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Coefficient of restitution for wet particles

Frank Gollwitzer,1 Ingo Rehberg,1 Christof A. Kruelle,2 and Kai Huang1,*

1Experimentalphysik V, Universität Bayreuth, 95440 Bayreuth, Germany
2Maschinenbau und Mechatronik, Hochschule Karlsruhe - Technik und Wirtschaft, D-76133 Karlsruhe, Germany

(Received 8 February 2012; published 9 July 2012)

The influence of a liquid film on the coefficient of restitution (COR) is investigated experimentally by tracing
freely falling particles bouncing on a wet surface. The dependence of the COR on the impact velocity and
various properties of the particle and liquid is presented and discussed in terms of dimensionless numbers that
characterize the interplay between inertial, viscous, and surface forces. In the Reynolds number regime where
lubrication theory does not apply, the ratio of the film thickness to the particle size is found to be a crucial
parameter determining the COR.
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I. INTRODUCTION

The coefficient of restitution (COR), first introduced by
Newton [1] as the ratio between the relative rebound and
impact velocities of a binary impact, has been a subject of
continuous interest over centuries, along with the development
of elastic [2,3], viscoelastic [4], and plastic theories [5,6].
It characterizes the energy dissipation associated with the
impact, which plays a key role in understanding the collective
behavior of macroscopic particles; that is, the dynamics of
granular matter [7,8]. This is largely due to the fact that the
dissipative nature of granular matter arises from the inelastic
collisions at the particle level.

Due to its omnipresence in nature and various industries,
granular matter has drawn great attention from both physical
and engineering communities in the past decades [9]. Concern-
ing the modeling of granular matter, an appropriate collision
model is essential for the successful implementation of kinetic
or hydrodynamic theories to granular matter [10–13]; see for
example, the dynamics of Saturn’s rings [14], or pattern for-
mation under vertical agitation [15]. Despite those successful
examples for dry granular matter, a continuum description
for wet granular matter, which considers the cohesion arising
from the wetting liquid phase, is still far from established
[16,17]. Therefore, in order to provide a solid basis for a
continuum modeling of wet granular flow—for example to
describe natural disasters such as debris flow—a thorough
understanding of the dynamics associated with wet impacts is
desirable.

With the development of pharmaceutics, mining, and food
industries, the COR for wet impacts has become an important
issue for the engineering community in terms of decoding
the underlying physics associated with the agglomeration
of particles with liquid binders. The pioneering work by
Rumpf [18] half a century ago included a detailed description
of the capillary force of a pendular bridge and treated it as
the dominating cohesive force in determining the continuum
properties of wet granular matter (e.g., the tensile strength
[19]). Later on, the viscous force has been found to play an
important role in typical granulation processes, too [20–27].
And a dynamic liquid bridge could be an order of magnitude
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stronger than a quasistatic one [28,29]. Binary as well as three
body impacts of particles with viscous liquid coating have
been extensively investigated by experiments and models using
lubrication theory [30–36].

Despite all these investigations, a well tested collision law
suitable for modeling the dynamics of wet granular behavior
[37–39], as well as a comprehensive knowledge of the energy
dissipation associated with the impact, is still lacking. In the
current work, the COR of a ball bouncing back from a flat
lubricated surface is investigated as a function of the impact
velocity, various particle sizes, and liquid properties. From
this, the kinetic energy dissipated during the impact process
is derived and discussed within the framework of existing
models.

II. EXPERIMENTAL SETUP AND PROCEDURE

Figure 1 shows a sketch of the experimental setup used
for the COR measurements. Spherical glass beads (SiLiBeads
type P) with a diameter range from D = 2.8 mm to 10 mm,
roughness ≈5 μm, and density ρg = 2.58 g/cm3 are used in
the experiments. By controlling the pressure in the vacuum
nozzle, we allow an initially wet particle to fall freely onto a
wet glass container (20 cm × 5 cm). The initial falling height
is adjusted from 20 to 145 mm, corresponding to an initial
impact velocity range from ≈0.3 to ≈1.7 m/s. Three types
of liquids with various properties, as shown in Table I, are
used. The bottom of the container is thick enough (2 cm) to
avoid any influence on the COR [40] for the range of particle
size used. It is leveled within 0.03 degrees, so that bouncing
on various positions in the container explores a similar liquid
layer thickness.

