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Quality Evaluation of Solution Sets in
Multiobjective Optimisation: A Survey

Miqing Li, and Xin Yao1

1CERCIA, School of Computer Science, University of Birmingham, Birmingham B15 2TT, U. K.
∗Email: limitsing@gmail.com, x.yao@cs.bham.ac.uk

Abstract: Complexity and variety of modern multiobjective optimisation problems result in the emer-
gence of numerous search techniques, from traditional mathematical programming to various randomised
heuristics. A key issue raised consequently is how to evaluate and compare solution sets generated by
these multiobjective search techniques. In this article, we provide a comprehensive review of solution set
quality evaluation. Starting with an introduction of basic principles and concepts of set quality evalua-
tion, the paper summarises and categorises 100 state-of-the-art quality indicators, with the focus on what
quality aspects these indicators reflect. This is accompanied in each category by detailed descriptions of
several representative indicators and in-depth analyses of their strengths and weaknesses. Furthermore,
issues regarding attributes that indicators possess and properties that indicators are desirable to have are
discussed, in the hope of motivating researchers to look into these important issues when designing qual-
ity indicators and of encouraging practitioners to bear these issues in mind when selecting/using quality
indicators. Finally, future trends and potential research directions in the area are suggested, together with
some guidelines on these directions.

Keywords: Quality evaluation, performance assessment, indicator, metric, measure, multobjective
optimisation, multi-criteria optimisation, exact method, heuristic, metaheuristic, evolutionary algorithms

1 Introduction

In real world, it is not uncommon to face an optimisation problem with multiple objectives/criteria,
namely, multiobjective optimisation problems (MOPs). These objectives are often conflicting, and
there is no single optimal solution but instead a set of Pareto optimal solutions (termed a Pareto
front in the objective space). A solution in the Pareto optimal set cannot be improved on an objective
without degrading on some other objectives. For example, consider a car purchase problem where
we want to buy a car with as good performance as possible but as low price as possible. Apparently,
we cannot find a single car that achieves the best on both objectives. Figure 1 gives all types of
cars (solutions) available in the market. As can be seen, there exist a set of solutions (black points),
each of which is not inferior to any solution on both objectives. We may only be interested in these
Pareto optimal solutions as the remaining solutions (white points) are always outperformed by some
of them.

The growing interest in MOPs results in a variety of search techniques (called multiobjective
optimisers hereinafter) Coello et al. (2007); Ehrgott (2006); Zhou et al. (2011), ranging from exact
to approximation methods Brunsch and Röglin (2015); Miettinen (1999), and from heuristics to
metaheuristics Czyzak and Jaszkiewicz (1998); Hansen (1997); Jones et al. (2002); Knowles and
Corne (1999); Mandow and De La Cruz (2010). These multiobjective optimisers aim to generate
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Figure 1: An example of the car purchase problem, where a user is interested in two conflicting
objectives, price and performance. The points correspond to all types of cars (solutions)
available in the market, in which the black ones correspond to Pareto optimal solutions
and the white ones correspond to non-optimal solutions.

a solution set (aka a Pareto front approximation or an approximate set) that well represents the
Pareto front of an MOP. Population-based non-numerical optimisers have been found promising in
this regard, such as genetic algorithm Eiben and Smith (2015), particle swarm optimisation Coello
et al. (2004) and ant colony optimisation Alaya et al. (2007). In such methods, each individual in the
population aims to locate a unique trade-off among objectives, whereby they all together provide a
representation of the whole Pareto front. A good Pareto front representation is of high importance
in multiobjective optimisation. It presents a reliable and compact “picture” of the Pareto front
and avoids overload in terms of the computation and the later decision-making process. From a
representative solution set, the decision-maker can choose her/his favourable solution, or uses this
information to articulate preference that allows to narrow down the search for a final choice.

