts in blending, which is the case when one
animation starts with the right foot on the floor and the other one with the
left one, or vice versa. In the next sections we explain the approaches that we

24

proposed to solve such problems and the improvements that we achieved more
thoroughly.

4.3 Foot Detection problem

One of the main problems when using blend spaces in UE4, which causes the
most visible artefacts in the simulation, is the foot detection during the blending
process. In this section we describe in detail the reasons for this error and we
explain how to solve it in UE4. Moreover, in the second part we explain an
improvement developed to eliminate this problem.

4.3.1 Blend animations with inverse foot cycle

This problem appears when it blends two animations that have inverted the
foot cycles, which means that one makes the first step with the right foot and
the second step with the left foot, while the others animation make the opposite
order of steps. This happens very often, specially when the same animation is
used for the characters turns applying a mirror function (option available with
Mixamo). When Unreal Engine tries to blend them it aligns the first frames
and the last frames without any offset or adjustment.

The usual result is an animation that looks as if the character would make

small jumps all the time, or even worse, it appears to be floating as can be seen
in the figure [£.6] where both feet are in the air but theoretically it is turning left.

25

Py
abunta

ni
i

Figure 4.6: Error of foot detection.

To solve this problem, it is necessary to find a way to align correctly the
animations. To achieve this, UE4 has what they call ’sync markers’. This tool
is very versatile since it can be used for many tasks. What it does is to annotate
a frame with a label that it can be used to provoke some action or effect when
the frame is played. For example, it can be used to activate a particle system
when a foot touches the floor or to play some audio. For the case specific case
of detecting a foot when UE4 blends two animations, that have some label in
common, it uses those labels to align the animations if it is possible. What it
does is try to align the frames that have markers with the same label name,
that indicates that this frames needs to play at the same moment. In the next
section we show an example where it fails to align the markers.

To add this markers, what the user needs to do is: in the animation view,
go to the frame that will have the marker and put it manually. The markers
added in the project are "Left’ and 'Right’ when the animation touches the floor
with the respective foot. Figure shows an example of the marker bar for
one animation. As in previous aspects of the animation synthesis process, this
needs to be done by hand, and thus it is time consuming and prune to errors,
specially for non-expert users.

4 Notifies

Animation : Running Percentage: 52.63% CurrentTime: 0.333 /0.633 (: 5)) Current Frame: 10.00 /19 Frame

0 1 2 3 |4 5 6 7 a Ll 0 11 12 1E] 14 15 16 17 18 19
PP EPPEFPT P | " | Paa 40P P

Figure 4.7: Manual Foot Detection.

4.3.2 Automatic Foot Detection

After studying how the sync markers work and how to are applied to avoid the
problem of inverse foot cycles, we were not satisfied with this method and thus
we studied possible ways to make this process fully automatic.

The result of the manual process after adjusting the markers many times can
be really good. However, the main problem is that since it is done by hand
it can be very imprecise and that a long amount of time to get it right. It is
true that it is a pre-processing task and thus it only needs to be done once,
but taking into account the time spent and the imprecise result, we decided
to start investigating there exists some way to do it automatically or at least
make it easier. UE4 does not have any tool that detect the steps of a animation
automatically, but we found a blueprint script that even though is not fully
automatic, it helps in the precision and the time consumed . The final code
of this approach, after the changes explained in this section, is in the appendix[A]

What this script does is to generate a curve of movement for the bone selected
and cuts it with an horizontal line such as f(z) = a, where a is a parameter that
the user needs to select. To do that, first it calculates the relative position of the
bone with respect to the root of the skeleton (since it can not take a world posi-
tion of the bone). This position is calculated concatenating the transformations
from the bone selected to the root. Then it selects one of the three components
of the vector position that is selected in the parameters of the function. In
this case it is using the Y axis and adds an offset. The bones selected are the
named ’LeftFoot’ and "RightFoot’ in the skeleton hierarchy corresponding with
the ankles of the body. They are selected because it is the last big bone and
the foot bones oscillate so much and generates blur in the curves. An example
of the result curves is in the figure [£.8]

27

RightFoot

Figure 4.8: Bound position curves.

To detect the intersection points, in order to create the curve it applies an
offset, it only needs to check when the curve has two frames where one has
negative value and the other has positive. A marker is added for these points
which can have two labels. If the first frame is negative and the second posi-
tive the label is the name of the bone concatenated with ’_step_forward’, if the
frames values are inverted the label is the name of the bone concatenated with
’_step_backward’.

