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Abstract

We describe an algorithm for finding particle images in cryo-EM micrographs. The algorithm starts from a crude 3D map of

the target particle, computed from a relatively small number of manually picked images, and then projects the map in many

different directions to give synthetic 2D templates. The templates are clustered and averaged and then cross-correlated with

the micrographs. A probabilistic model of the imaging process then scores cross-correlation peaks to produce the final picks. We

give quantitative results on two quite different target particles: keyhole limpet hemocyanin and p97 AAA ATPase. On these

particles our automatic particle picker shows human performance level, as measured by the Fourier shell correlations of 3D

reconstructions.
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1. Introduction

Cryo-electron microscopy (cryo-EM) uses a trans-

mission electron microscope to acquire 2D projections

of a specimen preserved in vitreous ice (Dubochet et al.,

1988). A 3D electron density map can then be recon-

structed from the 2D projections computationally. In

‘‘single-particle’’ cryo-EM, the specimen consists of

many randomly oriented copies of a single type of par-
ticle; the 3D reconstruction process estimates the un-

known orientations at the same time that it estimates the

3D structure (Frank, 1996).

Cryo-EM is already established as an important

technique in structural biology (Abbott, 2002), because

it can determine low- to medium-resolution 3D struc-

tures for membrane-bound proteins and large molecular

assemblies, which are very difficult to crystallize. Single-
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particle cryo-EM has been used quite extensively to
study the ribosome (Frank et al., 1995; Frank et al.,

2000; Gabashvili et al., 2000), recently achieving about

10�AA resolution of the Escherichia coli 50S and 70S

ribosomal subunits (Gabashvili et al., 2000; van Heel

et al., 2000). Cryo-EM can also be used in conjunction

with X-ray crystallography, with X-ray data supplying

atomic resolution (3�AA or better) for subunits whose

overall arrangement is determined by cryo-EM.
A critical bottleneck in cryo-EM processing is particle

picking—the identification of particle images within

micrographs. Upwards of 100 000 particle images

(Glaeser, 1999; Henderson, 2000) will be needed to

achieve resolution better than 7�AA, primarily because the

electron dose (and hence the magnification and resolu-

tion) used to acquire images is limited by radiation

damage to the sample. Manual or semi-automatic
picking of 100 000 particle images would be a large and

unpleasant task, requiring several man-months. Even

for more modest numbers of particle images, say 5000–

10 000, automatic picking offers faster and less subjective

picks. In this paper, we describe a system with an initial

manual set-up phase, followed by fully automatic par-

ticle picking. In the set-up phase, a person picks a
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relatively small number of particle images (say 500) and
chooses a few algorithm parameters. All the remaining

particle picking is automatic, without the need for a

person to even view the micrographs.

The particle picking algorithm is based on a proba-

bilistic model of cryo-EM imaging. The manual picks

are used to compute an initial 3D map, which is then

projected from various directions to form 2D templates.

Templates are clustered and cluster representatives are
cross-correlated with the micrographs. Probabilistic

scoring then screens the cross-correlation peaks based

on likelihood ratios: the probability that a peak was

produced by a projection of the 3D map, compared to

the probability that it was produced by noise alone.

1.1. Previous work

Previous work on particle picking falls roughly into

three categories: local statistical measures, cross-corre-

lation, and edge detection. A recent article by Nicholson

and Glaeser (2001) surveyed more than 40 papers on the

subject. It is fair to say that none of the current methods

can be used generically without extensive manual cor-

rection (Nicholson and Glaeser, 2001).

Local statistical measures include mean (Kivioja
et al., 2000), variance (van Heel, 1982), and kurtosis

(Frank et al., 1996) computed in particle-sized regions.

Manually selected positive and negative examples can

be used to set thresholds or train a classifier for particle

picking. These methods can give useful results for

small, roughly spherical, particles, but are error-prone

for large particles or particles with a wide variety of

projections.
Cross-correlation is probably the dominant approach

(Nicholson and Glaeser, 2001). In the ‘‘traditional’’ re-

alization, manually selected particles are clustered and

averaged to form one or more 2D templates. Templates

may be further processed by rotational averaging

(Thuman-Commike and Chi, 1995) or filtering to ac-

centuate salient features (Stoschek and Hegerl, 1997).

Cross-correlation of the micrographs with the templates
suggests candidate picks, which are then screened for

false positives using features based on size, texture (Lata

et al., 1995), and statistical moments. Correlation coef-

ficient [‘‘local correlation’’ (Roseman, 2003)] is some-

times used instead of cross-correlation.

