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Abstract

Current methods for covariate shift (CS) adaptation use unlabelled data for computing
importance weights or finding new feature representations, before training a model on the
transformed labelled sample. When the amount of labelled data is the bottleneck, however,
we would like to not only adapt, but also actively improve the supervised source model
with unlabelled data. Yet, recent findings suggest that such semi-supervised learning is
not possible in a causal setting (X → Y ) as is usually assumed implicitly in standard
CS. We thus consider a case of CS where prior causal inference or expert knowledge has
identified some features as effects, and show how this setting—when analysed from a causal
perspective—gives rise to a semi-generative modelling framework: P (Y,Xeff|Xcau, θ). Our
approach combines concepts from invariant prediction and semi-supervised learning, and
at its heart is the idea to impose a model constraint by unsupervised learning of a map
from causes to effects. Finally, our method for learning with cause and effect features is not
exclusive to CS but provides a general approach for semi-supervised learning in changing
environments when causal knowledge is available.

Keywords: domain adaptation, covariate shift, semi-supervised learning, independent
causal mechanisms, semi-generative model

1. Introduction

With recent advances in both algorithms and hardware, the amount of high-quality, labelled
training data is becoming the bottleneck for many machine learning tasks. Methods making
use of unlabelled data are thus an active area of research with great potential. Semi-
supervised learning (SSL) aims to improve a model of P (Y |X) via a better estimate of the
marginal P (X) by linking these quantities through certain assumptions (Chapelle et al.,
2010). Domain adaptation (DA), on the other hand, intends to adapt a model from a
source domain to a different, but related target domain (Quionero-Candela et al., 2009;
Pan and Yang, 2010). The subject of this paper is combining unsupervised DA under
covariate shift (CS) (Sugiyama and Kawanabe, 2012) with SSL.

Some current methods for unsupervised CS adaptation use unlabelled data for impor-
tance reweighting of source-domain training data (Shimodaira, 2000; Sugiyama et al., 2007);
others use it to find a transformation which leads to domain-invariant features (e.g., Pan
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Figure 1: Our setting - CS holds, SSL possible.

et al., 2011). The final target model is then trained on the reweighted/transformed la-
belled source sample. Such methods thus focus on the adaptation task which can loosely be
thought of as a preprocessing step, but do not involve unlabelled data in the model fitting.
When the amount of labelled data is the bottleneck, however, we would like to not only
adapt, but also actively improve the supervised source model with unlabelled data.

However, recent work on the independence of causal mechanisms (ICM) (Janzing and
Schölkopf, 2010) suggests that such SSL is not possible in a causal learning setting (X → Y )
(Schölkopf et al., 2012). Since standard CS implicitly treats all features as causal (Storkey,
2009) (see Section 2.2 for more details), further assumptions are necessary to make SSL work
in such a setting. We thus consider an unsupervised CS-adaptation setting for which the
amount of labelled data is the main limiting factor, but for which the true causal structure is
known. In doing so, we attempt to answer the following question: How can causal knowledge
guide a more principled and more effective use of unlabelled data in changing environments?

Specifically, we assume that through prior causal inference, expert knowledge, or back-
ground information some features have been identified as effects XE of a target variable Y
while the remaining features represent causes XC . This setting with effect features allows
to combine CS adaptation and SSL, as shown schematically in Fig. 1. Since CS is assumed,
it is required that the domain shift (D) does not directly influence XE (as the v-structure
at XE would otherwise induce a domain dependence of Y , see Fig. 2a).

Two examples of real world scenarios compatible with our idea of prediction from cause
and effect features are the following: (i) predicting disease, Y , from risk factors like genetic
predisposition or smoking, XC , and symptoms, XE ; while we might have (possibly unla-
belled) data from multiple geographical regions or demographic groups leading to different
distributions over risk factors (D → XC), we would not necessarily expect this to affect the
behaviour of the disease itself (XC → Y → XE); (ii) predicting the hidden intermediate
state Y of a physical system with inputs XC and outputs XE ; again, we might have data
from various experiments with differing input distributions (D → XC), but the laws of
physics or nature (XC → Y → XE) would not be expected to change.

Our approach is a semi-generative model, P (Y,XE |XC , θ), which combines ideas from
invariant prediction (Peters et al., 2016) and SSL, and which arises from the asymmetric
roles played by cause and effect features in our setting and under the ICM assumption. This
framework leads to a domain invariant model by conditioning on XC and naturally allows
to include unlabelled data in the fitting process by summing or integrating out Y . The
latter allows for unsupervised learning of a map from cause to effect features, P (XE |XC),
which can be used to impose a soft model constraint.
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1.1 Contributions and Organisation of the Paper

In Section 2 we present preliminaries and previous work on which this paper build upon in
a common context. Section 3 then forms the theoretical main-part, where we clearly state
problem setting and assumptions, and derive our semi-generative modelling framework. In
Section 4 we show how our approach can be applied to classification and certain regression
problems in practice by describing our experiments on synthetic and real data sets. Em-
pirical results of these experiments are presented in Section 5. In Section 6 we critically
discuss our results in the context of related work and comment on the general applicability
of our approach. Finally, we summarise our findings in Section 7. Some supplementary
information is included in the Appendices.

2. Preliminaries & Previous Work

This section covers preliminaries and related work such as the unsupervised domain adapta-
tion setting, the covariate shift assumption, causal vs predictive models, the independence of
causal mechanisms, the co-training algorithm, and hybrid generative-discriminative models.
It may be skipped by a reader familiar with these concepts.

2.1 Unsupervised Domain Adaptation (DA)

In the unsupervised domain adaptation (DA) setting we have access to unlabelled data for
the same task but from a different distribution (also called domain in this context). This
setting occurs, for example, when training and test sets are not from the same distribution
(Quionero-Candela et al., 2009). Formally, we are given a labelled sample SS = {xi, yi}nSi=1

from the source domain P (X,Y |D = 0) and an unlabelled sample ST = {xj}nS+nTj=nS+1 from the

target domain P (X,Y |D = 1), where D is the domain indicator.1 The aim of unsupervised
DA is to find a mapping from the shared feature to label space, f : X → Y, which minimises
the expected target loss w.r.t. a given loss function L : Y × Y → R. An optimal f is

f∗ ∈ argminfEP (·|D=1)

[
L
(
f(X), Y

)]
= argminf

∫
P (x, y|D = 1)L

(
f(x), y

)
dx dy. (1)

Since the target distribution P (X,Y |D = 1) is not only unknown but also cannot be
estimated due to the lack of target labels, this learning problem is inherently ill posed.
Thus, further assumptions about the similarities of source- and target domain are necessary.

2.2 Covariate Shift (CS)

One of the most commonly used assumptions for unsupervised DA is covariate shift (CS).
CS states that the difference between domains is only due to a shift in the marginal distri-
bution over covariates, or features, while the conditional distribution of labels given features
remains invariant: P (X|D = 0) 6= P (X|D = 1), but P (Y |X,D = 0) = P (Y |X,D = 1) =
P (Y |X). This can also be expressed as Y ⊥⊥ D |X and is depicted as a graphical model in
Fig. 2a. Note that the similar graph shown in Fig. 2b does not satisfy the CS assumption
due to the v-structure at X, which causes Y to be conditionally dependent of D given X.

1. Another common notation is: P (·|D = 0) = PS(·) and P (·|D = 1) = PT (·).
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(a) CS holds (b) CS does not hold

Figure 2: Two scenarios for domain adaptation: (a) when X causes Y , CS holds since
Y ⊥⊥ D|X; (b) when Y causes X, CS does not hold since the V-structure at X makes Y
dependent on the domain D given X. (It is usually assumed, that the domain shift does not
directly affect the target Y , for work on such ”target shift” see, e.g., Zhang et al. (2013).)

When changes in environment lead to CS (also termed “domain shift”), it makes sense to
consider the edge (D → X) as being truly causal, and such CS can thus be seen as treating
all features as causes of Y . We note, however, that other processes such as, for example,
sample selection bias can also be seen as instance of CS. For the rest of this work though,
we focus on CS in the sense of domain shift and use these words analogously.

As a consequence of CS, the target distribution can be rewritten as

P (X,Y |D = 1) = P (X|D = 1)P (Y |X) = w(X)P (X,Y |D = 0) (2)

where w(X) = P (X|D=1)
P (X|D=0) are so-called importance weights (Shimodaira, 2000; Sugiyama

et al., 2007). This implicitly assumes that the target support is contained in the source
support; however, different techniques exist to circumvent this requirement, see, e.g., Cortes
et al. (2010) for some theoretical analysis of importance weighting.

Since the rightmost expression in Eq. (2) does not involve target labels, it can be used
to approximate the expectation in Eq. (1) empirically:

EP (·|D=1)

[
L
(
f(X), Y

)]
= EP (·|D=0)

[
w(X)L

(
f(X), Y

)]
≈ 1

nS

nS∑
i=1

w(xi)L
(
f(xi), yi

)
.

This corresponds to training a model on the importance-weighted source data where the
weights can be interpreted as measure of how representative a certain source example is of
the target domain (Sugiyama and Kawanabe, 2012).

Another family of approaches for unsupervised DA under CS avoids the use of im-
portance weights, and is based instead on finding domain-invariant features in a common
subspace (e.g., Gong et al., 2012; Fernando et al., 2013). Generally speaking, these methods
first project the inputs to a new space X ′ via some map φ : X → X ′, and then train a model
on these transformed features. φ is usually chosen as to minimise the discrepancy between
domains: P (φ(X)|D = 0) ≈ P (φ(X)|D = 1). Note that P (φ(x)|D = 0) = P (φ(x)|D = 1)
implies that w(φ(x)) = 1, thus eliminating the need for importance weights when training
on fully domain invariant features. Various criteria have been used to measure the dis-
crepancy between domains from finite data, such as, e.g., MMD (Pan et al., 2011), HSIC
(Yan et al., 2017), mutual information with a domain indicator (Shi and Sha, 2012), or
performance of a domain classifier (Ganin et al., 2016).

2.3 Causal Models

Most of the field of machine learning is concerned with predictive models which learn depen-
dencies and correlations between variables from training data. Such models are generally
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good at making predictions for observational data, i.e., data observed in one environment,
and therefore from the same distribution; however, when the underlying system is inter-
vened upon—leading to a change in distribution—such predictive models can show arbitrar-
ily poor performance. Causal models (Pearl, 2000; Spirtes et al., 2000), on the other hand,
by capturing causation among variables, rather than correlation, are able to also predict the
behaviour of a system under interventions. They are thus a more general model class than
purely predictive models. The drawback of causal models, however, is their need for inter-
ventional training data which is often not available; learning cause-effect relationships from
purely observational data is difficult in general, and, without further assumptions, some-
times even impossible.2 The interested reader is referred to Pearl (2009) for an overview of
causal inference techniques, and to Peters et al. (2017) for a more recent account.