The layer thickness δ used in the current investigation
ranges from 75 μm to 1 mm. It is measured by detecting
the shift of a laser beam reflected from the surface of the
liquid and the glass plate with a CCD camera (Camera 1,
Lumenera Lu135). The mirror attached to the bottom of the
container creates multiple reflections of the laser beam, in
order to enhance the sensitivity of the device. The length of
the mirror (7.8 cm) is chosen as a compromise between the
sensitivity and the field of view. By fixing the container, laser,
and camera on a leveled optical table, the error of the film
thickness measurement could be minimized to a satisfactory
level (<10 μm).
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FIG. 1. (Color online) Sketch of experimental setup. The bounc-
ing of the glass bead, initially held by the vacuum nozzle, on the
glass container is recorded with a high speed camera (Camera 2). The
thickness of the liquid layer is monitored by detecting the laser beam
reflected from the liquid surface with Camera 1.

To obtain the impact and rebound velocities, the bouncing
of the particle is recorded by a fast camera (Photron Fastcam
Super 10K) and subsequently applied to an image processing
procedure. A close view of the colliding event, as shown
in Fig. 2, clearly demonstrates the important role that the
liquid plays during the impact. As the sphere hits the liquid
surface, a circular wave front occasionally accompanied with
a splash will be generated. As the ball rebounds from the
surface, a liquid bridge will form between the sphere and
the liquid surface, which continuously deforms and elongates
until it ruptures at a distance larger than the particle diameter.
Associated with the rupture event, satellite droplets may form,
which bounce on the liquid surface and coalesce partially into
smaller droplets [41,42]. Obviously, the formation of wave
fronts, deformation and rupture of liquid bridges, the viscous
force, and the added mass to the sphere due to the liquid

TABLE I. Material properties of liquids at 20 ◦C. M5 and M50
correspond to two types of silicone oil from Carl Roth.

Density Viscosity Surface tension
(kg/m3) (mPa s) (mN/m)

Water 998 1.0 72.8
M5 925 4.6 19.2
M50 965 48 20.8

film will all contribute to the mechanical energy reduction of
the impacting particle, which in turn leads to a smaller COR
compared with dry impacts.

Figure 3 illustrates the influence of a liquid film by
providing a comparison between the trajectories obtained from
wet and dry impacts. The particle diameter is D = 5.5 mm,
and the film thickness of the silicone oil M5 is δ = 225 μm
in the wet case. To determine the location of the sphere
centers, the image processing procedure employs a Hough
transformation [43] (upper panel of Fig. 3). Subsequently, each
bouncing trajectory is extracted and subjected to a parabolic
fit [see the solid line in Fig. 3(a) as an example], in order to
obtain the peak position hpeak and the impact velocity.

If the normal COR, also represented as en, is independent
of the impact velocity, the velocity after the ith rebound
will be related to the first impact velocity v0 by vi = ei

nv0.
This leads to a linear decay of the peak height hpeak with
the number of impacts i in a semilog plot, according to
log10 hpeak = log10 h0 + 2i log10 en, with hpeak ∝ v2

i . The ini-
tial falling height h0 and en determine the offset and slope of
this line. As shown in the inset of Fig. 3(a), the logarithm of
hpeak decreases linearly with the number of impacts for dry
impacts, indicating that the normal COR stays almost constant
for the number of impacts measured here. In a recent work on
dry impacts [44], a more detailed analysis reveals that the dry
COR decreases slightly with the increase of vimpact. However,
this dependence is much weaker than the one for wet impacts,
on which we are focusing here. In this case, the variation of
the slope indicates that the COR for wet impacts decreases
strongly with the number of impacts (i.e., with the impact
velocity).

2 65431

8 12111097

FIG. 2. A series of snapshots captured with a frame rate of 450 Hz showing a 4 mm glass bead bouncing on a glass plate covered with a
1 mm water film.
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FIG. 3. (Color online) Trajectories of particle bouncing on wet
(a) and dry (b) surface after image processing. The image sequence
in the upper panel represents a fraction of the wet trajectory (a) with
superimposed centers and boundaries of the sphere. The blue (dark
gray) line in (a) corresponds to a parabolic fit to the trajectory after
the first rebound. The peak positions of the trajectories hpeak obtained
from the fits are marked with triangles in (a) and upside down triangles
in (b). The inset in (a) shows hpeak as a function of the number of
impacts.

