
A Hands-on OpenStack Code Refactoring

Experience Report

Gábor Antal1, Alex Szarka1, and Péter Heged¶s2

1 Department of Software Engineering, University of Szeged, Hungary
{antal, szarka}@inf.u-szeged.hu

2 MTA-SZTE Research Group on Arti�cial Intelligence, Szeged, Hungary
hpeter@inf.u-szeged.hu

Abstract. Nowadays, almost everyone uses some kind of cloud infras-
tructure. As clouds gaining more and more attention, it is now even more
important to have stable and reliable cloud systems. Along with sta-
bility and reliability comes source code maintainability. Unfortunately,
maintainability has no exact de�nition, there are several de�nitions both
from users' and developers' perspective. In this paper, we analyzed two
projects of OpenStack, the world's leading open-source cloud system,
using QualityGate, a static software analyzer which can help to deter-
mine the maintainability of software. During the analysis we found qual-
ity issues that could be �xed by refactoring the code. We have created
47 patches in this two OpenStack projects. We have also analyzed our
patches with QualityGate to see whether they increase the maintain-
ability of the system. We found that a single refactoring has a barely
noticeable e�ect on the maintainability of the software, what is more,
it can even decrease maintainability. But if we do refactorings regularly,
their cumulative e�ect will probably increase the quality in the mid and
long-term. We also experienced that our refactoring commits were very
appreciated by the open-source community.

Keywords: OpenStack, refactoring, quality assurance, static analysis,
code quality

1 Introduction

Restructuring the source code of an object-oriented program without changing
its observed external behavior is called refactoring. Since Opdyke's PhD disser-
tation [28] � where the term was introduced � and Fowler's book [16] � where
refactoring is used on �bad-smells� � many researchers studied refactoring as a
technique to improve the maintainability of a software system. However, there
are still only few empirical evidences that would objectively prove the the e�ects
of refactoring on code maintainability.

In an earlier work [17] we analyzed the e�ect of code refactorings by auto-
matically extracting refactorings using the RefFinder [21] tool from various small
and mid-sized open-source projects. As a means of measuring maintainability,
we used static source code metrics. We found that refactorings reduce complex-
ity and coupling, however, code clones were a�ected negatively and commenting



Gábor Antal, Alex Szarka, Péter Heged¶s

did not show any clear connection with refactoring activities. The disadvantage
of this approach was the high false positive rate of RefFinder and the lack of
real, certainly valid set of refactorings to analyze.

During an in-vivo industrial experiment [38], we showed that bulk-�xing cod-
ing issues found by various code linters can lead to a quality increase. The draw-
back of this approach was that developers tend to perform the easiest code
changes, which typically were not even classical Fowler refactorings.

In this paper, we present a large-scale, open-source study on the OpenStack
cloud infrastructure [33], where we contributed a large number of refactoring
code modi�cations to the upstream code bases. For quality estimation we used
the QualityGate maintainability assesment framework [6] and the SonarQube3

technical debt measurement model [22]. we calculated the system-level main-
tainability of the OpenStack modules before and after the refactoring patch is
being applied on the code base. This way we could analyze the direct impact of
our code rafactoring activity on the OpenStack modules.

We found that often such small, local refactoring changes will not have any
traceable e�ect on the overall level of maintainability of a large OpenStack mod-
ule. This was particularly true for the Nova module, as it is very large compared
to Watcher for example. In case of Watcher, the smaller module we analyzed, we
found that several refactoring changes caused a quality increase and a technical
debt decrease. Nonetheless, in general we can say that in most of the cases where
we were able to measure the maintainability changes, refactorings had a positive
e�ect on them. It was a slightly easier to show a decrease in the technical debt
measures in SonarQube.

The rest of the paper is organized as follows. In Section 2, we list the related
literature and compare our work with them. In Section 3, we introduce Open-
Stack, the contribution work�ow, and what are the di�culties we had to face
with, in order to contribute to the code. Section 5 describes how the patches
were created and how we analyzed our merged patches. In Section 6, we present
the results of the analysis. We list the possible threats of the analysis in Section 7
and conclude the paper in Section 8.

2 Related Work

Mens et al. published a survey to provide an extensive overview of existing
research in the area of software refactoring [25]. Unfortunately, it is still unclear
how speci�c quality factors are a�ected by the various refactoring activities.

Many researchers studied refactoring but only a few papers analyze the im-
pact of refactoring on software quality. Sahraoui et al. [34] use quality estimation
models to study whether some object-oriented metrics can be used for detect-
ing code parts where a refactoring can be applied to improve the quality of a
software system. They do not validate their �ndings within an large-scale experi-
ment. Stroulia and Kapoor [37] investigate how size and coupling metrics behave
after refactoring. They show that size and coupling metrics of a system decrease
after refactoring; however, they only validate this in an academic environment.

3https://www.sonarqube.org/

https://www.sonarqube.org/


A Hands-on OpenStack Code Refactoring Experience Report

Bois et al. [11] propose refactoring guidelines for enhancing cohesion and
coupling metrics and obtain promising results by applying them on an open-
source project. Simon et al. [35] follow a similar strategy, they use a couple of
metrics to visualize classes and methods which help the developers to identify
the candidates for refactoring. Demeyer [10] shows that refactoring can have a
bene�cial impact on software performance (e.g. compilers can optimize better
on polymorphism than on simple if-else statements). Bois and Mens [12] develop
a framework for analyzing the e�ects of refactoring on internal quality metrics,
but again, they do not provide an experimental validation in an industrial envi-
ronment.