With this information we can add sync markers that detect when the animation
touches the floor and when it lifts the foot. The work that is needed to achieve
this involves playing a little bit with the offset parameter in every animation
for it to be more precise, and delete some markers that are generated as a con-
sequence of the noise of the curves. This script makes the task easier although
it is not an automatic method. Moreover, this solution sometimes generates
animations that can not be aligned using the sync markers.

An example of this error is when it tries to blend the 'Running’ and the "Walk-
ing’ animations. The result of the markers are shown in the figures and
The problems come from the real behaviour of these steps. When people
walk, the typical behaviour is having always one foot on the floor, while when
people run, the typical behaviour is have sometimes both feet in the air. This is
translated in the sync markers as in the "Walking’ animation, after one forward
label goes the backward of the same bone, while in the 'Running’ animation
after one backward label goes the forward of the same bone.

28

Curre

PEFEEFPFFFEFFREF P 2 2 aqadO s

(5)) Curr /

RIRIR NON =1

Figure 4.10: Running animation sync markers.

In order to solve this problem, following the idea of the foot detection, the
solution consist in sorting the foot steps to know when it is a left step and when
is a right step. The work that we did was change the original script to only
detect when the feet touches the floor. The only required change is that now,
we only need to detect when the curve goes from a positive to a negative value
between frames. This is an easy change but it allows blend more animations
than before. An example of a final result is shown in the figure As is
mentioned before, the final code is in the appendix [A]

29

L[[(1 [| [Jewow| | | [] [|] [| [[[| Peiawlesod [| |]
|

37 0.40 0.43 0.47 050

"IEI "I'I "IZ ‘13 "I-‘l 15 [16

Figure 4.11: Walking animation sync markers final script.

4.4 Multi blend space

Having only a single 2D blend space, limits the graph of animations to depend
exclusively on two parameters. With the current blend space, we can for example
consider animations that walk or fun forward or with an angle, but we could not
for example incorporate a step sideways animation. In order to have a richer
range of animation it is thus necessary to increase the parametric space.

Once the 2D blend space was created, the next step was to research how
we could increase the configuration of the graph, to allow for more behaviours,
within the UE4 framework.

With the current 2D blend space, we could still add some more animations

such as rotations in place when the speed parameter is 0 but the rotation pa-
rameter is higher or less than 0. The figure [£.12] shows these animations.

30

Figure 4.12: Rotation in place animation.

So as we can see, there is still some room to add animations with just one
blend space, but in the end we find many limitations. Although the number
of divisions in the grid can be increased, the number of animations that can
be allocated in the blend space is limited by the two given parameters. This
problem can be manifested in two ways:

e Some animations are incompatible with the behaviour of their neighbours
if the movements are very different or simply the parameters chosen do
not represent the behaviour of the animation.

e Some animations fall in the same place of the grid and that is not possible
in a blend space of UE4.

In the next sections we explain further examples of this situations and how
our proposed solution allows us to generate more behaviours and improve our
simulations.

4.4.1 Ambiguity of animation clips

During the process of adding more animations to our system, we discover a
problem with some common animations. This problem appears with more than

31

one animation but the first behaviour where we detected problems was with lat-
eral walking. This was the first problematic animation that we found and the
origin of the problem is that, with the chosen parameters, this animation can
not be represented or, if we are more flexible, it leads to an ambiguity problem.

The problem is the current blend space assumes that the animation has al-
ways the root rotation looking in the same direction as the velocity vector. This
translates in our 2D space as having the speed depending on the velocity of the
character in the animation but the rotation is always zero because it is looking
in the same direction. This means that the parameters from lateral steps and
walking forward are the same. If we interpret the rotation as degree between
root rotation and displacement vector it happens again. In that case it lead to
problems with the turning animations.

In order to solve the problem, we started to research how other approaches
solve this ambiguity. In this search we observed that some of the current ap-
proaches use two states to differentiate the situations. One example is in the
paper Phase-functioned neural networks for character control [8], which as is
mentioned before they use neural networks in their approach, but to use lateral
steps a flag is needed to be activated, and for normal walking again the flag
needs to be disabled.

Inspired by this idea we decided to generate a second blend space focused on
lateral steps and the rotation parameter is represented as the angle between
the displacement and the orientation. Then, we use the boolean blend function
that UE4 has and we can control when to use one or the other. This function
works very similar than the expleinde in previous sections. It allows to blend
two animations, but instead of have a float input that determines the weight of
each animation, it use a boolean to this, so the possibles inputs are 0 and 1 and
it behaves as a switch that allows use one animation or the other.