Even though using hpeak gives a practical analysis of the
COR, this method may suffer the influence from interstitial air.
Therefore, the normal COR is obtained, based on its definition,
from the ratio between the fitted rebound and impact velocities
for the rest of the paper.

III. EXPERIMENTAL RESULTS

Figure 4 shows the dependence of the COR on the impact
velocity vimpact and various particle diameters for both silicone
oil (M5) and water films. Qualitatively, the same trend for
the impact velocity dependence is observed: The COR grows
initially with vimpact and saturates at a certain value, as shown
by the guided lines in the upper panel. In the lower panel of
Fig. 4, the rebound velocity vrebound is plotted as a function
of the impact velocity vimpact. Similar to the case without the
liquid film (shown as a gray dashed line), vrebound grows linearly

with vimpact for all parameters used here. Different from the
dry impacts, the fitted line has an offset with the x axis, which
explains the growth of the COR with vimpact. Fitting the data
with vrebound = einf(vimpact − vc) gives rise to two parameters
that characterize the impact velocity dependence: A slope einf

corresponding to the COR at infinite vimpact (i.e., the saturated
value of the COR) and an offset vc corresponding to a critical
energy Ec below which no rebound would occur. Ec = mv2

c /2
is obtained from the intersection vc of the linear fits shown in
the lower panels of Fig. 4 with the x axis, where m is the mass
of the particle.

Besides the impact velocity, the COR is also found to be
dependent on the size of the particles. For fixed vimpact, the
COR decreases systematically with particle diameter for both
silicone oil and water films. Since the COR is related to the
fraction of kinetic energy retained after the impact, the growth
of the COR with D indicates that the energy dissipation from
the liquid film grows slower with D than the inertia (∝D3) of
the particles.

Figure 5 shows the dependence of the parameters einf and Ec

from the linear fits on the particle diameter for both liquids. For
the dry impacts, Ec stays constantly at 0 within the error bar.
In contrast, the critical energy for wet impacts is on the order
of a few μJ. It shows a monotonic decay for the water film,
and a more complicated relationship for the case of silicone
oil M5 film. As shown in Fig. 5(b), einf—the upper limit of
the COR—varies from 0.8 to 0.9 and is generally smaller
than edry. This indicates that the ratio between the energy
dissipation from the liquid, �Ewet, and the kinetic energy at
impact, Ei, will not diminish as vimpact grows. For both silicone
oil (M5) and water films, einf shows similar values with weak
dependence on the particle sizes, although M5 silicone oil is
5 times more viscous than water. For dry impacts, the slope
einf shows a weak dependence on the particle size. Linear
fitting over the data from various D suggests an averaged
edry = 0.976, as shown in Fig. 4. For wet impacts, the error
bar for einf is larger as D decreases. This is presumably due
to the larger influence from the liquid film, which may lead
to a larger inertial effect from the liquid flow and a more
complex energy dissipation scenario. Thus we keep the liquid
film thickness within 1 mm for the COR dependence on the
liquid properties shown below.

The influence of the liquid film thickness δ and the dynamic
viscosity η on the wet impacts is presented in Fig. 6. Here,
only silicone oil with various viscosities is chosen because
of two reasons. First, it wets the glass surface better than
water due to its low surface tension and contact angle and
thus facilitates investigations on relatively thin liquid film.
Second, the two types of silicone oil with various viscosities
have a similar surface tension and density, which facilitates
comparisons. Each data point shown here corresponds to
an average of 10 runs of experiments with various initial
falling heights and the error bar represents the statistical
error.

Similar to the results shown in Fig. 4, the rebound velocity
increases linearly with impact velocity with an offset with the
x axis [as shown in Fig. 6(b)], leading to a growth of the COR
with vimpact toward a saturated value einf smaller than edry =
0.985. Note that edry obtained here for the 5.5 mm particle is
slightly larger than the one in Fig. 4, which presumably arises
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FIG. 4. (Color online) Normal restitution coefficient en and rebound velocity vrebound as a function of impact velocity vimpact for the impacts
of particles with various diameters D on silicone oil (left column) and water (right column) films with fixed thickness δ = 1 mm. The solid
lines in the lower panels are linear fits to the data and their representatives are shown in the upper panels as a guide to the eyes. The dashed
gray lines in the upper panels represent the normal restitution coefficient edry = 0.976 ± 0.001 for dry impacts, which is obtained by a linear
fit of the data for all particle sizes [gray diamonds shown in (b)]. Error bars smaller than the symbol size are not shown.

from the variation of the COR on particle diameter shown in
Fig. 5(b). A comparison between both liquids shows that the
vimpact dependence of the COR is more prominent for more
viscous silicone oil M50, as the larger offset from the linear
fits indicates. As the film thickness δ increases, en decreases
systematically for both liquids, because the viscous damping
force is effective over a larger distance. Further tests with
increased film thickness up to 1.35 mm yield qualitatively the
same vimpact dependence.