There are abundance of studies [9, 26, 27, 36] on OpenStack, the cloud in-
frastructure we used in our study. However, they do not target the analysis of
code refactoring e�ects on software quality. Baset et al. [9], for examle, analyze
the evolution of OpenStack from testing and performance improvement point of
view. Slipetskyy [36] analyze OpenStack from a security perspective. Musavi et
al. analyze the API failures in the OpenStack ecosystem [26,27]. Advani et al. [5]
extract refactoring trends from open-source systems in general.

In our paper we performed a large number of refactorings and observed their
e�ect on the quality of the OpenStack open-source cloud infrastructure modules.
These refactorings �xed di�erent kinds of coding issues and introduced improved
code structures, thus so we could investigate the system states before and after
applying di�erent types of patches. Our work was carried out in an in vivo open-
source environment (OpenStack has a huge contributor base and is very active),
which is an important di�erence compared to previous studies.

3 OpenStack

3.1 Overview of OpenStack

OpenStack is an open-source cloud computing software platform [13, 15, 29, 33],
mainly developed in Python. It is mostly used to provide an infrastructure-as-
a-service platform, it helps their users to create private and/or public clouds. In
this model, the service provider (who runs OpenStack) provides virtual machines
and other resources to their customers (who pays for the resources monthly or
on-demand). OpenStack is modularly developed, which means you can customize
your cloud infrastructure well. You can deploy only the modules you really need,
e.g. if you need a load balancer to your cloud system, you can install the speci�c
module (Octavia) but your cloud can fully operate without it.

Fig. 1. Schematic structure of OpenStack



Gábor Antal, Alex Szarka, Péter Heged¶s

There are several core services which is often used together, including Nova
(managing computing resources), Keystone (authentication and authorization),
Neutron (networking), Glance (image services for virtual machine images), Hori-
zon (dashboard). A schematic �gure of the modules can be found in Figure 1.
All of the modules have their own developers, core members (who are experts of
the module, and who can directly push modi�cations into the codebase). These
teams are usually not distinct, one contributor often develops to several modules.
You can �nd the list of OpenStack modules in [4].

OpenStack was started in 2010 as a collaboration project between Rackspace
and NASA. As the project became more and more popular, other companies have
joined and started working on the core modules and also on their own drivers in
OpenStack, for example there are several hardware hypervisors that OpenStack
can use (e.g. HyperV, VMware, Xen, Libvirt).

Nowadays, the project is handled by the OpenStack Foundation [29], which
is a non-pro�t organization. Their goal is to provide an independent and strong
home for OpenStack projects, provide resources and an entire ecosystem to build
community, and help collaboration between open-source technologies. OpenStack
Foundation consists of more than 500 companies (e.g. Intel, Canonical [14,32]),
82000 community members, from more than 180 countries worldwide.

The full codebase of all OpenStack modules is now consists of more than 1
million lines of code. OpenStack projects often use a six-month release cycle [30,
31] with several (typically 3) development milestones. This agile model lets the
contributors to quickly land new features to OpenStack.

3.2 Contribution

As OpenStack is an open-source software, everyone can contribute to it. The
developers are completely decentralized around the world, they have di�erent
coding habits. In order to contribute, some contribution guidelines [3] must be
followed. The schematic view of the code developing process can be seen in
Figure 2.

The pre-requisite is to get familiar with Git, as the OpenStack community
uses it as their version control system, and GitHub to host their codebase. First
of all, if you want to contribute, you need to set up your local environment
where you can develop, execute tests, and run the components of the OpenStack
for your features (or bug �xes) on a live system. After that, you have to clone
the repository you want to work on. Of course, then you have to make the
modi�cation you want to do. Then, you have to commit the changes to your
local Git repository. After that, you have to send the modi�cations to a code
review system. Code review is a manual process when people verify each others
code by hand. This process needs to be highly automated in a worldwide open-
source system.

To achieve this, the OpenStack projects use the Gerrit code review system
from Google. Based on Git version controlling, Gerrit is a powerful code review
system, which manages the modi�cations that are intended to be merged to a
Git repository (to OpenStack's GitHub repository in our case). Gerrit is a great



A Hands-on OpenStack Code Refactoring Experience Report

Bug report on  
Launchpad 

Module  git clone 

Create a copy of a module 

Developer environment 

Modified module 

Do the improvement /
bug fix 

Locally commited module 

run tests
git commit

Gerrit code
review 

+1 / -1 
git review 

OpenStack test gates

Jenkins job builder 

Jenkins
job #1 

Jenkins
job #2 

Jenkins job #n

...

Test before merge

OpenStack test gates

Jenkins job builder 

Jenkins jobs 

git push 

Fig. 2. OpenStack contributon �ow

platform where developers can share their opinion on a modi�cation, giving feed-
back to the authors how they can improve their patches, what are the additional
tasks with a patch. They can rate patches +1 or −1 based on whether they
found the patch mature enough to get merged or not.

At OpenStack, developers can get their modi�cations merged only via Ger-
rit. In Gerrit, every project has core members who are experts in that speci�c
project. At least two of the core members need to approve the code before it can
be merged. Core members can approve a patch by rating it +2 or disapprove
by rating it −2. It basically means that a patch is probably not needed at that
time. This process helps both developers and maintainers to have a good quality
code [20,24].

