
THE ASYMPTOTIC NUMBER OF PLANAR, SLIM,

SEMIMODULAR LATTICE DIAGRAMS

GÁBOR CZÉDLI

Abstract. A lattice L is slim if it is finite and the set of its join-irreducible
elements contains no three-element antichain. We prove that there exists a

positive constant C such that, up to similarity, the number of planar diagrams
of slim semimodular lattices of size n is asymptotically C · 2n.

1. Introduction and the result

A finite lattice L is slim if Ji L, the set of join-irreducible elements of L, contains
no three-element antichain. Equivalently, L is slim if Ji L is the union of two chains.
Slim, semimodular lattices were heavily used while proving a recent generalization
of the classical Jordan-Hölder theorem for groups in [4]. These lattices are planar,
that is, they have planar diagrams, see [4]. Hence it is reasonable to study their
planar diagrams, which are called slim, semimodular (lattice) diagrams for short.
The size of a diagram is the number of elements of the lattice it represents. Let D1

and D2 be two planar lattice diagrams. A bijection φ : D1 → D2 is a similarity map

if it is a lattice isomorphism preserving the left-right order of (upper) covers and
that of lower covers of each element of D1. If there is a similarity map D1 → D2,
then these two diagrams are similar, and we will treat them as equal. Let Nssd(n)
denote the number of slim, semimodular diagrams of size n, counting them up to
similarity. Our target is to prove the following result.

Theorem 1.1. There exists a positive constant C < 1 such that Nssd(n) is asymp-

totically C · 2n, that is, limn→∞
(

Nssd(n)/2n
)

= C.

Given two composition series in a finite group, the intersections of their mem-
bers form a slim semimodular lattice with respect to “⊇”. This follows from
Wielandt [13]; see also the proof of Nation [11, Theorem 9.8]. Conversely, [6]
proves that every slim semimodular lattice can be represented in this way. There-
fore, in a reasonable, order theoretic sense, Theorem 1.1 tells us how many ways
the members of two composition series in a group can intersect each other, provided
that there are exactly n intersections and that we make a distinction between the
first composition series and the second one.

Note that there are two different methods to deal with Nssd(n). The present
one yields the asymptotic statement above, while the method of [1] gives the exact
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Figure 1. Left and right ranks

values of Nssd(n) up to n = 50 (with the help of a usual personal computer). Also,
[1] determines the number Nssl(n) of slim, semimodular lattices of size n up to
n = 50 while we do not even know limn→∞

(

Nssl(n)/Nssl(n − 1)
)

, and it is only a
conjecture that this limit exists.

Note also that, besides [1] and [2], there are several papers on counting lat-
tices; see, for example, M. Erné, J. Heitzig, and J. Reinhold [7], M.M. Pawar and
B. N. Waphare [12], and J. Heitzig and J. Reinhold [9].

2. Lattice theoretic lemmas

A minimal non-chain region of a planar lattice diagram D is called a cell. A
four-element cell is a 4-cell ; it is also a covering square, that is, a cover-preserving
four-element Boolean sublattice. We say that D is a 4-cell diagram if all of its
cells are 4-cells. We shall heavily rely on the following result of G. Grätzer and
E. Knapp [8, Lemmas 4 and 5].

Lemma 2.1. Let D be a finite planar lattice diagram.

(i) If D is semimodular, then it is a 4-cell diagram. If A and B are 4-cells of D
with the same bottom, then these 4-cells have the same top.

(ii) If D is a 4-cell diagram in which no two 4-cells with the same bottom have

distinct tops, then D is semimodular.

In what follows, we always assume that 4 ≤ n ∈ N = {1, 2, . . .}, and that D is
a slim, semimodular diagram of size n. Let w`

D be the smallest doubly irreducible
element of the left boundary chain BC`(D) of D, and let rank`(D) be the height of
w`

D. The left-right duals of these concepts are denoted by wr
D and rankr(D). See

Figure 1 for an illustration, where w`
D and wr

D are the black-filled elements. By
D. Kelly and I. Rival [10, Proposition 2.2], each planar lattice diagram with at least
three elements contains a doubly irreducible element 6= 0, 1 on its left boundary.
This implies the following statement, on which we will rely implicitly.

Lemma 2.2. Either rank`(D) = rankr(D) = 0 and w`
D = wr

D = 0, or rank`(D) >
0 and rankr(D) > 0.

For a ∈ D, the ideal {x ∈ D : x ≤ a} is denoted by ↓a.