An important issue in multiobjective optimisation is to evaluate and compare the quality of solution
sets, e.g., those generated by different multiobjective optimisers. However, in the presence of multiple
(or even an infinite number of) optimal solutions, two solution sets may be incomparable. This
contrasts with single-objective optimisation, where we can typically define the quality of a solution
set by its best solution (i.e., the solution with the smallest or largest objective function value).
In multiobjective optimisation, the quality of a solution set usually contains several aspects, e.g.,
the closeness to the Pareto front, the coverage over the Pareto front, and the uniformity amongst
solutions. This substantially complicates the comparison between solution sets.

A straightforward way to compare the quality of solution sets is visualisation. However, visual
comparison fails to quantify the difference between solution sets and also becomes harder with more
objectives involved. Quality indicators (QIs)1, as a quantitative way of comparing sets, have arisen.
They typically map a solution set to a real number that indicates one or several aspects of solution
set quality, thus defining a total order amongst solution sets. QIs serve several purposes. They can
be used to 1) compare competing multiobjective optimisers, reveal their strengths and weaknesses,
and identify the most promising one; 2) monitor the search process of optimisers, optimise their
parameters, and potentially improve their performance; 3) define the stop criterion of optimisers,
especially those having a stochastic nature; and 4) explicitly guide the search by integrating into
optimisers as selection criteria, e.g., instead of the Pareto dominance criterion.

Over the last two decades, quality evaluation of multiobjective solution sets has gained much
attention, not only in the fields of evolutionary computation, operational research and optimisa-
tion Bozkurt et al. (2010); Sayın (2000); Zitzler et al. (2003), but also in other fields like artificial
intelligence Bringmann and Friedrich (2013); Tan et al. (2002), software engineering Li et al. (2018a);

1There are other names of quality indicators in the literature, such as quality measures, performance indicators, and
performance metrics.
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Wang et al. (2016), and mechanical design Farhang-Mehr and Azarm (2003a); Wu and Azarm (2001).
In general, studies on QIs in the literature can be classified into five categories.

1. Design of QIs. Majority of the QI studies lies in this category, aiming to design a reliable,
efficient QI to evaluate and compare solution sets.

2. QI-based search. Coined by Zitzler and Künzli Zitzler and Künzli (2004), there is growing
interest in the use of QIs to guide the search in multiobjective optimisation Bader and Zitzler
(2011); Beume et al. (2007); Brockhoff et al. (2015); Jiang et al. (2015); Tian et al. (2017).

3. Theoretical studies of QIs. This category works on some important issues in the design of QIs,
including analyses of the computational complexity of QIs Bringmann and Friedrich (2012);
Fonseca et al. (2006); While et al. (2012), and discussions of some properties that a QI (or a
combination of QIs) desires for, such as Pareto compatibility and completeness Knowles et al.
(2006); Lizárraga-Lizárraga et al. (2008b); Zitzler et al. (2003), scaling invariance Zitzler et al.
(2008), and minimum set construction Farhang-Mehr and Azarm (2003b).

4. Understanding of existing QIs. This includes the behaviour investigation of a particular QI,
analytically Auger et al. (2009b); Brockhoff et al. (2012); Lizárraga-Lizárraga et al. (2008c)
or empirically Ishibuchi et al. (2018b, 2015, 2014), the effectiveness investigation of a group
of QIs in benchmark functions Knowles et al. (2006); Okabe et al. (2003) or in real-world
applications Wang et al. (2016), and also the correlation analysis of different QIs Jiang et al.
(2014); Liefooghe and Derbel (2016); Ravber et al. (2017).

5. Review of certain aspects of QIs. Work in this category focuses on overview from specific
perspectives, such as a review of QIs for exact multiobjective optimisers Faulkenberg and
Wiecek (2010), a critical review of several well-established QIs Knowles (2002); Knowles and
Corne (2002); Okabe et al. (2003), a statistical review of the use frequency of QIs in the
literature Riquelme et al. (2015); Wang et al. (2016), and an instructional review on how to
design QIs Hansen and Jaszkiewicz (1998); Knowles et al. (2006) or on how to choose suitable
QIs for particular problems Li et al. (2018a); Wang et al. (2016).