As shown in Fig. 6(b), the relation between vrebound and
vimpact also represents the influence from the thickness and
viscosity of the liquid. For wet impacts, vrebound decreases
systematically with the liquid film thickness δ at a certain
vimpact. As the liquid viscosity increases by an order of
magnitude (from M5 to M50), this trend is more prominent,
indicating the crucial role played by the viscous damping.
Fitting the growth of vrebound with vimpact with a straight line
again gives rise to two parameters: A slope einf that is smaller
than edry and a threshold energy Ec below which no rebound
would occur. As shown in Fig. 7(a), this threshold is, for M50,
more than an order of magnitude larger than that for M5. This
suggests the dependence of Ec on the viscosity. As shown in
Fig. 7(b), the slope einf is not strongly influenced by viscosity
compared with Ec. For relatively thin film, einf could be the
same within the error bars. The slope einf stays constant within
the range of film thickness and decays slightly for the more
viscous silicone oil M50 film.

IV. SCALING WITH STOKES NUMBER

The above experimental results indicate that the COR
depends strongly on the impact velocity, particle sizes, and
various liquid properties. In order to explore the relation
between the COR and all these parameters, it is essential
to have a proper classification of the parameters in terms of
dimensionless quantities that characterize the relation between
inertia, viscous, and capillary effects. In the case where the
viscous force dominates, lubrication theory has been applied
to explain the dynamics of wet impacts [21,30,33,36]. In such a
case, the Stokes number is used to characterize the dependence
of the COR on various control parameters. The Stokes number
St = ρgDvimpact/9η is defined as the ratio between the inertia
of the particle and the viscosity of the liquid, where ρg is
the density of the glass beads. Normally, this case is justified
by the criterion Re � 1 [33]. The Reynolds number Re is
defined as ρlδvimpact/η, where ρl and δ are the density and
the thickness of the liquid correspondingly. This implies that
either the liquid is highly viscous, or the film thickness is small.
Within this limit, the contribution from the liquid to the total
energy dissipation is mainly due to viscous damping. Although
the range of Reynolds numbers for the current investigation
(up to ≈103) suggests that the role that the viscous force plays
may not always be prominent, we still use the Stokes number
to rescale the dependence of the COR on various parameters
as a starting point.
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(a)

(b)

FIG. 5. (Color online) Critical energy Ec and saturated value of
COR einf , obtained from linear fits in Fig. 4(b), as a function of particle
diameter D. The solid line at Ec = 0 is a guide to the eyes.

Figure 8 is a replot of the data in Figs. 4(a) and 4(c) in
the en-St plane. For silicone oil M5, which has a kinematic
viscosity 5 times that of water, the rescaling with the Stokes
number yields better overlapping than that for water. This
could be attributed to the lower Re range (Re = 20–360) for
the case of silicone oil M5, which leads to more prominent
influence from the viscosity. As shown in Fig. 8(a), data for
various D show a general trend of initial growth from St ≈
100 to 500, followed by a saturation to einf between 0.8 and
0.85. Concerning the case of water film (corresponding to
Re = 100–1800), the scatter of the data obtained with various
particle sizes [shown in Fig. 8(b)] is much more prominent than
for the case of silicone oil M5 film. Although the trend of a
significant growth followed by a saturated value persists, both
the slope of increase and the saturated value differ as D varies.

From another point of view, Fig. 8 also reveals a relatively
small difference of the COR between M5 and water films,
even though the corresponding viscosity ratio is 5. This result
indicates that the COR is also determined by other liquid
properties. As an example, the surface tension of water is
much larger than that of M5, which may lead to a larger
energy dissipation from the formation of capillary waves and
the break of capillary bridges upon rebound. In order to study
the influence from viscosity, we focus on the results from
silicone oil M5 and M50 (shown in Fig. 6), which have similar
surface tension and density (see Table I), in the following part
of the section.