Lemma 2.3. BC`(D) ∩ ↓w`
D ⊆ Ji D.

Proof. Suppose, for a contradiction, that the lemma fails, and let u be the smallest
join-reducible element belonging to BC`(D) ∩ ↓w`

D. By D. Kelly and I. Rival [10,
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Proposition 2.2], there is a doubly irreducible element v of the ideal ↓u = {x ∈
D : x ≤ u} such that v ∈ BC`(↓u); notice that v also belongs to BC`(D). Clearly,
v < u and v is join-irreducible in D. Therefore, since v < u ≤ w`

D and w`
D is the

least doubly irreducible element of BC`(D), v is meet-reducible in D. Hence there
exist a p ∈ D such that v ≺ p and p /∈ ↓u. Denote by u0 the unique lower cover of
u in BC`(D). Since v < u, we have that v ≤ u0. By semimodularity and p 6≤ u0,
we obtain that u0 = u0 ∨ v ≺ u0 ∨ p 6= u. Hence u0 has two covers, u and u0 ∨ p.
Thus u0, u ∈ BC`(D), u0 ≺ u, u is join-reducible, and u0 is meet-reducible. This
contradicts [5, Lemma 4]. �

Next, we prove the following lemma.

Lemma 2.4. For 4 ≤ n ∈ N, we have that

Nssd(n − 1) + Nssd(n − 3) ≤ Nssd(n),(2.1)

Nssd(n) ≤ 2 ·Nssd(n − 1).(2.2)

Proof. The set of slim, semimodular diagrams of size n is denoted by SSD(n). Let

SSD00(n) = {D ∈ SSD(n) : rank`(D) = rankr(D) = 0},
SSD11(n) = {D ∈ SSD(n) : rank`(D) = rankr(D) = 1}, and

SSD++(n) = SSD(n) − SSD00(n).

Since we can omit the least element and the least three elements, respectively, and
the remaining diagram is still slim and semimodular by Lemma 2.1, we conclude
that |SSD00(n)| = Nssd(n − 1) and |SSD11(n)| = Nssd(n − 3). This implies (2.1).
For D ∈ SSD++(n), we define

D∗ = D − {w`
D}.

We know from By D. Kelly and I. Rival [10, Proposition 2.2], mentioned earlier,
that

(2.3) w`
D /∈ {0, 1}, provided D ∈ SSD++(n).

This, together with the fact that D ∈ SSD++(n) is not a chain, yields that

(2.4) lengthD∗ = lengthD.

Let w`
D

−
denote the unique lower cover of w`

D in D. Since each meet-reducible
element has exactly two covers by [5, Lemma 2], we conclude from Lemma 2.3 that

(2.5) w`
D∗ = w`

D

−
.

It follows from Lemma 2.1 that D∗ ∈ SSD(n − 1). From (2.5) we obtain that

(2.6) D∗ ∈ SSD(n − 1) determines D.

Hence |SSD++(n)| ≤ |SSD(n−1)| = Nssd(n−1). Combining this with |SSD00(n)| =
Nssd(n−1) and SSD(n) = SSD00(n) ∪̇ SSD++(n), where ∪̇ stands for disjoint union,
we obtain (2.2). �

Next, let

(2.7) W (n) = SSD(n − 1) − {D∗ : D ∈ SSD++(n)}.
Fortunately, this set is relatively small by the following lemma. The upper integer
part of a real number r is denoted by dxe; for example, d

√
3 e = 2.
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Lemma 2.5. If 4 ≤ n, then |W (n)| ≤
n+1−d

√
n−1 e

∑

j=2

Nssd(j).

Proof. First we show that

(2.8) W (n) = {E ∈ SSD(n − 1) : w`
E is a coatom of E}.

The ⊇ inclusion is clear from (2.3), (2.4), and (2.5). These facts together with
Lemma 2.1 also imply the reverse inclusion since by adding a new cover to w`

E , to
be positioned to the left of BC`(E), we obtain a slim semimodular diagram D such
that D∗ = E.

It follows from Lemma 2.3 that no down-going chain starting at w`
E can branch

out. Thus

(2.9) ↓w`
E ⊆ BC`(E) and ↓w`

E is a chain.

Since w`
E is a coatom, we have that

(2.10) with the notation EJ = E \ ↓w`
E, |EJ| = |E| − lengthE.