This solves the problems observed, but we continued exploring alternative so-
lutions. We then noticed that if we use a normal blend function instead of a
boolean blend function we can have a third parameter ranging from 0 to 1.
By adding this feature we can handle more kinds of movements, as opposed to
switching switching only between two states. This provided the results that we
expected, the motion was fluid without being a very different behaviour. As
can be seen in the figure we blend a lateral step with a turn step and the
solution is a turn step but with the upper-body rotated a little bit to the front.

32

Running_Backward (3) # Walking_Backward (4) # Ide (1) * # Walking (0) Running (2)

Figure 4.13: Result of blending two 2D blend space.

The main difference between this approach and a real 3D blend space is that
we first blend six animations into two and then we blend again this two, so we
are adding more weight to some animations that in a 3D blend space maybe
they would not have.

Even so, with this approach we open the door to explore a method to increase
the realism of the simulation and add more behaviours and movements to our
framework. Some of these are explained in the following sections.

4.4.2 Character behaviours with 1D Blend Space

With the idea of blending between more than one blend space, we started to
think what else could be done. One idea was to create more blend spaces
depending on the behaviour needed for our character. This was particularly in-
teresting to achieve animations with rare or unusual behaviours, for which it is
difficult to find many examples on the internet, and creating them from scratch
can be particularly difficult.

For example, if we try to generate a character with a drunk behaviour, maybe
we find a walking drunk animation, a running drunk animation, an idle drunk
animation and one turn left and right animation, but the number of animations
will be small so the resultant blend space would have a bad behaviour. Another
problem is that maybe we need to use multiple sources to obtain the full set.
This is not tipycally a problem with a natural behaviour because the motions
would be similar, but in the case of drunk behaviour the animations from two
different designers can be very different and thus the result of blending between
them can be very unrealistic.

Since the problem of obtaining a specific set of animation clips that satisfy
our necessities is not easy, unless we specifically model it (which is hard for
non-experts), we started to think what could be done with an small animation
set for a specific behaviour.

33

As is commented, UE4 has two blend space, the 1D blend space and the 2D
blend space. Until now the project is using only the 2D because the framework
proposed for the initial solution needed two parameters. The idea that we pro-
pose is use a 1D blend space to add a behaviour to the character. As the 1D is
only controlled by one parameter it has less kinds of motion and thus it needs
less animations to achieve a good result.

Running_Backward (3) # Walking_Backward (4) # Ide (1) * # Walking (0) Running (2)

Figure 4.14: Example of 1D blend space.

For this kind of blend space we only use the speed as control parameter
and the idea is to generate a 1D space with animations that goes forward and
backward in a straight line. The set of this animations is smaller and easy to
find because the biggest problem with the 2D space is to find rotation anima-
tions with different angles and velocities. To try it we created two spaces, one
with a drunk behaviour that is shown in figure and other with an injured
behaviour that is shown in figure [£.16]

34

- - -

Figure 4.15: Frames from drunk blend space.

Figure 4.16: Frames from injured blend space.

35

Now we have motions with very different behaviours, but where the charac-
ter only goes forward and backward and can not turn left and right. To expand
the possibilities of our framework and solve this issue, the key idea was to blend
the basic 2D blend space with the rare behaviour that we wanted to achieve
from the 1D space. The idea of this is that the control of the motion is achieved
with the 2D blend space and the rare behaviour is achieved with the 1D blend
space. With this combination of blend spaces, we could obtain the behaviours
that appear in figures [£.17] and

Figure 4.17: Full drunk motion.

ﬁﬁﬁ

Figure 4.18: Full injured motion.

With this blending between 2D space (locomotion directions) and 1D space
(styles) we obtain the full motion of the different conducts and we can obtain
different states if we change the blend parameter between the two blend spaces,
for instance if you use 0.3 it will go less injured than if you use 0.5 because
the base blend space take more weight. On the other hand, the control is less
accurate since, for instance, if the rotation is a 45 degrees you are applying only
the 70% in the final animation an the other 30% is a forward animation.