In addition to the manual approval, there are automated Jenkins4 tests which
can also approve or disapprove the code. When a Jenkins job fails, the author
has to �x the code before it can be merged. These Jenkins jobs run the tests
of the projects in various environments (e.g. with speci�c version of Python),
with various settings enabled, on various hardware platforms. There are some
really speci�c Jenkins jobs which only run on a speci�c code change (e.g. on
speci�c, hardware-related driver changes). The jobs are managed by the Jenkins
job builder (which is also an OpenStack project5). The Jenkins job builder is
triggered when someone uploads a new set of modi�cations to the project or
updates an already existing one.

When both Jenkins and the core members of the project approve a patchset
(a set of modi�cations), the changes are getting tested once again, before being

4Jenkins is an open-source continuous integration system. More details can be found
at https://jenkins.io/

5https://github.com/openstack-infra/jenkins-job-builder

https://jenkins.io/
https://github.com/openstack-infra/jenkins-job-builder


Gábor Antal, Alex Szarka, Péter Heged¶s

merged to a speci�c branch (mostly to the main branch) of an OpenStack proj-
ect. If the patch still seems to be correct, an automated system merges it.

3.3 Quality assurance

Quality assurance is one of the most important tasks in software engineering.
However, it is not trivial even for a company, and also not a trivial task when
the developers are all around the world, represent di�erent companies, or they
are just individuals who want to work on an open-source software system. Thus,
a well-de�ned quality assurance model is necessary in order to have a good
quality, manageable project. At OpenStack, there are 3 main aspects of quality
assurance.
Manual code review. People can verify each others planned modi�cations.
More details on how it works can be found in Section 3.2.
High test coverage. Having high test coverage is also a really important, con-
tinuous job in an international open-source project like OpenStack. Since every-
one can contribute, it is cardinal to know whether a modi�cation has unwanted
side e�ects or not. To �nd out, we need to run the test suite provided by the
project. If there is something we did but not intended to do, we can investigate
the source of the problem. The OpenStack modules have quite good code cov-
erage: Nova has a coverage of 87%, Watcher has a 86% coverage, Glance has a
coverage of 72%, and Neutron has a 85% coverage.

To keep the coverage high, most of the time when a new feature is imple-
mented, the patchset have to contain test cases for the new features. This is
also a validation point when a bug �xing patch is getting merged. In general, a
bug �xing patch should also contain test cases where the �xed bug would have
occurred. At OpenStack, there are 3 levels of testing.

The �rst one is unit testing, which is needed for almost every case. Second
level is the integration tests. This is only a common test level which is necessary
when someone create modi�cations between 2 or more components. The last one
is the live tests that are only required when one creates a modi�cation, which
can only be tested on a live and running OpenStack instance (tempest6 tests).
The used test coverage tool measures only the unit test coverage, and since these
are functions that can be tested only with integration test, they are not taken
into account while measuring coverage.

All of the tests are run with the tox testing framework. This helps to automate
and unify testing procedure across modules so that all the modules can run the
tests in the same way. Tox builds virtual, separated environments where the tests
can be run. The ability to change between Python versions is also an advantage
of tox, as OpenStack mostly supports Python 2.7 and 3.4 in parallel.
The pep8 Jenkins job. There are so called Jenkins test gates that test the
modi�cation from quality point of view. These jobs execute the pep87 tool to
check if the code complies with the coding standards. In addition, these jobs
run the style guide checker tool as well, which is created by the OpenStack

6https://github.com/openstack/tempest
7https://www.python.org/dev/peps/pep-0008/

https://github.com/openstack/tempest


A Hands-on OpenStack Code Refactoring Experience Report

community and called hacking rules. Hacking is a set of �ake8 plugins that test
and enforce rules de�ned by [1].

There are global hacking rules, which must be conformed in each and every
module. Additionally, every module can create its own hacking rules, which must
be conformed only by that module. Local rules are often stricter than the global
ones and usually contain rules that only make sense in the de�ning module.

4 Tools to measure code quality

4.1 QualityGate

For the de�nition of software quality we refer to the ISO/IEC 9126 standard [18]
and its successor the ISO/IEC 25000 [19], which de�nes six high-level character-
istics that determine the product quality of software: functionality, reliability,
usability, e�ciency, portability, and maintainability. There is another related
standard, the ISO/IEC 14764 that describes the quality of the maintenance
process (for example, maintenance planning, execution and control, evaluation).
The proposed metrics address process quality, while we wanted to study product
metrics particularly as our analyzed projects already had a well-de�ned release
and maintenance cycle [31].

Due to its direct impact on development costs [8], and being in close rela-
tion with the source code, maintainability is one of the most important quality
characteristics.

To calculate the absolute maintainability values for every revision of the sys-
tem we used the Columbus Quality Model, a probabilistic software quality model
that is based on the quality characteristics de�ned by the ISO/IEC 25000 [19]
standard. The computation of the high-level quality characteristics is based on
a directed acyclic graph (see Figure 3) whose nodes correspond to quality prop-
erties that can either be internal (low-level) or external (high-level). Internal
quality properties characterize the software product from an internal (devel-
oper) view and are usually calculated by using source code metrics. External
quality properties characterize the software product from an external (end user)
view and are usually aggregated somehow by using internal and other exter-
nal quality properties. The nodes representing internal quality properties are
called sensor nodes as they measure internal quality directly (light yellow nodes
in Figure 3). The other nodes are called aggregate nodes as they acquire their
measures through aggregation. In addition to the aggregate nodes de�ned by
the standard (i.e. Testability, Analyzability, Changeability, Stability, Reusabil-
ity, Modi�ability) we also introduce new ones (i.e. Complexity, Fault proneness,
Comprehensibility, Documentation).