From the above, however, it can be seen that there is no comprehensive review of the quality
evaluation studies — existing works focus on one or several particular facets of quality evaluation,
e.g., a summary of some QIs Faulkenberg and Wiecek (2010); Riquelme et al. (2015), a criticism of
misleading results obtained by QIs Knowles and Corne (2002); Okabe et al. (2003), a discussion of
some issues in developing QIs Zitzler et al. (2008, 2003), a general guide of designing QIs Hansen and
Jaszkiewicz (1998); Knowles et al. (2006), and a practical guide of selecting suitable QIs in a particular
class of problems Li et al. (2018a); Wang et al. (2016). This contrasts with a range of comprehensive
reviews in other topics in multiobjective optimisation, such as solving multiobjective optimisation
by evolutionary algorithms Coello (2000); Zhou et al. (2011), decomposition-based multi-objective
evolutionary algorithms Trivedi et al. (2017), evolutionary many-objective optimisation Li et al.
(2015), multiobjective approaches to data mining Mukhopadhyay et al. (2014a,b), multiobjective
approaches to finance and economics applications Ponsich et al. (2013), multiple criteria decision
making Wallenius et al. (2008), and dynamic multiobjective optimisation benchmark Helbig and
Engelbrecht (2014).

This paper attempts to fill this gap by covering all important facets of quality evaluation. We
systematically review 100 QIs, analyse the strengths and weaknesses of representative QIs, discuss
main issues in quality evaluation, give detailed recommendations in designing, selecting and using
QIs, and suggest several future research directions in quality evaluation.

Note that this review focuses on the evaluation of solution sets rather than on multiobjective
optimisers. This thus does not involve the comparison of running time of optimisers, statistical results
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of stochastic optimiser in multiple runs, and other generation/iteration-wise indicators. Readers who
are interested in those respects can refer to Datta and Figueira (2012); Fonseca and Fleming (1996);
Knowles et al. (2006); Li and Yao (2019); Van Veldhuizen (1999); Zitzler et al. (2008).

The rest of the paper is outlined as follows. Section 2 introduces the background of quality evalu-
ation in multiobjective optimisation. Section 3 systematically reviews 100 QIs in the literature and
details several representative QIs. Section 4 highlights several important issues in quality evaluation.
Future research directions are suggested in Section 5, and finally Section 6 concludes the paper.

2 Background

In this section, we first give basic concepts in multiobjective optimisation and common comparison
relations between solution sets. We then describe general aspects of solution set quality, which is
followed by the introduction of quality evaluation of solution sets.

2.1 Terminology

Without loss of generality, we consider a minimisation MOP with n decision variables and m objective
functions f : X → Z, X ⊂ Rn, Z ⊂ Rm. The objective functions map a point x ∈ X in the decision
space to an objective vector f(x) = (f1(x), ..., fm(x)) in the objective space. This paper focuses on
quality evaluation of objective vector sets, and the comparison relation is defined on the basis of
objective vectors. In addition, for simplicity we refer to an objective vector as a solution (despite it
being originally termed in X) and the outcome of a multiobjective optimiser as a solution set. We
mainly consider the most general case, namely, no additional knowledge about the MOP available,
e.g., the preference information of the decision maker (DM) unknown a priori.

Considering two solutions x,y ∈ Z, solution x is said to weakly (Pareto) dominate y (denoted as
x � y) if xi ≤ yi for 1 ≤ i ≤ m. If there exists at least one objective j on which xj < yj , we say that
x dominates y (denoted as x ≺ y). A solution x ∈ Z is called Pareto optimal (or efficient) if there
is no y ∈ Z that dominates x. The set of all Pareto optimal solutions of an MOP is called its Pareto
front (or Pareto optimal frontier). In addition, there exist relations stricter than Pareto dominance,
e.g., strict Pareto dominance. Solution x is said to strictly (Pareto) dominate y (denoted as x ≺≺ y)
if xi < yi for 1 ≤ i ≤ m.

The relations between solutions can be readily extended to between solution sets. Let A and B be
two nondominated solution sets (i.e., in each solution set, all solutions are nondominated with each
other).

Definition 1 (Weak Dominance Zitzler et al. (2003)). Set A is said to weakly dominate B (denoted
as A � B) if every solution b ∈ B is weakly dominated by at least one solution a ∈ A.