Formally, a structural causal model (SCM) (Pearl, 2000) over a set of random variables
{Xi}di=1 is defined by the set of equations

Xi := fi
(
Pa(Xi), Ni

)
for i = 1, . . . , d (3)

where Pa(Xi) is the set of causal parents of Xi (i.e., those variables having a direct causal
effect on Xi), Ni are mutually independent, random noise variables, and fi are deterministic
functions. An illustration of such models in the bivariate case can be found in Fig. 3. Since
Ni are stochastic, the set of Equations (3) induces a distribution P over {Xi}di=1 which
depends on the noise distributions. The corresponding directed acyclic graph (DAG) with
{Xi}di=1 as nodes and Xi → Xj an edge iff. Xi ∈ Pa(Xj) can be thought of as a causal
Bayesian network (Pearl, 1985), i.e., a directed probabilistic graphical model (PGM) in
which the direction of edges truly indicates causal influence. The joint distribution factorises
over this causal Bayesian network as

P (X1, . . . , Xd) =
d∏
i=1

P (Xi|Pa(Xi)). (4)

The true power of SCMs over general PGMs is that the former can model interventions,
while the latter cannot. An intervention corresponds to setting one of the Xi to a fixed value
xi, and is denoted using Pearl’s do-operator as do(Xi = xi). In the SCM framework this can
be modelled by replacing all occurrences of Xi in Equations (3) by the new assignment xi.
The newly induced distribution (as there is no stochastic contribution from Ni anymore) is
denoted P (·|do(Xi = xi)). It is obtained by replacing the factor P (Xi|Pa(Xi)) in Eq. (4)
with δ(Xi = xi) and all occurrences of Xi ∈ Pa(Xj) by xi. We stress here that intervening
on a variable is fundamentally different from conditioning on it: an intervention on Xi

only affects its causal descendants (as these are the only equations in which Xi occurs),
but not its causal ancestors; conditioning on Xi, on the other hand, usually affects both its
descendants and ancestors.

While causal models are not necessary for the standard supervised and i.i.d. learning set-
ting for which distributions remain unchanged, they can play an important role in analysing
and understanding variations to this classical scheme. This is reflected in numerous recent
works drawing on ideas from causality to tackle ML problems such as, for example, data

2. E.g., for a linear model with Gaussian noise it is not possible to distinguish between X → Y and X ← Y .
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(a) Causal learning, SSL not possible (b) Anticausal learning, SSL possible

Figure 3: Under the ICM assumption, (a) SSL should not be possible if Y := fY (X,NY ),
as P (X) and P (Y |X) are independent in this case; (b) if X := fX(Y,NX) then SSL is, in
principle, possible as P (X) and P (Y |X) may share some information. [Figure reproduced
from Schölkopf et al. (2012)]

fusion (Pearl and Bareinboim, 2014; Bareinboim and Pearl, 2016), transfer learning (Magli-
acane et al., 2017), multitask learning (Rojas-Carulla et al., 2015), and domain adaptation
(Zhang et al., 2015).

2.4 Independence of Causal Mechanisms (ICM)

An assumption with roots in causal modelling which has received attention in recent years
is the independence of causal mechanisms (ICM) which was inspired by Lemeire and Dirkx
(2006) and formalised in terms of algorithmic complexity by Janzing and Schölkopf (2010).
At its heart is the assumption that the fi in Equations (3) are mutually independent, so
that the conditionals P (Xi|Pa(Xi)), or causal mechanisms, on the RHS of Eq. (4) represent
”autonomous modules that do not inform or influence each other” (Parascandolo et al.,
2017).

The implications of this assumption for different learning settings have been discussed
by Schölkopf et al. (2012), which is one of the main inspirations for the current work. In
particular, the authors argue that since SSL relies on linking P (X) and P (Y |X) it should
not be possible in the causal direction (Fig. 3a) as P (X) and P (Y |X) represent independent
causal mechanisms in this case. In an ”anticausal” learning setting (Fig. 3b), on the other
hand, when the causal mechanisms are P (Y ) and P (X|Y ), P (X) and P (Y |X) might still
exhibit some dependence so that SSL is, in principal, possible. Empirical evidence supports
the validity of this argument (Schölkopf et al., 2012).

2.5 Other Previous Work

In addition to those referred to already in the previous sections, we review similarities and
differences to some other previous work below.

Co-Training: One of the earlier and most influential works on combining labelled and
unlabelled data is the ”Co-Training” algorithm by Blum and Mitchell (1998). Motivated by
boosting performance of a web-page classifier using a large unlabelled sample the authors
assume that: (i) the feature set can be split into two disjoint views, X = (X1, X2), which are
conditionally independent given Y ; and (ii) each view is sufficient for learning the task given
enough data. They then train a weak classifier on each view, and use these to iteratively
label unlabelled examples and add them to the training set. While there are some clear
parallels to our approach, e.g., assumption (i) above also holds in our setting, we do not
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assume that each view (XC and XE in our case) is sufficient on its own (assumption (ii)
above). More importantly, our approach does not rely on assigning labels to unlabelled
data and is therefore not part of the family of self-learning approaches to SSL of which
co-training is a member.

Hybrid Generative-Discriminative Models: Since Ng and Jordan (2002) shed light
on some of the advantages and disadvantages of discriminative vs. generative models, some
works have attempted to combine these two approaches for SSL. Multi-conditional learning
(McCallum et al., 2006) considers objective functions like P (Y |X)αP (X)β and has been
successfully applied to SSL (Druck et al., 2007). An example of combining SVM and naive
Bayes for SSL can be found in Jiang et al. (2013). The idea of combining supervised
and unsupervised components in the objective function is also reflected in our approach.
However, the above-mentioned works train both a generative and a discriminative model
using the former for unlabelled and the latter for labelled data; on the other hand, we only
train one model which is neither fully generative nor fully discriminative, and which can be
used to include both unlabelled and labelled data.

Learning with Cause and Effect Features: To the best of our knowledge no pre-
vious works explicitly consider learning from both cause and effect features. The closest
may be that of Kang and Tian (2006) where—even though not in a causal context—they
consider two sets of features X1 and X2 on either side of Y . The resulting likelihood
P (Y |X1)P (X2|Y ) is similar to ours, but is not used in combination with unlabelled data.

3. Semi-Generative Modelling

In this Section we explicitly state our assumptions, use them to derive our semi-generative
framework, and show how it gives rise to a modelling approach which naturally allows for
including unlabelled data, while remaining robust to distribution shifts over causal features.

3.1 Assumptions

We consider the unsupervised domain adaptation problem of predicting the outcome of a
random variable Y in a target domain (D = 1) from an observation of a set of random
variables, or features, X. We assume that the set of features can be partitioned into two
disjoint, non-empty sets: X = XC ∪XE and XC 6= ∅ 6= XE . As training data we are given
a labelled, typically small set of observations SS = {(xiC , yi, xiE)}nSi=1 from a source domain

(D = 0) and an unlabelled, typically large set ob observations ST = {(xjC , x
j
E)}nS+nTj=nS+1 from

a target domain (D = 1). Moreover, we make the following main assumption.

Assumption 1 (Known Causal Structure & ICM) The relationship between the vari-
ables XC , Y , XE and the domain indicator D is accurately captured by the following SCM:

XC := fC(D,NC)

Y := fY (XC , NY )

XE := fE(Y,NE)

(5)

where NC , NY , and NE are mutually-independent random noise variables, and the functions
fC , fY , and fE represent independent causal mechanisms (in the sense of Section 2.4).
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This SCM is shown schematically in Fig. 4. The (unknown) distributions over noise vari-
ables together with Equations (5) induce a distribution over (XC , Y,XE) which depends
on D: P (XC , Y,XE |D). We will refer to the two distributions P (XC , Y,XE |D = 0) and
P (XC , Y,XE |D = 1) as source and target distributions, or domains, respectively.3

3.2 Analysis

From Eq. (4) and Assumption 1 it follows that the distribution P factorises as

P (XC , Y,XE |D) = P (XC |D)P (Y |XC)P (XE |Y ). (6)

where the factors on the RHS correspond to the three independent causal mechanisms.
This factorisation can be used to show that the CS assumption is satisfied in our setting
(as intended by construction).

Proposition 1 CS holds for the setting described by Assumption 1.
Proof By the factorisation of P given in Eq. (6), it follows that:

P (Y |XC , XE , D) =
P (XC , Y,XE |D)

P (XC , XE |D)
=
P (Y,XE |XC)P (XC |D)

P (XE |XC)P (XC |D)
=
P (Y,XE |XC)

P (XE |XC)
.

The last equality shows that the conditional distribution does not depend on the domain D.

In fact, we can make a stronger statement than Proposition 1. This is due to the assumed
chain-like problem structure which results in a direct shift only in the distribution over
causes, P (XC |D). Whereas this change in distribution is propagated through the mecha-
nisms P (Y |XC) and P (XE |Y ) thereby also affecting Y and XE , the only shift that needs
to be corrected for is that in XC . This follows directly from the factorisation (6):

P (XC , Y,XE |D = 1) = w(XC)P (XC , Y,XE |D = 0) (7)

where w(XC) = P (XC |D=1)
P (XC |D=0) are importance weights (Shimodaira, 2000). Hence, conditioning

on XC is sufficient to obtain domain-invariance.
Eq. (7) also reveals a first side-benefit of identifying some features as effects in a CS

setting: training a model on reweighted source data only requires estimation of the distri-
bution over causes, but not over effects. Since the correct weights are generally not known,
estimating such ratios of (potentially high-dimensional) distributions from limited data is
often a challenge a practice. Performing this estimation over a lower-dimensional space
could thus be advantageous.

The focus of our work, however, lies on actively improving the source model from unla-
belled data, rather than on the adaptation task. By improvement here we refer to obtaining
a better estimate of the conditional distribution P (Y |XC , XE) and ultimately a lower error
rate on an unseen test set drawn from the target domain. According to the ICM assumption,
such semi-supervised learning is not possible in the causal direction but might work in the
anticausal direction (see Fig. 3) (Schölkopf et al., 2012). This has the following implications
for our setting:

3. Note that even though we focus on the case D ∈ {0, 1} here, it should be simple to include additional
labelled or unlabelled data from different sources as in domain generalisation.
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Figure 4: A schematic illustration of the assumed causal problem structure. The dashed
arrow illustrates the main idea of our approach, namely learning a map from cause to effect
features from unlabelled data and using it as a soft model constraint.