Faster computers have enabled a new realization

[available in EMAN (Ludtke et al., 1999)], in which a

large number of 2D templates are derived from a ‘‘3D
template,’’ an initial, low-resolution model of the target

particle. The advantage of a 3D template (Baker and

Cheng, 1996) is that all of the manually selected images

contribute to the 3D template and hence to each of the

2D templates, enabling the use of more—and less noisy—

templates. EMAN screens candidate picks using lower

and upper thresholds on contrast.
Edge detection has been applied successfully to fila-
mentous particles (Zhu et al., 2001) and to the same

hemocyanin micrographs used here (Zhu et al., 2002).

Edge detection, and its relatives such as contour finding

and image segmentation, are probably not suitable for

all particles, since many particles do not show strong

edges. Moreover, edge detection is only a first step; the

detected edges must be somehow grouped into particles.

For hemocyanin, Zhu et al. (2002) used a particle-
specific generalized Hough transform to group edge

pixels into circles and rectangles, along with an addi-

tional special-purpose step to screen out the undesirable,

long hemocyanin particles.

1.2. Our contributions

We propose an explicit probabilistic model of the
imaging process. The model includes a signal compo-

nent, derived from a 3D template as in EMAN, and a

noise component derived from the empirical distribution

of gray values in a micrograph. Our current noise model

is very simple—it assumes independent, identically dis-

tributed pixels—but in principle our approach could

accomodate much more elaborate noise models.

In implementation, our method resembles cross-cor-
relation followed by statistical screening. Probabilistic

scoring, however, has a number of advantages over

more ad hoc screening methods: it applies to all ‘‘round’’

particles, there is no feature computation nor training,

and it ranks candidates with different orientations on a

common likelihood scale. For our two test particles our

method outperformed EMAN�s 3D template method,

even when we chose EMAN�s screening thresholds
individually for each micrograph.

Finally, we raise the standards of evaluation for

particle picking algorithms. Most previous papers

simply give example micrographs. We give quantitative

results, including resolution numbers for 3D recon-

structions. The bottom line is that our automatic picks

gave equally good resolution as data sets assembled

manually and semi-automatically by experts.
2. Materials and methods

The electron microscope images were acquired using

the Leginon system (Carragher et al., 2000) at the

Scripps Research Institute�s Center for Integrative

Molecular Biosciences. Leginon collected pairs of dig-
ital micrographs with different levels of defocus. The

locations of particles are most evident to the eye—and

to computer vision—in the far-from-focus (1–3 lm un-

derfocus) images; however, the high-spatial-frequency

information crucial to 3D reconstruction is more

easily obtained from the close-to-focus (0.2–1.2 lm
underfocus) images. Hence our cryo-EM particle
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picking algorithm uses the more defocused micro-
graphs, but 3D reconstruction uses the less defocused

micrographs.

Our first data set consisted of 17 defocus pairs (at

about –1 and –2 lm) of p97 AAA ATPase (Rouiller

et al., 2000, 2001, 2002), collected with a Philips

CM200 FEG microscope with a LaB6 filament, oper-

ating at 120 kV at a nominal magnification of 66 000�.

Micrographs were recorded on a 1024� 1024 Gatan
MSC CCD camera (24 lm pixels) at low-dose conditions

(10 e�=�AA2), giving an image pixel size of 66/24 ¼ 2.75�AA.

Fig. 1 shows a far-from-focus micrograph containing

many images of the p97 hexamer, which is shaped

something like six short barrels standing in a hexagon,

about 150�AA across.

Our second data set consisted of 82 defocus pairs (at

about –1 and –3 lm) of keyhole limpet hemocyanin
(Orlova et al., 1997), collected with a Philips CM200

FEG microscope on a TVIPS 2048� 2048 Peltier cooled

CCD camera (24 lm pixels) with an image pixel size of

about 2.2�AA. Fig. 3 shows a far-from-focus hemocyanin

micrograph. Along with the usual hemocyanin (KLH1)

didecamer particles, a cylindrical ‘‘cage’’ about 400�AA
long, the sample included half particles (decamers) and

long particles (multidecamers).
Fig. 1. A 2 lm underfocused cryo-EM micrograph of p97 ATPase

particles, filtered and gray-scale standardized as explained in the text.

The white boxes show the 69 particle images picked by our fully

automatic 3D template method, and the black boxes show the 35

semi-automatic picks made by an expert using SPIDERSPIDER and manual

correction. There are 27 picks in common. We think that our auto-

matic picker has about 1–4 false positives and 8–12 false negatives.

Three questionable picks are marked *, the one on the left because it

overlies a dark contaminant and the other two because we are not sure

that they are real.
2.1. Probabilistic model

We consider a cryo-EM image I to be a 2D array of

independent random variables Iij. The distribution of

the random variable Iij depends upon whether or not a

particle is present (Fig. 4).

