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Abstract

Functional languages are often praised for their expressive type systems and pure mathematical
approach to programming, traits which make it easier to reason about them. Proving properties
about our programs allows us to have strong guarantees on their correctness. However, informal
hand written proofs are error prone, and computer-checked formal proofs are difficult and tedious.
None of these methods are viable if thousands of theorems must be checked in a limited amount of
time or if the proving process is part of an automatic process.

In this thesis we try to automate the reasoning process by designing a proof search algorithm
which includes structural induction. We present Phileas, an automatic theorem prover of equations
between functional expressions. Phileas parses properties specified in Haskell code and compiles
them into a simpler internal language, then it tries to prove them. If it succeeds, it outputs the
proof in a human readable format.

We evaluate Phileas on a large set of theorems. We also compare it to IsaPlanner and Zeno, sim-
ilar automatic theorem provers. We found that our implementation is able to prove a considerable
amount of real world theorems and is more robust than existing tools.
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A functional program defines a set of inductive types as well as a number of function definitions.
A function definition is just an equality between two expressions. Functional programs compute
their results from evaluating expressions as opposed to executing statements that alter a global state.
These expressions are evaluated using rewrite rules, similar to evaluation of functions in traditional
mathematics, without any side effect. A consequence of this is that evaluating an expression twice
will have the same outcome. This basic mathematical principle allows us to reason about functional
expressions as if they were mathematical expressions. Equational reasoning is a technique based on
this principle that gives a framework to prove theorems about our programs. Since the only way to
express repetition in a functional setting is recursion, we extend the logic framework with structural
induction, a principle that allows us to reason about functions on finite recursive data structures.

Our aim is to implement an automatic inductive theorem prover—named Phileas—that is able
to use this framework to prove properties about functional programs in a subset of first order logic.
Data type definitions, functions and properties are all defined in a Haskell module. Phileas internally
uses the GHC compiler, a state of the art compiler for the purely functional language Haskell, to
parse and compile Haskell code to a syntactically simpler internal language which we named Phi.

Inductive theorem proving has a long history [1]–[4]. More recent work shows a promising future
for automatic inductive theorem provers (AITPs). In particular, we put our attention on Zeno [5]
and IsaPlanner [6]. Zeno is the AITP that inspired Phileas and it has a very similar pipeline.
Zeno uses a heuristic based on the concept of critical paths to find relevant lemmas to the current
theorem. IsaPlanner is an AITP in the form of a plugin for the Isabelle [7] proof assistant that uses
the rippling technique [8] to guide rewrite rules application while ensuring termination. Section 11
provides a detailed comparison of Zeno, IsaPlanner and Phileas.

The research of this project—in automatic equational theorem proving—is motivated by its ap-
plication in the context of model checking algorithms for systems composed of a set of processes that
will potentially execute concurrently and access shared resources. Model checking algorithms try to
prove properties about a given model, such as the absence of deadlocks, by exhaustively exploring its
possible execution paths. The size of the search space makes simple brute force impractical. There
are a number of techniques that try to face this problem with different approaches, one of them
being dynamic partial order reduction [9]. DPOR reduces the search space by avoiding exploration
of redundant paths. It does so by dynamically detecting independence between processes. If two
processes 𝐴, 𝐵 are independent, then there is no need to check both 𝐴 | 𝐵 and 𝐵 | 𝐴.

Recent research [10] presents constrained dynamic partial reduction, an extension to DPOR that
is able to handle conditional independence between processes given by a set of equality constraints.
That is, it provides some sufficient conditions under which two processes are independent. These
conditions are given in the form of equalities between expressions in a functional language. This
functional language is part of ABS [11], a popular and open source framework used to model
concurrent systems and prove properties about them. The goal is to use Phileas to determine
and prove which of these constraints will always be true. If a constraint is proven true for all
possible values then it can be safely removed. Apart from avoiding the run-time check, removing
a constraint may allow us to completely remove a node in the search tree, and hence showing
exponential efficiency gains in the experimental evaluation.

This ABS framework together with the model checker based on CDPOR has successfully been
applied to test Software Defined Networks (SDN) [12].

The most noteworthy achievements of this research are:

• Implementing Phileas, an AITP that is capable of automatically proving a large set of relevant
equational theorems. Some of them useful in the use case of CDPOR.

• Fully support type polymorphism. A feature that is not easily implemented as shown by the
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fact that Zeno’s attempt at doing so failed, as described in section 14
All code is publicly available at https://gitlab.com/janmasrovira/phileas. More
details can be found in section 7.
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Chapter 1

Syntax and informal overview

In this section we describe the Phi language, Phileas internal language. Phi has all the expressive
power of modern functional languages such as Haskell, but its simpler structure allows for more
convenient reasoning. It is based on GHC-Core [13], which in turn, is closely related to System F.
GHC-Core is an intermediate language of the GHC1 compiler. System F is an extension to typed
lambda calculus with type polymorphism [14]. Figure 1.1 shows Phi’s full grammar.

Below we briefly give an informal overview of some parts of the language. If the reader is familiar
with functional languages, they may skip to the next section.

A Phi program consists of a set of data types and function definitions.
A data type definition declares a new type constructor and its data constructors. The con-

structors are used to build instances of such type. Phi supports only algebraic data types (ADTs).
Consequently, there is no support for primitive types such as integers or arrays. ADTs are revisited
in more detail in section 4. For example, the data type definition below shows the definition of
booleans and lists.

data Bool = True | False
data List a = Nil | Cons a (List a)

Then, a list containing 𝑇 𝑟𝑢𝑒 followed by 𝐹𝑎𝑙𝑠𝑒 is expressed by composing constructors thus:
𝐶𝑜𝑛𝑠 𝑇 𝑟𝑢𝑒 (𝐶𝑜𝑛𝑠 𝐹𝑎𝑙𝑠𝑒 𝑁𝑖𝑙)2.

A function definition declares a variable to be equal to some expression: 𝑓 = 𝑒. This assignment
should be read as a declaration of equivalence rather than a statement that modifies the contents
of a variable.

An expression can be:

• A defined variable (or function) is a variable that has previously been defined. It could
have been defined in a let expression or in a top level definition.

• An application 𝑎 𝑏. Note that 𝑎 does not have to be a lambda or a defined function, it can
be any (well typed) expression.

• A lambda function is used to abstract an expression over an argument. An applied lambda
function (𝜆𝑥. 𝑒) 𝑎 is equivalent to 𝑒[𝑎/𝑥]3.

1GHC is the Glasgow Haskell Compiler, considered the standard Haskell compiler.
2In functional languages application is often implicit, so 𝑎 𝑏 means “apply 𝑎 to 𝑏”. In traditional notation we

would write 𝑎(𝑏). Application is left associative, so 𝑎 𝑏 𝑐 is equivalent to (𝑎 𝑏) 𝑐
3e[a/x] means “replace 𝑥 by 𝑎 in 𝑒”.
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CHAPTER 1. SYNTAX AND INFORMAL OVERVIEW

• A constructor is a variable defined by a data type definition. For example 𝑇 𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒,
𝐶𝑜𝑛𝑠 or 𝑁𝑖𝑙. Constructors always start with a capital letter.

• A case expression is used to make a choice based on the structure of some value. A case
is composed of a number of alternatives. Each alternative has a pattern and an associated
expression. A pattern is a constructor followed by 𝑛 pattern variables, where 𝑛 is the arity
of the constructor. There is a special alternative—the default alternative—that doesn’t have
a pattern. If the cased expression is a constructor application, it is pattern matched against
all alternatives and the matching alternative expression is used. Then pattern variables are
replaced by the cased constructor arguments. This is best understood by example, consider
the following expression:

case e of
Cons x xs → xs
_ → h

then, if 𝑒 = 𝐶𝑜𝑛𝑠 𝑎 𝑏, the expression is equivalent to 𝑏. If 𝑒 = 𝑁𝑖𝑙, the expression is equivalent
to ℎ.
See axioms Case match and Case default in figure 3.3.

• A let expression is useful to define auxiliary functions that should be in scope locally to some
expression.

Every expression has an associated type. A type can be one of the following:

• A function type 𝑎 ↦ 𝑏 is the type of some expression that expects something of type 𝑎 and
returns something of type 𝑏.

• A for all type is similar to a lambda function at the type level. It is used to abstract a type
over a type variable. For example, the type of the polymorphic 𝑖𝑑 function is ∀𝑎. 𝑎 ↦ 𝑎. An
applied for all type (∀𝑥. 𝑡) 𝑎 is equivalent to 𝑡[𝑎/𝑥].

• A type variable declared by a for all type.

• A type application 𝑡 𝑟. The left term can be either a for all type or a type variable.

• A type constructor is a type such as 𝐵𝑜𝑜𝑙 or 𝐿𝑖𝑠𝑡. New type constructors can be defined
via type definitions.

• A type constructor application is used to specialize type constructors. For instance,
𝐿𝑖𝑠𝑡 𝐵𝑜𝑜𝑙 is a type constructor application that denotes the type of polymorphic lists instan-
tiated to lists of booleans. It is essentially the same as type application where the left term is
a type constructor.

The empty type—a type with no constructors—is forbidden. Allowing the empty type would
make the reasoning process a lot more cumbersome [15].
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CHAPTER 1. SYNTAX AND INFORMAL OVERVIEW

As an example, the code fragment below shows the 𝑚𝑎𝑝 function definition in Haskell and its
Phi equivalent. This function applies a function to each element of a list.

-- map definition in Haskell
map :: (a -> b) -> List a -> List b
map f Nil = Nil
map f (a:as) = Cons (f a) (map a as)

-- map definition in Phi
map ∷ ∀ a. ∀ b. (a ↦ b) ↦ [a] ↦ [b]
map = λ@a. λ@b. λ(f ∷ a ↦ b). λ(ds ∷ [a]).

case ds of
Nil → Nil @ b
Cons a1 as → (Cons @ b) (f a1) (((map @ a) @ b) f as)

Phileas has two built-in types: [] —the list type—and Bool. Equivalent types could easily be
defined by the user, but only predefined types can be used in syntactic sugar constructions such as
if then else expressions, guards and comprehension lists.