Figure 9(a) shows the COR as a function of the St number
for the data shown in Fig. 6(a). The COR grows dramatically
at small St, which corresponds to the data of the more viscous

(a)

(b)

FIG. 6. (Color online) Normal restitution coefficient en (a) and
rebound velocity vrebound (b) as a function of impact velocity vimpact

for impacts of a glass bead with D = 5.5 mm on dry and wet surfaces
covered with silicone oil M5 and M50. δ denotes the film thickness.
The error bars correspond to the statistical error over 10 runs of
experiments for the wet impacts. Solid lines in (b) are linear fits to
the corresponding data. Their representatives are shown in (a) as a
guide to the eye. For dry impacts, the restitution coefficient edry is
0.985 with an error of 0.001.

silicone oil M50 case, and saturates at larger St. For various
film thickness δ, this trend is qualitatively the same. This trend,
as well as the data scattering at low St, is also comparable
to the results with various particle diameters shown in
Fig. 8(a). Quantitatively, the saturated value einf decreases as
the film thickness δ grows, suggesting further dimensionless
parameters associated with δ have to be considered.

This parameter is chosen as the dimensionless length scale
δ̃ = δ/D, because it ties the Stokes number with the Reynolds
number of the liquid film. According to this definition, the
ratio between the Reynolds number and the Stokes number is
Re/St = 9δ̃ρ̃, where ρ̃ = ρl/ρg is the density ratio between
the liquid and the particle.

In Fig. 9(b), further experiments with the restriction δ̃ ≈
0.04 are presented. In contrast to Fig. 9(a), the data from
various film thicknesses coincide over a wide range of St if δ̃ is
fixed. It also gives rise to a master curve en = einf(1 − Stc/St),
as indicated clearly in the inset. The linear fit yields einf =
0.908 ± 0.002, and a critical Stokes number Stc = 14.00 ±
0.20. Therefore, the usage of the Stokes number as a control
parameter could be extended to the regime Re > 1 and large
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(a)

(b)

FIG. 7. (Color online) Critical energy Ec and the saturated value
of the COR einf as a function of film thickness δ. Ec is obtained from
the intersection vc of the linear fits shown in the lower panel of Fig. 6
with the x axis. einf corresponds to the slope of these fits.

film thickness, provided that the dimensionless length scale δ̃

is kept constant.

V. ANALYSIS OF ENERGY DISSIPATION

To understand the dependence of the COR on various
particle as well as liquid properties, it is helpful to analyze
the associated energy dissipation. If Ediss is defined as the
total kinetic energy loss of the particle during the impact, the
dependence of the COR on the kinetic energy at impact Ei can
be written as

en =
√

1 − Ediss/Ei. (1)

The dissipated energy Ediss can be treated as the sum of two
parts: the part transferred into the solid body �Edry, and the
other part taken by the liquid phase; that is,

Ediss = �Edry + �Ewet. (2)

Provided that the two parts are independent of each other;
that is. the liquid phase does not change the energy dissipation
from the solid phase, �Ewet could be obtained experimentally
by

�Ewet = Ei
(
e2

dry − e2
n

)
. (3)

The whole process of the colliding event can be separated
into two parts: impact and rebound. During the impact,
the kinetic energy of the particle will partly be transferred
to the liquid. This amount of energy will finally be dissipated

(a)

(b)

St

St

FIG. 8. (Color online) Normal restitution coefficient en as a
function of the Stokes number St for both silicone oil (a) and water
(b) films. Parameters are the same as in Fig. 4.

by the motion of the viscous liquid, including surface waves
or even splashes, depending on the competition between the
inertial, viscous, and surface forces. During the rebound, the
rupture of the capillary bridge will lead to a certain amount of
surface energy loss in addition to the damping caused by the
motion of the liquid. Moreover, the mass of the liquid dragged
away by the sphere might lead to a further reduction of the
COR. Based on the above analysis, one can take the most
prominent terms and use

�Ewet ≈ �Evisc + �Eb + �Eacc (4)

to estimate �Ewet theoretically, where �Evisc represents the
energy dissipated via the viscous damping force acting on
the particle, �Eb corresponds to the energy loss arising from
the surface energy change of the fluid, and �Eacc is the kinetic
energy change of the fluid before and after the colliding event.