If no particle is present, then each Iij is an ice random

variable, independent and identically distributed (i.i.d.)

with distribution set empirically by a gray-level histo-
gram of a relatively uncontaminated micrograph in the

same series. In Fig. 5 the curve marked ‘‘ice.hist’’ shows

the histogram used for the p97 micrographs. The mi-

crographs have 8-bit or 12-bit gray levels, but we

quantized to 0–127 for probabilistic scoring. Similar

quantization would enable the use of 16-bit or 24-bit

gray micrographs without increasing the program�s
memory requirements.

If a particle is present, then Iij is a weighted average

of two random variables: an ice random variable with

the same ‘‘ice.hist’’ distribution, and a template random

variable with distribution determined by a 3D template

U, along with parameters a, b, c, and s, giving the ori-

entation of U relative to the overall image I . Parameters

a, b, and c specify rotation (Euler) angles around the x-,
y-, and z-axes; we always project parallel to the z-axis, so
we can think of a and b as specifying a viewing direction

in 3D and c as specifying a planar rotation. Parameter

s ¼ ðx; yÞ specifies a planar translation of the projection

of U relative to I .
Given the orientation of U relative to I , the template

random variable for Iij is a Gaussian random variable

with mean equal to the sum of density values in U along

the line projecting onto Iij, normalized to a 0–127 scale.
The standard deviation r is set equal to the square root

of the mean. This r approximates the Poisson counting

statistics of capturing electrons; a better approximation

could be obtained—at least in principle—by using either

a binomial or Poisson distribution with parameters set

according to electron dose, contrast transfer function,

scintillator efficiency, and pixel size.

Regardless of the number of pixels in image I , there
are only 128 different probability distributions for Iij�s,
because each Iij distribution is determined by ‘‘ice.

hist’’—which is fixed over the micrograph series—and by

the 0–127 electron density of U along the appropriate

projection line. We can compute the probability density

function (pdf) of Iij for a given gray level simply by

convolving the individual pdf�s of the ice and template

random variables. (The sum of two random variables
has pdf equal to the convolution of their individual

pdf�s.) The ratio of template to ice we leave as a tuning

parameter, but in the experiments described below, we

left ice-ratio fixed at 50% template and 50% ice, even

though the p97 shows lower constrast than the hemo-

cyanin. In general our algorithm is robust to changes in

parameters: any ice-ratio from 30 to 60% template seems
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to work almost equally well. For further robustness, we
cut off pdf values at 10�6; that is, any observed gray level

had probability at least 10�6.

Fig. 5 shows the ice histogram for a p97 micrograph,

along with the model�s pdf�s for Iij assuming three dif-

ferent template gray levels. Notice that the middle of the

pdf for template gray level 10 occurs at 37, halfway

between 10 and 64, the middle of the ice histogram.

Notice also that the sum of template and ice has lower
variance than the ice alone.

We can use this probabilistic model to compute a

likelihood that a given image M is indeed a cryo-EM

image of U. Let mij denote the gray value of pixel ði; jÞ in
image M and let Iijða; b; c; sÞ denote the corresponding

random variable in our model of a cryo-EM image of U
oriented by a, b, c, and s. Because we do not know the

orientation parameters, we define the likelihood that M
is an image of U as the maximum over all orientation

parameters. We also take logarithms, in order to turn

the product into a sum. Hence the log likelihood of

image M is

LðMÞ ¼ max
a;b;c;s

log
Y

ij

P ½Iijða; b; c; sÞ ¼ mij�

¼ max
a;b;c;s

X

ij

log P ½Iijða; b; c; sÞ ¼ mij�: ð1Þ

Now let I; denote an ice random variable, and let

P ½M j;� ¼
Q

ij P ½I; ¼ mij� be the probability of generating

image M without a particle. The log likelihood ratio

of M is

RðMÞ ¼ LðMÞ � log P ½M j;�: ð2Þ
Conceptually, our particle picking algorithm evaluates

each position ðx; yÞ in a micrograph, forms an image M
of the appropriate size centered at ðx; yÞ, and computes

LðMÞ and RðMÞ. The algorithm then picks all M �s with
both LðMÞ and RðMÞ exceeding manually set, fixed

thresholds. The likelihood ratio RðMÞ is better at dis-

tinguishing particles from background noise; however,
the simple likelihood LðMÞ is better at distinguishing

particles from high-constrast contaminants. For hemo-

cyanin, we set the RðMÞ threshold just once and used the

LðMÞ threshold to trade-off number versus cleanliness of

picks. For p97, the RðMÞ threshold seems to give lower

false positive rate than the LðMÞ threshold for the same

overall number of picks; the danger of picking

background noise apparently outweighs the danger of
picking dirty particles.