Definition 2 (Dominance Zitzler et al. (2003)). Set A is said to dominate B (denoted as A ≺ B)
if every solution b ∈ B is dominated by at least one solution a ∈ A.

This relation is also termed complete outperformance (A OC B) in Hansen and Jaszkiewicz (1998).

Definition 3 (Strict Dominance Zitzler et al. (2003)). Set A is said to strictly dominate B (denoted
as A ≺≺ B) if every solution b ∈ B is strictly dominated by at least one solution a ∈ A.

On top of these three relations, there are relations concerning exclusively the comparison between
solution sets.

Definition 4 (Strong Outperformance Hansen and Jaszkiewicz (1998)). Set A is said to strongly
outperform B (denoted as A OS B) if A � B and also there exist at least one pair of solutions
a ∈ A and b ∈ B such that a ≺ b.
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Table 1: Common relations on two solution sets A and B, where “dominance” terms are from Zitzler
et al. (2003) and “outperformance” terms are from Hansen and Jaszkiewicz (1998)

Relation Symbol Definition
weakly dominate A � B ∀b ∈ B,∃a ∈ A,a � b

better (or weakly outperform) A C B (or A OW B) A � B ∧ A 6= B
strongly outperform A OS B A � B ∧ ∃b ∈ B,∃a ∈ A,a ≺ b

dominate (or completely outperform) A ≺ B (or A OC B) ∀b ∈ B,∃a ∈ A,a ≺ b
strictly dominate A ≺≺ B ∀b ∈ B, ∃a ∈ A,a ≺≺ b

Definition 5 (Better Zitzler et al. (2003)). Set A is said to be better than B (denoted as A C B) if
A � B and also there exists at least one solution a ∈ A that is not weakly dominated by any solution
in B.

This relation is also termed weak outperformance (A OW B) in Hansen and Jaszkiewicz (1998).
It represents the most general and weakest form of superiority between two solution sets, namely,
A � B but B � A. In other words, A is at least as good as B, while B is not as good as A.

There exists an ordering amongst the above relations as A ≺≺ B ⇒ A ≺ B ⇒ A OS B ⇒ A C
B ⇒ A � B. The difference between OS and C is that A C B includes the situation that B is a
proper subset of A (B ⊂ A), but A OS B does not. Table 1 summarises these relations.

2.2 Solution Set Quality

As mentioned before, the better relation C is the most general assumption of the DM’s preferences
to compare solution sets. It meets any preference potentially articulated by the DM (when the con-
cept of optimum is solely based on Pareto dominance, other than on other criteria, e.g., robustness).
However, the better relation may leave many solution sets incomparable as there likely exist some so-
lutions being nondominated with each other in the sets. This naturally requires stronger assumptions
about the DM’s preference in distinguishing between solution sets. Yet, stronger assumptions cannot
guarantee that the favoured set (under the assumptions) is certainly preferred by the DM. This is
not surprising as different DMs indeed may prefer different trade-offs amongst objectives. Neverthe-
less, when the DM’s preferences are unknown a priori, a solution set having a sufficient number of
nondominated solutions, good closeness to the Pareto front, good spread over the Pareto front, and
good uniformity amongst solutions is often preferable, since it can well represent the Pareto front
and thus has a greater probability of being preferred by the DM. Moreover, a good representation
of the Pareto front can reveal the problem’s properties, such as the shape, actual dimensionality,
scale, knee point, and relationship between objectives, such that the user can understand better the
problem she/he is dealing with. In general, the quality of a solution set can be interpreted as how
well it represents the Pareto front, and can be broken down into four aspects: convergence, spread,
uniformity, and cardinality.

