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Abstract: Lipids participate in amyloid precursor protein (APP) trafficking and processing ‒ important 
factors in the initiation of Alzheimer’s disease (AD) pathogenesis and influence the formation of neuro-
toxic β-amyloid (Aβ) peptides. An important risk factor, the presence of ApoE4 protein in AD brain 
cells binds the lipids to AD. In addition, lipid signaling pathways have a crucial role in the cellular 
homeostasis and depend on specific protein-lipid interactions. The current review focuses on pathologi-
cal alterations of membrane lipids (cholesterol, glycerophospholipids, sphingolipids) and lipid metabo-
lism in AD and provides insight in the current understanding of biological membranes, their lipid struc-
tures and functions, as well as their role as potential therapeutic targets. Novel methods for studying the 
membrane structure and lipid composition will be reviewed in a broad sense whereas the use of lipid 
biomarkers for early diagnosis of AD will be shortly summarized. Interactions of Aβ peptides with the 
cell membrane and different subcellular organelles are reviewed. Next, the details of the most important 
lipid signaling pathways, including the role of the plasma membrane as stress sensor and its therapeutic 
applications are given. 4-hydroxy-2-nonenal may play a special role in the initiation of the pathogenesis 
of AD and thus the “calpain-cathepsin hypothesis” of AD is also highlighted. Finally, the most impor-
tant lipid dietary factors and their possible use and efficacy in the prevention of AD are discussed. 

Keywords: Lipids, membranes, Alzheimer’s disease, lipids in Aβ aggregation, lipid-protein interactions, 4-hydroxy-2- nonenal, 
ApoE, membrane lipid therapy, lipid dietary factors. 

1. INTRODUCTION 

In the central nervous system (CNS) of several neurode-
generative diseases (NDDs) misfolded, toxic protein aggre-
gates (amyloids) are accumulating. These protein assemblies 
have no physiological functions. The neurons are the most 
vulnerable cells of the CNS [1]. The presence of the toxic 
protein assemblies indicates the serious disturbance of pro-
tein homeostasis in the CNS. Different cell types may pos-
sess big differences in the effectivity of the proteostasis net-
work [2]. Although the mechanism of the special vulnerabil-
ity of neurons is not well understood, very probably the dys-
function of the proteostasis process plays a key role in neu-
ronal death [3].  

Alzheimer’s disease (AD) is the most common form of 
dementia starting with synaptic dysfunction and decrease of  
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dendritic spines [4]. Many cellular processes show dysfunc-
tion in AD brain cells (energy metabolism in mitochondria, 
protein folding in endoplasmic reticulum (ER), etc [5]. Ac-
cording to the oldest and widely accepted hypothesis of AD, 
the accumulation of an aggregation-prone polypeptide, the 
toxic β-amyloid (Aβ) assemblies may initiate the toxic cellu-
lar processes [6]. The formation of Aβ aggregates starts 
within the cells in a very early stage of the disease [7]. Both 
the intra- and extracellular Aβ may be neurotoxic. AD is a 
heterogeneous disease with several different subtypes [8].  

Amyloid precursor protein (APP) has two main process-
ing pathways: 1) the non-amyloidogenic pathway (90%) 
involving α-secretase and 2) the amyloidogenic pathway 
(10%), which generates Aβ peptides through the sequential 
proteolytic cleavage by β-secretase (BACE) and γ-secretase 
(Fig. 1). The non-amyloidogenic cleavage of APP is running 
in the plasma membrane [9], the amyloidogenic cleavage 
occurs intracellularly [10]. The main cleavage products of 
the amyloidogenic pathway are 40 and 42 amino acid pep-
tides (Aβ1-40 and Aβ1-42). Recent analytical studies dem-
onstrated the presence of longer (Aβ1-43), and shorter frag-
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ments (Aβ1-38, Aβ1-34) as well as tri-, tetra-, penta- and 
hexapeptides after stepwise successive processing of the 
polypeptide chain [11-13]. 

Tau is another aggregation-prone protein playing a role 
in AD pathogenesis [14]. A direct interaction of Aβ and hy-
perphosphorylated tau (pTau) has been shown; however, the 
pathological role is unknown. Although they are intercon-
nected, the appearance of intracellular Aβ precedes the pres-
ence of pTau in cells. 

A Alzheimer found “adipose inclusions” or “lipoid gran-
ules” in AD-brain tissues; this was the third hallmark of the 
disease besides amyloid plaques and neurofibrillary tangles 
[15]. Recent findings demonstrate that brain lipids and lipid 
membranes play an important role in the proteolytic cleavage 
of APP to Aβ peptides and their aggregation to toxic Aβ as-
semblies. Membrane lipids participate in the lethal patho-
physiological pathways leading to neuronal death from the 
beginning. The cholesterol content of the membrane rafts 
affects the amyloidogenic processing of APP and, in the next 
step, cholesterol and the ganglioside GM1 may initiate the 
formation of toxic Aβ oligomers. Changes in cholesterol 
metabolism and trafficking (related to late AD susceptible 
genes) may result in a decrease of Aβ clearance and initiate 
AD [16]. 

These findings demonstrate that both protein- and lipid-
homeostasis in the brain play a role in the pathophysiological 
processes leading to AD. 

Brain lipids consist of three main classes that are present 
in roughly equimolar amount: glycerophospholipids (GPs), 
sphingolipids, and cholesterol. Alterations in the lipid ho-
meostasis may be involved in the pathomechanism of AD 
[17]. Changing of lipid composition in raft structures (Sec-
tion 2.2.) and microenvironments occurs in AD [18]. Ac-
cording to a novel hypothesis (“membrane aging”), the func-
tional and structural alterations of membranes represent the 
initial pathogenic factor for AD [19]. Genetic evidence also 
indicates the importance of lipids in AD pathomechanism. 

Human genome-wide association studies (GWAS) of late 
onset AD patients show that a lot of AD risk genes (APOE, 
ABCA1, ABCA7, SORL1, PICALM, BIN1) and their gene 
products are involved in lipid metabolism and transport [16, 
20]. For revealing the pathomechanism of AD, it is neces-
sary to understand the structure and role of biological mem-
branes which is the actual place where the proteolytic cleav-
age of APP to Aβ and formation of toxic Aβ assemblies oc-
cur. 

2. MEMBRANE STRUCTURE, MEMBRANE LIPIDS, 
MEMBRANE MICRODOMAINS 

Biological membranes form selective barriers that consti-
tute the boundary of the cell as well as of subcellular organ-
elles. The functions of the membranes depend both on par-
ticular membrane proteins and lipid composition, as well as 
their interactions defining the formation of membrane nanos-
tructures [21, 22]. The knowledge of membrane structure 
and function provides a solid basis for understanding the 
pathophysiological pathways of AD and similar diseases. 

2.1. The Basic Structure of Biomembranes 

The lipid bilayer structure of the cell membrane was al-
ready proposed in 1925. The fluid mosaic membrane model 
(F-MMM) was the first hypothesis that took into account the 
mobility of membrane components and their dynamics [23]. 
This model described biomembranes as fluid bilayers of 
phospholipids with mobile integral membrane proteins and 
glycoproteins that were intercalated into the lipid bilayer. 
This model depicted the dynamic changes of the membrane 
structure and the continuous mobility of its components: 
lipids and integral and peripheral membrane proteins (Fig. 
2). 

Although the original F-MMM is still valid, certain 
modifications of the original model have been performed 
[22, 24, 25]. According to our present knowledge, biomem-
branes have a high density of transmembrane proteins. Sev-

 
Fig. (1). Schematic representation of APP with the two main proteolytic pathways and the processing products. 

Brigi
Kiemelés
A. Alzheimer

Brigi
Öntapadó jegyzet
Please insert "in 1907"



The Role of Lipids and Membranes in the Pathogenesis of Alzheimer's Disease Current Alzheimer Research, 2018, Vol. 15, No. 00    3 

eral proteins bind to the membrane occasionally, localized 
both in the cytosol and in the membrane. The mobility of cell 
membrane components can be restricted by association to 
cellular active fibers or indirectly to microtubular structures. 
Membranes show lateral heterogeneity in which special mi-
crodomains (“patches”) may be formed with diameters be-
tween 10 to 200 nm in size around integral membrane pro-
teins and glycoproteins which are enriched in certain specific 
lipid clusters, the so-called membrane rafts [26]. As each cell 
compartment has a specific lipid profile, the lipid composi-
tion of different organelles is different. Lipid organization is 
tightly regulated and probably evolutionarily conserved. Ta-
ble 1 shows the major lipid classes and their role in the brain. 
Table 1. Major lipid classes and their role in the brain. 

Lipids Functions 

Cholesterol Precursor of lipid mediators and hormones, 
major component of cellular membranes, 
crucial role in the formation of lipid rafts. 

Glycerophospholipids Precursors of lipid mediators, important com-
ponent of neural membranes for stabilizing 
structural integrity; participation in oxidative 
stress and neuroinflammation. 

Sphingolipids Crucial role in structural integrity in neural 
membranes, precursors of lipid mediators, 
formation of lipid rafts, participation in oxida-
tive stress and neuroinflammation. 