It is not easy to find out how the game industry makes their animations, or
how they solve this kind of problems nowadays. However, some previous pa-
pers explain that an option is to use a simple animation or two animations that
represent the drunk walking and combine it with inverse kinematic to generate
the left and right turning animations from those walking animations @ That
approach has similarities with our idea but the use of IK makes the computa-
tional time larger than in our technique. Furthermore, the game Uncharted,
Naughty Dog Inc. uses only a forward and backward animations and, to turn
left and right, it rotates the character manually , similarly to the technique
explained in section [£.21] In that case, it uses some exceptions to make it more
realistic but the problem of foot-slide appears, which can be avoided with our
technique.

37

4.5 Automatic blend space

Up to this point, our work has focused on developing tools to ease the generation
of blend spaces while increasing realism and variety of animations. So far, our
work helps in the creation of the synthesis graph, but it still requires certain
user intervention.

In this section we explain the method that we developed to automatically gen-
erate a blend space and how we still allow the user to tune it depending on our
parameters. Moreover, it explains some possible problems that may happen,
and other functionalities that it may have.

The main idea is to allocate automatically the animations in the blend space
grid. Before doing so, it is necessary to execute the foot detection process ex-
plained in previous sections, on the set of animations that will be used in the
graph. Once the set is processed, we need to find the correct parameters for
the current blend space. In that case we start using the speed and the rotation
of the animations as parameters of the blend space. Instead of allocating with
symbolic values as before, which we assign the values only seen the animations
(if one animation move faster it had more speed value), in this part we need to
calculate the speed and the rotation of the animation.

To calculate the values of the parameters from an existing animation, we simply
play such animation for one second (if the animation lasts less than one second
it is run in a loop) and obtain the initial and the final transformation. UE4
has a specific function to obtain such information, but other frameworks also
offers methods to obtain this data. From the initial and final transformation we
can calculate the speed, since we know the passed between those two frames is
one second and we can calculate how much the character moves subtracting the
initial position to the final position and calculating the module of the result.
Symmetrically, we can calculate the rotation using the initial rotation and the
final rotation but in that case we use the z parameter of the result in Euler form
that is the axis that traverse the character.

Once we have calculated the values of the parameters we can allocate the an-
imation in the grid correctly. Initially the implementation of the UE4 for the
blend space uses a grid, which means that we have a discretize space and thus
we can allocate the animation clip in the exact position that we wish. To achieve
higher resolution, we increase the divisions of the grid to 1002100. With this
dimension we decrease the positioning errors. After allocating all the anima-
tions, those that are not exactly in a valid point are displaced automatically to
the nearest valid point. If an animation is allocated outside the grid, the blend
space discards it. For that reason, it is a good idea to start with big maximum
and minimum parameters that can be adjusted later.

38

After applying our method to the same set of animations that is used in the
base 2D blend space the result is the following.

Click and Drag or Hold Shift to move the Preview (&7,

Rotation

Figure 4.19: Apply automatic blend space.

The animations are located in the grid but some of them are not in the
expected place. After analysing this result we discover some interesting infor-
mation that can be observed using our method (which corresponds to the real
behaviour of the animations), which are difficult to detect simply by observa-
tion. In figure we can observe that the run forward animation being used
is not moving they way we expected since it describe a curve with few degrees.
Moreover, the rotations in place rotate so much in one second that are allocated
really far away.

The problem of having outlier animations like the rotations in place is that
the triangulation that UE4 does, joins vertices in the wrong way. In this ex-
ample, UE4 joins the rotation in place with the run animation, which does not
make much sense since they are very different animations and thus blending
between them leads to awkward new animations. This triangulation can be
observed in figure One option that we tried consisted in playing the ani-
mations during only half a second instead of one second. By doing this we get
the parameters from a half step. This option is done to observe if this rotation
values is induced by some specific frames. It can happen if in one frame the
rotation value is bigger than in the following frames, which emphasizes the value
of the parameter just in that point, but maybe the value does not describe the
trend of the animation. Reducing the time by half, the rotation value is reduced
more than a half, but continues generating some wrong triangles. Note that this
generates a similar space structure but it reduces the scale of the rotation axis
so the maximum and minimum parameter will be changed. Figure [£.20] shows

39

the blend space with the same axis scale as in the previous case.

Figure 4.20: Apply automatic blend space with half second.