Throughout this report we assume that all structures are finite. Reasoning about infinite struc-
tures, such as infinite lists, usually requires the use of coinduction [16] and this falls out of the scope
of this project.
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CHAPTER 1. SYNTAX AND INFORMAL OVERVIEW

𝑃𝑟𝑜𝑔𝑟𝑎𝑚 =
𝐷𝑎𝑡𝑎𝑇 𝑦𝑝𝑒𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛∗ 𝐵𝑖𝑛𝑑𝑠 Phi program

𝐷𝑎𝑡𝑎𝑇 𝑦𝑝𝑒𝐷𝑒𝑓 =
data 𝑇 𝑦𝑝𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 𝑇 𝑦𝑝𝑒𝑉 𝑎𝑟∗ =

𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟𝐷𝑒𝑓 (| 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟𝐷𝑒𝑓∗) Data type definition
𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟𝐷𝑒𝑓 =

𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 𝑇 𝑦𝑝𝑒∗ Constructor definition
𝐵𝑖𝑛𝑑𝑠 =

(𝐷𝑒𝑓𝑖𝑛𝑒𝑑𝑉 𝑎𝑟 = 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)∗ Variable definition
𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =

𝑉 𝑎𝑟 Variable
| 𝜆(𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙𝑉 𝑎𝑟 ∷ 𝑇 𝑦𝑝𝑒). 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 Lambda asbtraction
| 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 Application
| case 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 of 𝐶𝑎𝑠𝑒𝐴𝑙𝑡+ Case
| let 𝐵𝑖𝑛𝑑𝑠 in 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 Let abstraction
| 𝜆@𝑇 𝑦𝑝𝑒𝑉 𝑎𝑟. 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 Type asbtraction
| 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 @ 𝑇 𝑦𝑝𝑒 Type application

𝑉 𝑎𝑟 =
𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙𝑉 𝑎𝑟 Bound by a pattern or a lambda
| 𝐷𝑒𝑓𝑖𝑛𝑒𝑑𝑉 𝑎𝑟 Defined variable
| 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 Constructor variable

𝐶𝑎𝑠𝑒𝐴𝑙𝑡 =
𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙𝑉 𝑎𝑟∗ → 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 Pattern match

𝑇 𝑦𝑝𝑒 =
𝑇 𝑦𝑝𝑒𝑉 𝑎𝑟 Type variable
| 𝑇 𝑦𝑝𝑒 ↦ 𝑇 𝑦𝑝𝑒 Function type
| ∀𝑇 𝑦𝑝𝑒𝑉 𝑎𝑟. 𝑇 𝑦𝑝𝑒 Type abstraction
| 𝑇 𝑦𝑝𝑒 @ 𝑇 𝑦𝑝𝑒 Type application
| 𝑇 𝑦𝑝𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 𝑇 𝑦𝑝𝑒∗ Type constructor application

Figure 1.1: Phi language definition.
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Chapter 2

Typing rules

Inferring the most general type of an expression in presence of polymorphic types and mutually
recursive let bindings is a laborious job and for a similar language such as System F it is an
undecidable problem [17]. Fortunately GHC implements this task for GHC-Core and annotates
each variable with its type. This information is carried to Phi in the compilation process which
greatly facilitates the type inference of expressions. Because of this, we present a simplified version
of the Let type inference rule.

The environment Γ contains variables and polymorphic type variables in scope. The ∷ operator
denotes the typing relation. A construction of the form Γ ⊢ 𝑒 ∷ 𝜏 is called a typing judgment and it
should be read as “𝑒 has type 𝜏 in type environment Γ”. Greek letters 𝜎, 𝜑, 𝜏 denote types. Greek
letter 𝜅 denotes a kind1. Kind rules are not presented since kinds are ignored in the reasoning
process.

Variable
𝑣𝑎𝑟 ∷ 𝜏 ∈ Γ
Γ ⊢ 𝑣𝑎𝑟 ∷ 𝜏

Abstraction
Γ, 𝑥 ∷ 𝜏 ⊢ 𝑒 ∷ 𝜎

Γ ⊢ 𝜆(𝑥 ∷ 𝜏). 𝑒 ∷ 𝜏 ↦ 𝜎

Application
Γ ⊢ 𝑓 ∷ 𝜏 ↦ 𝜎 Γ ⊢ 𝑥 ∷ 𝜏

Γ ⊢ 𝑓 𝑥 ∷ 𝜎

Type abstraction
Γ, 𝜏 ∷ 𝜅 ⊢ 𝑒 ∷ 𝜎

Γ ⊢ 𝜆@𝜏. 𝑒 ∷ ∀𝜏. 𝜎

Type application
Γ ⊢ 𝑒 ∷ ∀𝜏. 𝜎 𝜑 ∷ 𝜅 ∈ Γ

Γ ⊢ 𝑓 @ 𝜑 ∷ 𝜎[𝜑/𝜏]

Case
Γ ⊢ 𝑎1 ∷ 𝜏 … Γ ⊢ 𝑎𝑛 ∷ 𝜏 Γ ⊢ 𝑑 ∷ 𝜏

Γ ⊢ case 𝑒 of { 𝑝1 → 𝑎1; …; 𝑝𝑛 → 𝑎𝑛;_ → 𝑑 } ∷ 𝜏

Let
Γ, 𝑑1 ∷ 𝜏1, …, 𝑣𝑛 ∷ 𝜏𝑛 ⊢ 𝑒 ∷ 𝜎

Γ ⊢ (let 𝑣1 = 𝑑1; … ; 𝑣𝑛 = 𝑑𝑛in 𝑒) ∷ 𝜎

Figure 2.1: Type inference rules.

1A kind is the type of a type.
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Chapter 3

Logic

Phileas logic is based on first order logic and extended with type polymorphism. Below we list the
differences between first order logic and Phileas logic.

• No existential quantification.

• Terms have types, which can be polymorphic.

• It includes equality (≡) as a primitive predicate and implication (⇒) as the only logical
connective symbol.

• Includes structural induction. Explained in detail in section 4.

• Includes extensional equality of functions.

• Includes some axioms specific to the Phi language semantics. These axioms are defined in
figure 3.3.

We believe that any proof generated by Phileas could be expressed by composing these axioms.
On the other hand, Phileas will not be able to prove all theorems provable from these axioms since
the search is not exhaustive.

A property is a formula in first order logic that expresses something that we want Phileas to
prove. Figure 3.1 inductively defines a property. It should be noted that even though the grammar
allows for much more complex properties, Phileas is focused on properties of the following form:

∀𝑎1 … 𝑎𝑛. 𝑒1 ≡ 𝑒2 ⇒ … ⇒ 𝑒𝑚−1 ≡ 𝑒𝑚

Γ ⊢ 𝑎 ∷ 𝜏 Γ ⊢ 𝑏 ∷ 𝜏
Γ ⊢ 𝑎 ≡ 𝑏 ∷ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦

Γ, 𝑥 ∷ 𝜏 ⊢ 𝑃 ∷ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦
Γ ⊢ ∀𝑥. 𝑃 ∷ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦

Γ ⊢ 𝑃 ∷ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 Γ ⊢ 𝑄 ∷ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦
Γ ⊢ 𝑃 ⇒ 𝑄 ∷ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦

Figure 3.1: Property inductive definition.
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CHAPTER 3. LOGIC

Figures 3.2 and 3.3 show the axioms of the logic. Lower case letters refer to expressions and
variables. 𝑃 , 𝑄, 𝑅 to properties. 𝐾 to a constructor.

Reflexivity

𝑎 ≡ 𝑎

Symmetry
𝑎 ≡ 𝑏
𝑏 ≡ 𝑎

Transitivity
𝑎 ≡ 𝑏 𝑏 ≡ 𝑐

𝑎 ≡ 𝑐

Substitution
𝑎 ≡ 𝑏 𝑥 ≡ 𝑦

𝑎[𝑦/𝑥] ≡ 𝑏

Antecedent intro
𝑄

𝑃 ⇒ 𝑄

Antecedent commut
𝑃 ⇒ (𝑄 ⇒ 𝑅)
𝑄 ⇒ (𝑃 ⇒ 𝑅)

Antecedent elim
𝑃 ⇒ 𝑃

𝑃

Absurd

⊥ ⇒ 𝑃

Imply transitivity
𝑃 ⇒ 𝑄 𝑄 ⇒ 𝑅

𝑃 ⇒ 𝑅

Modus ponens
𝑃 𝑃 ⇒ 𝑄

𝑄

Generalization
𝑣 ∉ Γ Γ, 𝑣 ∷ 𝜏 ⊢ 𝑃(𝑣)

Γ ⊢ ∀𝑥 ∷ 𝜏. 𝑃 (𝑥)

Instantiation
Γ ⊢ 𝑒 ∷ 𝜏 ∀𝑣 ∷ 𝜏. 𝑃 (𝑣)

Γ ⊢ 𝑃(𝑒)

Figure 3.2: Axiomatic deduction rules.
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CHAPTER 3. LOGIC

Case match
𝐾, 𝐾1, … 𝐾𝑐 are constructors

𝐾 ≡ 𝐾𝑖 𝐾 ≢ 𝐾1 … 𝐾 ≢ 𝐾𝑖−1
case 𝐾 𝑎1 … 𝑎𝑛 of { 𝐾1 𝑥1,1 … 𝑥1,𝑚1

→ 𝑒1; … ; 𝐾𝑐 𝑥𝑐,1 … 𝑥𝑐,𝑚𝑐
→ 𝑒𝑐; _ → 𝑑 }

case 𝐾 𝑎1 … 𝑎𝑛 of { ... } ≡ 𝑒𝑖[𝑎1/𝑥𝑖,1, … , 𝑎𝑛/𝑥𝑖,𝑛]