2.2. Lipid Rafts 

Biological membranes are “a meeting point for lipids, 
proteins and therapies” [27]. Membranes are composed of 
dynamic lipid and protein clusters referred to as microdo-
mains. Although the amino acid sequence determines the 
membrane topology of proteins, the composition of these 
microdomains - anionic phospholipids, cholesterol, sphin-
gomyelin, and membrane fluidity (see Section 7.2) - as well 
as post-translational modifications (e.g. phosphorylation, 
acylation) also play an important role in the topology [28]. 
During the last 20 years, a special type of lipid domains, the 

lipid raft has been in the center of interest. Rafts are small 
(10-200 nm), short-lived (~ 100 msec), membrane microdo-
mains with special physiological functions. Rafts are en-
riched in cholesterol and sphingolipid content. Lipid rafts are 
concentrating platforms for essential cell-signaling receptors 
and can influence intracellular signaling. Receptor activation 
by ligands may occur in the rafts and the signaling complex 
is protected from non-raft enzymes, such as phospholipid 
phosphatases (PLPP) [29]. Caveolae, special membrane in-
vaginations with particular lipid and protein composition, are 
formed by the polymerization of caveolins and participate in 
the endocytosis of different proteins (e.g. albumin) and in 
signal transduction. Lipid rafts participate in the pathophysi-
ology of degenerative diseases, such as atherosclerosis [30]. 

3. METHODS FOR STUDYING THE MEMBRANE 
STRUCTURE, LIPID LEVEL AND COMPOSITION, 
AND AΒ-MEMBRANE INTERACTIONS 

As key pathogenic molecules of AD (Aβ-peptides, tau 
proteins) interact with membranes [31, 32], there is a need 
for advanced techniques to examine membranes in the pres-
ence of these toxic molecules. Moreover, as constituents of 
the membrane (e.g. sphingolipids such as the ganglioside 
GM1 as well as cholesterol) can also control the cytotoxicity 
of AD related molecules, a determination of lipid composi-
tion is essential [33]. Lipid changes in blood plasma might 
be applied as a diagnostic tool for AD (section 4.5). 

Focusing first on experimental analytical techniques, 
NMR is one of the most commonly used tools to determine 
the changes in membrane structure induced by the presence 
of toxic peptides. Solid-state deuterium and phosphorus-31 
NMR measurements were applied in combination with selec-
tively deuterated lipid molecules in the presence of Aβ-
peptide by Terzy at al. [34]. Although electron spin reso-
nance (ESR) is not a frequent technique, it was still used in 
certain cases in combination with circular dichroism (CD) 
measurements [35]. Obviously, CD was applied primarily to 
examine the secondary structure elements of the interacting 
toxic peptide. However, in most cases, the combination of 
different techniques is necessary to have a detailed insight 
into the lipid-membrane complexes. For example, Lashuel et 
al. used the combination of electron microscopy, CD, NMR 

 
Fig. (2). The simplified structure of biomembranes according to the fluid-mosaic membrane model. 
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and multi-angle light scattering (MALS) experiments to de-
termine the structure of toxic tau/phospholipid oligomeric 
complexes [32]. 

Mass-spectrometric (MS) methods are very popular to 
determine the lipid contents of different tissues and bodily 
fluids. An outstanding summary of MS methods applied in 
lipidomics can be found in [36]. Nowadays, the two most 
common techniques are used to analyze lipids, namely MS-
based analysis with direct infusion, called the "shotgun" 
method, and liquid chromatography coupled to mass spec-
trometry (LC-MS). The main advantages of the application 
of hyphenated techniques compared to direct infusion meth-
ods are their ability to reduce signal suppression and to dis-
tinguish lipid isomers. However, the shotgun technique pro-
vides higher throughput and avoids difficulties with abnor-
mal chromatographic behaviors of given lipid species. Re-
cently, matrix-­‐assisted laser desorption/ionization (MALDI) 
mass spectrometry imaging has become a tool of choice for 
the analysis of endogenous lipids in AD related lipidomics 
studies (see Table 1 in [37]). Overall, lipidomics methods 
enable to follow the rapid changes of lipids in pathological 
processes.  

Concerning microscopic techniques, transmission elec-
tron microscopy (TEM) have been used continuously in 
membrane structure investigations since the 1950s. In the 
last decade [38], up-to-date X-ray scattering microscopic 
techniques (SAXS, WAXS) also gained more ground. Fi-
nally, atomic force microscopy (AFM) as another scanning 
techniques can also help to clarify the structural background 
of lipid-membrane interaction and how it depends on mem-
brane composition [39]. 

Recently, Brameshuber and co-workers presented a spe-
cial photobleaching method using fluorescent marker pro-
teins that allowed the direct imaging of rafts in the live cell 
plasma membrane [40].  

Although all these methods can reach high-level resolu-
tion, it is very difficult to ensure exact circumstances in ex-
periments owing to the continuously changing structure of 
Aβ oligomers. Therefore, a more advanced picture can be 
reached with the help of computational simulations regard-
ing Aβ-membrane interactions. Because of the enormous 
progress in hardware and software development, all-atom 
explicit molecular dynamics (MD) simulations can provide 
valuable information about the Aβ monomer/oligomer-
membrane system.  

MD simulation software such as Gromacs [41], NAMD, 
Amber [42] or Desmond [43] are capable of considering 
many types of lipid components such as different glycero-
phospholipids sphingomyelin, or cholesterol. Currently de-
veloped atomistic force fields (FF) can model lipid bilayers 
in good agreement with experimental results. The widely 
used FF have been GROMOS96 53A6, l CHARMMc36 
[44], OPLS-AA or Lipid14 [45] in these calculations, and 
the starting membrane-protein complexes can be built via 
CHARMM-GUI [46] or VMD membrane builder [47]. It is 
important to know that while CHARMM and GROMOS 
force fields contain all type of lipid components, the avail-
able lipid components within LIPID14 or OPLS force fields 
are much more limited. If the principal aim is to build a 

complex membrane system, the CHARMM or GROMOS 
force fields is a reasonable choice in combination with the 
application of the GROMACS package. However, it should 
be remembered that these simulations are not trivial MD 
calculations because there are no automated system prepara-
tion methods; therefore more experimental results are 
needed. Finally, we would like to mention that although all 
these MD packages are very well optimized concerning the 
graphics processor usage, the Amber or Desmond code re-
quire considerably less processor power. Therefore, the us-
age of these latter codes in a single workstation or small 
cluster with many graphics processor cards but with limited 
processor cores is a good choice. 

Interestingly, recent computational experiments focusing 
on Aβ/membrane complexes calculated that the pores of the 
Aβ channel structures can modify the water and ion flux 
across the membrane [42, 48]. Another study simulated how 
the membrane rafts can affect the binding and dimerization 
of Aβ peptides [43]. Also, MD simulation shows that choles-
terol has a protective effect on the dipalmitoyl phosphatidyl 
choline bilayer structure against bilayer thinning caused by 
Aβ binding [49]. 

4. THE ROLE OF LIPIDS AND LIPID MEMBRANES 
IN AD  

4.1. Alteration of Lipids in AD 

Dysregulation of lipids and lipid-mediated signaling 
pathways has been found in several NDDs such as AD, the 
recent results have been widely reviewed by G. Di Paolo and 
T-W. Kim [50].  
4.1.1. Cholesterol 

The human brain contains 23% of the body’s total cho-
lesterol. Both neurons and astrocytes are capable to produce 
cholesterol. However, strong evidence showed that a large 
pool of cholesterol in the brain is produced by astrocytes 
(and microglia) that is delivered to neurons via lipoproteins 
[51]. The strict regulation of cholesterol production is crucial 
for cerebral cholesterol homeostasis. Thus, cholesterol is 
removed from the brain by enzymatic conversion to 24S-
hydroxycholesterol, which readily crosses the blood-brain 
barrier (BBB) [52].  

The association between plasma/serum cholesterol and 
AD is not clear. High plasma cholesterol levels might be a 
risk factor for AD [53]. The hypothesis that cholesterol is a 
direct causative factor in AD has been debated [54]. Also, 
the use of statins for the treatment of AD has been ineffec-
tive [55]. Thus, there is conflicting epidemiological data in 
the literature: besides the above mentioned negative associa-
tion [55], the high cholesterol level as a direct causative fac-
tor of AD was also reported [56]. Cholesterol may partici-
pate in the formation of toxic Aβ assemblies (section 4.4). 
These discrepancies of the results are likely due to different 
study design, age of participants, etc. 
4.1.2. Fatty Acids and Oxylipins 

The harmonious development of the brain, the neuronal 
plasticity, and cognitive performance is conditioned by sev-
eral lipid nutrients. Essential fatty acids represent one of the 
most important groups. Polyunsaturated fatty acids (PUFAs) 
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such as linoleic acid (18:2, ω-3), linolenic acid (18:3 ω-3), 
arachidonic acid (20:4 ω-6) and docosahexaenoic acid 
(DHA, 22:6, ω-3) are the most important PUFAs in the 
brain. In fact, DHA accounts for 8% of the brains dry 
weight. The endogenous DHA synthesis is limited in the 
human brain, however, DHA enters the human brain across 
the BBB [10, 57]. DHA rapidly incorporates into phosphol-
ipids and increases membrane fluidity [58]. DHA is very 
sensitive to lipid-peroxidation during AD pathogenesis. It 
was found that the DHA content is reduced in the plasma 
and certain brain regions of AD patients. In addition, epide-
miological analyses found that the dietary intake of DHA 
reduced the risk of AD (section 8.2) [59].  