2.2. Algorithm realization

In practice, searching over all possible choices of

image position ðx; yÞ (which implies translation s) and all

possible choices of orientation parameters a, b, c
(quantized to some reasonable amount of precision)
would be very slow. To speed up the search for the
maximizing orientation parameters, we use a two-stage
computation for LðMÞ and RðMÞ. We precompute many

projections of U with varying a, b, and c, and group

them into a few clusters of similar 2D templates. In the

first stage, we generate candidate picks by cross-corre-

lation of M with cluster representatives, and in the sec-

ond stage, we evaluate each candidate pick by

computing the actual probabilities given by our model.

Fig. 6 shows the major steps of the algorithm.

2.2.1. Projecting and clustering

We start by describing the precomputation, the steps

applied to the templates (both 3D and 2D) rather than

to the micrographs. Currently these steps require some

manual choices, such as the number of projections and

the increments for angles a, b, and c.
For our 3D templates, we used rather high-quality

electron density maps computed from 1000 or more

particle images. These U�s were unnecessarily good, with

resolutions of about 16�AA for p97 and 24�AA for

hemocyanin. Low-pass filtering of the 2D templates

(discussed below) leaves very little power at wavelengths

shorter than about 24�AA for p97 and 30�AA for hemocy-

anin; hence the initial 3D model need not have resolu-

tion better than these values, and in practice we found
that the 3D model could be substantially worse. We

obtained acceptable hemocyanin picking results using a

badly formed 3D map, with errors on the order of 60�AA,

the result of SPIDERSPIDER incorrectly assigning the particle�s
symmetry axis. We imagine that even simple geometric

shapes, such as cylinders or ellipsoids of the right size,

would be good enough to bootstrap the picking process.

For our 2D p97 templates, we used 60 projections of
the p97 3D template, as shown in Fig. 7. A set of 60

projections gives rather thin coverage of the space of

views, for example we used only a ¼ 5�, 35�, and 95�;
b ¼ 0�; and c ¼ 0�; 10�; . . . ; 170�, except for a ¼ 5�, for
which we used only c ¼ 0�; 10�; . . . ; 50�. Here we are

taking advantage of the C6 and nearly D6 symmetry of

the p97 particle. For hemocyanin we used 35 projections

of the hemocyanin 3D template, 5 top views and 30 side
views (every 6�), taking advantage of our knowledge

that the particle does not show tilted views. We made

our choices of projections intuitively, for example, we

picked 6� as the increment for the slopes of hemocyanin

rectangle views, judging that 3� would be unnecessarily

fine and 10� would be too coarse. We expect that up to

1000 2D templates will be needed for asymmetric par-

ticles without preferred orientations; we should not need
any more than 1000 (and probably not any more than

200 or 300), because the far-from-focus micrographs

have little signal at high spatial frequencies.

We note that EMAN already includes automatic se-

lection of 2D templates; the user specifies only the

number of projections, with 60 as a recommended

number. We found that 60 EMAN projections of the
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p97 3D template looked very much like our own intui-
tive manual choices; 60 projections of hemocyanin

looked like our choices along with about 30 tilted views.

EMAN chooses projections in a principled way, by

computing a large number of projections, uniformly

sampled over the space of views, and then ordering them

by dissimilarity to previous projections.

After forming the 2D templates, we filtered them to

remove high spatial frequencies. Filtering the 2D tem-
plates softens the discretization of views to allow each

template to represent a patch of angles. Instead of low-

pass filtering, it may be better to ‘‘super-sample’’ the

patch of angles by averaging a number of templates

from the patch.

We grouped filtered 2D templates into clusters,

choosing 8 clusters for the 60 p97 templates as shown in

Fig. 7, and 5 clusters for the 35 hemocyanin templates
(not shown). Each cluster is represented by its center,

that is, the pixelwise average of its members. Clustering

was accomplished using a slightly modified k-means al-

gorithm, with the distance between two images being the

L2 distance (square root of the pixelwise sum of squared

differences). We chose L2 distance so that the cluster

center would minimize the sum of distances to the im-

ages in the cluster. The modifications to the standard k-
means algorithm (Duda et al., 2001) were as follows.

The first cluster seed was chosen by picking an image at

random and then picking the farthest-away image as the

seed. Then the ith cluster seed, for i ¼ 2; 3; . . . ; k was

chosen to be the image with the largest minimum dis-

tance to a previously chosen seed. At the end of the

clustering, each cluster with radius more than twice the

median cluster radius is split in two, and the k-means
algorithm is run for a few more iterations.

Sigworth (Sigworth, 2004) uses an eigenimage de-

composition rather than clustering in his work on par-

ticle picking with 3D templates. Each of the 2D

templates is approximated by a linear combination of a

small number of eigenimages; the cross-correlation of an

individual template with a micrograph is approximated

as a linear combination of the cross-correlations of the
eigenimages. This method should give as great a speed-

up as clustering, but offer the advantages of precisely

quantified approximation and more accurate correlation

peak positions.