For the Python version of the model we used for the analysis of OpenStack
before and after the refactorings, the following source code metrics apply:

� LLOC (Logical Lines Of Code) � the LLOC metric is the number of non-
comment and non-empty lines of code.

� NOA (Number Of Ancestors) � NOA is the number of classes that a given
class directly or indirectly inherits from.



Gábor Antal, Alex Szarka, Péter Heged¶s

Fig. 3. Attribute Dependency Graph of Columbus Quality Model

� NLE (Nesting Level Else-if) � NLE for a method is the maximum of the
control structure depth. Only if, for, and while instructions are taken
into account and in the if-elif-else constructs only the if instruction is
considered.

� CBO (Coupling Between Object classes) � a class is coupled to another if
the class uses any method or attribute of the other class or directly inherits
from it. CBO is the number of coupled classes.

� CC (Clone Coverage) � clone coverage is a real value between 0 and 1 that
expresses what amount of the item is covered by code duplication.

� LCOM5 (Lack of Cohesion On Methods) � the value of the metric is the
number of local methods that share at least one common attribute, call an
abstract method or invoke each other, not counting constructors, getters, or
setters.

� NUMPAR (NUMber of PARameters) � the number of parameters of the
methods.

� McCC (McCabe's Cyclomatic Complexity) � the number of decisions within
the speci�ed method plus 1, where each if, for, while counts once and each
try block with N catch counts N+1.

� CLOC (Comment Lines of Code) � for a method/class/package, CLOC is
the number of comment and documentation code lines of the method/class/-
package, excluding its anonymous and local classes/nested, anonymous, and
local classes/subpackages respectively.

� CD (Comment Density) � ratio of the comment lines of the method/class/-
package (CLOC) to the sum of its comment (CLOC) and logical lines of code
(LLOC).

� Critical rule violations � Critical issues found by the Pylint tool8 in the code
that can cause bugs and unintended behaviour.

8https://www.pylint.org/

https://www.pylint.org/


A Hands-on OpenStack Code Refactoring Experience Report

� Major rule violations � Major issues found by the Pylint tool in the code
that can cause e.g. performance issues.

� Minor rule violations � Minor issues found by the Pylint tool in the code
that e.g. decrease the code readability.

The edges of the graph represent dependencies between an internal and an
external or two external properties. The aim is to evaluate all the external quality
properties by performing an aggregation along the edges of the graph, called
Attribute Dependency Graph (ADG). We calculate a so called goodness value
(from the [0,1] interval) for each node in the ADG that expresses how good or bad
(1 is the best) the system is regarding that quality attribute. The probabilistic
statistical aggregation algorithm uses a so-called benchmark as the basis of the
quali�cation, which is a source code metric repository database with 100 open
source and industrial software systems.

For further details about Columbus Quality Model [7], see work by Bakota et
al. They also showed that there was a converse exponential relationship between
the maintainability of a software system and the overall cost of development [8],
supported by an empirical validation. The QualityGate SourceAudit tool by
Bakota et al. [6] is based on this quality model.

4.2 SonarQube

SonarQube is an open-source static analyzer for continuous inspection of code
quality. It is written in Java and it can work with more than 20 programming
languages, including Python. It has a user-friendly web front-end where one can
read the analysis reports and inspect the source code. SonarQube is able to
detect various code smells, violation of coding standards, code duplications, test
coverage, and security issues. SonarQube also measures some software metrics,
and helps the developers with advices. On the web front-end, developers can see
several �gures, tables that helps the understanding of the system.

It also integrates a high-level quality indicator called �Technical debt�. Techi-
nal debt shows how many person days of e�ort would be needed to �x all of
the found problems. The technical debt module in SonarQube is based on the
SQALE model [22]. We used SonarQube for an initial investigation of the source
code in order to �nd bad smells, which we can refactor.

We have created an own SonarQube server9, which analyzes some of the core
modules to help others in �nding issues for refactoring. Along with this we have
added a quality improvement plan [2]. Since then, our quality improvement plan
is available in the o�cial contribution guide [3].

5 Methodology
A schematic overview of our process can be seen in Figure 4. First of all, we
selected two of the OpenStack modules where we wanted to work on and create
refactorings. We wanted to do refactoring on an mature, bigger module, and also
on a smaller, younger one to see if that matters in the case of refactoring. We
selected Nova and Watcher to work on. Nova is the oldest project in OpenStack

9http://openqa.sed.hu

http://openqa.sed.hu


Gábor Antal, Alex Szarka, Péter Heged¶s

Create
refactoring
patches

Review process

Mining data from
Git QualityGate analysis Collecting results

Merging and
transforming 

data

Fig. 4. Overview of the process

that is responsible for the resource management. Watcher is a younger module,
which is responsible for resource optimization in multi-tenant OpenStack clouds.
Nova has 362480 lines of code, Watcher has 43866 lines of code.