• The distribution over causal features does not share any information with the condi-
tional distribution of Y . A better estimate of P (XC |D) obtainable from unlabelled
data will therefore not help to improve our estimate of the conditional, and so ex-
plicitly modelling the cause distribution unnecessarily introduces model complexity
without apparent benefits.

• P (Y ) and P (XE |Y ) are independent mechanisms, but P (XE) and P (Y |XE) may
contain shared information. We can therefore hope to improve our estimate of the
conditional via a better estimate of P (XE) from the unlabelled sample. This suggests
explicitly modelling the distribution over effects in our case.

One way to convince oneself of the above is from the domain invariant form of the condi-
tional, P (Y,XE |XC)

P (XE |XC) , where XC only appears as a variable which we condition on, whereas
XE appears explicitly. We note here that while it is also possible to write the conditional
P (Y |XC , XE) differently, only conditioning on XC leads to a domain invariant form. Such
invariance is required as those terms involving Y can only be estimated from the source
domain, while we wish to make predictions for the target domain.

Another way to understand the different roles played by cause and effect features is
from the SCM (5) in Assumption 1. Even if one could perfectly learn the data generating
process for the causal features, XC := fX(D,NC), this does not reveal anything about Y .
The generating process for the effects, XE := fE(Y,NE), on the other hand, clearly depends
on Y . In particular, when Y is unknown but XC is known—as is the case for the large
unlabelled sample from the target domain—we can substitute for Y to obtain

XE := fE(Y,NE) = fE
(
fY (XC , NY ), NE

)
. (8)

Equation (8) above demonstrates our main idea: by learning a (noisy) map from causes
to effects from unlabelled data we hope to improve our estimates of the functions fY and fE ,
and thereby also our predictive model. Such a map can be viewed as a noisy composition
of functions, fE ◦ fY , as indicated by the dashed arrow in Fig. 4.

In terms of the distribution P this idea corresponds to improving our estimate of
P (XE |XC). Factorising the distribution from which the unlabelled sample is drawn as

P (XC , XE |D = 1) = P (XC |D = 1)P (XE |XC), (9)

9
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helps to illustrate the point of our approach. Whereas CS adaptation by importance weight-
ing would only use the first term on the RHS of Eq. (9) thereby disregarding half the un-
labelled sample, our approach will make full use of all unlabelled data by using the second
term for semi-supervised learning.

3.3 Modelling Approach

The previous analysis of the asymmetric roles played by cause and effect features suggests
using a model of the form P (Y,XE |XC , θ). We refer to this modelling framework as semi-
generative, as it can be seen as an intermediate between a fully generative, P (XC , Y,XE |θ),
and a fully discriminative, P (Y |XC , XE , θ), framework. As opposed to a fully generative
model, the semi-generative model is domain invariant due to conditioning on XC . At the
same time, the semi-generative framework also allows including unlabelled data by summing
(if Y is discrete) or integrating (if Y is continuous) out Y ,

P (XE |XC , θ) =
∑∫
y∈Y

P (Y = y,XE |XC , θ) [dy] (10)

which is not possible for fully discriminative models which condition on all features. For
our setting, a semi-generative framework thus combines the best from both worlds: domain
invariance and the possibility to include unlabelled data in the fitting process.

As it does not depend on labels, we will also refer to Eq. (10) as the unsupervised
model. It is clear that we can always obtain the unsupervised model for classification tasks,
while for regression we are restricted to special types of submodels for which the integral
can be computed analytically. When other models are desired, approximating the integral
is an option, but this is left for future work.

Moreover, the semi-generative formulation has another advantage in our setting: it
factorises into the two independent mechanisms

P (Y,XE |XC , θ) = P (Y |XC , θY )P (XE |Y, θE) (11)

where θ = (θY , θE) are the parameters of the two submodels. Note that this can also help
avoid problems with missing data. E.g., if xiC is missing for some i, the pair (yi, xiE) can
still be used to train P (XE |Y, θE).

With our model P (Y,XE |XC , θ), a way to include unlabelled data via Eq. (10), and
the factorisation into two submodels given by Eq. (11) we are now ready to give a high-level
summary of our approach:

1. Train two supervised submodels, P (Y |XC , θY ) and P (XE |Y, θE), on labelled pairs
(xiC , y

i) and (yi, xiE), such that the corresponding unsupervised model (10) ’agrees

well’ with the unlabelled cause-effect pairs (xjC , x
j
E).

2. Construct the probabilistic conditional from P (Y |XC , θY ) and P (XE |Y, θE) as:

P (Y |XC , XE , θ) =
P (Y |XC , θY )P (XE |Y, θE)∑∫

y∈Y P (Y = y|XC , θY )P (XE |Y = y, θE) [dy]
(12)

A likelihood-based version of the above is described in detail in the next section and sum-
marised for classification in Algorithms 1 and 2 in Appendix B.
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3.4 (Log-)Likelihoods

The average supervised source likelihood, P (Y,XE |XC , θ), of our model given the observed
labelled data is given by:

LS(θ) = L(θ|SS) =

nS∏
i=1

P (yi, xiE |xiC , θ)
1
nS =

nS∏
i=1

P (yi|xiC , θY )
1
nS P (xiE |yi, θE)

1
nS .

We consider average (log-)likelihoods in order to be able to compare models trained on
different amounts of data; such averaging does, of course, not affect the resulting parameter
MLEs. The corresponding average log-likelihood ` is given by

`S(θ) =
1

nS

nS∑
i=1

logP (yi|xiC , θY ) + logP (xiE |yi, θE) (13)

and can be maximised w.r.t. θY and θE separately. Closed form MLEs are thus often avail-
able for simple enough models. The same holds true for LWS and `WS which additionally
importance-reweigh term i in LS and `S , respectively, by w(xiC) (Shimodaira, 2000).

`WS =
1

nS

nS∑
i=1

w(xiC)
(

logP (yi|xiC , θY ) + logP (xiE |yi, θE)
)

(14)

Note that importance weights arise from an empirical source approximation to the expected
target loss and are thus not subject to logarithms.

Our approach suggests additionally including unlabelled data via the average unsuper-
vised target likelihood, P (XE |XC , θ):

LT (θ) = L(θ|ST ) =

nS+nT∏
j=nS+1

P (xjE |x
j
C , θ)

1
nT =

nS+nT∏
j=nS+1

(∑∫
y∈Y

P (y|xjC , θY )P (xjE |y, θE)[dy]
) 1
nT

where the last equality follows from Equations (10) and (11). The corresponding target
log-likelihood is

`T (θ) =
1

nT

nS+nT∑
j=nS+1

log
(∑∫
y∈Y

P (y|xjC , θY )P (xjE |y, θE)[dy]
)
.

We propose to combine labelled and unlabelled data in the pooled likelihood as

LP (θ) = L(θ|SS , ST ) = LS(θ)λLT (θ)1−λ

with corresponding log-likelihood

`P (θ) = λ `S(θ) + (1− λ) `T (θ) (15)

where the hyperparameter λ ∈ (0, 1) interpolates between the average source- and target
likelihoods and can be chosen depending on nS and nT . E.g., λr = nS

nS+nT
gives equal

weight to all observations and is therefore a natural choice, while changing this ratio leads
to different weights for labelled and unlabelled data.
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4. Experiments

In order to analyse our approach, we perform some regression and classification experiments
on synthetic data sets. Moreover, we apply our semi-generative approach to a real world
protein-signalling network data set (Sachs et al., 2005) to investigate its applicability in
practice. For classification, we consider maximum likelihood and Bayesian approaches under
both correct parametrisation and model misspecification to identify potential strengths and
weaknesses in different settings. This Section contains the necessary experimental details to
reproduce our results, and can be used as a guide to applying our semi-generative modelling
approach for new classification and regression problems.

4.1 Estimators

Since our method requires making certain assumptions about the causal structure, and in
order to make comparisons as fair as possible, we study our approach relative to versions
of the source-only baseline and the importance-weighting technique, which take the known
causal structure into account. In particular, we compare:

• θ̂S : training a model on the labelled source data only. It ignores the unlabelled data
and thus corresponds to no adaptation, but takes causal knowledge into account.

• θ̂WS : training a model on the importance-weighted source data. It thus uses only the
“XC-part” of the unlabelled sample and ignores the “XE-part”, see Eq. (7). In our
experiments we use known weights; however, in practice these would also have to be
estimated from data.

• θ̂P (our proposed estimator): training a model on the pooled data set combining
unweighted labelled and unlabelled data via λ as explained in Section 3.4. (A second
pooled estimator θ̂WP using weighted, instead of unweighted, labelled data was ini-
tially considered, but was then dropped for clarity of results as it suffered from the
same problems as θ̂WS related to reweighting.)

• θ̂LR: training a standard linear/logistic regression model on the joint feature set
(XC , XE), i.e., ignoring the known causal structure. Where applicable, we report the
performance of θLR for comparison.

Moreover, we compare our method to some state-of-the-art feature-transformation based
approaches to unsupervised DA such as transfer component analysis (TCA, Pan et al., 2011),
maximum independence domain adaptation (MIDA, Yan et al., 2017), subspace alignment
(SA Fernando et al., 2013), geodesic flow kernel (GFK Gong et al., 2012), and information
theoretical learning (ITL, Shi and Sha, 2012, for classification only). As would be the case
without any knowledge of the causal structure, we apply these methods on the pooled data
set (including source labels where applicable), and then train a linear/logistic regression
model (as for θ̂LR) on the new set of transformed features. We use the implementation
and default parameters provided in the MATLAB domain adaptation toolbox by Yan, Ke
(2016).

12
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4.2 Model Fitting: Maximum Likelihood and Bayesian Approaches

For model fitting by maximum likelihood (ML), we minimize the negative log-likelihood
(NLL) which acts as a proxy for the 0-1 loss in the case of classification and root mean
squared error (RMSE) in the case of regression. The ML estimates θ̂S , θ̂WS , and θ̂P are
thus found by maximising `S (13), `WS (14), and `P (15), respectively. We use analyti-
cal solutions where available and gradient descent to minimise the negative log-likelihoods
otherwise.