Case default
𝐾, 𝐾1, … 𝐾𝑐 are constructors

𝐾 ≢ 𝐾1 … 𝐾 ≢ 𝐾𝑐
case 𝐾 𝑎1 … 𝑎𝑛 of { 𝐾1 𝑥1,1 … 𝑥1,𝑚1

→ 𝑒1; … ; 𝐾𝑐 𝑥𝑐,1 … 𝑥𝑐,𝑚𝑐
→ 𝑒𝑐; _ → 𝑑 }

case 𝐾 𝑎1 … 𝑎𝑛 of { ... } ≡ 𝑑

Definition
𝑓 𝑑𝑒𝑓= 𝑒 ∈ 𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑠

𝑓 ≡ 𝑒

Extensionality
∀𝑥.𝑓 𝑥 ≡ 𝑔 𝑥

𝑓 ≡ 𝑔

Beta equivalence

(𝜆𝑥. 𝑒) 𝑎 ≡ 𝑒[𝑎/𝑥]

Constructor intro
𝐾 is constructor 𝑎1 ≡ 𝑏1 … 𝑎𝑛 ≡ 𝑏𝑛

𝐾 𝑎1 … 𝑎𝑛 ≡ 𝐾 𝑏1 … 𝑏𝑛

Constructor elim
𝐾 is constructor 𝐾 𝑎1 … 𝑎𝑛 ≡ 𝐾 𝑏1 … 𝑏𝑛

𝑎1 ≡ 𝑏1 … 𝑎𝑛 ≡ 𝑏𝑛

Constructor absurd
𝐾1,2 are constructors 𝐾1 ≢ 𝐾2 𝐾1 𝑎1 … 𝑎𝑛 ≡ 𝐾2 𝑏1 … 𝑏𝑚

⊥

Structural induction
Γ ⊢ 𝑒 ∷ Τ

Τ is a data type
{ 𝐾1, … , 𝐾𝑛 } = 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟𝑠𝑂𝑓(𝜑)

𝒞(𝐾1) … 𝒞(𝐾𝑛)
Γ ⊢ 𝑃(𝑒)

where 𝒞(𝐾) = ∀(𝐾 𝑎1 … 𝑎𝑛) ∷ Τ.
⎛⎜⎜⎜
⎝

⋀
𝑖∈1…𝑗
𝑎𝑖∷Τ

𝑃(𝑎𝑖)
⎞⎟⎟⎟
⎠

⇒ 𝑃(𝐾 𝑎1 … 𝑎𝑛)

The symbol ⋀ is syntax sugar for an aggregation of ⇒ with right associativity.

Figure 3.3: Part 2. Axiomatic deduction rules.
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Chapter 4

Structural induction

This section describes and gives some theoretical background to structural induction in the context
of inductively defined data types [18].

Mathematical induction is a proof technique that can be used to prove properties on the natural
numbers. This technique consists in two parts. (1) Proving that it holds for 0, and (2) proving that
it holds for 𝑛 + 1 assuming that it holds for 𝑛. If these two parts can be proved, then the principle
of mathematical induction asserts that this property holds for all natural numbers. As an inference
rule:

Mathematical Induction
𝑃(0) ∀𝑛. 𝑃 (𝑛) ⇒ 𝑃(𝑛 + 1)

∀𝑚. 𝑃(𝑚)
In order to proof theorems on Phi, and any other pure functional language for that matter, we

need a more general principle called structural induction, which is the backbone of any nontrivial
proof on a recursive function.

First we will glance over algebraic data types (ADTs or data types in short). ADTs are structures
that are defined by specifying its possible shapes in terms of data constructors (constructors in short)
and the types of their children. A type can have one or more constructors and a constructor can
have zero or more children. The identifier of the algebraic data type is also called type constructor.
For example, the data type Bool has two constructors with no children, False and True.

In mathematical notation an ADT definition has the form:

data 𝑇 𝑝1 … 𝑝𝑛 = 𝐾1 𝑡1,1 … 𝑡1,𝑎1
| … | 𝐾𝑚 𝑡𝑚,1 … 𝑡𝑚,𝑎𝑚

On the left hand side there is 𝑇 , the type constructor being defined. A type constructor can have
0 ≤ 𝑛 polymorphic type variables, 𝑝𝑖, which are in scope in the definition of the data constructors.
We say that a type is polymorphic if it has at least one polymorphic type variable (1 ≤ 𝑛). On
the right hand side there is the definition of each of the constructors 𝐾𝑖. Phi does not support
the empty type, therefore there must be at least one constructor defined for every type (1 ≤ 𝑚).
Each of the constructors can have a different arity, represented by 0 ≤ 𝑎𝑖. Finally 𝑡𝑖,𝑗 are the type
arguments of the constructors.

It is worth noting that the only way to build something of type 𝑇 is by applying one of its
constructors to some arguments of the proper types. A consequence of this is expressed in the
following theorem.
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CHAPTER 4. STRUCTURAL INDUCTION

Theorem 4.0.1 Every value of a data type 𝑇 can be uniquely expressed with one of its constructors
in its head.

∀𝑒 ∷ 𝑇 ∃!𝐾 ∈ 𝑇 , ∃𝑎1, … , 𝑎𝑛 such that 𝑒 = 𝐾 𝑎1 … 𝑎𝑛

Here 𝐾 ∈ 𝑇 means that 𝐾 is one of the constructors of 𝑇 .

A value of some data type 𝑇 can be viewed as a tree where the root is a constructor of 𝑇 ,
other nodes are constructors (not necessarily of 𝑇 ) and leaves are either constant constructors or
constructors which children have a function type. This is the key concept of structural induction
since it gives a sense of finite size for any value of a data type. To denote this we introduce the
immediate child relation ≺𝑐. We say that 𝑎 is related to 𝑏 if 𝑎 is an immediate child of 𝑏.

𝑥 ≺𝑐 𝐾 𝑎1 … 𝑎𝑛 if ∃𝑖. 𝑥 = 𝑎𝑖

Because we are only considering finite structures, it should be obvious that ≺𝑐 is a well-founded
relation. Remember that a relation is well-founded if there is no infinite descending chain … ≺ 𝑎1 ≺
𝑎0.

Now we introduce the principle of well-founded induction, a more general principle than math-
ematical induction which is not restricted to natural numbers, instead, it is applicable to any set
with a well-founded relation. This principle as an inference rule is as follows.

Well-founded induction
∀𝑎 ∈ 𝐴. (∀𝑥 ∈ 𝐴. 𝑥 ≺ 𝑎 ⇒ 𝑃(𝑥)) ⇒ 𝑃(𝑎)

∀𝑎 ∈ 𝐴. 𝑃(𝑎)
We will use this as a starting point to informally derive the principle of structural induction

applied to data types. First, let us change the order relation ≺ to the immediate child relation ≺𝑐
and the membership relation 𝑎 ∈ 𝐴 to the typing relation 𝑎 ∷ 𝑇 , where 𝑇 is a data type. We have:

∀𝑎 ∷ 𝑇 . ((∀𝑥 ∷ 𝑇 . 𝑥 ≺𝑐 𝑎 ⇒ 𝑃(𝑥)) ⇒ 𝑃(𝑎)
∀𝑎 ∷ 𝑇 . 𝑃 (𝑎)

Now, let us focus on the condition above the horizontal line. Because of theorem 4.0.1 we can
rewrite 𝑎 as a constructor application 𝐾 𝑎1 … 𝑎𝑛. Since the data type 𝑇 can have more than one
constructor, it is convenient to abstract it as a parameter.

𝒞(𝐾) = ∀(𝐾 𝑎1 … 𝑎𝑛 ∷ 𝑇 ). ((∀𝑥 ∷ 𝑇 . 𝑥 ≺𝑐 𝐾 𝑎1 … 𝑎𝑛 ⇒ 𝑃(𝑥)) ⇒ 𝑃(𝐾 𝑎1 … 𝑎𝑛)
Continue by centering the attention to the induction hypotheses, namely ∀𝑥 ∷ 𝑇 . 𝑥 ≺𝑐 𝐾 𝑎1 … 𝑎𝑛 ⇒

𝑃(𝑥). By the definition of the immediate child relation ≺𝑐, there will be an induction hypothesis
for each 𝑎𝑖 that is of type 𝑇 . We can write this as a constrained conjunction:

𝒞(𝐾) = ∀(𝐾 𝑎1 … 𝑎𝑛) ∷ 𝑇 .
⎛⎜⎜⎜
⎝

⋀
𝑖∈1…𝑗
𝑎𝑖∷𝑇

𝑃(𝑎𝑖)
⎞⎟⎟⎟
⎠

⇒ 𝑃(𝐾 𝑎1 … 𝑎𝑛)
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CHAPTER 4. STRUCTURAL INDUCTION

Finally, with the help of the previous abstraction, we can define the axiom of structural induction:

Structural Induction
Γ ⊢ 𝑒 ∷ 𝑇

𝑇 is a data type
{ 𝐾1, … , 𝐾𝑛 } = 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟𝑠𝑂𝑓(𝑇 )

𝒞(𝐾1) … 𝒞(𝐾𝑛)
Γ ⊢ 𝑃(𝑒)

It can be pedagogical to observe that mathematical induction is just an special case of structural
induction. Consider the inductive definition of natural numbers as a Phi data type:

data Nat = Zero | Suc Nat

Then we have that 𝒞(𝑍𝑒𝑟𝑜) = 𝑃(𝑍𝑒𝑟𝑜) and 𝑃(𝑆𝑢𝑐) = ∀𝑆𝑢𝑐 𝑛. 𝑃 (𝑛) ⇒ 𝑃(𝑆𝑢𝑐 𝑛), which are
exactly the two conditions needed to prove 𝑃 using mathematical induction.