2.2.2. Filtering micrographs

The first stage of image comparison will convolve

each micrograph with each cluster representative, using
Fourier transforms for efficiency. Before carrying out

the convolutions, however, we perform some image

processing steps on the micrographs. We remove very

low spatial frequencies (period longer than about 100

pixels), such as smooth shading across the image, so that

different parts of the micrograph have about the same

mean gray level, and so that the Fourier transform does
not see a discontinuity at the image boundaries. We also
remove very high spatial frequencies (period shorter

than about three pixels).

We stretch the gray-scale histogram of each micro-

graph in order to standardize the micrographs and

better use the range of gray values. It turns out to be

quite important to do the histogram stretching in a ro-

bust way. Stretching that sets the darkest pixel to 0 and

the lightest pixel to 255 gives poor results, because some
micrographs include very dark contaminants and some

do not. What works is to break the micrograph into

8� 8 blocks of pixels, and compute the lowest, highest,

and average gray level within each block. These values

are voted over all blocks to determine the most popular

lowest, highest, and average gray levels, L, H , and A.
Because the majority of 8� 8 blocks in even the most

particle- and contaminant-rich micrographs are pure ice,
L, H , and A are good fiducial gray values. The gray-scale

histogram is standardized by rescaling the gray values

below A using the linear function that takes the range

½L� 20;A� to ½0; 128�, and rescaling gray values above A
using the linear function that takes ½A;H þ 20� to

½128; 255�. Gray values that land below 0 or above 255

are truncated. Fig. 2 shows the effect of micrograph

filtering and gray-scale stretching.

2.2.3. Identifying and scoring candidate picks

Now we convolve each micrograph with each cluster

representative. Up to 600 peaks in each convolution im-

age are then identified, but satisfying a constraint that no

peak has distance less than say 30 pixels to a previously

picked peak in the same image. If we have 8 clusters, we

then have up to 4800 identified peaks, each given by its
location ðx; yÞ and the index c, 16 c6 8, of the cluster it

matched. (A single location ðx; yÞ can match more than

one cluster.) Assume cluster c contains individual tem-

plates Pc1; Pc2; . . . ; PcnðcÞ, where each Pck is a (filtered)

projection of U with some setting of angles a, b, and c.
The second stage then evaluates each cross-correla-

tion peak ððx; yÞ; cÞ by forming an image M of the ap-

propriate size centered on ðx; yÞ and computing the log
likelihood and log likelihood ratio of M . Let IijðPckÞ
denote the random variable for pixel ij implied by the

projection Pck, that is, IijðPckÞ has pdf pdf-Pck
ij (notation

as in Fig. 5) where Pck
ij is the gray level of the ijth pixel of

Pck. Then we compute the following approximations to

the log likelihood and log likelihood ratio:

LcðMÞ ¼ max
16 k6 nðcÞ

log P ½IijðPckÞ ¼ mij�;

RcðMÞ ¼ LcðMÞ � log P ½M j;�:
ð3Þ

These expressions are only approximations because we

are limiting attention to a predefined set of a, b, and
c�s, and fixing the translation s to be the one that gave
the cross-correlation peak. We also tried searching

for a translation within a small radius, such as three



Fig. 2. The image on the left shows a raw micrograph with some top-to-bottom shading due to varying ice thickness; the image on the right shows the

filtered and standardized micrograph with picked p97 particles. The same thresholds were used for all the p97 micrographs.

Fig. 3. A 3lm underfocused cryo-EM micrograph of hemocyanin

particles. This micrograph shows preferred orientations; the ‘‘side

views’’ (rectangles) are the valuable images for reconstruction because

they represent various rotations around the axis of the cylinder. There

are also particle halves (A) and long variants (B). We score the results

on this micrograph as 34 perfect picks, 7 imperfect picks (marked +), 1

bogus pick (marked *), 3 perfect misses (marked )), and 3 imperfect

misses (marked �). (Since bogus picks are rare, we added this one by

hand for illustration.) Particles partly off the micrograph cannot be

used and hence were not counted at all.

Fig. 4. A semi-synthetic micrograph made by averaging Fig. 3 with

Gaussian noise in the proportion 30–70%, reducing the signal-to-noise

ratio to about 0.1 for side views. By adding noise to a very visible

particle like hemocyanin, we can simulate faint particles while still

knowing the ground truth. Of the 27 picks made by our automatic

picker only 1 is bogus.
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pixels, around the cross-correlation peak, but we

found that it gave nearly identical results to the fixed

translation.