For a Bayesian approach, we place a rather flat (i.e., with large σ) normal prior π on
θ, so as to not include much prior knowledge on how the data is generated. We can then
compute the log-posterior distribution up to additive constants:

logP (θP |SS , ST ) = log π(θ) + (nS + nT )`P (θ) + const., (16)

In order to make predictions for new data (xnewC , xnewE ), we estimate the required integral
using a Monte Carlo approximation:

P (Y = y |xnewC , xnewE ) =

∫
θ
P (Y = y |xnewC , xnewE , θ)P (θ |SS , ST ) dθ

≈ 1

K

K∑
k=1

P (Y = y |xnewC , xnewE , θ(k))

where θ(k) are samples from the posterior distribution. We use a Metropolis-Hastings algo-
rithm (Metropolis et al., 1953; Hastings, 1970) with a multivariate normal proposal distribu-
tion to sample from the corresponding unnormalised log-posterior distribution (16). In our
experiments we use a step size of 0.1 and generate 10 randomly-initialised Markov chains
of length 1100, in order to avoid the sampler getting stuck in local maxima of spiky, multi-
modal posteriors. Discarding the first 100 samples from each chain as burn-in, this leaves
10,000 samples for prediction. (Of course, more elaborate sampling schemes are possible.)

4.3 Synthetic Classification Experiments

For the classification experiments, we focus on binary classification. However, it is straight-
forward to extend our method to multi-class classification as well. To generate synthetic
classification data sets with a simple linear decision boundary, but which are still some-
what challenging due to class-overlap, and which comply with our assumptions, we use the
following SCM:

XC :=

{
µC + εC if D = 0,

−µC + εC if D = 1,
where εC ∼ N (0, σ2C)

Y :=

{
1 if εY ≤ sigm

(
s(XC −m)

)
,

0 if εY > sigm
(
s(XC −m)

)
,

where εY ∼ U(0, 1)

XE :=

{
µ0 + σ0εE if Y = 0,

µ1 + σ1εE if Y = 1,
where εE ∼ N (0, 1)

(17)
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with all noise variables εi mutually independent, and where sigm is the logistic sigmoid
function, sigm(x) = (1 + e−x)−1. This induces the distributions

Y | (XC = xC) ∼ Bernoulli
(

sigm
(
s(xC −m)

))
XE | (Y = y) ∼

{
N (µ0, σ

2
0) if y = 0

N (µ1, σ
2
1) if y = 1

.
(18)

From (18) we can compute the unsupervised model (Eq. (10)) by summing out Y :

P (XE = xE |XC = xC , θ) =

1∑
y=0

P (XE = xE |Y = y, θE)P (Y = y|XC = xC , θC)

=
(
1 + e−s(xC−m)

)−1(
φ(xE |µ0, σ20)e−s(xC−m) + φ(xE |µ1, σ21)

)
where φ(x|µ, σ2) = (2πσ2)−

1
2 e−

(x−µ)2

2σ2 is the pdf of a normally distributed random variable
with mean µ and standard deviation σ. Substituting this expression in `P and maximising
w.r.t. θ yields our estimator θ̂P . We can then classify new examples using the probabilistic
conditional P (Y |XC , XE , θ̂P ) from Eq. (12).

To reduce the number of unknown parameters fitted from very little data and to make it
comparable to the three parameters of a standard logistic regression model for our setting,
we assume all σ2 and the sigmoid shape parameter s to be known and equal to one in
our simulations. At each iteration, we then draw a new set of parameters µC , θY = m,
θE = (µ0, µ1), where µC , µ1 ∼ U(0, 1), m ∼ U(−1, 1), and µ0 ∼ U(−1, 0). Next, we
generate a synthetic data set by drawing nS labelled and nT unlabelled samples from the
source- and target domains, respectively, according to Eq. (17). One such classification data
set is shown examplary in Fig. 5a. For θ̂S and θ̂WS we use the closed-form weighted least
squares solutions as MLEs for µ0 and µ1, whereas all other estimates need to be found by
gradient descent due to the non-linearity of the sigmoid function.

Furthermore, we perform some additional classification experiments to investigate the
behaviour of our approach under model-misspecification. To achieve this, we fit exactly the
same model as before (i.e., a linear decision boundary) while changing one of the normal
distributions into a mixture of Gaussians (MoG). Specifically, we set µ0 = 0 and µ1 = 3 to
ensure strong non-linearity and then draw the class-1 effects according to

XE | (Y = 1) ∼ 1

2
N (−µ1, 1) +

1

2
N (µ1, 1).

An example of such a classification data set generated with a MoG is shown in Fig. 5b.

4.4 Synthetic Regression Experiments

For our synthetic regression experiments, we focus on a linear setting with Gaussian noise.
Albeit a very simple model, linear regression is still widely used on small data sets. Morevoer,
it has the advantage of high interpretability of parameter estimates and is thus still a pop-
ular choice, e.g., in social sciences. Finally, the integral in Eq. (10) required for continuous
Y is easily computed in the linear Gaussian case (but may be tricky for more complicated
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Figure 5: Our synthetic data sets. Shown are classification data under normal conditions in
(a), and with a mixture of Gaussians for XE |Y = 1 as used for the model-misspecification
experiments in (b). For both, target labels are not available during training. (c) shows the
regression data along with the true model and the corresponding fit from source data.

models). We thus generate synthetic regression data according to the following linear SCM:

XC :=

{
α+ εC if D = 0,

−α+ εC if D = 1,
where εC ∼ N (0, σ2C)

Y := a+ bXC + εY , where εY ∼ N (0, σ2Y )

XE := c+ dY + εE , where εE ∼ N (0, σ2E)

(19)

with all noise variables εi mutually independent. This induces the distributions

Y | (XC = xC) ∼ N (a+ bxC , σ
2
Y )

XE | (Y = y) ∼ N (c+ dy, σ2E).
(20)

Substituting for Y in the last line of Eq. (19), we obtain

XE = c+ ad+ bdXC + dεY + εE .

From a standard result about the sum of two normally distributed random variables applied
to dεY and εE , it then follows that

XE | (XC = xC) ∼ N (c+ ad+ bdxC , d
2σ2Y + σ2E) (21)

which allows us to compute and maximise `P to obtain our proposed estimator θ̂P . In order
to predict in the regression setting, we also need to provide a closed form solution to the
argmax of the probabilistic conditional P (Y |XC , XE , θ̂P ):

Proposition 2 Given the regression model in Eq. (19) and a parameter estimate θ, the
most likely outcome for a new observation (x∗C , x

∗
E) is given by

y∗ =
σ2E(a+ bx∗C) + d2σ2Y (

x∗E−c
d )

σ2E + d2σ2Y
.

Proof See Appendix C.

15



von Kügelgen

Figure 6: Shown is the subset of variables from the protein-signalling network which we
used for our experiments. Arcs indicate causal links, and shown in red are interventions on
PKC and MEK via the substances G06976 and U0126, respectively. For more details the
reader is referred to the original paper (Sachs et al., 2005).

The prediction y∗ in Proposition 2 can be seen as a weighted average of the two submodels’
predictions, where inverse weights correspond to each model’s uncertainty.

Simulations are then performed as follows: Firstly, all σ2s are assumed to be known
and equal to one, while the remaining parameters α, θY = (a, b), and θE = (c, d) are drawn
anew from a hyperprior at each iteration, where α ∼ U(0, 2) and a, b, c, d ∼ U(−2, 2).
Next, we generate a synthetic data set by drawing nS labelled and nT unlabelled samples
from the source- and target domains, respectively, according to Eq. (19). We then compute
the different estimators using the analytical (weighted) least squares solutions for θS , θWS ,
and θLR, whereas θP is found using gradient descent, as the unsupervised target model is
non-linear in the parameters, see Eq. (21).

4.5 Real-Data Regression Experiments

As a real-world example we use the “Causal Protein-Signalling Network” data set published
by Sachs et al. (2005). It contains single-cell measurements of 11 phospho-proteins and
phospho-lipids under 14 different experimental conditions, as well as—importantly for our
method—the corresponding causal Bayesian network inferred from this interventional data.
In our experiments, we focus on a subset of variables which is shown in Fig. 6. This subset
was selected to be most compatible with our assumptions.

We extract two data sets of different difficulty from this subset of variables: D1, which
corresponds to MEK (XC)→ ERK (Y )→ AKT (XE), and D2, which coresponds to PKC
(XC) → PKA (Y ) → AKT (XE). For both, source data consists of measurements under
normal conditions and target data is obtained by intervening on MEK in the case of D1 and
on PKC in the case of D2. The two real-world data sets are shown in normal and log-log
scale in Fig. 7. As can be seen, D1 shows a high similarity between domains, whereas D2

appears to be more challenging due to the high domain discrepancy.

As is often the case with biological data, features span multiple orders of magnitude and
are thus more easily visualised in log-space. Moreover, all relationships between variables,
i.e., protein-protein interactions, seem to be reasonably-well approximated by power laws
(Y = AXb) which is also often true for natural systems. In our case, we can think of protein
X as either facilitating or inhibiting expression of protein Y , roughly resulting in an either
linear or inverse relationship, respectively. For these reasons, we decide to first transform
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the data by taking logarithms (which is not a problem as all features, being protein counts,
are ≥ 1). We then fit a linear model in log-space (log Y = a + b logX) which corresponds
to fitting a power law in the original space.

We then perform simulations on the real data sets as follows. At each iteration, we
draw a fixed number nS of labelled observations from the source domain, and reserve 200
observations from the target domain as a test set. From the remaining target data, we
draw nT = 2, 4, ..., 512 additional observations as unlabelled training data. We then fit a
linear model as described in the previous Section for synthetic regression experiments, with
the difference that we also treat σ2Y and σ2E as unknown. The model parameters are thus
θY = (a, b, σ2Y ), and θE = (c, d, σ2E), with mechanisms as in Eq. (20), the unsupervised
model as in Eq. (21), and predictions are made according to Proposition 2.

Finally, to investigate how background knowledge can aid our approach in real world
applications, we also perform simulations on D2 under the constraint b, d ≤ 0 , i.e., fitting
lines with negative slope. This constraint captures that both PKC → PKA and PKA →
AKT are inverse relationships which might be known from domain expertise. To accommo-
date parameter constraints in our optimisation routine, we maximise over β, δ, sY , sE ∈ R
setting b = −eβ, d = −eδ, σ2Y = esY , and σ2E = esE .

4.6 Choosing λ

To choose the hyperparameter λ ∈ (0, 1) we perform a grid search, considering different
combinations of nS and nT . This is done for synthetic classification and regression data
generated as described in the previous section with a fixed choice of parameters. The results
are shown in Fig. 8. For classification, we find that λr(nS , nT ) = nS

nS+nT
giving equal weight

to all observations (i.e., more weight to the unsupervised model as nT is increased) appears
to be a good choice across different settings, see Fig. 8a.