Clearly, EJ is a join-subsemilattice of E since it is an order-filter. To prove that

(2.11) EJ is a slim, semimodular diagram,

assume that x, y ∈ EJ − {1}. We want to show that x ∧ y, taken in E, belongs
to EJ. Let x0 and y0 be the smallest element of BC`(E) ∩ ↓x and BC`(E) ∩ ↓y,
respectively. Since x0, y0 ∈ BC`(E) ∩

(

↓w`
E − {w`

E}
)

, the definition of w`
E implies

that x0 and y0 are meet-reducible. Hence they have exactly two covers by [5,
Lemma 2]. Let x1 and y1 denote the cover of x0 and y0, respectively, that do not
belong to BC`(E), and let x+ and y+ be the respective covers belonging to BC`(E).
By the choice of x0, we have that x+ 6≤ x, whence x1 ≤ x. Similarly, y1 ≤ y. Since
BC`(E) is a chain and the case x0 = y0 will turn out to be trivial, we can assume
that x0 < y0. We know that x1 6≤ y0 since otherwise x1 would belong to BC`(E)
by (2.9). Using semimodularity, we obtain that x1∨ y0 � y0. Since y0 has only two
covers by [5, Lemma 2] and x1 ≤ y+ would imply x1 ∈ BC`(E) by (2.9), it follows
that x1 ∨ y0 = y1. Hence x1 ≤ y, x1 ≤ x, and x1 ∈ EJ imply that x∧ y belongs to
(the order filter) EJ. Thus EJ is (to be more precise, determines) a sublattice of
(the lattice determined by) E. The semimodularity of EJ follows from Lemma 2.1.
This proves (2.11).

By (2.10) and (2.11), a trivial argument gives that

(2.12) EJ ∈ SSD(n − lengthE) and EJ determines E.

Next, we have to determine what values h = lengthE can take. Clearly, h ≤
|E|−1 = n−2. There are various ways to check that |E| ≤ (1+lengthE)2 = (1+h)2;
this follows from the main theorem of [6], and follows also from the proof of [3,
Corollary 2]. Since now |E| = n − 1, we obtain that d

√
n − 1 e − 1 ≤ h. Therefore,

combining (2.11) and (2.12), we obtain that

W (n) ≤
n−2
∑

h=d
√

n−1 e−1

Nssd(n − h).

Substituting j for n − h, we obtain our statement. �

We conclude this section by the following lemma.
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Lemma 2.6. 2 · Nssd(n − 1) −
n+1−d

√
n−1 e

∑

j=2

Nssd(j) ≤ Nssd(n) ≤ 2 · Nssd(n − 1).

Proof. By (2.6) and the definition of W (n), we have that

Nssd(n) = |SSD00(n)| + |SSD++(n)| = Nssd(n − 1) + |SSD(n − 1) − W (n)|
= Nssd(n − 1) + Nssd(n − 1) − |W (n)|,

and the statement follows from Lemma 2.5 and (2.2). �

3. Tools from Analysis at work

For k ≥ 2, define κk = Nssd(k)/Nssd(k − 1). Since Nssd(n − 3)/Nssd(n − 1) =
1/(κn−1κn−2), dividing the inequalities of Lemma 2.4 by Nssd(n − 1) we obtain
that 1 + 1/(κn−1κn−2) ≤ κn ≤ 2, for n ≥ 4. Furthermore, in view of the sentence
following (2.7), (2.8) implies easily that κn < 2 if n ≥ 7. Therefore, since κk ≤ 2
also holds for k ∈ {2, 3} and 1 + 1/(2 · 2) = 5/4, we conclude that

(3.1) 5/4 ≤ κn ≤ 2, for n ≥ 4, and κn < 2, for n ≥ 7.

Clearly, Nssd(k − 1) = Nssd(k)/κk ≤ 4
5
· Nssd(k) if k ≥ 4. Thus, by iteration, we

obtain that

(3.2) Nssd(k − j) ≤ (4/5)j · Nssd(k), for j ∈ N0 and k ≥ j + 4.

If k ≥ 5, then using Nssd(k) ≥ Nssd(5) ≥ 3 (actually, Nssd(5) = 3), we obtain that

Nssd(1) + · · ·+ Nssd(k) = 1 + 1 + 1 + Nssd(4) + · · ·+ Nssd(k)

≤ 3 + Nssd(k) ·
(

(4/5)k−4 + (4/5)k−5 + · · ·+ (4/5)0
)

≤ Nssd(k) + Nssd(k) · 1/(1 − 4/5) = 6Nssd(k).