Thus the inner loop of the computation for Eq. (3)
contains just a table lookup and an addition: for each

pixel in template Pck, we look up the log probability of

observing the corresponding pixel in M in a table con-

taining the logarithms of pdf values like those shown in
Fig. 5. We have 128 log pdf tables, each containing 128

entries. Finally, we accept peaks by decreasing order of

LcðMÞ (on a master list containing LcðMÞ�s for all the

possible cluster numbers c), picking each peak for which

both LcðMÞ and RcðMÞ exceed the thresholds so long as
it is not too close to a previous pick, where ‘‘too close’’ is

set to about one particle diameter.

2.2.4. Thresholds

We set the thresholds by examining the picked par-

ticles for about 10 micrographs from each series, thereby



Fig. 5. The ‘‘ice.hist’’ curve shows the gray-level histogram of a filtered

p97 micrograph with 7-bit gray levels, that is, values from 0 to 127.

This curve fits a Gaussian distribution quite well; its right tail is just a

bit fat. The curves pdf-10, pdf-70, and pdf-90 show the model prob-

ability density functions for micrograph pixels corresponding to tem-

plate pixels of gray levels 10, 70, and 90, respectively.
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simulating the case of thousands of micrographs, too
many for a person to examine. Thresholds turn out to be

somewhat a matter of taste. For p97 the picked particles

with lowest likelihoods were vague, and we were unsure
Fig. 7. The top row shows the eight cluster centers for p97 particles. Be

Fig. 6. The steps of the algorithm include both preprocessing steps applied t
if they were real or not. For hemocyanin, which is an
unusually visible particle, the last picked particles were

real particles, but damaged or dirty. One of our criteria

in setting the thresholds was to pick approximately as

many particles as had been hand-picked by the experts

(Mouche for hemocyanin, and Rouiller for p97), so that

automatic-pick and manual-pick 3D reconstructions

could be compared fairly.

2.3. Relationship with cross-correlation

Because the ice histogram is so nearly Gaussian, our

model-based method turns out to have an interesting

relationship with cross-correlation. The cross-correla-

tion of an observed image M ¼ fmijg with a template

T ¼ ftijg, each with mean l, is
X

ij

mijtij ¼
X

ij

ðmij � lÞðtij � lÞ þ
X

ij

l2: ð4Þ

Our interest is in whether or not the cross-correlation

exceeds some threshold, so we can ignore the constant

term
P

ij l
2. Rewriting the other term, we see that

2 �
X

ij

ðmij � lÞðtij � lÞ ¼ �
X

ij

ðmij � tijÞ2

þ
X

ij

ðmij � lÞ2 þ
X

ij

ðtij � lÞ2:

ð5Þ
low each cluster center are the individual templates in the cluster.

o templates (left) and production steps applied to micrographs (right).
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Now say we have a hypothetical image I , that is, an
array of random variables Iij from our probabilistic

model. Let T ¼ ftijg denote a projection of the 3D map

U, that is, a 2D template. Assume, however, that we

have ‘‘grayed down’’ T so that its gray levels match the

centers of the pdf�s in Fig. 5. And further assume that

the pdf�s in Fig. 5 are all Gaussians with standard de-

viation r. This assumption is not a bad approximation,

since the differences in the variances of the curves pdf-
10, pdf-70, and pdf-90 are not terribly large. Under these

assumptions, the probability that Iij takes the value mij is

P ½Iij ¼ mij� ¼
1ffiffiffiffiffiffi
2p

p
r
� e�ðmij�tijÞ2=ð2r2Þ ð6Þ

and log P ½Iij ¼ mij� is just �ðmij � tijÞ2=ð2r2Þ, plus a
small constant, the same for all ij. Thus we see that the

first term on the right-hand side of Eq. (5) is essentially

proportional to the log likelihood in our probabilistic

model.

What about the terms
P

ijðmij � lÞ2 and
P

ijðtij�lÞ2?
The term

P
ijðtij � lÞ2 is just a fixed per-template offset,

so we can ignore it when analyzing the effect of cross-

correlating a micrograph with a single template. The
term

P
ijðmij � lÞ2 is the interesting one. Assume the

micrograph normalization and high-pass filtering to-

gether set the mean gray level of I to l ¼ 64, the middle

of the ‘‘ice.hist’’ pdf, and further assume that the

‘‘ice.hist’’ curve is Gaussian with standard deviation r;.
Again these are not unrealistic assumptions. Then under

our probabilistic model, the probability that Iij takes the
value mij when no particle is present is proportional to

P ½Iij ¼ mij� ¼
1ffiffiffiffiffiffi
2p

p
r;

� e�ðmij�lÞ2=ð2r2;Þ ð7Þ

and log P ½Iij ¼ mij� is just �ðmij � lÞ2=ð2r2
;Þ, plus a

constant. Thus we see that the second term of Eq. (5) is

essentially proportional to the log likelihood of the ‘‘null
hypothesis’’ in our probabilistic model, that is, the log

likelihood of generating M from pure ice. The constant

of proportionality, however, is different than for the first

term, with the difference stemming from the different

variances of ‘‘ice.hist’’ and the curves such as pdf-70.