Limitation. It is worth remarking that the immediate child relation ≺𝑐 prevents us from using
the induction hypothesis on deeper children. This is a limitation in mutually recursive data types
such as n-ary trees. Consider the following definition:

data Tree x = Node x (List (Tree x))

The children of 𝑁𝑜𝑑𝑒 are of types 𝑥 and 𝐿𝑖𝑠𝑡 (𝑇 𝑟𝑒𝑒 𝑥). Since none of them is exactly 𝑇 𝑟𝑒𝑒 𝑥,
when applying induction to this type no induction hypotheses will be available.
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Chapter 5

A guided proof

This section contains a simple proof that should help the reader to understand the basic skeleton
of a proof with structural induction.

First, we define natural numbers and lists as data types. We avoid polymorphism of lists in
order to ease the readability of the code and proof.

data Nat = Zero | Suc Nat
data List = Nil | Cons Nat List

length ∷ List ↦ Nat
length = λl. case l of

Nil → Zero
Cons a as → Suc (length as)

(+) ∷ Nat ↦ Nat ↦ Nat
(+) = λa. λb.

case a of
Zero -> b
Suc a + b = Suc (a + b)

(++) ∷ List ↦ List ↦ List
(++) = λa. λb.

case a of
Nil -> b
Cons a as ++ b = Cons a (as ++ b)

Definition. A monoid is a set with an associative operation and an identity element.
Definition. A monoid homomorphism is a function 𝑓 ∷ 𝐴 ↦ 𝐵 such that 𝐴⟨⋆, 𝑖𝐴⟩, 𝐵⟨⋄, 𝑖𝐵⟩ are

monoids and:

• 𝑓 𝑖𝐴 ≡ 𝑖𝐵

• ∀𝑥, 𝑦 ∈ 𝐴. 𝑓 (𝑥 ⋆ 𝑦) ≡ 𝑓 𝑥 ⋄ 𝑓 𝑦

Postulate. Naturals form a monoid with + and 𝑍𝑒𝑟𝑜.
Postulate. Lists form a monoid with ++ (the concatenate operator) and 𝑁𝑖𝑙.
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Theorem 5.0.1 The function length is a monoid homomorphism from List to Nat.

Proof The proof consists of two parts:
1. 𝑙𝑒𝑛𝑔𝑡ℎ 𝑁𝑖𝑙 ≡ 𝑍𝑒𝑟𝑜
2. ∀𝑎, 𝑏 ∷ 𝐿𝑖𝑠𝑡. 𝑙𝑒𝑛𝑔𝑡ℎ (𝑎++𝑏) ≡ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎 + 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏
The first part is very simple and it will be done by only applying the axioms. The second part

is more complex and it will be done in a pen and paper style.
Proof of 1. 𝑙𝑒𝑛𝑔𝑡ℎ 𝑁𝑖𝑙 ≡ 𝑍𝑒𝑟𝑜
Applying the Definition axiom to 𝑙𝑒𝑛𝑔𝑡ℎ and Substitution gives:

(𝜆𝑙. case 𝑙 of

𝑁𝑖𝑙 → 𝑍𝑒𝑟𝑜
𝐶𝑜𝑛𝑠 𝑎 𝑎𝑠 → 𝑆𝑢𝑐 (𝑙𝑒𝑛𝑔𝑡ℎ 𝑎𝑠)) 𝑎

≡ 𝑍𝑒𝑟𝑜

Applying Beta reduction gives:
case 𝑁𝑖𝑙 of

𝑁𝑖𝑙 → 𝑍𝑒𝑟𝑜
𝐶𝑜𝑛𝑠 𝑎 𝑎𝑠 → 𝑆𝑢𝑐 (𝑙𝑒𝑛𝑔𝑡ℎ 𝑎𝑠)

≡ 𝑍𝑒𝑟𝑜

Applying Case match gives 𝑍𝑒𝑟𝑜 ≡ 𝑍𝑒𝑟𝑜 which is closed using Reflexivity.

Proof of 2. ∀𝑎, 𝑏 ∷ 𝐿𝑖𝑠𝑡. 𝑙𝑒𝑛𝑔𝑡ℎ (𝑎++𝑏) ≡ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎 + 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏
In order to make this part of the proof less verbose and more readable we will not unfold function

definitions and we will implicitly apply beta reduction and pattern matching simplifications.
We begin by applying induction on 𝑎, which has type 𝐿𝑖𝑠𝑡. By the axiom of structural induction,

we have to prove the property for each constructor. Thus, we have a base case for 𝑁𝑖𝑙 and an
inductive case with an induction hypothesis for 𝐶𝑜𝑛𝑠.

• Base case:
Prove: 𝑙𝑒𝑛𝑔𝑡ℎ (𝑁𝑖𝑙++𝑏) ≡ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑁𝑖𝑙 + 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏
By using the definitions of ++ and + it simplifies to 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏 ≡ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏, which is proved by
Reflexivity.

• Inductive case:
Prove: 𝑙𝑒𝑛𝑔𝑡ℎ ((𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠)++𝑏) ≡ 𝑙𝑒𝑛𝑔𝑡ℎ (𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠) + 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏
Assuming: 𝑙𝑒𝑛𝑔𝑡ℎ (𝑥𝑠++𝑏) ≡ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑥𝑠 + 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏

Apply a chain of transformations:
𝑙𝑒𝑛𝑔𝑡ℎ ((𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠)++𝑏) ≡ 𝑙𝑒𝑛𝑔𝑡ℎ (𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠) + 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏 Definition of ++
𝑙𝑒𝑛𝑔𝑡ℎ (𝐶𝑜𝑛𝑠 𝑥 (𝑥𝑠++𝑏) ≡ 𝑙𝑒𝑛𝑔𝑡ℎ (𝐶𝑜𝑛𝑠 𝑥 𝑥𝑠) + 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏 Definition of 𝑙𝑒𝑛𝑔𝑡ℎ

𝑆𝑢𝑐 (𝑙𝑒𝑛𝑔𝑡ℎ (𝑥𝑠++𝑏)) ≡ 𝑆𝑢𝑐 (𝑙𝑒𝑛𝑔𝑡ℎ 𝑥𝑠) + 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏 Definition of +
𝑆𝑢𝑐 (𝑙𝑒𝑛𝑔𝑡ℎ (𝑥𝑠++𝑏)) ≡ 𝑆𝑢𝑐 (𝑙𝑒𝑛𝑔𝑡ℎ 𝑥𝑠 + 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏) Congruence on 𝑆𝑢𝑐

𝑙𝑒𝑛𝑔𝑡ℎ (𝑥𝑠++𝑏) ≡ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑥𝑠 + 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏 Apply induction hypothesis
∎
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As an appetizer, we show the proof that Phileas generates for this theorem. Notice that not
all the steps that we mentioned are in the proof. This is because Phileas tries be succinct in
its proofs to improve readability. More information on this can be found in section 6.3.

Induction on (a1 ∷ List a)
Nil

Reflexivity ... ≡ ...
Cons

Congruence on Suc
Close using hypothesis ... ≡ ...

Phileas tags some proof steps with additional information. For this example we have removed
it (and substitute it with ...) to avoid obfuscating the proof.

For more information on how proofs are presented to the user, refer to section 9.
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Chapter 6

Search algorithm

The search algorithm tries to construct a valid proof for a goal property using a guided backtracking
algorithm. In this section we describe the components of the algorithm.

A proof is a tree composed of proof steps. Think of a proof step as a composition of axiomatic
inference rules defined in 3.2 and 3.3. Section 6.2 describes each of the proof steps and give arguments
to support their soundness with respect to the axioms. It is convenient to express proofs in terms of
proof steps instead of application of axioms because they operate on a higher level and the resulting
proofs are more lucid.

The application of a proof step to some property will have one of the outcomes listed below:

• Failed. The prover was unable to close this branch of the proof.

• Success. The application of the proof step succeeded and it found a valid proof.

• Absurd. A contradiction was found in the goal equality. This result is internally used to
prune the search tree, see section 6.1.

Before trying to apply a proof step, the goal property is simplified using a series of rules described
in section 6.3.

6.1 Subproof aggregation
As mentioned before, a proof step may convert the current property into a number of subgoals,
or, at a given point more than one proof step may be applied. Because of this, we need to define
some methods that aggregate subproof results into a new result according to the context of the
aggregation.

• Disjunction. It corresponds to a choice. For example, when several proof steps are applicable.
It sequentially tries each subproof and results in:

– Failed if all subgoals fail or if there were no subgoals.
– Success if it finds a valid subproof. The remaining subproofs are not checked.
– Absurd if a subproof results in an absurd. The remaining subproofs are not checked.
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• Strong conjunction. It corresponds to an if and only if condition. It sequentially tries each
subproof and results in:

– Failed if at least one subproof failed.
– Success if all subproofs succeeded or if there were no subgoals.
– Absurd if a subproof results in an absurd. The remaining subproofs are not checked.

• Weak conjunction. It corresponds to an implication. It sequentially tries each subproof
and results in:

– Failed if at least one subproof failed or returned an absurd.
– Success if all subproofs succeeded or if there were no subgoals.
– Absurd. It never returns an absurd.

Note that nested application of this aggregation methods corresponds to a backtracking search
with pruning in DFS order.

6.2 Proof steps
6.2.1 Reflexivity
Trivial proof step that closes the proof using the reflexivity axiom when possible, i.e. it closes
the proof when both sides of the goal are syntactically equal.