Another information that we can extract from our automatic allocations of
animation clips, is what kind of motions are missing in our set. As it is explained
in previous sections, it is not easy to find or to create a huge set of animations.
With the information obtained, we can find specifically which animation clips
we need to complete our blend space. We can also discard animations that, in
the end, have similar behaviours. Moreover, this may help with the previous
problem (large triangles between very distant animation clips). One of the so-
lutions is to obtain the animations for some strategic points that leads to the
generation of a better triangulation. To prove it, we use placeholders with the
first automatic blend space to identify which animations are needed to obtain
the behaviour that we want. Figure [1.21] shows the result with the placeholder.

r— = - .
] Speed 2075

Rotation

Figure 4.21: Apply automatic blend space with half second.

Taking this information into account, we find that we need to add six new

40

points to achieve a behaviour that is more similar to our idea. Since we can use
one animation for every two points (because the points needed are symmetric),
we only need three animations. Those animations are a turn forward left and
right more or less running describing a close curve. Then we also need something
similar, a turn left and right more faster than what we have that describes a close
curve, but this time going backward. An the last animation needed is a turn
left and right in place, but the turn needs to be slower that our actual animation.

One of the benefits of our method is that is easy to include in other frame-
work and thus it is not mandatory to use UE4. With this idea we have the
option to create our own generic blend space framework with the possibilities of
using a 3D space with octahedron instead of triangles, or use other blend method
similar to baricentric coordinates. The only requirement to use it would be to
have or implement a blend space, and to be able to extract the root motion
from animations, which is a typical functionality in other popular game engines
like Unity.

On the other hand, as the speed and the rotation is obtained from the ani-
mation clip, the maximum and the minimum of these parameters will change
between blend spaces that use different animations. This makes it difficult to
blend between them and originates compatibility issues between different blend
spaces. The problem is that the maximum velocity for a injured behaviour will
be much more slower that the normal behaviour, so when the base motion is
walking, the injured motion could end up using the fastest animation. To solve
it, we can use more animations or scale the blend space that is similar to what
we did by hand in the previous sections.

41

Chapter 5

Analysis of results

In this project we had two main goals: (1) The main one was generate a syn-
thesizer for character animation to generate realistic simulations. And (2) the
second was to use it for a real-time crowd simulation which adds more complex-
ity as it requires computation to be simpler so that they can be computed in
real time.

For these reasons we will measure two different aspects from the result. First
analyse the realism of the character behaviour, and second, measure the perfor-
mance of the framework in a crowd simulation.

5.1 Realistic result animation

One of the important goals of this project was to generate realistic simulations.
As it is difficult to quantitatively measure the realism of one character, what
we did is to run a comparison against other approaches. We will thus describe
what kind of problems typically appear in other approaches that we managed
to solve. We will also so the limitations of our method by comparing how other
approaches solve some problems that we did not eliminate successfully.

In the figure we can see the images of different approaches that are men-
tioned in this thesis and can be found in the bibliography of this project.

42

Figure 5.1: Examples different approaches. First example is our simulation.
Second is the animation from Phase-functioned neural networks for character
control” [g]

One of the most typical problems that appears in many approaches is the
foot-sliding. This problem, as it is described in previous sections, happens when
the character motion has different velocity than the captured one for the ani-
mation. What it causes is that when a foot is on the floor, instead of stay in the
same point during a step, it slides through the floor. This problem is solved in
our approach because we use the root motion of the animations for the motion
of the character even while there is animation blending.

One problem that we observed in our simulation with some animations, was
that if the animations had a center of gravity very different from the ones in
the base blend space, then the position of the simulated character could appear
tilted after a period of time. Fortunately, this artifact does not appear very
often.

If we compare the result against one of the most realistic approaches in the
state of the art that, which is ”Phase-functioned neural networks for character
control” , we can observe that although our approach does not have all the
motions that it can do (such as turn backwards along a close curve or pass
above obstacles) the basic animation clips for a character are very similar. This
means that if both approaches contain the same set of basic walking, running
and turning animation, we achieve very similar results from a qualitative point
of view. Moreover, our approach can be used for a crowd simulation in real
time, while theirs can only handle one or two characters in real time. So we can
see that ours offers a good realistic behaviour with minimal performance cost.

43

5.2 Performance result crowd simulation

The next evaluation of results is based on measuring performance. Since the
idea is to use it for crowd simulation, we need to know how it behaves in this
kind of simulation. To analyse it, we measured how many avatars could be
animated at the same time in a scene. To do so, we used a scene that only
had a floor as an additional element. The avatars moved randomly around the
scene and the parameter was updated every 3 seconds to change the direction
of the avatars. With these preambles we runed the experiment. The idea was to
measure the fps of the simulation while the number of characters kept increas-
ing. To avoid UE4 not computing the characters that fall outside of the view
frustum, an air camera was used for this experiment to fit all the characters at
the same time as can be seen in figure [5.2

Figure 5.2: Example of an experiment execution.