Other PUFAs are also very susceptible to reactive oxy-
gens species (ROS) and lipid peroxidation. Oxylipins are 
formed in these oxidative reactions. Oxylipins (oxidized 
lipid mediators) are an important family of bioactive lipid 
metabolites, which are synthesized by the regulated oxida-
tion of PUFA- precursors, mainly from arachidonic acid 
(ARA), DHA, eicosapentaenoic acid and dihomo-γ-linolenic 
acid. In the first step, PUFAs are generated by phospholipase 
A2 cleavage of phospholipids. Then PUFAs are metabolized 
to oxylipins through one non-enzymatic and three main en-
zymatic pathways, such as cyclooxygenase (formation of 
prostaglandins and thromboxanes), lipoxygenase (formation 
of leukotrienes and resolvins) and cytochrome P450 (forma-
tion of epoxides) pathways [60-62]. Considering the high 
amount of peroxidizable PUFAs, the brain is thus very sensi-
tive for oxidative imbalance. Hence, oxidative stress might 
play a role in the pathogenesis of AD. The metabolites 
formed by oxidation may serve as biomarkers (section 4.5) 
[63, 64]. Indeed, numerous studies reported elevated levels 
of F2-isoprostane species, such as F4-neuroprostanes (F4-
NPs) and F2 isoprostanes (F2-IsoPs) in cerebrospinal fluid 
(CSF) and brain tissue from AD patients. Also, increased 
levels of 8,12-iso-iPF2a-VI were found in brain, CSF, 
plasma and urine samples of AD patients [64]. Another study 
found increased levels of 4-hydroxy-2-nonenal (HNE) and 
malondialdehyde (MDA) in AD brains [65]. Oxylipins such 
as HNE and 4-hydroxy-hexenal increase Aβ level via in-
creased gene expression of β- and γ-secretase and addition-
ally by a direct action on β-secretase activity. Unfortunately, 
already 1% of oxidized DHA products (oxylipins, see fur-
ther) reverts the inhibitory effect of DHA on Aβ production 
[66]. DHA should be protected from oxidation in nutritional 

approaches (Section 8.2.). Furman et.al demonstrated that 
the concentration of hydroxy-eicosanoid (HETE) species 
was elevated in AD frontal cortex, although, the level of 
more complex oxidation products of ARA was not changed 
significantly [67]. 
4.1.3. Glycero- and Sphingolipids 

Phospholipids form cellular membranes and are involved 
in the activity of membrane proteins, receptors, enzymes, 
and ion channels both intracellularly and at the cell surfaces. 
There are structurally different classes of phospholipids. 
Glycerophospholipids are represented by phosphatidylinosi-
tol (PI), phosphatidylserine (PS), phosphatidylethanolamine 
(PE), phosphatidyl-choline (PC), as well as plasmalogens, 
such as ethanolamine plasmalogene (PPE). The big family of 
sphingolipids also includes the gangliosides with very com-
plex structure. The chemical structure of the ganglioside 
GM1 is shown in Fig. (3). 

Phospholipid composition of the different brain areas is 
different. Sensitive techniques, (e.g. mass spectrometry im-
aging, section 3) enable more precise, regional distribution 
profile of the brain phospholipid content [68]. GWAS inves-
tigations indicated that membrane phospholipid changes may 
be at the center of AD pathogenesis. Bioinformatic analyses 
demonstrated that genetic loci, relevant to late onset AD are 
implicated to lipid metabolism [6]. These AD-risk genes 
include, at a minimum, APOEε4, ABCA7, TREM2, and 
PLCG2. Analysis of the function of these genes hints to their 
role in AD pathogenesis. ABCA7 is a phospholipid trans-
porter whereas TREM2 is a phospholipid receptor. PLCG2 
itself is a phospholipase enzyme whereas ApoE is one of the 
most important phospholipid transporters. According to the 
newest hypothesis of Hardy: as the proteins (codified by 
these genes) are involved in the clearance of membrane 
damage around amyloid plaques, the liberation of membrane 
phospholipids might be the key event in AD pathogenesis 
[6]. 

Brain phospholipid changes occur both in aging and dur-
ing the pathogenic processes of AD, (extensively reviewed 
in [69]). In fact, the concentration of most lipids decreases 
after the age of 50 year in the human brain. PI, PE, and PC 
levels decrease slowly with age. In contrast, PPE brain levels 
decrease by 18% till the age of 70 and 29% till the age of 
100. There are significant changes in phospholipid brain 

 
Fig. (3). Schematic drawing of the structure of the ganglioside GM1. 
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level of AD patients (decreased PI, PE and PPE levels) [70]. 
Deficiency of PPE both in white and grey matter is charac-
teristic in AD [71]. 

Besides these changes, alteration in the brain sphin-
golipid levels also occurs during AD. Cell and animal studies 
suggest that sphingolipids contribute to AD pathology. Ce-
ramide, the main precursor of sphingolipid metabolism, is 
increased in the cortical regions of AD brains. Sphingolipids 
(ceramides, sphingomyelins and sulfatides) are elevated in 
CSF of AD pathology. Elevated blood ceramide levels pre-
dict cognitive impairment and prodromal AD as well as 
memory decline [72]. Bioactive sphingolipids play critical 
roles in major cell biologic responses. This role emphasizes 
the importance of sphingolipid metabolism to several NDDs. 
Sphingolipids are the main factors of neurodevelopment and 
neurodegeneration in AD and traumatic brain injury [73]. A 
special group of sphingolipids, the complex gangliosides, are 
critical players in AD. It has been long known that defects of 
sphingolipid catabolism cause severe lysosomal dysfunction 
[74]. Aβ activates sphingomyelinase and thus increases ce-
ramide and decreases sphingomyelin levels [75]. Sulfatide is 
the most affected sphingolipid species as it is depleted up to 
58% in white and 93% in the grey matter very early in AD 
brain [76]. The changes in sphingolipid metabolism in AD is 
thoroughly reviewed in [77]. Sphingolipids are important 
structural components (one-third of the content of cell mem-
branes is sphingolipid), and their metabolites are second 
messengers, modulating intracellular signaling [72]. 

4.2. Lipid Regulation of the Amyloidogenic Processing of 
APP 

Although APP is a typical transmembrane protein of the 
plasma membrane, it can also translocate into the subcellular 
compartments. In steady state, APP is predominantly a Golgi 
localized protein. APP transport is highly dynamic involving 
transport in secretory and endocytic compartments. The 
amyloidogenic processing may occur in the early endosomes 
[86], lysosomes [80], as well as the mitochondria-associated 
membrane (MAM) [78, 79] where APP and β- and γ-
secretases are co-localized [80]. The lipid composition of 
membranes influences the APP-processing pathways. Cho-
lesterol depletion inhibits the generation of Aβ in hippocam-
pal neurons [81]. Low cholesterol levels of membranes acti-
vate the non-amyloidogenic pathway by affecting the α-
secretase ADAM10. Recent studies demonstrated that sim-
vastatin (a known drug for inhibiting cholesterol biosynthe-
sis) strongly reduced the levels of Aβ1-40 and 1-42 [82]. The 
fine details of the role of cholesterol in the amyloidogenic 
processing of APP were studied by [83]. Lovastatin-
regulated cholesterol depletion inhibits β-cleavage by alter-
ing APP processing. β-Secretase is located in cholesterol-
rich membrane rafts, the place for the amyloidogenic cleav-
age of APP. Within the cholesterol-poor membranes, the α-
secretase hydrolyses APP and the subsequent cleavage by γ-
secretase results in non-amyloid peptides. 

The activity of ApoE protein links the cholesterol me-
tabolism to AD. GWASs showed that the activity of 
APOEε4 alleles increases the risk of late onset AD. The 
ApoE protein has 3 isoforms (ApoE2, ApoE3, ApoE4) dif-
fering only in a single amino acid at residues 112 and/or 158. 

ApoE proteins play a major role in both intra- as inter-
cellular transport of cholesterol and other lipids. ApoE4 pro-
tein is associated with higher, whereas ApoE2 and ApoE3 
are associated with lower cholesterol levels. As a conse-
quence, different isoforms have different effects on choles-
terol transport and metabolism. The ApoE isoforms have 
different lipidation states and stability against degradation in 
the brain [84]. In neurons, ApoE proteins participate in the 
regulation of lipid metabolism, intracellular cholesterol 
transport and esterification as well as lipid efflux, in an iso-
form-specific manner [85]. As these transport proteins may 
be involved in the receptor-mediated endocytosis of APP 
(and other lipoproteins) in the brain, ApoE isoforms have a 
very complex role in the pathogenesis of AD. This endocyto-
sis may result in the amyloidogenic processing of APP in 
early endosomes [86]. Recent studies linked ApoE with vas-
cular function, microglia activation and neuroinflammation 
[87]. 

4.3. APP and Cleavage Peptides Regulate Lipid Metabo-
lism – a Bidirectional Link Between APP and Lipids 

There is a mutual interdependence between APP process-
ing and lipid biosynthesis. The enzymatic cleavage of APP is 
strongly influenced by the lipid environment and the choles-
terol content of membranes [10]. Inversely, the regulation of 
lipid metabolism is the physiological function of APP and 
some APP cleavage products. The APP is a regulator of cho-
lesterol biosynthesis: full-length APP [88] and the APP C-
terminal fragment [89] could interfere with cholesterol me-
tabolism and transport. The flexible transmembrane domain 
of APP binds directly to cholesterol [90]. The cleavage 
product Aβ directly affects cholesterol synthesis and trans-
port [91]. Aβ may also decrease cholesterol biosynthesis by 
inhibiting the enzyme HMG CoA reductase [92]. Aβ also 
affects the activity of sphingomyelinase thereby providing a 
link to the metabolism of sphingolipids [93]. Aβ peptides can 
modulate or interfere with the normal (lipid binding and 
transporting) function of ApoE [94]. The intracellular APP-
domain (AICD) may act as a transcription factor to suppress 
production of the cholesterol transporter protein LRP1 [95]. 
AICD plays an important role in regulating lipid homeosta-
sis. The complex bidirectional link between lipids and APP 
processing and APP-derived peptides in AD has been widely 
reviewed very recently [10]. 