In contrast, for regression a good choice of λ does not seem to depend on nT . Rather
than weighting all observations equally, values of λ giving large weight to the supervised
model appear to be preferred for regression. Following the results of Fig. 8b, we thus choose
a constant λ = 0.8 for our regression experiments.

Finally, we note that as the amount of labelled data is increased, the unsupervised
model seems to become obsolete for simple linear regression problems. One could thus also
consider choosing λ(nS) to approach 1 for large nS : e.g., a choice like λ(nS) = 1− 1

nS
could

be reasonable.

4.7 Evaluation

For both classification and regression experiments on synthetic data, we draw a test set
of size 103 from the target domain and use it to evaluate the different estimators. The
simulation steps described in Sections 4.3 and 4.4 are then repeated niter ≥ 103 times,
which each iteration corresponding to a different set of model parameters. This yields an
average performance over many different classification/regression problems, thus avoiding
overfitting to any particular parameter configuration and increasing the robustness of our
findings.

We report both negative log-likelihood (NLL) and actual loss (RMSE/error rate) test-
set averages, as recommended by Loog and Jensen (2015), for the following reason: while
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Figure 7: Shown are the two real-world data sets used in our experiments. D1 corresponds
to MEK(XC) → ERK(Y ) → AKT(XE), and D2 to PKC(XC) → PKA(Y ) → AKT(XE).
Target data is obtained by interventions on MEK and PKC for D1 and D2, respectively.
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Figure 8: Tuning the hyperparameter λ - Shown are negative log-likelihood and RMSE/error
rate against λ ∈ (0, 1) for different combinations of nS and nT (see legends); arrows mark
the minima of each curve. All results are test set averages over 104 runs.

we are often mainly interested in a small RMSE or 0-1 loss, optimisation of this quantity
generally suffers from non-convexity-related issues so that our model is instead trained to
minimise a surrogate loss. In our case, this surrogate loss is the semi-generative, negative
log-likelihood: − logP (Y,XE |XC , θ) = − logP (Y |XC , θY )− logP (XE |Y, θE).

5. Results

Here we present the results of our experiments described in the previous section. Unless
explicitly stated, all curves show test-set averages over 104 simulations using λ = nS

nS+nT
for

classification and λ = 0.8 for regression. As we report averages over many different synthetic
data sets, variances can be quite large, and so we omit error bars for clarity. However,
applying a paired t-test to, e.g., the results from Fig. 9 indicates statistical significance
with p < 0.05 (and much smaller p-values for large nT ), and similar results can be expected
for the other plots, provided that sufficiently many simulations are performed.

Throughout, we mainly consider two settings: one with a very small amount of labelled
data (nS = 8 for classification, nS = 4 for regression) and the other with a medium amount
of labelled data (nS = 64 for classification, nS = 16 for regression). We then investigate the
relative performance of our approach as the amount of unlabelled data (nT ) is increased.
This reflects our aim of improving the source model with unlabelled data, when labelled
training data is very scarce.

Note that while nS = 8 (or even 4 for regression) may seem like an unrealistically small
amount of labelled data, this always has to be considered relative to the dimensionality. As
our synthetic (and real) data sets have two-dimensional feature space, this corresponds to
≈ 3 (or 2 for regression) observations per dimension. Due to the curse of dimensionality (i.e.,
the number of data required increase exponentially with the dimensionality of the problem)
our setting of 2 or 3 observations per dimension, is thus quite realistic for high-dimensional
problems.
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Figure 9: Classification results using maximum likelihood parameter estimates under
correctly-specified (top row) and misspecified models (bottom row).

5.1 Synthetic Classification Results

Using our synthetic classification data set, we perform maximum likelihood estimation and
Bayesian modelling under both correctly specified and misspecified models. Moreover, in the
case of a correct model and fitting by maximum likelihood, we also compare our estimators
with different feature-transformation methods followed by fitting a logistic regression model.

Results of using maximum likelihood estimation are shown in Fig. 9. For a correct
model (top row), the curves of NLL and error rate look very similar and follow the same
behaviour (despite the NLL curve being slightly smoother). For both small and medium
nS , the source-only baseline θS performs better than the importance-weighted model θWS .
Our pooled-data estimator θP performs best, with error and NLL decreasing monotonically
with nT . This decrease is much more pronounced for nS = 8 with an absolute improvement
of 4% in error rate for large nT , compared to θS . With nS = 64 labelled examples, on the
other hand, this improvement in error rate drops to only a little over 0.5%.

Under model-misspecification (bottom row), the observed behaviour is very different as
the curves of NLL and error rate are no longer aligned. Specifically, while NLL is mono-
tonically increasing with nT , error rate increases initially, then peaks for an intermediate
value of nT , and eventually decreases again reaching the lowest value among all estimators
for very large nT . For nS = 8, the peak in error rate occurs earlier and the minimum
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Figure 10: Classification results using a Bayesian approach for correctly-specified (top row)
and misspecified (bottom row) models. Shown are averages over 103 simulations.

attained over the range of nT considered is lower than for nS = 64. In the case of the
latter, the structure-agnostic logistic regression model, θLR, yields the lowest error rate for
nT < 5 × 103. θS and θWS show similar performance in terms of error rate both for small
and medium nS , and yield the lowest error for nS = 8 and nT < 4× 102 beyond which θP
is to be preferred.

Bayesian results for the same experiments as in Fig. 9 are shown in Fig. 10. While
the overall behaviour is very similar between ML- and Bayesian approaches, mainly two
differences can be observed. Firstly, using a Bayesian approach under a correct model (top
row), we find that some learning curves are no longer strictly decreasing, but instead reach
a minimum and increase again for very large nT . For both NLL curves this minimum
occurs at about nT ≈ 103. Moreover, for nS = 64, the later increase in NLL is much more
pronounced and even error rate reaches a minimum before increasing again, which is not
the case for nS = 8.

The second observed difference using a Bayesian as opposed to a maximum likelihood
approach is that the former seems to be somewhat more robust under model misspecification
than the latter. While error rate initially increases with nT in either approach, the maximum
error occurs at smaller nT in the case Bayesian modelling, and less unlabelled data is
required for θP to return to an error lower than the source model in this case (compare
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(a) correct model (nS = 8, nT = 1024) (b) misspecified model (nS = 8, nT = 256)

Figure 11: Metropolis-Hastings sampling-based approximations to the posterior distribu-
tions over classification parameters in the case of correctly- (a) and incorrectly-specified (b)
models; vertical red lines indicate the corresponding true values of m, µ0, and µ1.
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Figure 12: Visualization of the probabilistic conditional P (Y = 1|XC , XE) under model-
misspecification, and its Bayesian approximations with nS = 8, nT = 256, corresponding to
the posteriors shown in Fig. 11b. Both XC and XE range from -10 to 10.

Figures 9c and 10c). Moreover, with a Bayesian approach to model misspecification and
given 8 labelled observations the peak error reached is about 1.5% lower than with maximum
likelihood. For nS = 64 this difference rises to 2.5% in absolute error rate.

Fig. 11 shows two examples of posterior distributions over θS , θWS , and θP given labelled
and unlabelled training data, along with the true parameter values marked by red lines.
(Note, however, that the role of µ1 changes between correct and incorrect models, see
Section 4.3 for details.) For a correct model and given 8 labelled and 1024 unlabelled data
(Fig. 11a), the posterior over θP , unlike those over θS and θWS , is approximately centred
around the true parameter values. Moreover, it is more spiked as indicated by the scaling of
axes. Under model-misspecification as shown in Fig. 11b, on the other hand, the posterior
over θP appears to be bimodal with respect to µ0 and µ1, whereas posteriors over θS and
θWS seem to remain unimodal.
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Figure 13: Comparison of our pooled ML estimator with feature-transformation DA meth-
ods on synthetic classification data sets with 8 (left) and 64 (right) labelled training exam-
ples. Results of TCA and θLR mostly coincide with MIDA and are thus hard to see.

The decision surfaces, P (Y = 1 |XC , XE), resulting from the different posteriors in
Fig. 11b are shown in Fig. 12. It also contains the ground truth as used for generating the
data in Fig. 5b. As can be seen, the true decision boundary, P (Y = 1|XC , XE) = 0.5, is
formed by two straight lines separating the“Y = 0-cluster” from the Gaussian mixture for
Y = 1. The decision boundary found using θS corresponds to one of these linear segments,
whereas that found using θP is more differentiated. It appears to be the average of both
linear segments taken individually, resulting in class probabilities close to 0.5 over a wide
range of (XC , XE). This observation is consistent with the bimodal posterior over µ0 and µ1
found for θP in Fig. 11b, with each mode corresponding to one of the two linear boundaries.

Finally, a comparison of our pooled-data maximum likelihood estimator with logistic
regression models trained after different feature transformations is shown in Fig. 13. For 8
labelled examples (left), estimators based on the submodels P (Y |XC) and P (XE |Y ) (θS ,
θWS , θP ) outperform the remaining ones, which train one model on the joint feature set;
for nS = 64, this holds only for θS , and θP . Across both settings, TCA and MIDA lead
to almost identical results as θLR, while ITL, SA, and GFK yield the highest errors. Our
pooled estimator θP is the only one which is strictly improving with more unlabelled data
throughout; however, this improvement is very slim in the case of nS = 64.

5.2 Synthetic Regression Results

On the synthetic regression data set we perform maximum likelihood estimation and in-
vestigate the effect of the interpolating hyperparameter λ further. Figure 14 shows results
for using λ = 0.8 given 4 (a) or 16 (b) labelled training points. As in Fig. 9 (top) with
error rate, also for regression with a correct model the surrogate loss curve aligns well with
the RMSE. For both values of nS , θS performs better than θWS . The pooled estimator θP
achieves the lowest RMSE overall and quickly improves upon θS given only a few unlabelled
observations. However, adding more unlabelled data beyond nT > 10 does not lead to any
noticeable reduction in RMSE. In general, gains are more pronounced for nS = 4 when θP
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Figure 14: Regression results using maximum likelihood estimates with λ = 0.8.

results in a reduction of about 0.1 in RMSE compared to θS . For nS = 16, on the other
hand, this gain is at least an order of magnitude smaller and thus negligible.