6.2.2 Congruence
An important property of constructors is:

𝐾 𝑎1 … 𝑎𝑛 ≡ 𝐾 𝑏1 … 𝑏𝑛 ⇔ 𝑎1 ≡ 𝑏1 ∧ … ∧ 𝑎𝑛 ≡ 𝑏𝑛

⇒ follows from Constructor elim and ⇐ follows from Constructor intro.
The congruence proof step consists in reducing a goal equality of the form 𝐾 𝑎1 … 𝑎𝑛 ≡ 𝐾 𝑏1 … 𝑏𝑛

into a several subgoals 𝑎1 ≡ 𝑏1 … 𝑎𝑛 ≡ 𝑏𝑛, which are aggregated using using strong conjunction.
Constructor application preserves the structure of its components, thus, it can be thought as

a homomorphism and equality as an associated congruence relation, hence the name of the proof
step.

6.2.3 Induction
This proof step is based on the principle of structural induction. First, it inspects the property
and uses a heuristic to find feasible induction candidates. In plain words, an induction candidate
is an expression that has a type defined by a data type definition and it is blocking the progress
of the proof. Candidates are precisely defined in figure 6.1. Then, for each candidate, it starts the
corresponding proof by induction. These proofs are aggregated by disjunction.
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A proof by induction will have a subproof for each constructor as described in section 4, and
these proofs are aggregated using weak conjunction. For reference, we copy the part of the axiom
relevant to one constructor:

𝒞(𝐾) = ∀(𝐾 𝑎1 … 𝑎𝑛) ∷ 𝑇 .
⎛⎜⎜⎜
⎝

⋀
𝑖∈1…𝑗
𝑎𝑖∷𝑇

𝑃(𝑎𝑖)
⎞⎟⎟⎟
⎠

⇒ 𝑃(𝐾 𝑎1 … 𝑎𝑛)

The variables 𝑎1… 𝑎𝑛 are fresh variables that may themselves become induction candidates in
the subproof. In order to avoid a loop by infinitely applying induction on generated variables we
introduce the concept of variable history.

A history is a multiset of events that indicate the origins of a variable. The prover will use this
information to prune the search tree and avoid infinite loops. History events are generated when
the prover applies induction to a candidate. There are two types of candidates and each of them
have their own event:

• Constructor expansion. When there is an equality in the property of the form 𝐾 𝑏1 … 𝑏𝑛 ≡
𝑏, the expression 𝑎 becomes a candidate. When the prover applies induction to a candidate of
this kind, an expansion event is generated. An expansion event is tagged and identified with
the type of 𝑏.

• Case induction. When there is an expression in a case that is not a constructor application,
and thus, prevents case simplification, it becomes a case induction candidate. During the
compilation process, Phileas tags each case expression with a unique id called case id. Then,
when the prover applies induction to this kind of candidate, it generates a case induction
event. A case induction event is tagged and identified with the corresponding case id.

We define the history of an expression to be the union variable histories that appear in it.
Then, when a fresh variable is created during an induction step, it inherits the history of the

candidate expression that caused the induction. Additionally the prover adds the newly generated
event to the new variable.

Finally, the history of an expression is used by the candidate search heuristic using the following
criteria:

If 𝑒 is a potential candidate but it would generate an event that has already
happened 𝑛 times in its history and 𝑛 ≥ 𝑘, then 𝑒 is discarded.

Note that 𝑘 is a parameter that regulates this restriction. Through experimental research we
have found that 𝑘 = 2 is a good default value. It can be modified by the user through a command
flag as described in section 7.2.
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𝑐𝑎𝑛𝑖𝑑𝑎𝑡𝑒𝑠𝑃 𝑟𝑒𝑑 (𝑃 ⇒ 𝑄) = 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑃𝑟𝑒𝑑 𝑃 ∪ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑃𝑟𝑒𝑑 𝑄
𝑐𝑎𝑛𝑖𝑑𝑎𝑡𝑒𝑠𝑃 𝑟𝑒𝑑 (𝐾 𝑎1 … 𝑎𝑛 ≡ 𝑏) = {𝑏}
𝑐𝑎𝑛𝑖𝑑𝑎𝑡𝑒𝑠𝑃𝑟𝑒𝑑 (𝑎 ≡ 𝐾 𝑏1 … 𝑏𝑛) = {𝑎}
𝑐𝑎𝑛𝑖𝑑𝑎𝑡𝑒𝑠𝑃𝑟𝑒𝑑 (𝑎 ≡ 𝑏) = 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝐸𝑥𝑝𝑟 𝑎 ∪ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝐸𝑥𝑝𝑟 𝑏
𝑐𝑎𝑛𝑖𝑑𝑎𝑡𝑒𝑠𝑃𝑟𝑒𝑑 (∀𝑥. 𝑃 ) = ∅

𝑐𝑎𝑛𝑖𝑑𝑎𝑡𝑒𝑠𝐸𝑥𝑝𝑟 (𝑓 𝑥) = 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝐸𝑥𝑝𝑟 𝑓
𝑐𝑎𝑛𝑖𝑑𝑎𝑡𝑒𝑠𝐸𝑥𝑝𝑟 (case[id] 𝑒 of { … }) = {(𝑖𝑑, 𝑒)} ∪ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝐸𝑥𝑝𝑟 𝑒
𝑐𝑎𝑛𝑖𝑑𝑎𝑡𝑒𝑠𝐸𝑥𝑝𝑟 (𝜆@𝑡. 𝑒) = 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝐸𝑥𝑝𝑟 𝑒
𝑐𝑎𝑛𝑖𝑑𝑎𝑡𝑒𝑠𝐸𝑥𝑝𝑟 (𝑒 @ 𝑡) = 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝐸𝑥𝑝𝑟 𝑒
𝑐𝑎𝑛𝑖𝑑𝑎𝑡𝑒𝑠𝐸𝑥𝑝𝑟 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 = ∅

Figure 6.1: Induction candidates.

6.2.4 Use hypothesis
It searches for an antecedent syntactically equal to the goal (applying symmetry if necessary), if it
succeeds, it closes the proof. This proof step is usually used to apply some induction hypothesis
although it can also use antecedents provided by the user in the original goal.

Note that Phileas does not try to derive new lemmas from the current hypotheses nor it tries
to instantiate universally quantified hypotheses.

The proof of soundness follows from the axioms antecedent commut, antecedent elim
and Symmetry.

6.2.5 Extensional equality
Our logic includes the axiom of Extensional equality, therefore two functions are considered
to be equal if they are extensionally equal, that is, if they exhibit the same behaviour when applied
to the same argument. More concretely 𝑓 ≡ 𝑔 ⇔ ∀𝑥.𝑓 𝑥 ≡ 𝑔 𝑥.

This proof step, checks for the type of both sides of the goal equality1. When this type is a
function type 𝑎 ↦ 𝑏, a fresh variable of type 𝑎 is created and applied to both sides.

This proof of soundness follows from the axioms of Extensional equality and Generaliza-
tion.

6.2.6 Factor application
As previously discussed, in a pure functional language, functions can be treated as normal mathe-
matical functions. A basic property that satisfy all mathematical functions is that every element in
its domain has a unique image. From this we can derive the following property:

𝑎1 ≡ 𝑏1 ⇒ … ⇒ 𝑎𝑛 ≡ 𝑏𝑛 ⇒ 𝑓 𝑎1 … 𝑎𝑛 ≡ 𝑓 𝑏1 … 𝑏𝑛
1Both sides will always have the same type.

25



CHAPTER 6. SEARCH ALGORITHM

Similarly to congruence, this proof step simplifies the goal into a number of subproofs. However,
since the condition is weaker, it aggregates its subproofs using weak conjunction.

6.2.7 Absurd in hypotheses
A constructor contradiction is an equality of the form

𝐾1 𝑎1 … 𝑎𝑛 ≡ 𝐾2 𝑏1 … 𝑏𝑚 𝐾1 ≢ 𝐾2

where 𝐾1, 𝐾2 are constructors.
When a constructor contradiction is found in one of the antecedents of the current goal, the goal

is closed.
The proof of soundness follows from the axioms of Antecedent commut, Constructor

absurd and Absurd.

6.2.8 Absurd in goal
If all the hypotheses are trivially true, and the goal contains a constructor contradiction, results in
an absurd.

We say that a property is trivially true when it can be proved using only Reflexivity.

6.3 Simplification rules
There are two types of simplification rules that work on different levels:

• Expression level. A syntactic transformation on an expression that is congruent with respect
to the equality relation ≡.

• Property level. A transformation on a property. The resulting property will only be provable
by the axioms if the original property was provable as well.

Phileas applies a set simplification rules before every proof step. Simplifications are not explicit
in the resulting proof. However, we believe that by not including simplifications in the proofs, they
become less verbose and equally valuable, since simplifications should always be obvious to the
human eye.

Simplification rules are applied repeatedly until none is applicable.

6.3.1 Apply definition
Consists in replacing a defined variable by its definition. Trying to blindly apply this rule would
cause an infinite loop for recursive functions. Because of that, it is important to apply it only when
the definition of the function is necessary to bring the proof forward.

It replaces a variable 𝑓 by its definition in the following cases:

• When the root expression is a defined variable 𝑓 .

• When the root expression is an application 𝑓 𝑎 and 𝑓 is a defined variable.

• When the root expression is a case 𝑓 of { ... } and f is a defined variable.

• When the root expression is a case 𝑓 𝑎 of { ... } and f is a defined variable.
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By root we mean the topmost expression of both sides of an equality. For instance, consider the
property 𝑓 𝑥 ≡ 𝐶𝑜𝑛𝑠 𝑎 𝑎𝑠. Assuming 𝑓, 𝑥, 𝑎, 𝑎𝑠 are defined variables and 𝐶𝑜𝑛𝑠 is a constructor,
only 𝑓 would be replaced by its definition.

Its soundness follows from the Definition and Substitution axioms.

6.3.2 Beta reduction
Consists in reducing a lambda function application by using the Beta equivalence axiom from
left to right. Applicable to any subexpression.

6.3.3 Pattern matching
Consists in reducing a case expression by using the axioms {Case match} and Case default from
left to right. Applicable to any subexpression.