The experiment started with one avatar and then increased the number by
10 every measured step. For every step, we computed the simulation with the
original blend space, the blend space with both 2D blend spaces, with one 2D
and one 1D blend space and with two 2D and one 1D blend space. The figure
shows the results for use only one blend space and use two 2D blend space
and one 1D blend space. This is done to differentiate better the results since
the other configuration results are in between of these two.

44

#Characters

Figure 5.3: Results of the experiment. Line blue represent experiment with
only one blend space. Line green represents experiment blending three blend
spaces(two 2D blend spaces and one 1D blend spaces).

Figure [5.3] shows some interesting results. It only shows two lines for clarity
purposes. The lines represents the extreme cases, in blue only one blend spaces
and in green the case of three blend spaces. At the beginning the fps is constant
at 120 because UE4 has limited the fps to this value. If we like to use it in VR
applications the lowest rate we can use is 60 fps, which is achieved if we have
in the screen less than 120 avatars with three blend spaces and 140 with one.
In the case of using it in a real time application without VR the lowest rate is
30 fps and it can support 250 avatars approximately for both. The experiment,
as it is mentioned before, has been tested with multiples configurations for the
behaviour and the result is that the changes only take an oscillation with a
maximum of 10 fps fps depending on the case. This experiment has some error
rate because the fps is not fixed in time and it oscillates during the simulation.

As we expect, the cost of using only one blend space is lower than using three,

since using three it needs to execute the process of using only one but three
times and apply two blend functions to obtain the result.

45

Chapter 6

Conclusions and future
work

The following sections explain the conclusion obtained with the different parts
developed in this project and the results. Moreover, is explained the different
ideas for continue working in this project.

6.1 Conclusion

In this project, we present a few tools and ideas to help in the generation of
character animation synthesis using Unreal Engine 4.

Some of them such as the foot detection tool, which starts based on exist-
ing code, and the automatic blend space generator. Although there is room for
improvements, our current framework can help the user to obtain better results.

The first, although is not automatic and it still needs some manual effort, it
allows to increase the precision of the foot detection and to decrease the time
needed for this task. With our solution, the user only needs to adjust a param-
eter and it generates the symmetric sync markers needed. Moreover, it gives
the user the motion curve that helps in this adjustment.

The second is a simple method to generate blend space automatically, but al-
though being a simple method, the structure generated provides good result
compared to the current state of the art. Moreover, this method is easy to
adapt to other kinds of parameters because it only needs to compute them tak-

46

ing the root motion of the animations. Furthermore, the result of this method
gives an unexpected information about the real behaviour of the animations
used and helps to identify the motions that are not well represented with the
animation set chosen. So an additional functionality of our method could be to
provide a realistic overview of the behaviors that can be covered with a given
animation set.

The other part developed in this project consists on increasing the realism and
the behaviour of the character in a simulation. The result of this method has
a good performance, because it does not increase so much the computational
time for each frame and thus allows to create different real behaviours in our
simulations. For example, in the case of using one 1D blend space and one 2D
blend space to simulate an injured character. Moreover, it decreases the number
of animation clips needed, which decreases the time needed to do tasks such as
modelling animations or searching for new clips. Furthermore, it solves, with a
good result, the problem of only having 2D spaces in the UE4 blend spaces.

Finally, it is interesting to mention some conclusions about the development
in Unreal Engine 4. It is a very powerful framework with which you can get
very good results. As many people comment, and now I can also agree, it has a
very slow learning curve and it is needed a large amount of time to have a good
base knowledge of the framework.

The last part that I like to comment is about the coding in C++ in this frame-
work. One of the possibles improvements is use this language in all the code
but I like to remark a really interesting detail about why this is not as easy as
it seems. When you create a project in UE4 you have the option of creating the
base with Blueprint or C++. If you use the second, you will find the scripts of
control made in C++ and some others. The interesting idea is that the anima-
tion scripts are created with blueprints and not with C++4 so it can be noticed
the difficulty of this task in C++.

6.2 Future Work

During this project many ideas for future work are opened. Some of this ideas
are more advanced than other but there is room for improvements in all of them.

e For the part of foot detection, there are some algorithms that can be
applied to achieve the automation of this problem. The main problem in
this part is how to implement it using Unreal Engine 4, so improving our
knowledge about it will be easier than implementing a new method.