The same experiment as is Fig. 14a is repeated in Fig. 15, but this time with λ = nS
nS+nT

(as used for classification). Learning curves of θP (top row) for both NLL and RMSE
decrease initially, quickly reach a minimum at nT = 2, and then rise again leading to
increasingly worsened performance as more unlabelled data is added. For the minimum
at nT = 2 and another point at nT = 128 (black arrows), example model fits (lines) are
shown in the middle and bottom rows, respectively. With 2 unlabelled points (middle row),
all estimators fit the submodel XE |Y well, but the line fits of θP to XE |XC and Y |XC

are closer to the true model than those of θS and θWS . For nT = 128 (bottom row), all
estimators result in a decent fit to XE |XC with θP almost coinciding with the true model.
The two submodels Y |XC and XE |Y , however, are fitted very poorly by θP , as opposed
to θS and θWS .

5.3 Real-Data Regression Results

On the real-world data sets, we compare the performance of our approach using maximum
likelihood estimation with linear regression models trained after different feature transfor-
mations. Results from using λ = 0.8 on D1 and D2 are shown in Fig. 16. As can be seen,
RMSEs of all methods are much lower on D1 than on D2 supporting our claim that D2 is
the more challenging one.

On D1 with nS = 4 (a), both θS and θP outperform the structure-agnostic feature
transformation methods; θP reaches the lowest RMSE of a little under 0.6—an absolute
improvement of 0.1 over θS with an RMSE of 0.7. For small nT , MIDA outperforms TCA,
GFK, and SA but for large nT all feature tranformation methods converge in RMSE to
the linear regression model θLR (coinciding with TCA). With 16 labelled examples (b), on
the other hand, all feature transformation methods except GFK outperform θS and θP ,
with MIDA achieving the lowest RMSE, followed by TCA and θLR. SA and GFK lead to
the highest errors on D1, especially for small nT , but both are strictly improving as more
unlabelled data becomes available.
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Figure 15: ML regression results with nS = 4 and λ = nS
nS+nT

, showing learning curves of

NLL and RMSE vs nT (top). Arrows mark nT = 2 with λ = 2
3 , and nT = 128 with λ ≈ 0.03

for which example model fits are shown in the middle and bottom rows, respectively.
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(b) D1: nS = 16
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(d) D2: nS = 16

Figure 16: Regression learning curves for the real data sets D1 and D2 with 4 and 16 labelled
source observations. Throughout, we used λ = 0.8 and fitted an (unrestricted) linear model
in log-space, see Fig. 7. θLR is not visible as its curve coincides with that of TCA here.

On D2, GFK, despite leading to the worst results on D1, achieves the lowest error for
both settings, closely followed by SA. As on D1, both show a monotonic decrease in RMSE
with respect to nT , which is not the case for MIDA on either of the data sets. Both θS
and our pooled estimator θP show poor performance on D2, and, as opposed to the other
methods, do not experience improvements in RMSE as nS is increased from 4 to 16.

In the case of D2, we also analyse the effect of additional model restrictions in Fig. 17,
considering both λ = 0.8 and λ = nS

nS+nT
. Restricting the two linear submodels used in

θS and θP to have negative slope (capturing the inverse relationship between the involved
proteins) leads to considerably lower RMSEs. Unlike their unrestricted counterparts in
Fig. 16, the restricted versions of θS and θP clearly outperform the feature tranformation
methods to which no restrictions were applied (to be discussed further later on).

For λ = 0.8, θP consistently performs better than θS by an absolute difference in RMSE
of roughly 0.1. However, this difference can be achieved using as little as 2 unlabelled
data points beyond which learning curves for θP seem to remain constant; this can also be
observed in Fig. 16, where λ = 0.8 was used throughout.

For λ = nS
nS+nT

, on the other hand, learning curves of θP show more complex behaviour.
For both 4 (b) and 16 (d) labelled training examples, RMSE initially decreases, then reaches
a minimum, and eventually increases again. For nS = 4, though, this minimum occurs much
sooner so that an initial improvement compared to using λ = 0.8 as in (a) is almost not
noticeable; for large nT the learning curve in (b) even crosses that of θS attaining a higher
maximum RMSE. With nS = 16 (d), the minimum occurs much later leading to considerable
improvements compared to using λ = 0.8 as in (c).
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Figure 17: Regression learning curves for the more challenging data D2 using a restricted
linear model with negative slope for θS and θP . In (a) and (c) λ is kept constant, whereas
in (b) and (d) all examples carry equal weight leading to λ decreasing with nT .

6. Discussion

Before discussing and interpreting our empirical results, first, let us recall our goal, which
was improving the (adapted) source model with unlabelled data when the amount of labelled
data is the main bottleneck. In general, it seems that this goal was met to a larger extent
in our classification experiments than in the regression ones. Given the correct model,
our approach led to significant and consistent improvements with more unlabelled data in
the case of classification (see, e.g., Figures 9a or 10a); in the case of regression, however,
improvements were generally smaller and stagnated after only a few unlabelled examples
(see Figures 14 and 16). This is, of course, also linked to different choices of λ used for
classification and regression, as we shall discuss in more detail. Nevertheless, our results
point to a more general phenomenon, as illustrated in Fig. 15.

6.1 Model Flexibility and the Role of λ

A first possible explanation is linked to model flexibility—a topic which we consider of
central importance to understanding the strengths and weaknesses of our method. Probably
the most obvious difference in our approach between classification and regression problems
is how the unsupervised model P (XE |XC) is obtained. For classification, we sum over a
finite number of possible classes, whereas for regression we integrate over all possible values
of Y , see Eq. (10). It thus seems as though the unsupervised classification model is more
strongly constrained, or less flexible, than the unsupervised regression model: given an
unlabelled observation (xC , xE) from a classification problem, there are only finitely many
(in the case of binary classification only two) possible outcomes y which xC could have
caused, and which then in turn resulted in effect xE ; in a regression problem, on the other
hand, the number of possible outcomes y is infinite, and many of them could potentially
explain the observed effect xE reasonably well.
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We hypothesize that this higher flexibility of the unsupervised model is one of the
factors which make our approach somewhat less suitable for regression than for classification
problems. Some support for this claim can be found in Fig. 15, where using λ = nS

nS+nT
for regression given 4 labelled examples results in much higher RMSE when more than a
few unlabelled training points are included. The problem in this case is apparent from
the bottom row, which shows that our estimator θP perfectly fits the unsupervised model
XE |XC , but at the cost of completely mismatching the two mechanisms Y |XC and XE |Y .
Recalling our regression models, Y = a+ bXC , XE = c+ dY , and so XE = bdXC + const.,
it is clear that the positive slope of the unsupervised model, bd > 0, can be explained by
either b, d < 0, which is the true model, or by b, d > 0, which is the model found by θP .
With this flexibility, it thus only seems logical that overfitting of XE |XC occurs eventually
when equal weight is given to labelled and unlabelled observations, i.e., using λ = nS

nS+nT
.

Being aware that this issue exists, it is quite striking that such overfitting is not observed
for classification, not even in extreme cases such as nT > 104 × nS when essentially all
weight is given to unlabelled data.

It is not completely clear whether such overfitting is a problem of our method for re-
gression in general, or whether it is an artefact of the linear Gaussian model we use, which
is known to be a very rich model class (Peters et al., 2017). Since such simple models are
required to compute the unsupervised model in closed form, however, the general applica-
bility of the semi-generative framework to regression problems remains less clear. Yet, by
choosing a constant λ it can be ensured that the labelled fraction always carries a certain
weight thus apparently avoiding overfitting to XE |XC , see Fig. 14. This choice can lead
to a small but notable drop in error (see for example Figures 16a, 16b, 17a, or 17c), but
can also backfire on tough data sets such as D2 (see Figures 16c and 16d). Either way, not
much seems to be gained from adding more unlabelled data beyond the first few unlabelled
examples when using a constant λ, which makes sense as new unlabelled data only con-
tributes towards the unsupervised model average in this case. In order to obtain continual
improvements as nT increases, it thus seems necessary to choose λ to decrease with nT .
This is demonstrated by Fig. 17, where we fitted restricted linear models with negative
slopes and used varying λ. As can be seen from Figures 17c and 17d, using equal weights
led to clear improvements over using a constant λ up until nT > 128, when overfitting of
the unsupervised model appears to occur and RMSE starts rising again. For nS = 4 when
λ = nS

nS+nT
goes down much faster with nT (roughly by a factor 4), this rise in RMSE occurs

much earlier.

All of the above suggests that, for regression, λ needs to be chosen with great care.
While for constant λ no long-term gain from collecting more unlabelled data is observed,
allowing λ to become too small as nT is increased can lead to severe overfitting and worsened
performance—especially if the underlying model class is too flexible. One possibility to avoid
λ becoming too small would be to ensure a certain fraction of total weight, e.g. 20%, is
always given to labelled data, so that λ → 0.2 as nT → ∞, e.g. λ = 0.2 + 0.8

1+nT
. Another

possibility would be to have λ decrease as 1
lognT

instead. Anyway, more theoretical work
will be necessary to justify suitable forms of λ beyond the intuition and heuristics provided
here. For classification, to the contrary, choosing equal weights appears to be a good choice.
With λ = nS

nS+nT
significant gains can be observed, provided the model is correctly specified.
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6.2 Behaviour Under Model Misspecification

Another interesting point of discussion is the behaviour of the semi-generative approach un-
der model misspecification. From a quantitative point of view, our experiments show very
clearly that including unlabelled data can hurt performance when the underlying model is
misspecified. This is not very surprising, however, as such deterioration under misspecifi-
cation can occur even when adding more labelled data (Loog and Duin, 2012), and is well
reported for semi-supervised learning (Yang and Priebe, 2011). With this in mind, it thus
seems rather promising that in all our misspecification experiments performance recovered
after initial deterioration, and the initial supervised guess was even improved upon, when
sufficient unlabelled data was available. What constitutes a “sufficient” amount in this case
seems to depend on nS : the more labelled data is given, the more unlabelled data is re-
quired to improve, and the smaller the expected gains. For the setting of nS very small and
nT large (for which our method is intended), there thus seems to be reason to believe that
our method will not suffer much more from misspecification than the supervised baseline.
For nT very large we can even hope to improve our model with unlabelled data—despite of
misspecification.

Note also, that importance-weighting, while yielding clearly inferior results to θS under
a correct model, leads to similar error as the supervised baseline when the model is misspec-
ified. This is consistent with current belief that such reweighting is unnecessary for correct
models, but can be beneficial for misspecified ones (Quionero-Candela et al., 2009).