4.4. Formation of Toxic Oligomeric Aβ and pTau Assem-
blies with Protein-Lipid Interactions 

According to the amyloid hypothesis, the conversion of 
soluble, nontoxic Aβ to toxic β-structured Aβ assemblies is 
the key step in the initiation of AD. Increasing evidence in-
dicates that Aβ-cell membrane interaction is a primary step 
in AD [96]. Aβ production and aggregation occur with inter-
action by membrane lipid rafts. As the composition of lipid 
membranes is changing during aging and in AD pathogene-
sis, this change may trigger the formation of toxic Aβ oli-
gomers [97]. The presence of membrane cholesterol influ-
ences membrane fluidity and that leads to different aggrega-
tion pathways and Aβ-assemblies [98]. Several studies dem-
onstrated that both GM1 and cholesterol are important fac-
tors determining Aβ aggregation in membrane environment. 
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Aβ peptides in the lipid raft region [99] preferentially bind to 
the ganglioside GM1 and cholesterol [100]. GM1 gangli-
oside tightly binds Aβ and this specific structure may act as a 
seed for the initiation of the formation of toxic Aβ assem-
blies [101]. Aβ may recognize cholesterol-dependent clusters 
of GM1-containing liposomes [102]. Although the fine de-
tails of the ganglioside GM1-Aβ interaction are unknown, 
the involvement of GM1 in Aβ aggregation was demon-
strated [103]. 

Free cholesterol content in brain neurons increases the 
amount of intracellular Aβ-peptides. Cholesterol-rich lipid 
rafts may catalyze the conversion of monomeric Aβ-peptide 
to neurotoxic oligomers [104]. Aβ oligomers isolated from 
AD patients are found to be associated with the lipid micro-
domain in a cholesterol-dependent manner. A wide variety 
of biophysically and biochemically distinct Aβ-oligomer 
subtypes, the so-called different Aβ “strains” may parallelly 
exist [105]. Depletion of cholesterol was found to reduce Aβ 
aggregation to toxic oligomers. According to several ex-
periments, cholesterol plays a critical role in the internaliza-
tion of Aβ-peptides [104]. A cholesterol-binding domain 
within Aβ peptides was identified [100]. Very recently it was 
demonstrated that cholesterol, bound to lipid membranes, 
promoted Aβ aggregation by enhancing the primary nuclea-
tion rate by up to 20-fold [106]. This catalytic process might 
be the link between impaired cholesterol homeostatis and 
AD.  

To summarize, the cholesterol-lipid raft/APP-Aβ interac-
tions are very complex and need further studies. During ag-
ing, the cholesterol content of the cellular membranes is de-
creasing and that favors the translocation of APP and intra-
cellular APP-processing to Aβ [107]. 

In the brain of AD patients, the microtubule-associated 
protein tau is found in various assemblies, including soluble 
oligomers and insoluble β-structured fibrils, the paired heli-
cal filaments (PHFs) [14]. Tau is an aggregation-prone pro-
tein and forms very easily β-structures. Interactions of tau in 
the suitable environment of membranes could provide oli-
gomerization and aggregation into PHF-s [108]. Tau inter-
acts with membranes and micelles and these interactions 
modulate the fibrillation pathway [109]. Promoting tau ag-
gregation is a suicidal process for the membranes: fibrilliza-
tion and PHF formation lead to disruption of membranes 
[32]. PHFs contain also cholesterol, PC, and sphingolipids 
[110]. Tau-membrane interactions and PHF formation may 
play a pathological role in AD. 

4.5. Lipids as Biomarkers of AD 

As lipid perturbations are involved in AD pathology, lip-
ids are potential biomarkers for AD. Although the lipidome 
has unprecedented complexity, lipid changes could be used 
as prognostic-, susceptibility- and monitoring biomarkers in 
AD. As such, these markers may serve for identification of 
AD patients at risk for developing mild cognitive impairment 
(MCI) or transition from MCI state to AD. The early diagno-
sis and stratifying MCI and AD subjects to different cohorts 
would be crucial for patient recruitment. Several types of 
biomarkers for AD diagnosis (noninvasive imaging, cerebro-
spinal fluid biomarkers, genetic biomarkers, etc.) have been 
 

used, but they are time consuming, invasive, or expensive. 
Blood based biomarkers (proteins, lipids) have many advan-
tages (blood extraction is easy, both time and cost efficiency; 
repeated sampling). Detecting brain-related alterations in 
blood lipid profiles may give biologically relevant peripheral 
signals of AD progression [111]. 

During the last seven years, a lot of studies were per-
formed for finding reliable blood biomarkers using lipidom-
ics techniques. An interesting trial measured the lipid levels 
of plasma of demented patients and identified an altered 
sphingolipidome using shotgun methods [112]. Another 
study investigated the level of plasma sphingomyelins and 
found association with the cognitive decline in AD [72]. 
Mapstone et al. described and validated a set of ten plasma 
metabolite-lipids that predicted the development of MCI or 
AD with over 90% accuracy [113]. This biomarker panel 
reflects cell membrane integrity and might be sensitive to 
early neurodegeneration of prodromal AD. The proposed 
panel of lipid metabolites may distinguish between subjects 
who would progress to a MCI/AD or maintain cognitive ca-
pacities within 2 to 3 years. 

The change of plasma levels of long-chain PUFA (such 
as, DHA) for the diagnosis of brain atrophy and cognitive 
decline was also measured [114]. In another study, hexa-
cosanoic acid (C26:0) was identified as a blood lipid marker 
of dementia [115]. It was also demonstrated that long chain 
cholesteryl esters in the plasma were associated with AD 
[116]. A comprehensive lipidome analysis resulted in a lipid 
panel consisting of a combination of 24 molecules that was 
used as biomarkers in AD with 70% accuracy [116]. Plasma 
sphingolipids could be diagnostic and/or prognostic bio-
markers for AD [72]. Recent studies demonstrated that CSF-
sphingolipids are elevated in AD patients and may indicate 
disease severity. Elevated blood ceramide levels hints to 
cognitive impairment and development of AD among cogni-
tively normal individuals. A recent study analyzed plasma 
lipidome changes in individuals having an autosomal-
dominant (PS1) AD-mutation. PPE 34:2 and PPE 36:4 corre-
lated with CSF tau as well as with amyloid load [117]. Fur-
ther experiments confirmed the disturbance of sphingolipid 
metabolism in early phase of AD [118] and proved the rela-
tion between brain and blood sphingolipids and AD pathol-
ogy. According to Varma et al. sphingolipids may be used in 
the future for early detection of AD. Very recently Zarrouk 
et al. widely reviewed the lipid biomarkers of AD and found 
that the presence of very long chain fatty acids may indicate 
peroxisomal dysfunction in AD and suggest new targets in 
AD drug research [119].  

Taken together, accurate blood-based lipid biomarkers 
could constitute simple AD-diagnostic tools in the future.  

5. TOXIC EFFECT OF AΒ AGGREGATES ON SUB-
CELLULAR ORGANELLES 

Aβ-membrane interactions may play an important role in 
neuronal damage in AD. Hence, Aβ-membrane interactions 
provide therapeutic targets [120]. Since large fibrillary amy-
loid aggregates bind to the cell surface, toxic Aβ assemblies 
induce morphological changes in mammal cells and affect 
neuronal cells elasticity [39].  
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In the pathogenesis of AD, mitochondria are central 
players. Mitochondrial dysfunction is an early feature of AD. 
Several evidence suggest that APP and Aβ accumulates in 
mitochondrial membranes causing structural and functional 
damage that prevents the normal function of neurons [121, 
122]. Aβ oligomers induce a massive Ca2+-influx into neu-
rons and promote mitochondrial Ca2+-overload [123]. Aβ 
induces mitochondrial permeability transition, the release of 
cytochrome-c, and apoptotic cell death. Increased spatial 
association of Aβ with mitochondria is linked with reduced 
mitochondrial respiration [124]. Both extra- and intracellular 
Aβ are able to transport into the mitochondria via a receptor-
dependent pathway through the translocase of outer mem-
brane (TOM40) machinery or through direct endoplasmic 
reticulum (ER)-mitochondria transfer [125, 126]. The mito-
toxicity induced by Aβ is still not clear but includes numer-
ous mechanisms. Mitochondrial Aβ decreases cytochrome 
oxidase activity [122] and interacts with mitochondrial ma-
trix protein cyclophilin D [127, 128]. Aβ binds to the mem-
bers of the dehydrogenase enzyme family. For example, 
binding of Aβ to alcohol dehydrogenase (ABAD) directly 
affects mitochondrial respiratory enzyme activity inhibiting 
complex IV and triggers mitochondrial membrane perme-
ability by transition pore opening. The interaction between 
mitochondrial enzymes and Aβ was widely reviewed [129]. 
In summary, Aβ disrupts mitochondria as the energy power-
house of neurons, decreases ATP generation, and increases 
mitochondrial ROS production [130]. Aβ damages the mito-
chondrial structure, increases the production of defective 
mitochondria, and decreases mitochondrial trafficking [121].  