Restating the above, cross-correlation is essentiallyP
ijðmij � lÞ2 �

P
ijðmij � tijÞ2; our log likelihood is ap-

proximately�
P

ijðmij � tijÞ2; andour log likelihood ratio
is approximately a �

P
ijðmij � lÞ2 �

P
ijðmij � tijÞ2, for

some constant a which depends upon the parameter ice-

ratio. With ice-ratio set to 50% ice, a is about 0.6. With its

greater emphasis on the power term
P

ijðmij � lÞ2, cross-
correlation picks high-contrast contaminants as well as

true particles. Doubling the contrast of a candidate par-

ticle doubles its cross-correlation, but would typically

decrease its log likelihood ratio under our model. Log
likelihood leans too far in the other direction, sometimes

picking gray background as well as true particles. (Cor-

relation coefficient—dividing by a power term—would
have the same flaw.) Log likelihood ratio seems to be the
happy medium.

Finally, we should mention that a �
P

ijðmij � lÞ2�P
ijðmij � tijÞ2 can be computed using Fast Fourier

Transforms and an efficient local variance calculation

(van Heel, 1982). Hence if this approximation were

substituted for our log likelihood ratio,wewould not have

to limit the probabilistic scoring to translations given by

cross-correlation peaks in order to achieve fast running
time.
3. Results

Figs. 1–3 show results. Exactly the same programs

were used for p97 and hemocyanin, with the only

choices being the set of projections, the number of
clusters, and the two likelihood thresholds.

In Fig. 1 our automatic picker picked many more

genuine p97 particles than an expert (Rouiller) using

SPIDERSPIDER �s automatic picker followed by manual screen-

ing. Over all 17 micrographs, however, the disparity

was—as intended—much smaller: our program made 617

picks and Rouiller made 561. The number of semi-au-

tomatic picks was limited by SPIDERSPIDER �s accuracy; a
threshold that found all the real particles would find so

many false particles that the manual screening would be

very tedious.

EMAN discarded 50 of our 617 automatic picks and

88 of the 561 semi-automatic picks, because they did not

align to a consistent center; these numbers give an in-

dication of the false positive rate. Both data sets gave 3D

reconstructions of resolution 22.8�AA, as defined by the
0.5 threshold of the Fourier shell correlation. As shown

in Fig. 8, both reconstructions were in good agreement

with a high-quality reconstruction, with the semi-auto-

matic reconstruction (b) showing a little better visual

similarity than the automatic reconstruction (a). (The

electron density maps are actually in closer agreement

than the isosurfaces; features such as the ‘‘spurs’’ in the

back center of (c) are present in (a) but fall below the
isosurface value.) Why did 473 semi-automatic picks

give a reconstruction just as good as—or even slightly

better than—the reconstruction from 567 automatic

picks? The answer is that the semi-automatic picks had

more uniform coverage of the sphere of views, with

relatively fewer of the ‘‘saw blade’’ top views (which can

be easily confused with bottom views) and more of the

harder-to-see tilted views.
We also visually compared our p97 particle picking

results to those from EMAN�s particle picker BOXERBOXER,

which we trained and ran on the same micrograph

(thereby helping EMAN). Using 2D templates com-

puted from the micrograph shown in Fig. 1, BOXERBOXER

gave poor results, well under 50% accuracy. Using the

initial 3D map to make 60 2D templates, BOXERBOXER gave



Fig. 8. Isosurfaces of p97 density maps computed from (A) 617 automatic picks, (B) 561 semi-automatic picks, and (C) more than 4000 semi-

automatic and manual picks. The resolutions of (A) and (B) are both 22.8�AA as determined by the 0.5 threshold of the Fourier shell correlation.

Fig. 9. Hemocyanin density maps (side and top views of isosurfaces) computed from (A) 1157 automatic picks and (B) 1042 manual picks.

The resolution of (A) is 23.3�AA and that of (B) is 23.4�AA.
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good results, comparable to our own results but with a

few more picks in the contaminant region. The contrast

threshold settings that worked for this micrograph,

however, did not work well with other micrographs; for
example, in the next micrograph (alphabetically by

name of the file) BOXERBOXER �s performance slipped to about

13 correct picks and 5 false positives, where our picker

had about 40 correct picks and 5 false positives.