6.3.4 Case factoring
Consider a case expression of the form

case 𝑒 of
𝑝1 → 𝐾 𝑎1
…
𝑝𝑛 → 𝐾 𝑎𝑛
_ → 𝐾 𝑑

Where 𝐾 is a constructor that expects exactly one argument and it is applied to each of the
alternative expressions. Then by doing case analysis2 on 𝑒 and applying Case match and Case
default we can prove that it is equivalent to

𝐾 (case 𝑒 of
𝑝1 → 𝑎1
…
𝑝𝑛 → 𝑎𝑛
_ → 𝑑)

This simplification is applicable to any subexpression.

6.3.5 Universal variable instantiation
Consists in applying the axiom of Instantiation. That is, it substitutes a universally quantified
variable for a fresh variable of the appropriate type. This is applied to both the goal and the
hypotheses.

2By case analysis we refer to induction without the need of induction hypotheses.
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Note that when this is applied to an antecedent it is being weakened and the whole property
may become unprovable. For example, the following property:

∀𝑎 𝑏. (∀𝑥 𝑦. 𝑥 ≡ 𝑦) ⇒ 𝑎 ≡ 𝑏
is simplified to:

𝑥′ ≡ 𝑦′ ⇒ 𝑎′ ≡ 𝑏′

where 𝑥′, 𝑦′, 𝑎′, 𝑏′ are fresh variables. After this simplification the antecedent has become weaker
and property is no longer true. As mentioned in section 3, properties of this form are not the focus
of this project.

6.3.6 Unify variable synonyms
The goal of this simplification is to remove variable synonyms from the set of hypotheses. We
consider a variable synonym an equality of the form 𝑣1 ≡ 𝑣2, where 𝑣1 and 𝑣2 are variables.

Suppose the set of variable synonyms in the hypotheses is 𝑆 = {𝑣1 ≡ 𝑣2, … , 𝑣𝑛−1 ≡ 𝑣𝑛}. Then
consider an undirected graph 𝐺 = ⟨𝑉 , 𝐸⟩, where 𝑉 = {𝑣1, … , 𝑣𝑛} and
𝐸 = { (𝑎, 𝑏) ∣ 𝑎 ≡ 𝑏 ∈ 𝑆 ∨ 𝑏 ≡ 𝑎 ∈ 𝑆}. Let ∼ be a relation where 𝑎 ∼ 𝑏 iff 𝑎 and 𝑏 belong to
the same component in 𝐺. It follows from the definition of a connected component that ∼ is an
equivalence relation. Note that two variables are transitively identical if they are related. Then, for
every equivalence class we pick a representative 𝑟𝑖. Finally, for each 𝑟𝑖 and for each variable 𝑣𝑗 we
substitute all instances of 𝑣𝑖 by 𝑟𝑖 if 𝑟𝑖 ∼ 𝑣𝑗.
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Phileas user guide

This section is intended to be a short user guide for Phileas. It guides the reader through the
process of installation and usage of the prover.

7.1 Installation
The source code is freely available at https:/gitlab.com/janmasrovira/phileas.

The easiest way to compile is using the Stack1 build tool. Stack is a modern tool in charge
of downloading the correct version of the Haskell compiler and all the necessary libraries to build
the project. Using Stack is the recommended method since it allows for reproducible builds by
automatically installing the same compiler version and dependencies that were used during the
development process. As an additional resource, we suggest watching the screencast linked in
figure 7.1.

git clone git@gitlab.com:janmasrovira/phileas.git
cd phileas
stack setup -- downloads the compiler (GHC)
stack test -- compiles Phileas and runs the test suite

7.2 Usage
Once you have Phileas installed. The first step is to write a Haskell module containing the data
type and functions definitions needed by your target theorem. Phileas supports all Haskell syntax,
however, there is the restriction that the source code of every definition must be available at compile
time. A common way to do it is to add the NoImplicitPrelude pragma to the top of the file
and write all the definitions in the same module.

Figure 1 shows an example module containing the inductive definition of the natural numbers and
an order relation between them. It also includes the property ∀𝑎 𝑏 ∷ 𝑁𝑎𝑡. 𝑎 ≤ 𝑏 ⇒ 𝑏 ≤ 𝑎 ⇒ 𝑎 ≡ 𝑏.
Note that we imported a module called PhileasPrelude. This module is shipped with Phileas
and exports the necessary operators to build properties, namely ≡, ⇒ and ∀.

1https://docs.haskellstack.org/en/stable/README/
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By observing the types of theses operators below we can see that they match the grammar
described in section 3. The ⇒ operator has right associativity, so in the common use case parentheses
will not be needed. The ∀ operator is hardly ever needed since it is implicitly added for each
argument of a property. So f a = a ≡ a is equivalent to f = (∀) (\a -> a ≡ a).

(∀) ∷ (a → Property) → Property
(≡) ∷ a → a → Property
(⇒) ∷ Property → Property → Property

The next step is invoking Phileas to prove the properties defined in the module.

./Phileas -i Properties.hs --include Path/To/PhileasPreludeDir

The -i flag is used to pass the input file. The --include path is used to extend the include
path. The file PhileasPrelude.hs must be in a directory in the include path.

The result of the previous command will be:

Phileas has found 1 properties to prove.

partialOrderAntisimmetry: The property was proven true.

1 out of 1 theorems were proved. 0 could not be proved.

Then, if we want Phileas to show us the proof we need to pass the --show-proof flag. Invoking
Phileas again with this flag gives us the proof.

Induction on (a ∷ Nat)
Zero: Induction on (b ∷ Nat)

Zero: Reflexivity True ≡ True
Suc: Contradiction in hypothesis: False ≡ True

Suc: Induction on (b ∷ Nat)
Zero: Contradiction in hypothesis: False ≡ True
Suc: Induction on (var.94 ∷ Nat)

Zero: Contradiction in hypothesis: False ≡ True
Suc: Induction on (case var.98 of

Zero → False
Suc b → $c==$ var.100 b ∷ Bool)

True: Reflexivity True ≡ True
False: Induction on (var.98 ∷ Nat)

Zero: Contradiction in hypothesis: False ≡ True
Suc: Contradiction in hypothesis: False ≡ True

Phileas supports a number of flags that change its behaviour. We list the full list of flags below
in two categories:

Relevant to the user:

• -h, --help: Shows a help text describing the basic usage and the description of each flag.

• -i, --input-file: To give the input file.
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• -t, --timeout: A time limit for each property in seconds.

• -l, --include: To extend the include path. Each path must be separated with a :.

• --phi: Pretty prints the resulting Phi code from compiling the input file. Phileas proofs are
based on the Phi code so inspecting it can certainly help the user understanding the proof.

• --max-induction-depth: Expects a natural argument. It is a flag that is used to re-
lax the history restriction described in 6.2.3. The default behaviour corresponds to max-
induction-depth=2.

Relevant to the developer:

• --ghc-core: Pretty prints the resulting GHC-Core from compiling the input file.

• --trace: During the search it prints the state of the prover at every step. The state includes
the current goal and induction candidates.

• --show-id: When printing Phi code, it shows the id of each variable next to it. If variable
f has id equal to 4, it prints f!4. it also shows the case ids.

• --show-type: When printing Phi code, it shows the type of each variable next to it. If
variable n has type Nat it prints n ∷ Nat.

• --show-cons-type: Same as --show-type but for constructors.

• --show-case-type: Same as --show-type but for case expressions.

• --show-history: When printing Phi code, it shows the history of each variable next to it.
For example v{(I2, 1)} denotes that var v has been generated due to induction on case
expression with 𝑖𝑑 = 2.

Figure 7.1: A video-guide through the first steps in Phileas. https://www.youtube.com/
watch?v=hzFzKS_6qpQ
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{-# LANGUAGE NoImplicitPrelude #-}
import PhileasPrelude

data Nat = Zero
| Suc Nat

class Eq a where
(==) :: a -> a -> Bool

class Eq a => Ord a where
(<=) :: a -> a -> Bool

instance Eq Nat where
Zero == Zero = True
Suc a == Suc b = a == b
_ == _ = False

instance Ord Nat where
Zero <= _ = True
Suc a <= Suc b = a <= b
_ <= _ = False

partialOrderAntisimmetry :: Nat -> Nat -> Property
partialOrderAntisimmetry a b =

a <= b ≡ True ⇒ b <= a ≡ True ⇒ a == b ≡ True

Listing 1: Contents of Properties.hs. An example Haskell source file with a property defined.
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Pipeline

Phileas pipeline consists of the following steps:

1. Use the GHC as a library to parse Haskell source code and compile it to an intermediate typed
language named GHC-Core.

2. Compile GHC-Core into Phi.

3. Search and try to prove all properties in the module.

4. Report the results.

Haskell GhcCoreGHC

PhiCodePhileas

MachineCode
GHC

PhiTheoremsPhileas

Figure 8.1: Pipeline graph.
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Proof output format

The proofs presented to the user must give enough information to allow them to follow the proof
while not being too verbose. Finding a balance is certainly a challenge. We have tried to find a
reasonable compromise by tagging each proof step with relevant information and taking advantage
of indentation to express the tree structure of a proof. Below we describe the information attached
to each proof step and its output schema.

• Reflexivity is tagged with the equality used.
Schema:

Reflexivity a ≡ a

• Congruence is tagged with the relevant constructor.
Schema:

Congruence on K
<Subproof 1>
<Subproof 2>
...

• Induction is tagged with the expression where it applies induction and its type. Each sub-
proof is tagged with the corresponding constructor.
Schema:

Induction on e ∷ Type
K1
<Subproof 1>

K2
<Subproof 2>

...

• Use hypothesis is tagged with the hypothesis that was used to close the proof.
Schema:

Use hypothesis a ≡ b

• Extensional equality is tagged with the variable that introduces.
Schema:
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Extensional equality introduces newVar ∷ Type
<Subproof>

Note that the subproof does not need to be indented since it always have an only child.