Further, our results suggest that, when the underlying model is misspecified, a Bayesian
semi-generative approach is to be preferred to fitting parameters by maximum likelihood.
While this is primarily meant quantitatively as described in Section 5, we argue that the
Bayesian approach also yields qualitatively interesting results. Here, we are referring to
the conditional probability surface resulting from our pooled estimator, see Fig. 12. Even
though the decision boundaries, P (Y = 1 |XC , XE) = 0.5, in Figures 12b and 12c are both
linear and lead to approximately the same error, the true distribution is arguably better
captured by our estimator. While Fig. 12b looks as though a linear boundary is a good
model, Fig. 12c raises some serious doubts about this and hints at the fact that the true
model might instead be non-linear. This is most likely a consequence of the multi-modal
posterior over θP which leads to a weighted average over multiple different linear models.
Because of its potential to detect model misspecification from lots of unlabelled data, our
approach thus also has potential applications in model diagnostics.

Moreover, it generally seems desirable for a probabilistic model to be certain about
instances which are correctly classified and uncertain about those which are not. This helps
to separate learned concepts from knowledge gaps and can therefore make future learning
more efficient. In this regard, our semi-generative Bayesian model achieves better such
uncertainty estimates via additional unlabelled data—even if the resulting error does not
necessarily reflect this due to a misspecified model. This property of our approach may be
useful for applications where the model is allowed to abstain from making predictions, or
when additional labelled data can be queried as in active learning.

Finally, we note that our approach—at least for classification tasks, when the unsuper-
vised model can always be obtain by summation—is model-free, i.e., does not depend on any
particular choice of P (Y |XC) and P (XE |Y ). When no background-knowledge is available
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to reason about model choices, or when misspecification is assumed to be a problem, it is
therefore always possible to choose a non-parametric approach instead. For example, plac-
ing kernels at the labelled data points, unlabelled data could be used to improve estimates of
kernel coefficients or to learn hyperparameters. However, since non-parametric models are
by definition flexible, care should be taken with this approach to avoid the before-mentioned
overfitting problems related to too flexible models.

6.3 Comparison With Feature Transformation Methods

Comparing our approach with some feature transformation methods first of all showed that
there is not a single best transform which outperforms all others across different data sets.
Moreover, we found that more unlabelled data was not always beneficial in these approaches:
while error curves of our approach, GFK, and SA are mostly decreasing or constant with
nT , ITL and MIDA show strongly non-monotonic behaviour.

Furthermore, we try to identify certain situations in which our approach is to be pre-
ferred to feature transformation methods, and vice-versa. From our experiments, it seems
that the biggest advantage of semi-generative modelling over feature transformations oc-
curs when (i) nS truly is very small, thus posing the main limitation; (ii) there is sufficient
overlap between domains for the unsupervised constraint to be useful; and (iii) the true
model is known or sufficiently constrained. These criteria were fulfilled in the classification
experiment (Fig. 13, left) and on D1 (Fig. 16a), but not on D2 (Fig. 16c). Recall that the
domain shift is much smaller on D1, and that the true XE |Y is more easily estimated from
a few labelled examples than on D2, see Fig. 7. If, on the other hand, sufficient labelled
data is available or a large discrepancy between domains is the main complication, using
unlabelled data to find a good feature representation seems to be preferred.

It is also important to point out that the comparisons with other DA techniques are,
in some sense, not completely fair. This is because θS , θWS , and θP make use of addi-
tional knowledge about the causal structure, which the other methods do not. Precisely,
our estimators train a semi-generative model P (Y |XC)P (XE |Y ) as the underlying causal
structure is known to be D → XC → Y → XE , while the other methods rely on the more
general CS assumption D → X → Y and train a discriminative linear (or logistic) regression
model P (Y |φ(X)) on transformed features φ(X). Both approaches result in a linear model
(regression) or decision boundary (classification) and are thus, in principle, comparable, but
the semi-generative approach is more modular.

While it could be desirable to combine the benefits of both approaches, it is not com-
pletely clear how additional knowledge like conditional independence statements can be
included in feature transformation methods. A first idea could be to only apply a transfor-
mation on causal features (as only these are directly affected by the domain change in our
setting), and then train a model P (Y |φ(XC))P (XE |Y ). However, such a transformation
would only be applied after the data was generated, meaning that domain changes will have
already propagated through the mechanisms Y |XC and XE |Y to also affect XE . More
importantly, transforming XC , but not XE will likely impair the domain independence of
the unsupervised map XE |XC which is central for the semi-generative approach.

Another idea would be to apply the feature transformation as usual, but to then train
a semi-generative model on the transformed features, instead of a discriminative one. The
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problem with this, however, is that applying a joint feature transform to (XC , XE) may
introduce dependencies between the transformed features, so that our assumptions are no
longer satisfied. Additionally, it would no longer be clear which of the new features would
correspond to causes and effects.

This observation points to another potential benefit of our method: since features are
kept as they are, it is possible to include domain and prior knowledge in the modelling
process, e.g., through priors or restrictions in the model class. When transformations—
especially non-linear ones—are applied over the joint feature set, it is no longer clear how
to do this. This point is illustrated by the results in Fig. 17, where restricting the linear
submodels to have negative slope (capturing background knowledge about the underlying
proteins’ interactions) led to considerable improvements when using our estimators. Trans-
formed features, on the other hand, no longer have a clear interpretation—in this case they
would represent (non-)linear combinations of protein counts—and so integrating background
knowledge is considerably harder.

6.4 General Applicability

Finally, we wish to reflect on the general applicability of our semi-generative approach. To
do so, we recall that throughout this work we have assumed an underlying causal struc-
ture of the form D → XC → Y → XE , see Section 3.1. It should thus be clear, that our
derivations and ideas may no longer be valid when these assumptions are violated. Con-
sequently, our semi-generative framework should not be applied as a blackbox to domain
adaptation problems in general, but rather is specifically tailored to situations where ex-
pert/domain knowledge, interventional data, or causal inference can be used to identify the
causal structure (or at leasts parts thereof).

Hypothetically, allowing either the set of cause or effect features to be empty can il-
lustrate how our semi-generative model, P (Y,XE |XC), interpolates between adaptation
and SSL. If XE is empty, we recover standard domain shift (D → XC → Y ) and our
model reduces to a discriminative one, P (Y |XC). If XC is empty (Y → XE), on the other
hand, we recover a generative-modelling approach to semi-supervised learning, P (Y,XE).
To combine these two, however, we stress that both cause and effect features are necessary.

Moreover, a direct consequence of Assumption 1 is that in our setting cause and effect
features are conditionally independent given the label: XC ⊥⊥ XE |Y . This is of central
importance for our idea of improving the supervised model by learning an unsupervised
map from causes to effects, because this conditional independence creates a bottleneck at
Y . Since XC and XE depend on each other only through Y , we can hope to improve our
models of both Y |XC and XE |XC by learning to predict XE from XC . This idea would
probably not work if XC had a direct influence on XE . In this case, however, one could
attempt to learn and correct for such direct influence to restore the required conditional
independence.

It is also worth noting, that the same conditional independence of features given label
is also assumed in co-training (Blum and Mitchell, 1998), which considers the setting of
two complementary feature views X1 and X2. Using the two mechanisms P (Y |XC) and
P (XE |Y ) to construct weak classifiers hC and hE , and additionally assuming that each
feature on its own is sufficient for learning (as in co-training), it should thus be possible
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to directly apply their PAC-learning results to our setting when no domain shift occurs.
Extending such PAC-learning results to the domain adaptation case, however, is likely
not possible without further strong restrictions on the discrepancy between domains (Ben-
David et al., 2007, 2010). Furthermore, Krogel and Scheffer (2004) have shown that, in fact,
conditional independence of features given label is necessary for co-training to succeed, and
that performance indeed deteriorates when features are correlated beyond a certain degree.
Combined with our findings, this suggests that such a conditional independence statement
may be a more general requirement for learning from unlabelled data with multiple feature
views.

Apart from not allowing a direct link between cause and effect features, the other part
of our setting which may be seen as a restriction is not allowing the domain shift to directly
influence effect features, D 6→ XE . As explained in Section 2.2 and illustrated in Appendix
A.1, this is necessary to ensure that CS holds and to guarantee invariance of the unsuper-
vised model XE |XC . However, it might be possible to relax this assumption by using what
could be an interesting combination of feature transformation methods and our approach.
The idea would be to learn a feature transformation φ applied to XE which maximises
domain invariance of φ(XE) |XC—similar to how other CS feature-transform methods are
trained to maximise domain invariance of φ(X)—and thereby correcting for the shift in
XE due to D. The point would be to make the unsupervised model domain-invariant, so
that unlabelled data can again be included as suggested by our approach. This idea is
inspired by the work of Zhang et al. (2013) on correcting location-scale transformations in
generalised target shift.

Another issue which is not directly addressed by our framework, but which is often
encountered in practice, is that of (hidden) confounders. As such confounding features
usually introduce further dependencies between variables, we can expect our method to
work less well in the presence of confounders. However, it should be noted that in our
real-world data sets such confounders are present. On D1, for example, PKA influences
all of XC (MEK), Y (ERK), and XE (AKT). That our approach still yields good results
on D1 though (see Fig. 16a) gives hope that it is at least somewhat robust to such hidden
confounders.

Finally, we wish to point out that our semi-generative model provides a general approach
to SSL with cause and effect features which can also be applied to purely observational
data, i.e., when no domain change occurs. It is then natural to ask whether we can give
any guarantees that the semi-supervised solution will actually improve over—or at least
not get worse than—the supervised one on the entire training set, when performing such
SSL with cause and effect features. Recent work on such safe, pessimistic SSL has shown
that for many popular surrogate losses such guarantees are impossible (Krijthe and Loog,
2016). However, in terms of the likelihood this is, in principle, possible, and for particular
classifiers improvement can be shown to occur almost surely (Loog, 2016). As the semi-
generative likelihood optimised by our approach seems to be a good performance indicator
when our model is correct, such guarantees would thus be quite reassuring. Since our
problem structure (XC → Y → XE) gives rise to a more complex likelihood than the
generative models (Y → X) considered by Loog (2016), however, it is unclear whether, and
if so for which classifiers, safe pessimistic SSL is possible with a semi-generative model. Yet,
even without worst-case guarantees, improvements can still occur in expectation.
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7. Conclusions

We have developed a novel framework for semi-supervised learning under changes in the
distribution of input (or causal) features resulting from domain shift. This approach is suit-
able for domain adaptation problems for which the causal structure is known and for which
the amount of labelled data is the main limitation, so that benefits from improving the
supervised model outweigh the adaptation task. Our semi-generative model P (Y,XE |XC)
for learning with cause and effect features is inspired by recent work on independent mech-
anisms, and does not require self-training or expectation maximisation. Rather it directly
imposes constraints on the supervised model by learning a map from causes to effects
from unlabelled data. Our analysis and empirical results suggest that this unsupervised
model needs to be sufficiently constrained in order to improve estimates of the mechanisms
P (Y |XC) and P (XE |Y ) without supervision. For too flexible models, on the other hand,
overfitting of unlabelled data can result in deteriorated performance. Our approach thus
works best for classification where we have demonstrated significant improvements over the
supervised baseline, importance-reweighting, and feature-transformation methods on syn-
thetic data sets when only very few labelled training examples are available. Moreover,
on a domain-adaptation regression problem for protein signalling networks we have shown
that our method can be beneficial also on real-world data, even when the underlying causal
assumptions are no longer strictly satisfied. Especially in this context, it is useful that
background and expert knowledge can easily be integrated in our modelling framework—
something which is not straight-forward when using a feature tranformations approach to
domain adaptation.
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Appendix A. Causality and Domain Adaptation: Illustrative Examples

In this appendix we illustrate some of the connections between causality and DA.