47

For the part of the blend spaces, the final idea is to implement our own
generic framework disconnected from UE4. This will allow to us the pos-
sibility of change the game engine that we use or apply it in other kind
of software. Moreover, it allows us to modify the triangulation algorithm
that it has given some problems during the project, or delete the grid and
allow to put the animations clip in any position of the space to delete
calculation errors.

Another future improvement related with the possibility to create our
own blend space framework is, at the first instance, allows the 3D blend
spaces, and in the future the possibility of multidimensional blend spaces.
Of course this is only and idea and is not in our mind in the short time.

For the part of automation of the blend space generation, we are thinking
about more methods to develop this part starting by finding a better
parametizations that can describe more accurately the real behaviour of
a character using less parameters.

Finally, one option that we are trying at the moment is to apply IK to
the resulting animation to straighten the character that sometimes ends
up twisted after some time (due to center of mass incompatibilities).

48

Bibliography

1]

[10]

UBISOFT: Francois Cournoyer. Massive crowd on assassin’s creed
unity: Airecycling. https://www.gdcvault.com/play/1022411/Massive-
Crowd-on-Assassin-s|, 2015.

Otger Rogla Pujalt, Nuria Pelechano Gémez, and Gustavo Ariel Patow.
Procedural semantic cities. In CEIG 2017: XXVII Spanish Computer
Graphics Conference: Sevilla, Spain, June 28-30, 2017, pages 113-120.
European Association for Computer Graphics (Eurographics), 2017.

Nuria Pelechano, Bernhard Spanlang, and Alejandro Beacco. Avatar loco-
motion in crowd simulation. 2011.

Alejandro Beacco, Nuria Pelechano, Mubbasir Kapadia, and Norman I.
Badler. Footstep parameterized motion blending using barycentric coordi-
nates. Computers Graphics, 47:105-112, 2015.

Sean Curtis, Ming C. Lin, and Dinesh Manocha. Walk this way: A
lightweight, data-driven walking synthesis algorithm. In MIG, 2011.

Mubbasir Kapadia, Nuria Pelechano, Jan M. Allbeck, and Norman I.
Badler. Virtual crowds: Steps toward behavioral realism. In Virtual
Crowds: Steps Toward Behavioral Realism, 2015.

Sahil Narang, Tanmay Randhavane, Andrew Best, and Dinesh Manocha.
Fbcrowd: Interactive multi-agent simulation with coupled collision avoid-
ance and human motion synthesis. 2016.

Daniel Holden, Taku Komura, and Jun Saito. Phase-functioned neural
networks for character control. ACM Trans. Graph., 36:42:1-42:13, 2017.

Franck Multon, Richard Kulpa, Ludovic Hoyet, and Taku Komura. Interac-
tive animation of virtual humans based on motion capture data. Computer
Animation and Virtual Worlds, 20(5-6):491-500, 2009.

UBISOFT: Alexander Bereznyak. Ik rig: Procedural pose anima-
tion. https://www.gdcvault.com/play/1022984/IK-Rig-Procedural-
Posel, 2016.

49

https://www.gdcvault.com/play/1022411/Massive-Crowd-on-Assassin-s
https://www.gdcvault.com/play/1022411/Massive-Crowd-on-Assassin-s
https://www.gdcvault.com/play/1022984/IK-Rig-Procedural-Pose
https://www.gdcvault.com/play/1022984/IK-Rig-Procedural-Pose

[11]
[12]

[20]

[21]

[22]
23]

[25]

[26]

[27]

Yi Lin. Character animation synthesis from 2 d sketches. 2007.

Unity Technologies. Animation tab. https://docs.unity3d.com/Manual/
class-AnimationClip.html, 2018.

Inc. Epic Games. Unreal engine 4. https://www.unrealengine.com/en-
US/what-is-unreal-engine-4, May 2018.

Unity Technologies. Unity3d. https://unity3d.com/es/, May 2018.
Crytek GmbH. Cryengine. https://www.cryengine.com/, May 2018.

Richard Fine. Unityscript’s long ride off into the sunset.
https://blogs.unity3d.com/es/2017/08/11/unityscripts-long-
ride-off-into-the-sunset/, 2017.