In the limit that thin film lubrication theory applies, the
viscous force acting on the particle can be estimated by Fv =
3πηD2vimpact/(2x) [33], where x denotes the distance between
the sphere and the plate. Following Ref. [21], one might assume
the same force law for both approach and departure of the
sphere, despite that the boundary condition for the latter case
is dramatically different from the former one. By integrating
over the distance that the viscous force applies, we obtain

�Evisc = 3

2
πηD2vimpact

(
ln

δ

ε
+ ln

δr

ε

)
, (5)
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(a)

(b)

St

St

FIG. 9. (Color online) Normal restitution coefficient as a function
of Stokes number St. Panel (a) corresponds to the data shown in
Fig. 6. Panel (b) corresponds to the data with the dimensionless film
thickness δ/D roughly constant. The other parameters are the same as
in Fig. 6. The error bars correspond to the statistical error of 10 runs
of experiments. The solid curve in panel (b) corresponds to the master
curve en = 0.908(1 − 14.00/St), which is obtained from a linear fit
to all the data shown in the inset.

where ε = 5 μm is the roughness of the sphere, and δr is the
rupture distance of the liquid bridge. For a crude estimation,
we take a fixed δr = 2D according to the snapshots taken and
assume that the velocity does not change during the impact.

In Fig. 10, �Ewet for the experimental results shown in
Fig. 6 is plotted in comparison with �Evisc. Qualitatively,
the monotonic growth of the energy dissipation with the
impact velocity and the increase of energy dissipation with
the film thickness agree with the estimation from Eq. (5).
This growth with the impact velocity deviates slightly from
a straight line, which is suggested by the model, indicating
that the dominating energy dissipation term has a higher
order dependence on the impact velocity. Quantitatively, a
comparison between the estimated viscous damping term
�Evisc and �Ewet reveals that a substantial amount of the
latter can be attributed to the viscous damping for the case of
silicone oil M50, while this term plays a much weaker role
for the case of less viscous silicone oil M5. This could be
understood in terms of the difference of the Reynolds number.
For less viscous silicone oil M5, the range of Reynolds number
is an order of magnitude larger than that for silicone oil M50.
Thus the energy loss due to the inertia of the liquid film is
more prominent. As a consequence, the estimated �Evisc plays
a less important role in the total energy dissipation �Ewet.

(b)

(a)

FIG. 10. (Color online) Energy dissipation �Ewet due to various
liquid films as a function of impact velocity with the liquid properties
the same as in Fig. 6 for both silicone oil M50 (a) and M5 (b) films. The
straight lines represent the estimated values of the energy dissipation
�Evisc from viscosity (see text for detailed descriptions).

Since there exists a systematic deviation of �Ewet from the
predicted �Evisc with the growth of the impact velocity and
the decrease of the viscosity, one could estimate the threshold
Reynolds number below which the viscous effect dominates.
Taking |�Ewet − �Evisc|/�Ewet as the order parameters and
30% deviation as the limit, one can estimate the corresponding
Reynolds number to be Re ≈ 10 for the case of δ̃ ≈ 0.04.

The second term in Eq. (4) stems from capillary forces.
Upon rebound of the sphere, a liquid bridge may form between
the sphere and the liquid surface. The corresponding energy
dissipation due to the deformation and rupture of this liquid
bridge can be estimated by an integration of the force arising
from the surface tension over the length that it acts. This
capillary force has two components: the surface tension acting
on the perimeter of the neck (2πrnγ with rn being the neck
radius and γ the surface tension), and the second part arising
from the Laplace pressure pb that acts on the cross section
of the neck (−�pbπr2

n ). Based on quasistatic experimental
verifications, a close form approximation of the capillary force
Fc between two spheres has been given as

Fc = πDγ cos (φ)

1 + 2.1S∗ + 10S∗2
, (6)

where S∗ = s
√

D/(2Vb) is the half separating distance s

rescaled by the characteristic length scale
√

D/(2Vb) with the
bridge volume Vb, and φ corresponds to the contact angle [45].
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Taking the rupture distance δc as the integration limit and
assuming a contact angle of 0◦, one could estimate the rupture
energy of the liquid bridge to be

�Eb ≈ πγ
√

2VbD. (7)

A rough estimation of the bridge volume Vb ≈ D3/16,
based on the snapshot taken, gives rise to Eb ≈ 0.7 μJ for
silicone oil wetting a glass bead with diameter 5.5 mm.
Considering the energy dissipation obtained by the COR
measurements shown in Fig. 10, Eb plays a minor role for
the few mm sized particle used here. Note that Eb plays a
more prominent role as D decreases, because its growth with√

D is in contrast to Evisc ∝ D2.
As demonstrated in Fig. 10, both the damping from the

viscous force and the rupture of liquid bridges cannot explain
the amount of energy dissipation for the case of silicone oil M5
films. Therefore, other effects, like, for example, the inertia of
the liquid or surface waves, should be considered.