Beside mitochondria, the functions of the ER are dam-
aged by Aβ. Disruption of ER architecture is deleterious for 
normal cell physiology. Chronic activation of the unfolded 
protein response (UPR) might lead to apoptotic cell death. 
Increased levels of intracellular Aβ induces mild ER-stress 
and UPR [131] and may trigger apoptosis [132], however, 
this process requires functional mitochondria owing to the 
ER-mitochondria crosstalk. Aβ-triggered ER stress promoted 
cholesterol synthesis and mitochondrial cholesterol influx in 
an AD mouse model [133]. It was observed that oligomeric 
Aβ42 decreased ER Ca2+-levels resulting in intracellular 
Ca2+-dyshomeostasis [134]. It was also found that low mo-
lecular weight Aβ (soluble oligomers) decreased the stability 
of the microtubular (MT) (tubulin-containing) structures that 
direct the movement of these organelles and as such dis-
rupted the anchoring between ER and MT [135]. Also, Aβ 
caused neurovascular dysfunction by inducing ER-stress in 
brain endothelial cells [136]. Aβ-dependent dysregulation of 
cellular Ca2+ homeostasis is the result of activation of IP3 
receptor and Ca2+-release from the ER [137]. 

6. OXIDATIVE STRESS, LIPID PEROXIDATION 
AND 4-HYDROXY-2-NONENAL IN AD. THE “CAL-
PAIN-CATHEPSIN” HYPOTHESIS. 

6.1. Protective Stress Signaling Pathways Activated by 
Electrophiles 

As highly reactive by products of aerobic respiration, re-
active oxygen species such as superoxide anions (O2

-), hy-
drogen peroxide (H2O2), and hydroxide radicals (OH-) can 
damage lipids, proteins, or DNA; a process called oxidative 

stress. However, the current oxidative stress paradigm needs 
reappraisal as the biological action of reactive species is not 
corroborated by experimental data [138]. Nowadays, these 
reactive species are also recognised as signaling mediators 
which are produced and inactivated in a regular manner in a 
process called redox signaling [139]. Hence, the “redox biol-
ogy paradigm” was suggested in which antioxidants control 
cell signaling and metabolism [138]. The major physiologi-
cal second messengers that modulate the pre-existing redox 
networks include nitric oxide, hydrogen peroxide, and elec-
trophiles. Next to being abundant diet constituents, electro-
philic lipids (HNE, oxononenal, acrolein, cyclopentenone-
structured prostaglandins, and PC-derived aldehydes) are 
also produced through enzymatic and non-enzymatic lipid 
peroxidation. As discussed below, electrophile-modulated 
signaling pathways can be exploited for novel therapeutic 
interventions in major neurodegenerative disorders, includ-
ing AD.  

Under conditions of extensive formation of reactive oxy-
gen and nitrogen species (ROS and RNS), unsaturated fatty 
acids undergo radical reactions resulting in a variety of bio-
logically active electrophilic species. Ultimately, moderate 
exposure to these electrophilic products evokes protective 
cell signaling responses such as the Keap1-Nrf2 (Kelch-like 
ECH-associated protein – nuclear factor E2-related factor) 
pathway, the heat shock response pathway (HSR), and the 
UPR pathway (UPR, Fig. 4). 

The Keap1-Nrf2 pathway regulates cellular responses to 
oxidative and electrophilic stress [140-142]. Under basal 
conditions, the redox-sensitive Keap1 tethers Nrf2, resulting 
in its ubiquitin- and cullin-3-dependent proteasomal degrada-
tion. During electrophilic stress, Keap1 cannot longer assist 
in Nrf2 ubiquitination, which leads to Nrf2 stabilisation. 
Keap1 has a total of 27 thiol residues in human which are 
adducted in a reactive electrophile pressure-dependent pat-
tern [143, 144]. Hence, the “cysteine code” postulates that 
each electrophile covalently modifies specific cysteines of a 
given group of proteins [145]. Target genes of Nrf2 include 
xenobiotic metabolizing enzymes (e.g. glutathione S-
transferases and NAD(P)H:quinone oxidoreductase-1), anti-
oxidant enzymes (e.g. haem oxygenase1), enzymes involved 
in glutathione metabolism (e.g. glutamate cysteine ligase), 
and recycling, and proteasomal and chaperone proteins [142, 
146, 147]. 

In addition to the Keap1-Nrf2 pathway, electrophiles also 
activate the heat shock response (HSR) [148]. Although how 
precisely electrophiles induce HSR is yet undefined, both 
Hsp70 and Hsp90 are modified by HNE [149]. Most likely, 
this binding disrupts the pre-existing HSF1-Hsp70-Hsp90 
complex, which represses HSF1 under normal conditions 
[150]. 

Interestingly, recently it was reported that Nrf2 is acti-
vated by heat shock through increased Hsp90 and Keap1 
interaction and subsequent dissociation of the Cul3-Keap1-
Nrf2 complex suggesting that the two pathways interact 
[151]. 

The UPR is also regulated by electrophiles [152]. UPR is 
induced through disturbances in ER proteostasis and modu-
lates transcription and translation in order to re-establish ER 
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homeostasis [153]. UPR consists of three distinct pathways 
depending on transmembrane signaling proteins: activating 
transcription factor-6 (ATF6), inositol requiring protein-1 
(IRE1), and PERK. Additionally, the chaperone BiP can 
form complexes with the signaling proteins [153]. Electro-
philic lipids including HNE, oxononenal, acrolein, cyclopen-
tenone prostaglandins, and phosphatidylcholine-derived al-
dehydes POVPC and PEIPC can all activate UPR [152, 154]. 
Although, it is still unclear how these electrophilic lipids 
regulate UPR, most likely they function through ER-resident 
chaperones [154-157]. Thus, modification of ER-resident 
chaperones disturbs proteostasis and activates UPR [158]. 

Interestingly, ER stress activates Nrf2 via direct PERK-
dependent phosphorylation of Nrf2 [159] whereas ATF4 is a 
Nrf2 target gene [160], suggesting overlap between the 
Keap1-Nrf2 and UPR pathways. 

6.2. The Calpain Cathepsin Hypothesis and the “Janus-
faced” HNE 

Autophagy is essential to maintain cellular homeostasis 
[161] and can be classified in three types [162]: (1) mac-
roautophagy-cytosolic organelles and/or macromolecules are 
engulfed by the autophagosome and delivered to the 
lysosome for degradation, (2) chaperone-mediated auto-
phagy – damaged, and aged proteins are recognised by 
Hsp70 and delivered to the lysosome through association 
with the lysosome-associated membrane protein type 2A 
(Lamp-2A), and (3) microautophagy – direct engulfment of 
cytoplasmic cargo by the lysosomal membrane [163-165]. 

Internal lysosomal membranes are characterized by 
bis(monoacylglycero) phosphate (BMP), an abundant 
lysosome-specific anionic phospholipid [166, 167]. BMP 
associates with acid sphingomyelinase and drives hydrolysis 
of sphingomyelin to ceramide [168-170]. Subsequently, ce-
ramide stabilizes lipid phases, [171, 172] and prevents 
lysosomal membrane rupture [173-175]. 

In chaperone-mediated autophagy, chaperone-bound mis-
folded proteins associate with Lamp-2A to form an oli-
gomeric Lamp-2A translocation complex [176]. Thus, chap-
erone-mediated autophagy substrates transfer to the lysoso-
mal lumen where they unfold and dissociate from the chap-
erones. Meanwhile, lysosomal-resident Hsp90 and he cyto-
solic pool of glial acidic fibrillary protein stabilizes Lamp-
2A [176]. Cytosolic proteins and organelles destined for 
autophagic degradation are delivered to lysosomes in com-
plex with Hsp70. 

This complex binds to Lamp-2A [177], upon which the 
substrate proteins are transferred to the lysosome for degra-
dation with the help of luminal Hsp70 [178]. Importantly, 
during this process, Hsp70 is not only crucial as a molecular 
chaperone but also stabilizes the outer lysosomal membrane 
[173, 179-181]. Several studies suggest that oxidative dam-
age, especially by linoleic- or arachidonic acid-derived HNE 
occurs in Alzheimer’s disease patients. For instance, elevated 
levels of HNE were measured in the brain tissue [182], ven-
tricular fluid [183], the amyloid component of senile plaques 
[184], and in the plasma of the Alzheimer patients [185]. In 
response to HNE, Hsp70 gets carbonylated at Arg469 [186], 
see (Fig. 5A) (see references in [187]). 