We used three sources of oracles to decide where to refactor: static an-
alyzers (results of both SonarQube and QualityGate), issue tracking system
(maybe there are already detected bad smells), and manual code investigation
(we searched for bad smells, code snippets which can be simpli�ed).

We have managed to merge 47 patches in the two modules: 22 patches were
merged into Nova, 25 patches were merged to Watcher, all of them contain
refactoring to a speci�c issues, like removing code duplication, replacing orders
when catching exceptions, using more speci�c assert methods in tests, �xing
indentation, reducing code complexity. All details of the changes can be found
in our online appendix.10

Sometimes our proposed patches got merged quickly, and sometimes we had
to modify them several times before core members approved them. After our
patches got merged, we did some data mining from GitHub.

It is obvious that if we want to examine the e�ect of a refactoring, we have to
analyze both the version of the source code before refactoring and after refactor-
ing. To achieve this, we collected the hashes (the unique identi�er of a commit in
Git) of our patches and we also collected the hash of the commit before the refac-
toring along with other data (date, commit message). The data mining script is
also available in our online appendix.10

Once we �nished mining, we did the analysis with QualityGate (Section 4.1)
based on the list collected from the GitHub repository. We analyzed the patches
pairwise, we used the commit before the refactoring as an initial state, and then
we analyzed the commit after the refactoring. Analyzing all of the commits which
were on the list took hours.

After �nishing the analysis, we had to collect all the data from QualityGate.
QualityGate stores its quali�cation data in a database, which we had to query
in order to get the raw data. Then, the collected raw data had to be transformed
into a more readable form where we can investigate all of the quality indicators
de�ned in Section 4.1 and compute the e�ect of a refactoring. Furthermore, we
needed some other data from the mined Git repository, so we combined all of
the collected data into a big table. All of the combined data is available in our
online appendix.10

10http://www.inf.u-szeged.hu/~antal/pub/2018-iccsa-openstack-

refactoring/

http://www.inf.u-szeged.hu/~antal/pub/2018-iccsa-openstack-refactoring/
http://www.inf.u-szeged.hu/~antal/pub/2018-iccsa-openstack-refactoring/


A Hands-on OpenStack Code Refactoring Experience Report

6 Results

6.1 Overall change of maintainability

The e�ect of our submitted refactorings on the code quality can be seen in Fig-
ure 5 and Figure 6. In these �gures, blue lines represent the succeeding commits
(before and after a refactoring), and between the pairs we used dashed gray lines.
The y-axis shows the value of Maintainability as shown in Figure 3, the x-axis
shows the number of analyzed versions.

Fig. 5. Maintainability change of Nova

Fig. 6. Maintainability change of Watcher

As it can been seen, most of the time refactorings made undetectable changes
in the quality of the whole system. We consider this to be normal as the systems
had lots of lines of code, thus small changes have very small impact on the
module as a whole. However, in some cases QualityGate showed a change in the
software's quality. Out of the 47 patches, signi�cant change could be detected
only in 8 cases � 7 out of 25 in Watcher, which is the smaller project, and 1 out
of 22 case in Nova, which is the bigger project. The detected changes and impact
on Maintainability can be seen in Figure 7. The changes of aggregated quality



Gábor Antal, Alex Szarka, Péter Heged¶s

nodes and sensor nodes can be seen in Table 1 and 2, where negative numbers
represents increased quality (the node had a better quality after refactoring; we
subtracted the value of the quality indicator after the refactoring from the value
before refactoring).

Fig. 7. Maintainability changes on patches which had any impact on quality

The signi�cant patches caused increasing the software's Maintainability in 4
cases; decreasing the quality in 3 cases; and caused zero change in 1 case. The
aggregate quality-indicator nodes Analyzability, Stability and Testability show
increase in 5 out of 8 cases. It is also an interesting fact that the goodness of
Documentation were decreased in all a�ected patches. All the analysis result
data can be found in our online appendix.

Table 1. Changes in the aggregated quality nodes

(
N
)
o
v
a
/
(
W
)
a
t
c
h
e
r

A
n
a
ly
z
a
b
il
it
y

C
h
a
n
g
e
a
b
il
it
y

C
o
d
e
C
o
m
p
le
x
it
y

C
o
m
p
r
e
h
e
n
s
ib
il
it
y

D
o
c
u
m
e
n
t
a
t
io
n

C
o
d
e
F
a
u
lt
P
r
o
n
e
n
e
s
s

C
r
it
ic
a
l
r
u
le

v
io
la
t
io
n
s

M
a
jo
r
r
u
le

v
io
la
t
io
n
s

M
in
o
r
r
u
le

v
io
la
t
io
n
s

M
o
d
i�
a
b
il
it
y

S
t
a
b
il
it
y

T
e
s
t
a
b
il
it
y

M
a
in
t
a
in
a
b
il
it
y

N -0.00049 -0.00043 -0.00060 -0.000630 0 0 0 0 -0.00028 -0.00025 -0.00070 -0.00046
W -0.000150.00002 0.00049 -0.000480 -0.00085 -0.001430 0 -0.00019 -0.00055 -0.00067 -0.00029
W -0.00062 -0.00046 -0.00111 -0.000140.00125 -0.000570 -0.00143 -0.00143 -0.00022 -0.00005 -0.00070 -0.00049
W0.00104 0.00075 0.00321 -0.000060.00079 -0.00128 -0.00143 -0.001430 0 -0.00088 -0.000470.00030
W -0.000330.00055 -0.00066 -0.000100.00069 -0.000150 0 -0.001430.00058 0.00095 -0.000380
W0.00066 0 0 0 0 0.00341 0.00571 0 0 0.00053 0.00145 0.00069 0.00061
W0.00019 0.00017 0.00033 0.00015 0 0 0 0 0 0.00010 0.00006 0.00017 0.00015
W -0.00014 -0.000120 -0.000350 0 0 0 0 -0.00010 -0.00014 -0.00038 -0.00018