Convergence of a solution set refers to the closeness of the set to the Pareto front. Spread of a
solution set considers the region of the set covering. It involves both outer portion and inner portion
of the set. This is not like the quality extensity which merely takes the boundaries of the set into
account. Note that the spread of a solution set, in the presence of the problem’s Pareto front, is
also known as the coverage of the set Sayın (2000). Uniformity of a set refers to how even the
solution distribution is in the set; an equidistant spacing amongst solutions is desirable. Spread and
uniformity are closely related, and they collectively are known as the diversity of a set. Cardinality of
a solution set refers to the number of solutions in the set. In general, we desire sufficient solutions to
clearly describe the set, but not too many that may overwhelm the DM with choices. Nevertheless,
it is believed that a set having a larger number of solutions is preferred if two sets are generated with
the same amount of computational resources.
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2.3 Quality Comparison

One straightforward way to compare the quality of solution sets is to visualise the sets and judge
intuitively the superiority of one set to another. Such visual comparison is one of the most frequently
used methods and it is well suited to bi- or tri-objective MOPs. When the number of objectives is
larger than three, where the direct observation of solution sets is unavailable (by scatter plot), people
may resort to the tools from the data analysis field, e.g., parallel coordinates Inselberg and Dimsdale
(1991), spider-web charts Kasanen et al. (1991), and scatter plot matrix Tukey and Tukey (1981) (see
Miettinen (2014) for a summary), or adopt visualisation techniques developed specifically for multi-
objective optimisation, e.g., barycentric coordinates-based RadViz Walker et al. (2013), prosection
method Tusar and Filipic (2015), and polar-metric He and Yen (2016). However, these visualisa-
tion methods may not be able to clearly reflect all the aspects of solution set quality; for example,
commonly-used parallel coordinates only partially reflect the convergence, spread and uniformity Li
et al. (2017). In addition, visual comparison cannot quantify the difference between solution sets,
and thus cannot be used to guide the optimisation.

Quality indicators (QIs) overcome the issues of visual comparison by mapping a solution set into
a real number, thereby providing quantitative differences between solution sets. QIs are capable of
delivering precise statements of solution set quality, for example, in which quality aspect one set is
better than another and how much better is one set than another in certain aspects. In principle, any
function of mapping a set of vectors into a scalar value can be seen as a potential quality indicator,
but in general it may need to reflect one or several aspects of set quality: convergence, spread,
uniformity, and cardinality. Note that when comparing solution sets generated by exact methods,
the convergence evaluation of solution sets is excluded since the generated solution set is a subset of
the problem’s Pareto front.

3 Overview of Quality Indicators in the Literature

This section reviews QIs on the basis of what quality aspects they are mainly capturing. In general,
QIs can be divided into six categories — 1) QIs for convergence, 2) QIs for spread, 3) QIs for unifor-
mity, 4) QIs for cardinality, 5) QIs for both spread and uniformity, and 6) QIs for combined quality of
the four quality aspects. In each category, we also detail one or several example indicators. These QIs
are commonly used in the literature and/or are representative in their category. Table 2 summarises
all 100 QIs in the literature. Note that it does not include measures which are a combination of
several QIs, such as those in Yen and He (2014).

3.1 QIs for Convergence

As the most important aspect of a solution set’s quality, convergence has received a lot of attention
in set evaluation. There exist two classes of convergence QIs in the literature. One is to consider the
Pareto dominance relation between solutions or sets (items 1–9 in Table 2); the other is to consider
the distance of a solution set to the Pareto front or one/several points derived from the Pareto front
(items 10–22).

3.1.1 Dominance-based QIs

A type of frequently-used dominance-based QIs is to consider the dominance relation between so-
lutions of two sets, such as the C indicator Zitzler and Thiele (1998), Ĉ indicator Fieldsend et al.
(2003), σ-, τ - and κ metrics Datta and Figueira (2012), and contribution indicator Meunier et al.
(2000). Other QIs concerning solutions’ dominance include wave metric Van Veldhuizen (1999), pu-
rity Bandyopadhyay et al. (2004), Pareto dominance indicator Goh and Tan (2009), and dominance-
based quality Bui et al. (2009). The wave metric crunches the number of the nondominated fronts
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in a solution set. The purity indicator counts nondominated solutions of the considered set over
the combined collection of all the candidate sets. The Pareto dominance indicator measures the
ratio of the combined set’s nondominated solutions that are contributed by a particular set. The
dominance-based quality considers the dominance relation between a solution and its neighbours in
the set.