Aras Pranckevi¢ius. Releasing the unity ¢ source code. |https:
//blogs.unity3d.com/es/2018/03/26/releasing-the-unity-c-
source-code/, 2018.

Amazon. Amazon lumberyard. https://aws.amazon.com/es/
lumberyard/, May 2018.

Otger Rogla Pujalt. Procedural modeling of cities with semantic infor-
mation for crowd simulation. Master’s thesis, Universitat Politecnica de
Catalunya, 2016.

Inc. Epic Games. Introduction to blueprints. https://
docs.unrealengine.com/en-us/Engine/Blueprints/GettingStarted,
2018.

Autodesk Inc. Autodesk maya. https://www.autodesk.eu/products/
maya/overview, May 2018.

Blender. Blender. https://www.blender.org/, May 2018.

Adobe Systems Incorporated. Mixamo. https://www.mixamo.com/#/,
February 2018.

Inc. Epic Games. Root motion in wunreal engine 4. https://
docs.unrealengine.com/en-us/Engine/Animation/RootMotion, 2018.

Ue4 tutorial: Basic movement with root motion. https://
www.youtube.com/watch?v=4xF7AK4UjMI, 2016.

Naughty Dog Inc.: Travis McIntosh. Animation and player control in
uncharted: Drake’s fortune and uncharted ii: Among thieves. http://
www.gdcvault.com/play/1012300/Animation-and-Player-Control-in,
2010.

Giuseppe Portelli. Automated foot sync markers using animation modifiers
in unreal engine. http://www.aclockworkberry.com/automated-foot-
sync-markers-using-animation-modifiers-unreal-engine/, 2017.

50

https://docs.unity3d.com/Manual/class-AnimationClip.html
https://docs.unity3d.com/Manual/class-AnimationClip.html
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://unity3d.com/es/
https://www.cryengine.com/
https://blogs.unity3d.com/es/2017/08/11/unityscripts-long-ride-off-into-the-sunset/
https://blogs.unity3d.com/es/2017/08/11/unityscripts-long-ride-off-into-the-sunset/
https://blogs.unity3d.com/es/2018/03/26/releasing-the-unity-c-source-code/
https://blogs.unity3d.com/es/2018/03/26/releasing-the-unity-c-source-code/
https://blogs.unity3d.com/es/2018/03/26/releasing-the-unity-c-source-code/
https://aws.amazon.com/es/lumberyard/
https://aws.amazon.com/es/lumberyard/
https://docs.unrealengine.com/en-us/Engine/Blueprints/GettingStarted
https://docs.unrealengine.com/en-us/Engine/Blueprints/GettingStarted
https://www.autodesk.eu/products/maya/overview
https://www.autodesk.eu/products/maya/overview
https://www.blender.org/
https://www.mixamo.com/#/
https://docs.unrealengine.com/en-us/Engine/Animation/RootMotion
https://docs.unrealengine.com/en-us/Engine/Animation/RootMotion
https://www.youtube.com/watch?v=4xF7AK4UjMI
https://www.youtube.com/watch?v=4xF7AK4UjMI
http://www.gdcvault.com/play/1012300/Animation-and-Player-Control-in
http://www.gdcvault.com/play/1012300/Animation-and-Player-Control-in
http://www.aclockworkberry.com/automated-foot-sync-markers-using-animation-modifiers-unreal-engine/
http://www.aclockworkberry.com/automated-foot-sync-markers-using-animation-modifiers-unreal-engine/

Appendices

o1

Appendix A

Code of Foot Detection

This is the code used in the foot detection part that it is based in other code
from the UE4 comunity [27].

92

J A Gt ey
o 2
@ s Loston
Tk et

T
T e

o)

T A vt Sy ek

TS

TS
s o

93

	Introduction
	Motivation
	Objectives
	Document walk-through

	Background
	Related Work
	Preliminaries
	Character animation synthesis
	Animation clip
	Game Engine
	Blueprints Visual Scripting
	Mixamo

	Methodology
	Development
	Selection animation clip set
	Implementation using UE4 tools
	Displacement of the character
	Blending of the animations
	First implementation
	Problems and improvements

	Foot Detection problem
	Blend animations with inverse foot cycle
	Automatic Foot Detection

	Multi blend space
	Ambiguity of animation clips
	Character behaviours with 1D Blend Space

	Automatic blend space

	Analysis of results
	Realistic result animation
	Performance result crowd simulation

	Conclusions and future work
	Conclusion
	Future Work

	Appendices
	Code of Foot Detection