• Factor application is tagged with the relevant expression.
Schema:

Factor application on f
<Subproof 1>
<Subproof 2>
...

• Absurd in hypotheses is tagged with the equality in the hypotheses that caused the absurd.
Schema:

Contradiction in hypothesis: K1 args1 ≡ K2 args2

• Absurd in goal. This is never part of a successful proof.
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Presentation

Phileas does extensive use of ANSI compatible terminals to enrich the format of its output. We
believe this results in a far more enjoyable user experience. In this section we show some screen
captures showcasing Phileas output.

Figure 10.1: Output of a successful proof.
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Figure 10.2: Presentation of the 3 different kinds of results.

Figure 10.3: Coloured Phi code as outputted by the Phileas pretty printer.

Figure 10.4: Coloured GHC-core code as outputted by Phileas using the GHC pretty printer.
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Results
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Overview

The results section consist in the evaluation of Phileas in three different test suites and the com-
parison to the theorem provers Zeno and IsaPlanner.

• Zeno’s test suite (41 theorems): It is composed of the examples found in Zeno’s package.
This test suite compares Zeno and Phileas. We ran all tests on both provers.

• IsaPlanner’s test suite (86 theorems): It is composed of the examples found in IsaPlanner’s
website. We ran all tests in Zeno and Phileas. We did not run IsaPlanner, instead we rely on
the results reported by its authors.

• Phileas test suite (72 theorems): Our own test suite based on type class properties. We tried
to run Zeno on this test suite and we encountered some problems.

Prover Zeno suite (41) Isa suite (86) Phileas suite (72)
Isa Induction - 37 43% -
Isa Rippling - 47 54.6% -
Zeno 39 95.1% 75 87.2% 4 5.6%
Phileas 29 70.7% 68 79.1% 68 94.4%

Table 11.1: Overview of the results displaying the number of proved theorems and the success rate.

11.1 Comparison to Zeno
Zeno [5] and Phileas are both automatic theorem provers that target to inductively proof equali-
ties between Haskell expressions and use the GHC compiler internally. They are both based on a
backtracking algorithm that tries to simplify the proof using different proof steps including induc-
tion. Therefore, it is reasonable to compare them in detail and pinpoint their main advantages and
shortcomings.
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Below we list a number of noteworthy facts about Zeno.
Positive aspects:

1. Is able to generate proofs for Isabelle [7], a robust proof assistant developed at the Cambridge
University. If the proofs are verified by Isabelle, there is a strong guarantee that they are
correct.

2. Has a built-in counterexample search engine, making it capable of disproving some theorems.

Negative aspects:

1. Its internal language has a flawed type system and crashes in many theorems involving type
polymorphism.

2. It can give false negatives. We have found true theorems were Zeno returns an incorrect
counterexample.

3. Zeno was released in 2011. It is currently unmaintained and no longer compiles with modern
versions of GHC, which makes its installation impractical. In order to test it we had to get
GHC-7.0.1, released in November 2010. A full explanation is given in section 11.1.1.

11.1.1 How we got Zeno
Since the results reported in Zeno’s paper [5] do not match what we were able to reproduce, we
believe that it is relevant to explain how we installed Zeno.
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We download Zeno’s source code from Hackage1, 2. The latest version is 0.2.0.1 and it was
uploaded on 28 April 2011. The authors claim that it supports GHC 6 and 7 but do not specify
the minor version of the compiler. We believed it was a good guess to use the first stable version of
GHC 7, which is GHC 7.0.1, released on 16 November 2010. Another issue is that the Cabal file3

does not specify version boundaries for the dependencies, which caused GHC 7.0.1 to crash when
trying to compile a modern version of the text library. For this reason we needed to manually
specify an older version. The last problem was that compiler flags were wrong. We followed the
solution suggested by Zeno’s author in an online forum4. Figure 11.1 links a video of the installation
process.

Figure 11.1: Video showing the installation process of Zeno in our computer. https://www.
youtube.com/watch?v=AZwFjV27RGY

11.2 Comparison to IsaPlanner
IsaPlanner [6] is a plugin, developed at the University of Edinburgh, for Isabelle [7]. It offers a
framework for automatic inductive theorem proving. It is based on rippling [19], a heuristic used
to guide rewrite rules application. It also includes a lemma discovery heuristic [20].

What sets IsaPlanner apart from Zeno and Phileas is the fact that it supports interactive proving,
thus, in some occasions, the user can guide the proof. However, in this project we only focus on the
automatic part.

The project seems to be unmaintained since some links in its homepage5 no longer work and last
activity found in the official repository 6 is from February 2016. Also, it does not support the latest
Isabelle version (Isabelle 2017). For these reasons, we have not tried to manually test it ourselves,
instead, we rely on the results reported by the authors7.

1Link to Zeno’s package page: https://hackage.haskell.org/package/zeno
2Hackage is Haskell community’s central repository for open source software.
3The Cabal file contains information needed to build the package such as compiler flags, dependencies and so on.
4https://www.reddit.com/r/haskell/comments/gzm0u/zeno_02_automatically_prove_haskell_

program/c1rqjbf/
5http://dream.inf.ed.ac.uk/projects/isaplanner/
6https://github.com/TheoryMine/IsaPlanner
7http://dream.inf.ed.ac.uk/projects/lemmadiscovery/results/
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Chapter 12

Zeno’s test suite

This test suite is composed of 41 properties about natural numbers (12), lists of natural numbers
(27) and binary trees (2).

The results are the following:

Prover Naturals Lists Trees
Zeno 12 100% 27 100% 0 0%
Phileas 7 58.3% 20 74.1% 2 100%

Table 12.1: Results of the Zeno test suite.

Zeno clearly has a leg up on Phileas in this test suite. It successfully proves all theorems on
natural numbers and lists. However, it times out (on a 20 seconds limit) on both tree properties
while Phileas can proof them in under 0.2 seconds.

Prover Gentle fails Timeouts (20s) Crashes False negative
Zeno 0 2 0 0
Phileas 7 5 0 n/a

Table 12.2: Summary of unsuccessful tests.
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Chapter 13

IsaPlanner test suite

This test suite is composed of 86 properties about natural numbers1 (14), lists of natural numbers
(71) and binary trees (1).

The following list indicates how the results were obtained.

• Zeno*. From its authors [5].

• Zeno. Tested by us. Detailed information is given in section 11.1.1. In the comments we
refer to these results.

• IsaPlanner with simple induction. From its authors2.

• IsaPlanner guided with rippling. From its authors.3.

• Phileas. Tested by us.

Prover Naturals Lists Trees
Zeno* 14 100% 84 96.6% 1 100%
Zeno 13 92.9% 61 85.9% 1 100%
Isa Induction 7 50% 30 42.3% 0 0%
Isa Rippling 8 57.1% 40 56.3% 1 100%
Phileas 8 57.1% 58 81.2% 1 100%

Table 13.1: Results of the Zeno test suite.

Prover Gentle fails Timeouts (20s) Crashes False negatives
Zeno 9 1 1 1
Phileas 12 7 0 n/a

Table 13.2: Summary of unsuccessful tests.
1One theorem has been disregarded due to being false.
2http://dream.inf.ed.ac.uk/projects/lemmadiscovery/results/case-analysis-simp.txt
3http://dream.inf.ed.ac.uk/projects/lemmadiscovery/results/case-analysis-extrippling.

txt
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CHAPTER 13. ISAPLANNER TEST SUITE

During the testing process we observed one crash in Zeno due to a non-total pattern. Also, Zeno
incorrectly provided a counterexample of a true theorem, namely

member x (delete x l) ≡ False
Where delete removes is a function that instances of the value in a list and member checks if

an element is present in the list.
Phileas, although not crashing in any of the tests, experimented more timeouts in the theorems

that it could not prove.
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Chapter 14

Phileas test suite: type classes

We were concerned about Zeno’s and IsaPlanner’s test suites suffering from tunnel vision on natural
numbers and lists. In fact, it is a common quirk among developers to design test suites that work
well with their product but are not representative enough to weight its true value. In order to avoid
this problem we set our eyes on the Haskell type system, which, in our opinion, is abstract enough
to guarantee enough diversity.

Haskell’s type system expressiveness allows for a number of type abstractions that benefit the
composability, readability and correctness of the code. One sort of these abstractions comes in
the form of type classes. A type class specifies a list of methods that a type in that class must
implement. Usually a type class is tied to a set of properties that their methods should satisfy. For
obvious reasons the compiler cannot check the validity of the implementation according to these
properties. Here is were automatic theorem provers can have a key role.

We have selected some of the most ubiquitous type classes in the base package1 and proved its
required properties for different type instances.

Figure 14.1 shows the hierarchy of the analyzed classes in the Haskell type system. Figures 14.2
and 14.3 show the methods and properties that define each of the type classes.

Semigroup Monoid

Functor Applicative

Monad

Alternative

MonadPlus

Figure 14.1: Class hierarchy. An arrow from A to B denotes that every instance of B must be also
an instance of A.