Fig. 3 shows a hemocyanin example. For hemocya-

nin, a person�s picks can be considered ground truth, so

we can give precise quantitative results from the 2D

images alone. We counted statistics for five categories:
perfect picks (clean particles of the right kind), imperfect

picks (damaged, dirty, or variant particles), bogus picks

(background noise or contaminant), perfect misses

(clean particles not picked), and imperfect misses

(damaged, dirty, or variant particles not picked). Parti-

cles partially off the micrograph cannot be used and

hence were not counted at all. Using a relaxed likelihood

threshold (not much discrimination by quality), our
picker had 33 perfect picks, 8 imperfect picks, 0 bogus

picks, 3 perfect misses, and 3 imperfect misses on Fig. 3.

Two of the three perfect misses seem to result from

abutting particles reducing likelihood scores. We com-

pared our results to results from BOXERBOXER, which we

trained and ran on the same micrograph. Using 2D

templates computed from the micrograph, BOXERBOXER gave

31 perfect picks, 9 imperfect picks, 9 bogus picks, 4
perfect misses, and 2 imperfect misses. Using the initial

3D map to make 60 2D templates, BOXERBOXER improved to

27 perfect picks, 8 imperfect picks, 1 bogus pick, 8
perfect misses, and 3 imperfect misses. One difficulty

when using BOXERBOXER was to find contrast thresholds that

simultaneously worked for both rectangle and circle

views.
Over all 82 hemocyanin micrographs our particle

picker gave 1979 perfect picks, 285 imperfect picks, 7

bogus picks, 76 perfect misses, and 227 imperfect misses.

Restating these results another way, our automatic

picker had 4% false negative rate (perfect misses) and

0.3% false positives (bogus picks). It picked 56% of

the imperfect particles, but only 13% of all picks were

imperfect.
For 3D reconstruction we raised the likelihood

threshold in order to reduce the number of imperfect

picks, and raised it still higher for the circle views (rec-

ognized by which cluster they matched), because these

views represent only a single point on the sphere of

viewing directions. We then had 1024 rectangle views

and 133 circle views, less than half the original number

of picks. Fig. 9 compares a 3D reconstruction made
from these automatic picks with a 3D reconstruction

made from 1042 manual picks, of which only 10–20 were

circle views. These reconstructions, made by SPIDERSPIDER,

are virtually identical: the 0.5 threshold of the Fourier

shell correlation gives a resolution of 23.4�AA for the

manual-pick reconstruction and 23.3�AA for the auto-

matic-pick reconstruction.

Running time is dominated by the Fourier transforms
for the cross-correlation. The number of transforms is

n þ m þ nm, where n is the number of micrographs and

m is the number of template clusters. Using 1024� 1024
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transforms, we obtained times of about 2min per mi-
crograph; with 512� 512 transforms times should be

well under a minute. We estimate that running times

would grow to 5min per micrograph with 1000 tem-

plates in 50 clusters.
4. Discussion

We believe that our particle picker is usable already,

and should give near human performance level for any

fairly round particle. We do, however, have some plans

for further improvement. One idea is to use irregularly

shaped templates, rather than only square templates;

this should improve the performance on abutting par-

ticles and also enable the system to pick longer, skinnier

particles, although our approach probably would still
not be the method of choice for filamentous particles.

We should be able to determine a particle boundary

automatically in the 3D map, and use this boundary to

define the irregularly shaped templates. Another possi-

bility is to stay with square templates, but include

variances for the pixel pdf�s in order to weight some

pixels more heavily than others. We would also like to

explore quality measures for images in order to screen
out dirty, distorted, and variant particles; we think that

after the likelihood or likelihood ratio indicates that a

particle is real, a different measure—perhaps computed

from the close-to-focus micrograph—would give a more

sensitive measure of quality.

Aside from leading to practical tools, model-based

methods bring another benefit. By making the assump-

tions underlying an algorithm explicit, these methods
enable more informed analysis of algorithms. As we saw

in Section 2.3, cross-correlation is appropriate for a

model with i.i.d. additive Gaussian noise, an unrealistic

assumption for micrographs with contaminants. Our

model also assumes i.i.d. additive noise, but with lower

noise overtop of desirable particles than in other sections

of the micrograph; this slightly more realistic model gives

much greater contaminant rejection. Local correlation as
in Roseman (2003) corrects for local mean and variance

and hence fits a model with multiplicative noise, a com-

mon situation in macroscopic scenes with locally varying

illumination, but not in EM micrographs.

This analysis shows that the least developed part of

our method is the noise model. In fact, compared to

other computer vision problems such as face detection

and recognition, we already have an excellent signal
model. One interesting direction for future work would

be to train a noise model (for example, one in which the

random variables are wavelet or spectral coefficients)

automatically by feeding the results of 3D reconstruc-

tion back into the particle picker. Picked particles whose

close-to-focus partners give poor correlations with the

3D model could serve as negative training examples.
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