(3.3)

Combining Lemma 2.6 with (3.3) and (3.2), we obtain that

2Nssd(n − 1) − 6 · (4/5)d
√

n−1e−2 · Nssd(n − 1) ≤
2Nssd(n − 1) − 6Nssd(n + 1 − d

√
n − 1 e)

≤ Nssd(n) ≤ 2Nssd(n − 1).

Dividing the formula above by 2Nssd(n − 1) and (3.1) by 2, we obtain that

(3.4) max
(

5/8 , 1 − 3 · (4/5)d
√

n−1e−2
)

≤ κn/2 ≤ 1, for n ≥ 5.

Next, let us choose an integer m ≥ 5, and define

z0 = z0(m) = min
(

3/8 , 3 · (4/5)d
√

m−1 e−2
)

.

Lemma 3.1. For 0 ≤ z < 1, we have − ln(1 − z) ≤ z/(1 − z). If, in addition,

0 ≤ z ≤ z0, then z/(1 − z) ≤ z/(1 − z0).

Proof. The second inequality is obvious. The first inequality holds for z = 0 and,
for 0 ≤ z < 1, the derivative 1/(1 − z) of the left side is less than 1/(1 − z)2, that
of the right side. This implies the first inequality. �

With the auxiliary steps made so far, we are ready to start the final argument.
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Proof of Theorem 1.1. For n > m, let

pn =

n
∏

j=m+1

(κj/2).

We obtain from (3.4) that {pn}, that is, {pn}∞n=m+1 , is a decreasing sequence of
positive numbers. Clearly,

(3.5) Nssd(n)/2n = pn ·Nssd(m)/2m.

Hence it suffices to prove that the sequence {pn} converges to a positive number,
because then its limit is smaller than 1 by (3.1). Let sn = − ln pn, µ = 3(1−z0)

−1,
α = 4/5, and ν = 5µ/4 = µ/α. Note that {sn} is an increasing sequence.

Using (3.4) together with Lemma 3.1 at the inequality marked with ≤′ below

and (3.4) at the one marked with ≤∗, and using that the function f(x) = α
√

x is
decreasing, we obtain that

0 < sn =

n
∑

j=m+1

(

− ln(κj/2)
)

≤′
n

∑

j=m+1

(1 − κj/2)/(1− z0)

≤∗ µ ·
n

∑

j=m+1

αd
√

j−1e−2 ≤ µ ·
n

∑

j=m+1

α
√

j−1−1 = µ ·
n−1
∑

k=m

α
√

k−1

= ν ·
n−1
∑

k=m

α
√

k ≤ ν ·
∫ n−1

x=m−1

α
√

xdx ≤ ν ·
(

F (∞)− F (m− 1)
)

,

where F (x) is a function whose derivative is f(x). Let δ = − lnα = ln (5/4). It is
routine to check (by hand or by computer algebra) that, up to a constant summand,

F (x) = −2 · δ−2 · (1 + δ
√

x) · α
√

x.

Clearly, F (∞) = limx→∞ F (x) = 0. This proves that the sequence {sn} converges;
so does {pn} = {e−sn} by the continuity of the exponential function. Therefore,
since Nssd(m)/2m in (3.5) does not depend on n, we conclude Theorem 1.1. �

Remark 3.2. We can approximate the constant in Theorem 1.1 as follows. Since
e−ν·(F (∞)−F (m)) ≤ e−sn = pn ≤ 1 and, by (3.5), C = limn→∞

(

pnNssd(m)/2m
)

, we
obtain that

(3.6) eνF (m) · Nssd(m)/2m = e−ν·(F (∞)−F (m)) · Nssd(m)/2m ≤ C ≤ Nssd(m)/2m.

Unfortunately, our computing power yields only a very rough estimation. The
largest m such that Nssd(50) is known is m = 50, see [1]. With m = 50 and
Nssd(m) = Nssd(50) = 81 287 566 224 125, it is a routine task to turn (3.6) into

0.42 · 10−57 ≤ C ≤ 0.073 .

We have reasons (but no proof) to believe that 0.023 ≤ C ≤ 0.073, see the Maple
worksheet (version V) available from the authors’s home page.
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semimodular lattices, Algebra Universalis 66, 69–79 (2011)

[5] Czédli, G., Schmidt, E. T.: Slim semimodular lattices. I. A visual approach, Order 29, 481–
497 (2012)

[6] Czédli, G., Schmidt, E. T.: Composition series in groups and the structure of slim semimod-
ular lattices, Acta Sci Math. (Szeged) 79, 369–390 (2013)
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