As a first approximation, the inertial effect could be
estimated from the kinetic energy of the liquid being pushed
aside by the impact [46]. The volume of the liquid can be
estimated by the spherical cap immersed in the liquid film
V = πD3δ̃2(1/2 − δ̃/3). From the length scale taken as the
base radius of the spherical cap [1 − (1 − 2δ̃)2]1/2D/2 and the
time scale δ/vimpact for the particle to penetrate the liquid layer,
one estimates the average velocity vl = vimpact(1/δ̃ − 1)1/2. As
a consequence, the kinetic energy �Eacc of the liquid being
pushed aside yields

�Eacc = 1

2
ρlV v2

l = 3ρ̃

(
δ̃ − 5

3
δ̃2 + 2

3
δ̃3

)
Ei, (8)

which shows a linear dependence on the kinetic energy Ei

of the impact particle. Figure 11 shows that, by taking both
�Evisc and �Eacc into account, the influence from the inertia
effect is more prominent for less viscous silicone oil M5. The
combination of both forces leads to a better agreement with
the experimental data, when compared to Fig. 10(b). However,
considering both the inertial and the viscous damping parts of
the energy dissipation cannot explain the experimental results
for less viscous silicone oil M5 quantitatively. This indicates
that further theoretical considerations (e.g., on additional
energy dissipation terms, or a more careful characterization
of the inertial effects) are desirable.

The fact that the ratio between �Eacc and Ei is not velocity
dependent suggests that the inertia of the liquid film will not
contribute to the impact velocity dependence of en. It does,
however, explain why einf obtained from linear fits of the data
is generally smaller than edry. Based on the Eqs. (3) and (4),
the Ei dependent COR could be written as

en =
√

e2
dry − �Eacc

Ei
− �Evisc

Ei
− �Eb

Ei
. (9)

In the limit of large vimpact, the last term �Eb/Ei could be
safely ignored so that two independent parameters are enough
to determine the impact velocity dependence of the COR. A
comparison to the linear fits en = einf(vimpact − vc) employed
before immediately reveals that the linear fit is a first order
approximation of Eq. (9) and einf = (e2

dry − �Eacc/Ei)1/2. By
ignoring the higher order terms of δ̃ in �Eacc, one derives

(a)

(b)

FIG. 11. (Color online) Data points are the same as shown in
Fig. 10. Various curves represent the estimated values with the
consideration of both viscous damping �Evisc and the energy transfer
to the fluid �Eacc (see text for detailed descriptions).

a linearized form einf = edry − 3ρ̃δ̃/(2edry), which suggests
einf ≈ 0.92 for typical experimental values of ρ̃ = 1/2.5 and
δ̃ = 0.1. In comparison to Fig. 7(b), this estimated value is
close to the einf obtained from fitting. Moreover, the monotonic
decrease with δ̃ is captured by this formula qualitatively, except
for the 75 μm thick silicone oil M5 case.

VI. CONCLUSION

In summary, the normal coefficient of restitution (COR)
for a free falling sphere on a wet surface is investigated
experimentally. The dependence of the COR on the impact
velocity and various particle and liquid film properties is
discussed in relation to the energy dissipation associated with
the impact process.

(i) For dry impact, the COR corresponds to the slope of
the rebound vs impact velocity. For wet impacts, the rebound
velocity and the impact velocity are also found to fall onto
a straight line, but with a smaller slope and an offset corre-
sponding to a finite critical impact velocity. Even though linear
fitting is only a first order approximation of en, it successfully
characterizes the impact velocity dependence of the COR with
two parameters einf and Ec. Therefore, this simplification is
justified to be a good candidate for computer simulations
aiming at modeling wet granular dynamics on a large scale.