A.1 Why Does Causal Structure Matter for DA?

In order to illustrate the role and importance of causal structure for domain adaptation,
we include a simple example below in Fig. 18. In the example, we try to predict a binary
variable Y from two binary features X1 and X2, given labelled source data and unlabelled
target data. It demonstrates the necessity for assumptions like CS by showing that features
with similar marginal distributions across domains can still experience a radical shift in
conditionals (X2); conversely, features which are invariant for prediction need not show
similar marginal distributions across domains (X1). Since due to the lack of target domain
labels it is not possible to simply check for which features X the conditionals are domain
invariant, P (Y |X,D = 0) = P (Y |X,D = 1), some assumptions on the causal structure
have to be made for adaptation to be possible.

(a) Marginal distributions (b) Conditional distributions

PS(X1 = 0) = 0.5, PT (X1 = 0) = 0.25,

P (Y = 0|X1 = 0) = 7/8, P (Y = 0|X1 = 1) = 1/6,

PS(X2 = 0|Y = 0) = 0.2, PS(X2 = 0|Y = 1) = 0.8,

PT (X2 = 0|Y = 0) = 0.7, PT (X2 = 0|Y = 1) = 0.38(2d.p.)

Figure 18: A simple example of binary classification with two binary features. An equal
number (n = 1000) of samples were drawn from each domain according to the causal
graph (bottom left) and the given probabilities (bottom right). The estimated marginal
distributions (top left) suggest X2 as domain invariant feature, whereas X1 seems to vary
heavily between domains. However, the conditional distributions (top right) reveal that the
causal parent X1 is actually invariant for prediction, whereas X2 is not. Thus, invariant
marginals do not imply invariance for prediction (see X2), and the converse also does not
hold (see X1).
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A.2 Inferring Causal Graphs via Independence Testing and Prior Knowledge

As mentioned in the main body of this work, inferring causal structure from observational
data is challenging and a subject of ongoing research. However, when only few variables are
involved and background knowledge can be used to limit the number of possible graphs, it
is sometimes possible to clearly identify the causal DAG through conditional independence
testing (assuming sufficient data is available to obtain significant results). Below we give an
example of such a scenario in the context of DA to illustrate the necessary assumptions and
procedure. For some interesting recent work on a logic-based approach to causal discovery
from conditional independence test results we refer to Magliacane et al. (2016).

Assume that in an unsupervised DA setting with two features X1 and X2, we know
from expert knowledge that the domain shift only directly causally influences X1. Moreover,
assume that there are no hidden confounders so that each feature is either a direct cause or a
direct effect of the target variable Y . Importantly, we do not assume that we know whether
X1 and X2 are cause or effect. Then there are exactly four possible causal DAGs which
are consistent with our assumptions. These four graphs are shown in Fig. 19. Considering
the conditional independences which are testable from labelled source and unlabelled target
data alone (i.e., no statement involving both D and Y ), we find that each graph satisfies a
different set of such statements, which are listed in Table 1. Hence, given that we can test
these statements and obtain reliable results, we are able to uniquely identify the correct
causal DAG.

(a) (b) (c) (d)

Figure 19: The four possible DAGs coherent with the assumptions that (i) D only directly
causally influences X1 and (ii) there are no hidden confounders, i.e., X1 and X2 are either
direct causes or effects of Y .

DAG (a) (b) (c) (d)

testable on source data X1 ⊥⊥ X2 X1 ⊥⊥ X2|Y X1 ⊥⊥ X2|Y X1 ⊥⊥ X2|Y
testable on pooled data X2 ⊥⊥ D X2 ⊥⊥ D|X1 X2 ⊥⊥ D X2 ⊥⊥ D, X2 ⊥⊥ D|X1

Table 1: Conditional independence statements for the four DAGs from Fig. 19, testable on
only the source data (those involving Y and not D) and on the pooled data (those involving
D and not Y ).
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Appendix B. Algorithms

In this Appendix, we provide pseudo-code for training a semi-generative model using MLEs
or a Bayesian approach, and how to use such a model to make predictions for new data.
Recall that our approach rests on the assumption that cause and effect features are condi-
tionally independent given Y , and that the domain shift only directly affects causal features,
see Section 3 for details.

Algorithm 1 describes how to train a semi-generative model for a multi-class classifica-
tion task under unsupervised covariate shift adaptation using maximum likelihood estima-
tion.

Algorithm 1 Semi-generative maximum likelihood estimation for classification

Input: labelled source data {(xiC , yi, xiE)}nSi=1, unlabelled target data {(xjC , x
j
E)}nS+nTj=nS+1,

mechanisms P (Y |XC , θY ) and P (XE |Y, θE), hyperparameter λ ∈ (0, 1), initial guess θ0,
learning rate α

Output: pooled-data, semi-generative MLE θ̂ = (θ̂Y , θ̂E)
1: `S(θ)←

∑nS
i=1 logP (yi|xiC , θY ) + logP (xiE |yi, θE)

2: `T (θ)←
∑nS+nT

j=nS+1 log
(∑k

y=1 P (y|xjC , θY )P (xjE |y, θE)
)

3: `(θ)← λ
nS
`S(θ) + 1−λ

nT
`T (θ)

4: t← 0
5: while not converged do
6: θt+1 ← θt + α∇θ`P (θt)
7: t← t+ 1
8: end while
9: θ̂ ← θt

Algorithm 2 details how to predict class probabilities from a semi-generative model and
parameter estimate θ̂ = (θ̂Y , θ̂E).

Algorithm 2 Label prediction from semi-generative model

Input: new observation from target domain (xnewC , xnewE ), meachanisms P (Y |XC , θY ) and

P (XE |Y, θE), parameter estimate θ̂ = (θ̂Y , θ̂E)
Output: label probabilities p1, ..., pk

1: Z =
∑k

y=1 P (y|xnewC , θ̂Y )P (xnewE |y, θ̂E)
2: for y = 1, ..., k do
3: py = P (y|xnewC , θ̂Y )P (xnewE |y, θ̂E)/Z
4: end for
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Algorithm 3 describes how to perform Bayesian inference with a semi-generative model.
It uses the Metropolis-Hastings algorithm as an example for sampling from the posterior
distribution. However, more elaborate sampling approach are, of course, possible.

Algorithm 3 Semi-generative Bayes for classification (Metropolis-Hastings sampling)

Input: labelled source data {(xiC , yi, xiE)}nSi=1, unlabelled target data {(xjC , x
j
E)}nS+nTj=nS+1,

mechanisms P (Y |XC , θY ) and P (XE |Y, θE), prior π(θ), hyperparameter λ ∈ (0, 1),
proposal distribution N (θt+1|θt, σ2)

Output: samples from posterior distribution θ(k)

1: `S(θ)←
∑nS

i=1 logP (yi|xiC , θY ) + logP (xiE |yi, θE)

2: `T (θ)←
∑nS+nT

j=nS+1 log
(∑k

y=1 P (y|xjC , θY )P (xjE |y, θE)
)

3: `(θ)← log π(θ) + (nS + nT )
(
λ
nS
`S(θ) + 1−λ

nT
`T (θ)

)
4: t← 0
5: θ(0) ← 0
6: while Markov chain not mixed do
7: θcand ← N (θcand | θ(t), σ2)
8: u← U(0, 1)
9: if exp(`(θcand)− `(θ(t))) > u then

10: θ(t+1) ← θcand
11: else
12: θ(t+1) ← θ(t)

13: end if
14: t← t+ 1
15: end while
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Appendix C. Proofs

This Appendix contains the proofs omitted in the main document.

Proof of Proposition 2: Denoting the pdf of a normally distributed random variable with
mean µ and standard deviation σ by φ(x|µ, σ2) it follows that:

y∗ = argmaxy P (y |x∗C , x∗E , θ)

= argmaxy
P (y |x∗C , θ)P (x∗E |y, θ)

P (x∗E |x∗C , θ)
= argmaxy P (y |x∗C , θY )P (x∗E |y, θE)

= argmaxy φ(y | a+ bx∗C , σ
2
Y )φ(x∗E | c+ dy, σ2E)

= argmaxy φ(y | a+ bx∗C , σ
2
Y )φ

(
y |
x∗E − c
d

,
σ2E
d2

)
= argmaxy φ

(
y |
σ2E(a+ bx∗C) + d2σ2Y (

x∗E−c
d )

σ2E + d2σ2Y
,

σ2Eσ
2
Y

σ2E + d2σ2Y

)
=
σ2E(a+ bx∗C) + d2σ2Y (

x∗E−c
d )

σ2E + d2σ2Y

where the penultimate equality follows from a standard result about the product of two normal
pdfs:

φ(x |µ1, σ21)φ(x |µ2, σ22) = φ
(
x | σ

2
2µ1 + σ21µ2
σ21 + σ22

,
σ21σ

2
2

σ21 + σ22

)

Appendix D. Code

The MATLAB code used to implement our semi-generative modelling approach on synthetic
and real-world data is publicly available on github through:

https://github.com/Juliusvk/Semi-Generative-Modelling-

It also includes the MATLAB domain adaptation toolbox by Ke Yan (2016) which we used
to compare our approach with feature transformation methods for DA (TCA, MIDA, SA,
GFK, and ITL), as well as the paper and full protein-protein signalling network data set by
Sachs et al. (2005). To reproduce our results, simply download all the code from the link
above, and run the scripts ClassificationExperiments.m, regression experiment.m,
and sachs experiment.m from the corresponding folders with an appropriate choice of
parameters.
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