1The base package is Haskell’s standard library.
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Functor
𝑓𝑚𝑎𝑝 ∷ 𝐹𝑢𝑛𝑐𝑡𝑜𝑟 𝑓 ⇒ (𝑎 → 𝑏) → 𝑓 𝑎 → 𝑓 𝑏

Properties:
𝑓𝑚𝑎𝑝 𝑖𝑑 ≡ 𝑖𝑑 Identity
∀𝑓 𝑔. 𝑓𝑚𝑎𝑝 𝑓 ∘ 𝑓𝑚𝑎𝑝 𝑔 ≡ 𝑓𝑚𝑎𝑝 (𝑓 ∘ 𝑔) Composition

Applicative
𝑝𝑢𝑟𝑒 ∷ 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝑓 ⇒ 𝑎 → 𝑓 𝑎
(<*>) ∷ 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝑓 ⇒ 𝑓 (𝑎 → 𝑏) → 𝑓 𝑎 → 𝑓 𝑏

Properties:
∀𝑎. 𝑝𝑢𝑟𝑒 𝑖𝑑 <*> 𝑎 ≡ 𝑎 Identity
∀𝑎 𝑏 𝑐. ((𝑝𝑢𝑟𝑒 (∘) <*> 𝑎) <*> 𝑏) <*> 𝑐 = 𝑎 <*> (𝑏 <*> 𝑐) Composition
∀𝑓 𝑎. 𝑝𝑢𝑟𝑒 𝑓 <*> 𝑝𝑢𝑟𝑒 𝑎 ≡ 𝑝𝑢𝑟𝑒 (𝑓 𝑎) Homomorphism
∀𝑎 𝑏. 𝑎 <*> 𝑝𝑢𝑟𝑒 𝑏 = 𝑝𝑢𝑟𝑒 (𝜆𝑓. 𝑓 𝑏) <*> 𝑎 Interchange

Monad
𝑟𝑒𝑡𝑢𝑟𝑛 ∷ 𝑀𝑜𝑛𝑎𝑑 𝑚 ⇒ 𝑎 → 𝑚 𝑎
(>>=) ∷ 𝑀𝑜𝑛𝑎𝑑 𝑚 ⇒ 𝑚𝑎 → (𝑎 → 𝑚 𝑏) → 𝑚 𝑏

Properties:
∀𝑎 𝑓. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑎 >>= 𝑓 ≡ 𝑓 𝑎 Left identity
∀𝑎. 𝑎 >>= 𝑟𝑒𝑡𝑢𝑟𝑛 ≡ 𝑎 Right identity
∀𝑚 𝑘 ℎ. (𝑚 >>= 𝑘) >>= ℎ ≡ 𝑚 >>= (𝜆𝑥. 𝑘 𝑥>>=ℎ) Associativity

Alternative
𝑒𝑚𝑝𝑡𝑦 ∷ 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑓 ⇒ 𝑓 𝑎
(<|>) ∷ 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑓 ⇒ 𝑓 𝑎 → 𝑓 𝑎 → 𝑓 𝑎

Properties:
∀𝑎 𝑏 𝑐. (𝑎 <|> 𝑏) <|> 𝑐 ≡ 𝑎 <|> (𝑏 <|> 𝑐) Associativity
∀𝑎. 𝑒𝑚𝑝𝑡𝑦 <|> 𝑎 ≡ 𝑎 Left id
∀𝑎. 𝑎 <|> 𝑒𝑚𝑝𝑡𝑦 ≡ 𝑎 Right id

Figure 14.2: Type class properties.
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Monad Plus
𝑚𝑧𝑒𝑟𝑜 ∷ 𝑀𝑜𝑛𝑎𝑑𝑃 𝑙𝑢𝑠 𝑚 ⇒ 𝑚 𝑎

Properties:
∀𝑓. 𝑚𝑧𝑒𝑟𝑜 >>= 𝑓 ≡ 𝑚𝑧𝑒𝑟𝑜 Left absorb
∀𝑎. >>= 𝑓 ≡ 𝑚𝑧𝑒𝑟𝑜 Right absorb

Semigroup
(<>) ∷ 𝑆𝑒𝑚𝑖𝑔𝑟𝑜𝑢𝑝 𝑠 ⇒ 𝑠 𝑎 → 𝑠 𝑎 → 𝑠 𝑎

Properties:
∀𝑎 𝑏 𝑐. (𝑎 <> 𝑏) <> 𝑐 ≡ 𝑎 <> (𝑏 <> 𝑐) Associativity

Monoid
𝑚𝑒𝑚𝑝𝑡𝑦 ∷ 𝑀𝑜𝑛𝑜𝑖𝑑 𝑚 ⇒ 𝑚 𝑎 → 𝑚 𝑎 → 𝑚 𝑎

Properties:
∀𝑎. 𝑚𝑒𝑚𝑝𝑡𝑦 <> 𝑎 ≡ 𝑎 Left id
∀𝑎. 𝑎 <> 𝑚𝑒𝑚𝑝𝑡𝑦 ≡ 𝑎 Right id

Figure 14.3: Type class properties. Part 2.
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Functor Applicative Monad Alternative MonadPlus Semigroup Monoid
List 1 1
Maybe
Either
Binary Tree
Reader
State 1
Pair
Endofunction
Naturals (+)
Naturals (∗) 1

Table 14.1: Green means all theorems were proved. A number over yellow means how many theorems
from that class could not be proved. Blank implies that the type is not an instance of the class.

All tests run in under 0.2𝑠 except the composition property for the applicative instance of lists,
which takes about 3.7s.

We tried to prove all theorems presented in this section using Zeno, unfortunately, it crashed
due to a type unification error on all tests except for natural numbers. We believe there must be a
bug in the prover related to type polymorphism.

Additionally, gave false counterexamples for semigroup associativity over addition and multipli-
cation. We have found that the latter problem only occurs when the Nat type is inside a wrapper
type as displayed in figure the below. On account of this we believe there is a bug in Zeno’s
counterexample finder related to types of this sort.

data NatPlus = NatPlus Nat
data NatMul = NatMul Nat

instance Semigroup NatPlus
(NatPlus a) <> (NatPlus b) = NatPlus (a + b)

instance Semigroup NatMul
(NatMul a) <> (NatMul b) = NatMul (a * b)

Listing 2: Wrapper types for the natural numbers. Wrapping a type is a technique that is frequently
used to declare various class instances of essentially the same type. In this concrete case, since the
natural numbers form a semigroup with addition and multiplication, we need a wrapper type for
each instance.
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14.1 Reproducibility of the results
We feel that in modern research it is essential to give detailed instructions on how to reproduce
any claimed result. For this reason, we provide a video that displays the necessary commands to
download and build Phileas and then run the tests described in this section. A link to the video
is found in figure 14.4. It is actually an ASCII cast, so every command is selectable and can be
copy-pasted by the user.

Figure 14.4: Phileas, from cloning to testing in 1 minute:
https://asciinema.org/a/9xONHjcl6nx8OBMPnIS1R7Du7
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Part VI

Conclusions
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Chapter 15

Perspective and accomplishments

Formally verifying programs is becoming more and more relevant in the modern world of computing.
Formally verifying some property may save a lot of money in testing, moreover, preventing a bug
in a critical system may save millions. On June 1996, the Ariane 5 rocket exploded just a few
seconds after launch due to an overflow error that caused estimated loses of $370 million. This error
could have been prevented by formal verification. Nowadays, numerous resources are being put in
verifying critical software in financial systems, communication protocols, aerospace engineering and
other areas.

Formal program verification is just one, albeit of critical importance, of the many use cases
of theorem proving. In other areas such as logic, type theory or category theory among others,
theorems are being formalized in proof assistants and the computer checked proof base is growing
by the day. Perhaps, in a not so distant future, pen and paper proofs will become obsolete, or at
the very least, lose some value.

Theorem proving and functional programming are two concepts that fit very well together due to
the mathematical approach to programming of functional languages. Because of this, we believe that
improving the ecosystem of theorem proving and functional programming, will be a well invested
effort. We believe that with this project we have done our bit.

Phileas contributed to the ecosystem by:

• Being (to our knowledge) the first automatic inductive prover that uses Haskell as its starting
point and that supports full type polymorphism.

• Being offered as a binary and as a library. The latter will allow other people to import Phileas
to their projects and use it as part of it without the need to make an external call.

• Being released under the MIT license, a simple and very permissive open source license.

• Automatically proving a part of the type class implementation in Haskell’s base package.

• Contributing to an ongoing research in formal verification of concurrent systems [10].
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Chapter 16

Future work

We list a number of extensions that could be implemented in Phileas as future work.

• Verifiable proofs. Although our algorithm has been thoroughly tested, it has been imple-
mented by a human, and humans make mistakes. Hence, there is a possibility that it generates
an invalid proof for a false theorem. Two solutions exist to this problem:

1. Verifying the prover: Formally verifying the solver would probably be the work of a
lifetime (possibly much more) as just verifying GHC or an equivalent compiler would be
a monumental task. Furthermore, we would still rely on the underlying proof assistant.

2. Generating verifiable proofs: A more reasonable approach is to generate verifiable proofs
by a proof assistant such as Isabelle, Agda or Coq. Assuming the prover assistant was
infallible, then we could verify all generated proofs and discard those which are invalid.

• Strong induction. Phileas only supports weak induction. That is, when applying induction
it only generates induction hypotheses for the immediate children. Adding support for strong
induction, that is, having induction hypotheses that could be applied to any term structurally
smaller than the target term, would allow Phileas to prove properties about mutually recursive
types such as graphs or trees.

• Lemma discovery heuristic. It is often the case that properties need auxiliary lemmas
that are more general than one of its subproofs. It is a challenge and a research field in itself
to automatically find these lemmas. The literature on this topic should be more carefully
examined and Phileas could be extended by modern techniques. We believe a state of the art
heuristic would drastically improve its efficacy.

• Support inequality proofs. A possible extension would be to support proofs of inequality.
We believe adding this feature to the prover should be reasonably easy due to the fact that
some steps were already taken in this direction in the subproof aggregation methods.

• Adding support for integers. Adding support for primitive integers would be a big step
up in terms of the strength of the prover although it is unclear the that path we should take.
One possibility would be to add a magical axiom that relies on the correctness of some SMT
solver and allow the prover to make calls to that SMT solver during the proving process. This
approach would make generating verifiable proofs much more difficult as well.

• Generation of sufficient conditions. Sometimes an equality is only true under some
conditions. As of now, if these conditions can be expressed in terms of equalities the user can
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provide them as antecedents in the property. An extension to Phileas would be to implement
a heuristic capable of automatically finding simple sufficient conditions for an equality to hold.
This would be specially valuable in the context of CDPOR.
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