Table 2. Changes in the sensor nodes quality

CC CD CLOC LLOC McCC NLE NUMPAR

Nova 0 0 0 -0.00143 0 -0.00143 0

Watcher 0 0 0 -0.00286 -0.00143 0 0.00429

Watcher 0 0 0.00286 0 -0.00143 -0.00143 0

Watcher -0.00143 0.00143 0 -0.00714 -0.00143 0.00571 0.00571

Watcher 0.00286 0 0.00143 0 0 0 -0.00286

Watcher 0 0 0 0 0 0 0

Watcher 0 0 0 0 0 0 0.00143

Watcher 0 0 0 -0.00143 0 0 0



A Hands-on OpenStack Code Refactoring Experience Report

6.2 Quality degradation

The de�nition of refactoring implies that refactoring a code will increase the
quality of the source code. Nonetheless, the Maintainability of the project de-
creased in 3 cases, which is almost 40% of all the cases. We investigated these
cases to �nd out the reason of decrease.

First, we investigated the patch titled �Reduced the complexity of the

execute() method�.11 In this patch, we split a large method that had a high
cyclomatic complexity. We introduced 5 more methods, which impacted the
quality; we improved the sensor nodes McCC, LLOC, CC, and improved the
aggregated nodes CodeFaultProneness, Stability, Testability, Critical rule vio-
lations. Quality value of Analyzability, Changeability, and NUMPAR has de-
creased. These changes are consistent with the introduction of new methods. In
overall, the number of methods has grown, which means that there are more
methods in the code after the refactoring, there are more connections between
them, so inspecting the connections between the code is harder than before.

The second patch that caused decreasing Maintainability is titled �Missing
super() in API collection controllers�. 12 In this case, we placed missing con-
structor calls to the base class. Before the refactoring, there were no connection
between super and base class, which is obviously bad. After placing the super
call, the connection between the base and child class is created which a�ects the
quality in the wrong way by increasing coupling.

The third patch which decreased quality is titled �Removed duplicated

function prepare_service()�. 13 This patch contained merging of two meth-
ods since they were almost exactly the same. We needed only one copy of the
merged method, thus the other occurrence was deleted. Since the �le contained
only the deleted method, we got rid of the �le entirely. Deleting the �le caused
the decrease in the quality as the deleted �le was simple, contained only one
method, which was also a small one.

On average, one small refactoring did an improvement of 0.00000852 inMain-
tainability (measured in the scale of [0,1]), which might not look that much, but
refactoring the project regularly can cause a big quality improvement in the long
term.

7 Threats to Validity

There is no exact de�nition for the quality of the source code expressed by
a number. The QualityGate and SonarQube tools and the underlying Colum-
busQM and SQALE technical debt models are only two of several approaches,
with their own advantages and drawbacks. However, both are well-founded, sta-
ble, widely adapted models relied upon by industrial and research communities
as well. Although we treat this as an external threat, we argue that the bias in
their measurement has a limited impact on the presented results.

11https://github.com/openstack/watcher/commit/a2750c7
12https://github.com/openstack/watcher/commit/67455c6
13https://github.com/openstack/watcher/commit/f0b58f8

https://github.com/openstack/watcher/commit/a2750c7
https://github.com/openstack/watcher/commit/67455c6
https://github.com/openstack/watcher/commit/f0b58f8


Gábor Antal, Alex Szarka, Péter Heged¶s

The sample set of refactorings we examined is quite small. Only a small team
worked on producing these patches, thus the generalization of the results is a
real threat. However, the refactoring work was carried out during years, thus
despite the small number of developers, quite a high amount of e�ort has been
put into it. This mitigates the threat.

We contributed only to the fraction of the OpenStack modules from which
analyzed 2 altogether. It might happen that di�erent modules show di�erent
results as there are more than 35 modules, thus for the complete generalization
of our study, we plan to extend the number of analyzed modules.

It might also happen that the patches we've created are not refactoring
patches. This threat can be mitigated as we followed the guidelines of both
Refactoring [16] and Clean Code [23]. Another possible threat is that our patches
contain poor refactorings that are not really �ts into the open-source world. This
is mitigated by the fact that at least 2 core members approved our patches before
merge. Typically there were at least 5-6 reviewers who reviewed our patches.

8 Conclusions and Future Work

In this study, we investigated 47 refactoring patches in two projects from the
worlds leading open source cloud operating system, OpenStack. We analyzed
Nova and Watcher modules to �nd some quality issues which can be �xed. On
these problematic parts, we applied various refactoring techniques, e.g. splitting
a large method into numerous, smaller methods. The applied refactorings were
analyzed in order to investigate whether refactoring really improves code main-
tainability. We used QualityGate to do the analysis, then results were collected,
transformed and analyzed. During the �nal state of our research, we found out
that one particular refactoring is often immensely small (i.e. often a�ects only
a few lines). Out of 47 patches, only 8 produced measurable change in the code
quality. The average improvement of all the patches were really small, but it
was clearly an improvement and not degradation. Hence, refactoring the code
regularly can improve the maintainability of the code in the mid and long-term.