 
Fig. (4). Electrophile-induced stress signaling pathways. Heat shock response. Once activated, heat shock factors (HSFs) migrate to the nu-
cleus, and bind as a trimeric complex to heat shock elements resulting in enhanced expression levels, of among others, HSPs. Keap1-Nrf2 
pathway. During electrophile stress, Keap1 cannot deliver Nrf2 to the proteasome. Thus, Nrf2 migrates to the nucleus, where it binds to anti-
oxidant response elements to drive expression of specific genes. Posttranslational modification of Nrf2 by PKC, PERK, or MAPK enables 
Nrf2 to migrate to the nucleus without the help of Keap1. Unfolded protein response (UPR) ‒ deregulated ER proteostasis activates the dif-
ferent branches of the unfolded protein response. Ultimately, three different transcription factors are activated which drive the expression of 
unfolded protein response specific genes. (ARE: antioxidant responsive element) 
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The role of calpains in cell death has been demonstrated. 
Calpains ‒ cysteine proteases abundantly expressed in neu-
rons and implicated in multiple neurological functions ‒ are 
involved in APP processing, neurofibril increase, and neu-
ronal death in the anterior frontal lobes of the AD brain 
[188]. Among others, lysosomal membrane-associated 
Hsp70 was identified as a specific calpain substrate [189]. 
Cleavage of Hsp70 through calpain in parallel with HNE 
was demonstrated in the murine photoreceptor methyl-
nitrosourea-induced cell death model [190]. Hsp70 causes 
the formation of a ceramide layer on the lysosomal mem-
brane through activation of ASM. Thus, cleavage of Hsp70 
through calpain deregulates ASM resulting in enhanced lev-
els of sphingomyelin and decreased levels of ceramide at the 
lysosomal membrane [191, 192]. Ultimately, this results in 
lysosomal disruption and/or rupture in AD neurons and the 
release of lysosomal, hydrolytic cathepsin enzymes damage 
cellular proteins as well as the outer lysosomal membrane. In 
parallel, activated phospholipases degrade multiple types of 
cellular membranes. In addition, mitochondria are disrupted 
what results in the release of pro-apoptotic factors while 
hampering of the electron-transporting complexes causes 
H2O2 production [193]. Taken together, the ‘calpain–
cathepsin hypothesis’ postulates that calpain-mediated dis-
turbance of lysosomal membranes and subsequent cytoplas-
mic cathepsin release could represent a central cascade for 
degenerative neuronal cell death [187, 191, 194, 195]. 

However, HNE is a typical Janus-faced molecule, with 
both neurotoxic and neuroprotective effect. Neuroprotection 
is performed via Daxx (Death association protein 6), a tran-
scription repressor molecule (Fig. 5B). Daxx can negatively 
regulate the expression of stress responsive genes through an 
inhibitory interaction with HSF1 [196]. HNE-induced modi-

fication of Daxx results in its translocation to the cytoplasm 
[197-199]. As such, HNE-induced translocation of Daxx 
from the nucleus to the cytoplasm releases HSF1 and allows 
it to bind to its DNA recognition elements to drive expres-
sion of Hsps [198]. Thus, a Janus-faced model of HNE is 
proposed in which, at the one hand, HNE results in carbony-
lation-induced cleavage of Hsp70 while, at the other hand, 
HNE induces Hsp expression through nuclear export of 
Daxx and subsequent HSF1 activation (Fig. 5). 

7. PLASMA MEMBRANES AS STRESS SENSORS. 
THE THEORETICAL BACKGROUND OF MEM-
BRANE-LIPID THERAPY IN AD 

Cellular membranes are dynamic lipid-protein structures 
in which lipid rafts provide an interface for protein-lipid in-
teractions. The precise and timely localisation of specific 
signaling proteins into lipid rafts is governed by protein-lipid 
interactions. Specific membrane lipid-derived secondary 
messengers have pivotal roles in signaling cascades while 
rafts regulate the triggering of specific signaling pathways. 
One such membrane-originating signaling cascade is the 
stress response of which the fundamental principles will be 
described in this section. Finally, as changes in lipid compo-
sition are capable to alter signaling cascades that are related 
with neurodegenerative disorders including AD, membrane 
lipid therapy (MLT) will be discussed at the end of the chap-
ter as a potential therapeutic strategy. 

7.1. Membrane Sensor Hypothesis 

The key role of heat shock proteins (Hsps) in cellular 
quality control and disposal of toxic proteins in neuroprotec-
tion is recently reviewed [162, 200]. As chaperone mole-

 
Fig. (5). Janus-faced character of HNE. A. Stress-induced elevation in ROS causes in lipid peroxidation and HNE formation. HNE causes 
carbonylation of Hsp70 which results in calpain-induced Hsp70 cleavage. This results in tau aggregation and cathepsin release through 
lysosomal rupture, both of which lead to cellular apoptosis. B. HNE induces nuclear export of the HSF1 inhibitor Daxx resulting in HSF1 
activation. Enhanced Hsp70 expression levels might counteract lysosomal rupture and tau aggregation. (Daxx: Death associated protein 6) 
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cules, Hsps regulate correct folding of newly translated pro-
teins and are responsible for the degradation of unneeded 
proteins to preserve normal cellular protein homeostasis 
(“proteostasis”) [201]. By protecting and stabilizing mem-
branes [202, 203] as well as preventing apoptosis through 
inhibition of stress kinases [204] or the caspase cascade 
[205], Hsps maintain cell integrity. However, during cellular 
stress and in certain pathological conditions (typically in 
neurodegeneration), increased chaperone capacity to avoid 
conformational changes or aggregation of misfolded pro-
teins.  

Originally, the HSR was associated with protein denatu-
ration. However, in many circumstances, induction of Hsps 
happens without the occurrence of protein denaturation 
[206]. Hence, the “Membrane Sensor Hypothesis” predicts 
that Hsp levels can change as a result of temperature-induced 
plasma membrane alterations [207, 208], even during a fe-
ver-like mild heat shock [209]. Thus, heat stress is coupled 
with rapid changes in lipid metabolism and structural rear-
rangements of the plasma membrane which ultimately play a 
regulatory role in Hsp expression. The operation of the 
“Membrane Sensor Hypothesis” is apparently universal and 
verified from prokaryotes and plants to yeast and mammal-
ian cells [210, 211]. In yeast, elevated temperatures resulted 
in enhanced sphingolipid metabolism and accumulated 
phyto- and dihydroceramide [212]. In parallel, complex 
sphingolipids are hydrolysed what results in stress-induced 
ceramide formation [212].  

In mammalian cells, heat induces immediate membrane 
hyperfluidization which is quickly followed by changes in 
lipid composition [213] and hence membrane structural 
properties [40, 214-216]. As such, heat stress results in an 
immediate and specific reorganization of cholesterol-rich 
lipid rafts and an enhanced packing density of the lipids re-
siding in the plasma membrane [40, 214, 216]. Meanwhile, 
the level of saturated lipid species enhances through the ac-
tivity of phospholipase PLA2 and PLC. The activation of the 
PLC–diacylglycerol (DAG) lipase–monoacylglycerol 
(MAG) lipase pathway produces multiple lipid mediators 
among which the strong HS mediator ARA [217]. 

7.2. The Complex Signaling Network of Heat Stress and 
the Membrane Lipid Therapy 

The immediate activation of plasma membrane localised 
signaling cascades upon heat stress exposure was recently 
reviewed (see [207] and references therein). In this para-
graph, only a brief summary will be given. Enhanced plasma 
membrane fluidity activates calcium channels, such as TRPV 
channels, what results in a transient increase in the cytosolic 
Ca2+ concentration which in turn activates calmodulin kinase 
II (CaMKII), and cytosolic phospholipase A2 (cPLA2). In 
parallel, disturbance of membrane lipid environment and 
lipid rafts causes growth factor receptor activation in the 
absence of its ligand and triggers small GTPases (Rac1) re-
sulting in active PLC and MAPK. PLC activation results in a 
rapid fall in PIP2 and PIP levels and a consequent IP3 and 
DAG generation. Generation of DAG results in activation of 
PKC and the formation of ARA through the DAG- MAG 
lipase pathway. PKC activation result in activation of 
cPLA2. On its turn, PLA2 contributes to ARA production. 

ARA can be further metabolized to eicosanoids – well 
known HSR inducers. In parallel, GFR kinases activate PI3K 
which convert PIP2 to phosphatidylinositol-3,4,5-
triphosphate (PIP3) which trigger AKT and Rac1. AKT in-
hibits the glycogen synthase kinase-3 (GSK3) and activates 
mTOR, ultimately resulting in activation of HSF1. In paral-
lel, Rac1 activation has a regulatory role in the Hsp response. 
In addition, upon stress, sphingomyelin is hydrolysed to ce-
ramide or sphingosylphosphorylcholine by acid sphingomye-
linase or sphingomyelin deacylase, respectively. Ceramide 
can be deacylated to sphingosine by ceramidase or glycosy-
lated to glucosylceramide by glucosylceramide synthase. 
Sphingosine is subsequently phosphorylated to spingosine-1-
phosphate by sphingosine kinase 1 which ultimately triggers 
expression of Hsp through the activity of p38 MAPK and 
PI3K. The glucose group of glucosylceramide can be 
switched to cholesterol by glucosyltransferase to form cho-
lesteryl glucoside which activates Hsp expression.  

Ceramide-enriched membrane microdomains are formed 
through competition of enhanced levels of ceramide with 
existing pools of cholesterol for raft localisation. Sphingo-
sylphosphorylcholine triggers p38 MAPK signaling resulting 
in enhanced Hsp expression. Ultimately, an altered lipid 
composition of the rafts modulates its signaling characteris-
tics through changes of the raft proteome as such allowing 
the cell to cope with the implied stress [218].  