(ii) The dependence of the COR on the impact velocity,
dimension of the sphere and the viscosity of the liquid could
be well characterized by the Stokes number, which is defined
as the ratio between the inertia of the sphere and the viscosity
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of the liquid, provided that the dimensionless length scale δ̃

is fixed. This result supports the usage of the Stokes number
for scaling the data, even beyond the low Reynolds number
regime where it has originally been introduced.

(iii) Concerning the energy dissipation arising from
the liquid films, the viscous damping term dominates for
Reynolds number up to Re ≈ 10. Away from that limit,
further effects, such as the inertia of the liquid film, have to be
considered. The rupture energy of a capillary bridge during
the rebound process could be safely ignored for the few mm
sized particles used here.

The above conclusion suggests that further investigation
on the dynamics of wet impacts is desirable for a better
understanding of the COR and the energy dissipation

associated. This requires an accurate determination of the
particle trajectories during the impact with the liquid film
experimentally, as well as a comparison with numerical
simulations (see, e.g., Ref. [47]).
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Rev. E 53, 5382 (1996).

[11] N. Brilliantov and T. Poeschel, Kinetic Theory of Granular
Gases (Oxford University Press, 2004).

[12] J. T. Jenkins and S. B. Savage, J. Fluid Mech. 130, 187 (1983).
[13] I. Goldhirsch, Annu. Rev. Fluid Mech. 35, 267 (2003).
[14] F. Spahn and J. Schmidt, GAMM-Mitt. 29, 115 (2006).
[15] C. Bizon, M. D. Shattuck, J. B. Swift, W. D. McCormick, and

H. L. Swinney, Phys. Rev. Lett. 80, 57 (1998).
[16] S. Herminghaus, Adv. Phys. 54, 221 (2005).
[17] P. Jop, Y. Forterre, and O. Pouliquen, Nature (London) 441, 727

(2006).
[18] H. Rumpf, Agglomeration (AIME, Interscience, New York,

1962).
[19] W. B. Pietsch, Nature (London) 217, 736 (1968).
[20] B. J. Ennis, J. L. Li, G. Tardos, and R. Pfeffer, Chem. Eng. Sci.

45, 3071 (1990).
[21] B. J. Ennis, G. Tardos, and R. Pfeffer, Powder Technol. 65, 257

(1991).
[22] S. Iveson, J. Litster, and B. Ennis, Powder Technol. 88, 15

(1996).
[23] S. M. Iveson and J. D. Litster, Powder Technol. 99, 234 (1998).
[24] S. M. Iveson, J. D. Litster, K. Hapgood, and B. J. Ennis, Powder

Technol. 117, 3 (2001).

[25] J. Fu, M. J. Adams, G. K. Reynolds, A. D. Salman, and M. J.
Hounslow, Powder Technol. 140, 248 (2004).

[26] S. Antonyuk, S. Heinrich, N. Deen, and H. Kuipers, Particuology
7, 245 (2009).

[27] P. Müller, S. Antonyuk, M. Stasiak, J. Tomas, and S. Heinrich,
Granular Matter 13, 455 (2011).

[28] D. N. Mazzone, G. I. Tardos, and R. Pfeffer, Powder Technol.
51, 71 (1987).

[29] K. Murase, T. Mochida, and H. Sugama, Granular Matter 6, 111
(2004).

[30] R. Davis, J.-M. Serayssol, and E. J. Hinch, J. Fluid Mech. 163,
479 (1986).

[31] G. Barnocky and R. H. Davis, Phys. Fluids 31, 1324
(1988).

[32] C. Thornton and Z. Ning, Powder Technol. 99, 154
(1998).

[33] R. H. Davis, D. A. Rager, and B. T. Good, J. Fluid Mech. 468,
107 (2002).

[34] A. A. Kantak and R. H. Davis, Powder Technol. 168, 42
(2006).

[35] C. M. Donahue, C. M. Hrenya, and R. H. Davis, Phys. Rev. Lett.
105, 034501 (2010).

[36] C. M. Donahue, C. M. Hrenya, R. H. Davis, K. J. Nakagawa,
A. P. Zelinskaya, and G. G. Joseph, J. Fluid Mech. 650, 479
(2010).

[37] S. Ulrich, T. Aspelmeier, A. Zippelius, K. Roeller, A. Fingerle,
and S. Herminghaus, Phys. Rev. E 80, 031306 (2009).
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