Besides the measurable metrics the human factor is also very important. We
got many comments 14,15,16 to our proposed patches that refactoring is always
welcome and it is a nice thing that someone pays attention to code quality. In
the future, we would like to extend this research by analyzing more patches on
many more projects to generalize our results.

Acknowledgment

The project has been supported by the UNKP-17-4 New National Excellence
Program of the Ministry of Human Capacities, Hungary.

The authors would also like to express their gratitude to Gergely Ladányi
and Béla Vancsics for providing technical support in QualityGate analysis and
OpenStack contribution as well as to Balázs Gibizer from Ericsson Hungary for
his valuable guidance in the OpenStack development.

14https://review.openstack.org/349582/
15https://review.openstack.org/247560
16https://review.openstack.org/263343/

https://review.openstack.org/349582/
https://review.openstack.org/247560
https://review.openstack.org/263343/


A Hands-on OpenStack Code Refactoring Experience Report

References

1. OpenStack Docs: hacking: OpenStack Hacking Guideline Enforcement. https://
docs.openstack.org/hacking/latest/user/hacking.html

2. User talk: OpenStack Quality Improvement Plan. https://wiki.openstack.org/
wiki/User_talk:P%C3%A9ter_Heged%C5%B1s

3. How To Contribute � OpenStack. https://wiki.openstack.org/wiki/How_To_
Contribute (2018), [Online; accessed 09-April-2018]

4. OpenStack Docs: Modules List. https://docs.openstack.org/puppet-

openstack-guide/latest/contributor/module-list.html (2018), [Online;
accessed 09-April-2018]

5. Advani, D., Hassoun, Y., Counsell, S.: Extracting refactoring trends from
open-source software and a possible solution to the 'related refactor-
ing' conundrum. In: Proceedings of the 2006 ACM Symposium on Ap-
plied Computing. pp. 1713�1720. SAC '06, ACM, New York, NY, USA
(2006). https://doi.org/10.1145/1141277.1141685, http://doi.acm.org/10.1145/
1141277.1141685

6. Bakota, T., Heged¶s, P., Siket, I., Ladányi, G., Ferenc, R.: Qualitygate sourceaudit:
a tool for assessing the technical quality of software. In: Proceedings of the CSMR-
WCRE Software Evolution Week. pp. 440�445. IEEE Computer Society (2014)

7. Bakota, T., Heged¶s, P., Körtvélyesi, P., Ferenc, R., Gyimóthy, T.: A probabilistic
software quality model. In: Proceedings of the 27th International Conference on
Software Maintenance (ICSM). pp. 243�252. IEEE Computer Society (2011)

8. Bakota, T., Heged¶s, P., Ladányi, G., Körtvélyesi, P., Ferenc, R., Gyimóthy, T.: A
cost model based on software maintainability. In: Proceedings of the 28th Interna-
tional Conference on Software Maintenance (ICSM). pp. 316�325. IEEE Computer
Society (2012)

9. Baset, S.A., Tang, C., Tak, B.C., Wang, L.: Dissecting open source cloud evolution:
An openstack case study. In: HotCloud (2013)

10. Demeyer, S.: Refactor conditionals into polymorphism: what's the performance
cost of introducing virtual calls? In: Proceedings of the 21st IEEE International
Conference on Software Maintenance, 2005. ICSM'05. pp. 627�630. IEEE (2005)

11. Du Bois, B., Demeyer, S., Verelst, J.: Refactoring-improving coupling and cohe-
sion of existing code. In: Proceedings of the 11th Working Conference on Reverse
Engineering. pp. 144�151. IEEE (2004)

12. Du Bois, B., Mens, T.: Describing the impact of refactoring on internal program
quality. In: Proceedings of the International Workshop on Evolution of Large-scale
Industrial Software Applications. pp. 37�48 (2003)

13. Erl, T., Puttini, R., Mahmood, Z.: Cloud Computing: Concepts, Technology &
Architecture. Prentice Hall Press, Upper Saddle River, NJ, USA, 1st edn. (2013)

14. Ubuntu Cloud: OpenStack Wins, Eucalyptus Loses. http://talkincloud.com/
ubuntu-cloud-openstack-wins-eucalyptus-loses

15. Fit�eld, T.: Introduction to OpenStack. Linux J. 2013(235) (Nov 2013), http:
//dl.acm.org/citation.cfm?id=2555789.2555793

16. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc. (1999)

17. Heged¶s, P., Kádár, I., Ferenc, R., Gyimóthy, T.: Empirical evaluation of software
maintainability based on a manually validated refactoring dataset. Information
and Software Technology (Nov 2017). https://doi.org/10.1016/j.infsof.2017.11.012,
http://www.sciencedirect.com/science/article/pii/S0950584916303561, ac-
cepted, to appear.