Changes in lipid composition are capable to alter signal-
ing cascades that are related with pathologies including dia-
betes, cancer, cardiovascular pathologies, or neurodegenera-
tive disorders. This concept was first introduced by Escriba 
and named “Membrane lipid therapy” [219]. MLT aims to 
modify the activity of pathology-specific signaling pathways 
through the pharmaceutical use of molecules able to alter the 
membrane lipid environment of lipid raft structures [208, 
218]. The MLT concept postulates that specific membrane 
lipids can be modified to change the structure or composition 
of the plasma membrane [208]. As such, the localisation 
and/or activity of specific proteins in lipid rafts could be af-
fected and ultimately modulate malfunctioning lipid signal-
ing cascades. Proteins localise to lipid rafts through specific 
protein-lipid interactions. This is influenced by specific lipid 
classes (PS, PI, PE, or DAG) or membrane lipid structures 
(lamellar-prone or HII-prone bilayers) which as such facili-
tate timely protein–protein interactions and their subsequent 
signaling outputs [220]. On the other hand, the interaction of 
proteins belonging to signaling cascades is determined by the 
membrane lipid structure. For example, environmental 
changes are sensed by lipid rafts or caveolae which subse-
quently regulate the stress response through their specific 
occurrence and distribution pattern [221, 222]. Otherwise, 
the pre-existing structure and order of particular membrane 
domains can be modulated through interaction with specific 
Hsps [202]. Thus, the heat-induced membrane lipid disor-
ganization is antagonized by this feed-back loop which pre-
serves, at least temporarily, the structural and functional in-
tegrity of the membrane during stressful conditions. As such, 
specific interactions between Hsps and specific lipids allow 
Hsps to be targeted to distinct membrane subdomains (rafts) 
known to be pivotal in multiple signaling pathways [208]. In 
fact, a “unifying theory” focusing on microdomains as vital 
players in a new model of gene regulation can be postulated 
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in which membrane physical state and microdomain struc-
ture are related to the regulation of Hsp expression, as well 
as to the feedback of specific Hsps in preserving/restoring 
the structural and/or functional properties of the membrane 
[206]. Thus, by affecting the membrane physical state, 
membrane-localised signaling pathways can be controlled 
with obvious widespread consequences in health and disease.  

A novel group of durgs, hydroximic acid derivatives in-
tercalate with biological membranes. These compounds are 
able to reduce the molecular order of specific membrane 
domains and to correct dysregulated expression of Hsps at 
the same time [215, 223]. These drugs have been used for 
the treatment of neurological and neuromuscular diseases, 
including amyotrophic lateral sclerosis [224], Huntington’s 
disease [225], and muscular dystrophy [226]. 

8. THERAPIES INVOLVING LIPIDS IN PREVEN-
TION AND TREATMENT OF AD  

8.1. Membrane Lipid Factors in AD 

Pharmaceutical or nutraceutical interventions are able to 
modulate the membrane lipid composition and would allow 
normalizing specific signals which were altered under certain 
(pathological) conditions. Natural or synthetic lipids could 
target the lipid composition of the overall plasma membrane, 
of the residing microdomains, or of the cellular organelles 
[227-229]. In fact, synthetic fatty acids designed to modulate 
the organization of membrane microdomains similar to their 
natural counterparts [230] were able to modulate interactions 
between specific proteins in membrane microdomains [231].   

Dietary lipids could be directly incorporated into cell 
membranes where they regulate the activity of membrane 
proteins. As heat-induced ceramide production correlates 
with specific Hsp induction in NIH WT-3T3 cells [232], the 
formation of ceramide-rafts may control stress signals across 
the plasma membrane. Both the exogenous ceramide ana-
logue C2-Cer and the increase of the endogenous intracellu-
lar ceramide induce the sHsp ab-crystallin, but not the struc-
turally related Hsp27 [233]. In isolated rat cerebral arteries, 
sphingosylphosphorylcholine activates Hsp27 via the p38 
MAPK pathway [234]. In cell cultures, sphingosine-1-
phosphate induces Hsp27 release via the p38 MAPK and 
PI3K/Akt pathways [235, 236]. Exogenous cholesteryl glu-
coside, which under HS is derived from cholesterol, rapidly 
activates HSF1 and initiates Hsp70 production in fibroblasts 
[237, 238]. These findings demonstrate the key role of lipids 
in fine tuning the expression of Hsp chaperones. Application 
of dietary or nutraceutical lipids may be beneficial in the 
treatment of several NDDs [222]. 

A recent new principle in biology, the xenohormesis pos-
tulates that environmentally stressed plants produce bioac-
tive compounds and these substances can increase stress re-
sistance and survival benefits to their consumers [239]. For 
example, plants exposed to cold shock synthesize higher 
amount of unsaturated fatty acids for increasing their mem-
brane fluidity by membrane stabilization [240]. As the hy-
perfluidization of mammalian cell membranes acts as a sig-
nal to initiate the heat shock protein response [216, 241], 
animal consumption of these less saturated fats lowers the 
animal's threshold for triggering the stress response and is 

associated with a less disease-prone state. Evidently, the 
positive impact of “healthy” plant and animal oils (e.g., olive 
oil and omega-3 fatty acids) on our well-being is well known 
[242, 243]. As another example, ingested of stress-induced 
plant-derived phenolic compounds – e.g. flavonoids (includ-
ing rutin, anthocyanidins) and nonflavonoids (including res-
veratrol, curcumin) – activate the mammalian stress re-
sponse, have antioxidant and anti-inflammatory effects, and 
might be used in the therapy of NDDs [244-247]. 

8.2. Lipid Dietary Therapies in AD 

From the early 1980s onwards, scientists began to study 
the role of nutrition in cognitive processes. For example, 
several studies (such as the Rotterdam study) demonstrated 
that the consumption of ω-3 fatty acid-rich fish enhanced 
cognitive performances in the elderly whereas the excess 
linoleic acid had the opposite effects [248]. In addition, sev-
eral epidemiological studies were performed in Norway, 
France, China, and the United States. In the Chinese- as well 
as in the Bergen-Oslo study it was found that the subjects 
consuming an average of more than 10g/day fish or seafood 
had significantly higher scores in psychometrics tests [249]. 
The Chinese study gave very similar results [250]. The re-
sults of the French study supported the hypothesis of a bene-
ficial effect of foods rich in ω-3 fatty acids in the prevention 
of cognitive decline [251]. In the American study the authors 
observed better cognition capacities, mainly in verbal mem-
ory, in people consuming one or more dark-meat fish (tuna, 
salmon, mackerel, etc.) [252]. 

A Swedish study from the Uppsala research group [253] 
found positive correlations between EPA and DHA dietary 
intake, overall cognition performances, and the grey matter 
volume measured by MRI. 

Many studies indicated that the absolute amount of ω-3 
fatty acids is in fact a less important marker than the ω-6 to 
ω-3 ratio. The “Trois Cités” (Bordeaux, Dijon, Montpellier) 
study showed that a high consumption of ω-6 fatty acid-rich 
oils increased the risk of dementia and even AD [254]. These 
results might be explained by the well-known metabolic 
competition between these two fatty acid series. Despite cer-
tain limitations, the cited research results suggest that a dose 
ranging from 1 to 2 gram of DHA per day can decrease cog-
nitive decline in healthy subjects and also in mild forms of 
dementia and prodromal AD [255]; but another study 
pointed out that this kind of slowdown effect failed when 
applied to elderly subjects [256]. 

The loss of memory and learning that accompanies Alz-
heimer’s disease correlates with a decline in DHA - the most 
abundant FA in neuronal membranes in the cerebral cortex 
grey matter [257] and the dietary intake of ω-3PUFA de-
creased the risk of AD [258]. A 4-months treatment with the 
synthetic 2-hydroxy-DHA (LP226A1, Lipopharma) in a 
mouse model of AD (5XFAD mice) resulted in increased 
neurogenesis and normal cognitive scores in a behavior test 
[229]. 

In some MCI patients, a progressive worsening of their 
cognitive functions is seen which might progress to AD. The 
DHA content of the AD brain is reduced [259], (Section 
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Table 2. Therapies involving lipids in prevention and treatment of AD. 

 Alleviating effects References 

Membrane lipid therapy   

Phosphatidylserine -Improved cognitive functions in AD patients [228] 

2-hydroxydocosahexaenoic acid - Decreased amyloid-β (Αβ) accumulation and full recovery of cognitive scores in mouse 
model of AD (5xFAD) 

[229] 

Dietary interventions   

- Decreased level of brain Aβ40 and Aβ42 in a transgenic mouse model of AD 
(APP/V717I) 

[266] Classical ketogenic diets  

- Improved cognitive functions in epileptic children [267, 268] 

- Improved cognitive performance in memory-impaired subjects [269, 270] 

- Cognitive improvement in a patient with younger onset sporadic AD [271] 

Medium chain triglycerides 

- A trend towards a decrease in level of Aβ and decrease in APP in the brain of aged 
dogs 

[272] 

- Improvement in learning and memory tests and decreased Aβ and hyperphosphorylated 
tau deposition in a transgenic model of AD (3xTgAD mice) 

[273] Ketone esters 

- Improved cognitive performance in a patient with younger onset sporadic AD [271] 

 

4.1.2). Interestingly, a low level of EPA (but not DHA) in 
the erythrocytes proved to be a good indicator of decreasing 
cognitive performance [260]. In fact, supplementation with 
EPA and DHA lowers amyloid plaque formation by reducing 
Aβ accumulation via the glymphatic system [261]. However, 
the EPA- and DHA-derived lipid mediators oxylipins (Sec-
tion 4.1.2) might have adverse effects by increasing neuroin-
flammation [262] which is counteracted by the anti-
inflammatory effects of DHA thus improving neuronal sur-
vival. Seventeen of the 19 reliable AD epidemiological stud-
ies published between 1997 and 2008, reported that the risk 
of AD increased when the nutritional intake of ω-3 fatty ac-
ids decreased [263]. However, the achieved effects of PU-
FAs treatment were highly dependent on the state of disease 
development and most effective in the early stages of AD. 
Thus, as DHA is able to slow several deleterious molecular 
mechanisms of AD, an early nutritional intervention (e.g. 
administration of DHA and antioxidants) is necessary from 
the early onset of AD. 