https://docs.openstack.org/hacking/latest/user/hacking.html
https://docs.openstack.org/hacking/latest/user/hacking.html
https://wiki.openstack.org/wiki/User_talk:P%C3%A9ter_Heged%C5%B1s
https://wiki.openstack.org/wiki/User_talk:P%C3%A9ter_Heged%C5%B1s
https://wiki.openstack.org/wiki/How_To_Contribute
https://wiki.openstack.org/wiki/How_To_Contribute
https://docs.openstack.org/puppet-openstack-guide/latest/contributor/module-list.html
https://docs.openstack.org/puppet-openstack-guide/latest/contributor/module-list.html
https://doi.org/10.1145/1141277.1141685
http://doi.acm.org/10.1145/1141277.1141685
http://doi.acm.org/10.1145/1141277.1141685
http://talkincloud.com/ubuntu-cloud-openstack-wins-eucalyptus-loses
http://talkincloud.com/ubuntu-cloud-openstack-wins-eucalyptus-loses
http://dl.acm.org/citation.cfm?id=2555789.2555793
http://dl.acm.org/citation.cfm?id=2555789.2555793
https://doi.org/10.1016/j.infsof.2017.11.012
http://www.sciencedirect.com/science/article/pii/S0950584916303561


Gábor Antal, Alex Szarka, Péter Heged¶s

18. ISO/IEC: ISO/IEC 9126. Software Engineering � Product quality 6.5. ISO/IEC
(2001)

19. ISO/IEC: ISO/IEC 25000:2005. Software Engineering � Software product Quality
Requirements and Evaluation (SQuaRE) � Guide to SQuaRE. ISO/IEC (2005)

20. Kemerer, C.F., Paulk, M.C.: The impact of design and code reviews on software
quality: An empirical study based on psp data. IEEE transactions on software
engineering 35(4), 534�550 (2009)

21. Kim, M., Gee, M., Loh, A., Rachatasumrit, N.: Ref-Finder: a Refactoring Re-
construction Tool Based on Logic Query Templates. In: Proceedings of the 18th
ACM SIGSOFT international symposium on Foundations of software engineering
(FSE'10). pp. 371�372 (2010)

22. Letouzey, J.L.: The SQALE Method for Evaluating Technical Debt. In: Third
International Workshop on Managing Technical Debt (MTD). pp. 31�36. IEEE
(Jun 2012). https://doi.org/10.1109/MTD.2012.6225997

23. Martin, R.C.: Clean code: a handbook of agile software craftsmanship. Pearson
Education (2009)

24. McIntosh, S., Kamei, Y., Adams, B., Hassan, A.E.: An empirical study of the
impact of modern code review practices on software quality. Empirical Software
Engineering 21(5), 2146�2189 (Oct 2016)

25. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Transactions on
Software Engineering 30(2), 126�139 (2004)

26. Mirkalaei, M., Pooya, S.: API Failures in Openstack Cloud Environments. Ph.D.
thesis, École Polytechnique de Montréal (2017)

27. Musavi, P., Adams, B., Khomh, F.: Experience report: An empirical study of api
failures in openstack cloud environments. In: Software Reliability Engineering (IS-
SRE), 2016 IEEE 27th International Symposium on. pp. 424�434. IEEE (2016)

28. Opdyke, W.F.: Refactoring object-oriented frameworks. Ph.D. thesis, University
of Illinois (1992)

29. The OpenStack Foundation. https://www.openstack.org/foundation
30. OpenStack Releases. https://releases.openstack.org/
31. OpenStack Release models. https://releases.openstack.org/reference/

release_models.html
32. Ubuntu Cloud Infrastructure. https://help.ubuntu.com/community/

UbuntuCloudInfrastructure
33. OpenStack. https://en.wikipedia.org/wiki/OpenStack
34. Sahraoui, H.A., Godin, R., Miceli, T.: Can metrics help to bridge the gap be-

tween the improvement of oo design quality and its automation? In: Proceedings
of International Conference on Software Maintenance. pp. 154�162. IEEE (2000)

35. Simon, F., Steinbruckner, F., Lewerentz, C.: Metrics based refactoring. In: Pro-
ceedings of the Fifth European Conference on Software Maintenance and Reengi-
neering. pp. 30�38. IEEE (2001)

36. Slipetskyy, R.: Security issues in OpenStack. Master's thesis, Institutt for
telematikk (2011)

37. Stroulia, E., Kapoor, R.: Metrics of refactoring-based development: An experience
report. In: OOIS 2001, pp. 113�122. Springer (2001)

38. Sz®ke, G., Antal, G., Nagy, C., Ferenc, R., Gyimóthy, T.: Empirical study
on refactoring large-scale industrial systems and its e�ects on maintain-
ability. Journal of Systems and Software 129(C), 107�126 (Jul 2017).
https://doi.org/10.1016/j.jss.2016.08.071, http://www.sciencedirect.com/

science/article/pii/S0164121216301558?via%3Dihub

https://doi.org/10.1109/MTD.2012.6225997
https://www.openstack.org/foundation
https://releases.openstack.org/
https://releases.openstack.org/reference/release_models.html
https://releases.openstack.org/reference/release_models.html
https://help.ubuntu.com/community/UbuntuCloudInfrastructure
https://help.ubuntu.com/community/UbuntuCloudInfrastructure
https://en.wikipedia.org/wiki/OpenStack
https://doi.org/10.1016/j.jss.2016.08.071
http://www.sciencedirect.com/science/article/pii/S0164121216301558?via%3Dihub
http://www.sciencedirect.com/science/article/pii/S0164121216301558?via%3Dihub

	A Hands-on OpenStack Code Refactoring Experience Report