Several recent trials demonstrated promising results. For 
example, in the LipiDiDiet European project, daily intake of 
a dietary supplement (Nutritia Souvenaid R) providing 1200 
mg DHA and 300 mg EPA, vitamins (E, B6, B12), trace 
elements (selenium), and various metabolites (uridine, cho-
line) showed beneficial effects on memory and behaviour 
[264] and in neuronal network organization [265]. Currently, 
at least 15 dietary projects on ω-3 FA supplementation are 
scheduled or to be completed in different research centres 
globally. However, as DHA was most effective in inhibiting 
amyloid plaque generation and slowing down the cognitive 
decline in patients lacking the ApoE4 gene, ApoE polymor-
phisms might have to be considered in future trials [263]. 

8.3. Classical Ketogenic Diet and Exogenous Ketone 
Supplements in AD Therapy 

Ketone bodies such as D-beta-hydroxybutyrate (R-3-
hydroxybutyrate/βHB), acetoacetate and acetone are mainly 
synthetized in the liver from fatty acids under normal 
physiological conditions and particularly during fasting, 
starvation and neonatal development [274, 275]. Ketone 
bodies can enter into neurons through monocarboxylic trans-
porters, convert to acetyl CoA in mitochondria and enter to 
Krebs cycle providing a source of energy for the central 
nervous system. Moreover, ketone bodies not only improve 
mitochondrial respiration but also decrease ROS formation 
[276] and direct application of βHB evoked protective ef-
fects against Aβ-induced cell death in cultured neurons 
[277]. Also, βHB can stimulate chaperone-mediated auto-
phagy, in which βHB-evoked processes may eliminate ac-
cumulated axonal proteins such as Aβ in AD [278, 279]. In 
addition, ketone bodies blocked the entry of Aβ into neu-
rons/neuronal mitochondria and improved learning and 
memory in a mouse model of AD [280]. Thus, using dietary 
interventions such as classical ketogenic diets (KDs) or ex-
ogenous ketone supplements (normal food plus ketone sup-
plements such as ketone esters and/or medium chain triglyc-
erides), which are able to evoke and maintain a rapid and 
safe mild ketonemia/ketosis (therapeutic hyperketonemia) 
[281-283] may have therapeutic effect in AD and may de-
crease the risk of this disease.  

It has been revealed that classical KDs (low in carbohy-
drate and adequate in protein content and high in fat content; 
primary fat source is long-chain triglycerides) improve mito-
chondrial functions, promote mitochondrial biogenesis and 
ATP synthesis and decrease ROS formation by activation of 
mitochondrial uncoupling proteins [284, 285] suggesting a 
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potential therapeutic benefit of KD in AD. Indeed, a KD 
decreased the level of brain Aβ40 and Aβ42 level in a trans-
genic mouse model of AD (APP/V717I, expressing APP 
gene containing the "London" APP mutation) [266] although 
improvement in novel object recognition test could not be 
demonstrated. Moreover, KD evoked improvement in cogni-
tive functions in epileptic children [267, 268] whereas it im-
paired learning and memory in rats [286].  

It has been demonstrated that administration of medium 
chain triglyceride, e.g. AC-1202 significantly improved cog-
nitive performance in memory-impaired subjects [269, 270]. 
In a patient with younger onset sporadic AD, a medium 
chain triglyceride/medium-chain fatty acid mixture was 
shown to evoke cognitive improvement [271]. Nevertheless, 
a medium chain triglyceride rich diet did not rescue memory 
deficits and was not able to evoke changes in Aβ as well as 
tau deposition in two transgenic mouse models (amyloid-
depositing mice APP/PS1 and tau depositing mice Tg4510) 
of AD [287] suggesting that this diet has minimal impact on 
these types of AD models. In contrast, medium chain 
triglyceride administration not only improved mitochondrial 
function but also showed a trend towards a decrease in level 
of Aβ and decrease in APP in the brain of aged dogs (a natu-
ral model of amyloidosis) [272]. In a transgenic model of 
AD (3xTgAD mice) it was demonstrated that a diet contain-
ing ketone ester evoked improvement in learning and mem-
ory tests and decreased Aβ and hyperphosphorylated tau 
deposition in the cognition-relevant brain areas such as hip-
pocampus and cortex [273]. Moreover, ketone ester im-
proved, among others, cognitive performance in a patient 
with younger onset sporadic AD [271]. It was hypothesized 
that before symptoms of AD develop, ketone supplements-
evoked mild ketonemia may decrease the risk of further 
metabolic impairment and appearance of symptoms of AD 
such as cognitive decline [288]. 

CONCLUSION AND FUTURE PERSPECTIVES 

In summary, more and more evidence hint to a strong re-
lationship between brain lipid dyshomeostasis and AD. As 
most of the activity of the cells occurs within and around 
biomembranes, alterations in membrane lipid composition 
evidently play an important role in pathophysiological proc-
esses. In AD, many studies indicate a bidirectional link be-
tween APP and lipids. The APP processing and formation of 
Aβ peptides highly correlate with the composition of lipid 
rafts ‒ formation of toxic Aβ-assemblies and tau-aggregates 
occurs inside lipid rafts through interaction of the initial non-
toxic proteins with cholesterol and the ganglioside GM1 ‒ 
whereas APP-derived cleavage peptides (Aβ, AICD) regu-
late lipid metabolism.  

Intracellular Aβ oligomers may interact with the mem-
branes of subcellular organs and deteriorate their functions. 
Moderate exposure to electrophilic lipids (e.g. HNE) also 
evokes protective stress signaling responses (e.g. Keap1-
Nrf2) pathway) and increases cellular defense. HNE is a 
typical Janus-faced molecule and may trigger both neuropro-
tective process (via Daxx) and cell death (via lysosomal rup-
ture). Heat stress may induce specific membrane remodeling, 
enhanced plasma membrane fluidity and triggers a complex 
signaling network. Specific membrane lipids and lipid 

nanostructures participate in cell signaling that are associated 
with neurodegenerative disorders. This is the base of mem-
brane lipid therapy. Dietary factors may have a crucial role 
in the prevention and early treatment of AD, a lot of new 
trials are yet running. Preliminary results show the impor-
tance of ApoE4 protein and thus the Apoε4 gene in the result 
of dietary intervention. The ketonic diet that enhances the 
function of mitochondria also may be effective in AD pre-
vention.  

Although many relations between lipids and AD have 
been discovered, several questions remained unanswered. 
The detailed link between cholesterol metabolism and level 
as well as the initiation of AD process might be fully estab-
lished. In the nearby future, blood-based biomarkers could 
constitute simple AD-diagnostic tools. The question whether 
specific lipid signatures predispose for AD or, on the con-
trary, protect against AD, will be answered. Lipid biomark-
ers will help in the identification of new targets, more effec-
tive drugs and new treatments.  

ABBREVIATIONS 

Aβ =  Beta amyloid 
AD =  Alzheimer’s disease 
AFM =  Atomic force microscopy 
AICD =  Intracellular APP-domain 
Akt =  (Protein Kinase B) 
APP =  β-Amyloid precursor protein 
ARA =  Arachidonic acid 
ARE =  Antioxidant responsible element 
ASM =  Acid sphingomyelinase 
A2 (cPLA2) =  Cytosolic phospholipase 
BACE =  β-secretase  
βHB = D-beta-hydroxybutyrate (R-3-

hydroxybutyrate) 
BBB =  Blood-brain barrier 
CNS =  Central nervous system 
CD =  Circular dichroism 
CSF =  Cerebrospinal fluid 
DAG =  Diacylglycerol  
DHA =  Docosahexaenoic acid 
EPA =  Eicosapentaenoic acid 
ER =  Endoplasmic reticulum 
FA =  Fatty acid 
GPs =  Glycerophospholipids 
GWAS =  Genome-wide association study 
HNE =  4-Hydoxy-2-nonenal 
HSF =  Heat shock factor 
HSP =  Heat shock protein 
HSR =  Heat shock response 
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IP3 =  Inositol 1,4,5-trisphosphate 
IP3R =  Inositol triphosphate receptor 
KD =  Ketogenic diet 
MAG =  Monoacyl glycerol 
MAM =  Mitochondria associated membrane 
MAPK or  
MAP kinase  =  Mitogen-activated protein kinase 
MD =  Molecular dynamics 
MLT =  Membrane lipid therapy 
mTOR  =  Mammalian target of rapamycin 
MS =  Mass spectrometry 
MT =  Microtubular 
NDDs =  Neurodegenerative diseases 
p38 MAPK  =  P38 mitogen-activated protein kinases 
PC =  Phosphatidyl choline 
PE =  Phosphatidyl ethanolamine 
PHF =  Paired helical filament 
PI =  Phosphatidyl inositol 
PIP =  Phosphatidylinositol phosphate 
PIP2 =  Phosphatidylinositol 4,5-bisphosphate 
PIP3 =  Phosphatidylinositol trisphosphate  
PI3K =  Phosphatidylinositol-4,5-bisphosphate 3-

kinase 
PKC =  Protein kinase C 
PLA2 =  Phospholipases A2 
PLC =  Phospholipase C 
PLPP =  Phospholipid phosphatases 
PPE =  Ethanolamine plasmalogene 
PS =  Phosphatidyl serine 
PUFA =  Poly unsaturated fatty acid 
ROS =  Reactive oxygen species 
TEM =  Transmission electron microscopy 
UPR =  Unfolded protein response 
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