The above QIs are all based on the dominance relation between solutions. This contrasts with
dominance ranking which is based on the dominance relation between sets. The dominance ranking
indicator considers the combined collection of all the sets and assigns each set a rank on the basis of
a dominance criterion, for example, dominance count Fonseca and Fleming (1995) or nondominated
sorting Goldberg (1989).

However, all dominance-based QIs have some weaknesses. They provide little information about
what extent one set outperforms another. More importantly, they may leave solution sets incompa-
rable if all solutions of the sets are nondominated to each other, which may happen frequently in
many-objective optimisation Ishibuchi et al. (2008); Li et al. (2015b); Purshouse and Fleming (2007).
In addition, it is worth noting that some dominance-based QIs may partially imply the cardinality of
a solution set since a bigger-size set may result in more solutions nondominated, such as the C Zitzler
and Thiele (1998), contribution indicator Meunier et al. (2000), and Pareto dominance indicator Goh
and Tan (2009).

Table 2: Quality indicators and their properties. “+” generally means that the indicator can well reflect the specified quality of
solution sets. “−” for convergence means that the indicator can reflect the convergence of a set to some extent; e.g.,
indicators only considering the dominance relation as convergence measure. “−” for spread means that the indicator
can only reflect the extensity of a set. “−” for uniformity means that the indicator can reflect the uniformity of a
set to some extent; i.e., a disturbance to an equally-spaced set may not certainly lead to a worse evaluation result.
“−” for cardinality means that adding a nondominated solution into a set is not surely but likely to lead to a better
evaluation result and also it never leads to a worse evaluation result.

No. Quality indicator Convergence Spread Uniformity Cardinality

1 C Zitzler and Thiele (1998) − −
2 Ĉ Fieldsend et al. (2003) − −
3 Contribution indicator (CI) Meunier et al. (2000) − −
4 Dominance-based quality Bui et al. (2009) −
5 Dominance ranking Knowles et al. (2006) −
6 Pareto dominance indicator Goh and Tan (2009) − −
7 Purity Bandyopadhyay et al. (2004) − −
8 Wave metric Van Veldhuizen (1999) −
9 σ-, τ - and κ metrics Datta and Figueira (2012) − −
10 DistZ Viana and de Sousa (2000) −
11 Distance to a knee point Emmerich et al. (2007) − −
12 Distance to the ideal point (ED) Zeleny (1973) −
13 Tchebycheff distance to the knee point Jaimes and Coello (2009) − −
14 Seven point average distance Schott (1995) +

15 Convergence index Nicolini (2004) +
16 Convergence metric (CM) Deb and Jain (2002) +
17 Generational distance (GD) Van Veldhuizen and Lamont (1998) +
18 GDp Schutze et al. (2012) +
19 GD+ Ishibuchi et al. (2015) +
20 M∗1 Zitzler et al. (2000) +
21 Maximum Pareto front error Van Veldhuizen (1999) +
22 Mean absolute error Kaji and Kita (2007) +

23 Area & length De et al. (1992) +
24 Coverage error ε Sayın (2000) + −
25 Extension Meng et al. (2005) −
26 M∗3 (Maximum spread or MS) Zitzler et al. (2000) −
27 Modified MS Adra and Fleming (2011) −
28 MS’ Goh and Tan (2007) −
29 Outer diameter Zitzler et al. (2008) −
30 Overall Pareto spread Wu and Azarm (2001) −
31 PD Wang et al. (2017) +
32 Spread assessment Li and Zheng (2009) −
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Table 2: Quality indicators and their properties. “+” generally means that the indicator can well reflect the specified quality of
solution sets. “−” for convergence means that the indicator can reflect the convergence of a set to some extent; e.g.,
indicators only considering the dominance relation as convergence measure. “−” for spread means that the indicator
can only reflect the extensity of a set. “−” for uniformity means that the indicator can reflect the uniformity of a
set to some extent; i.e., a disturbance to an equally-spaced set may not certainly lead to a worse evaluation result.
“−” for cardinality means that adding a nondominated solution into a set is not surely but likely to lead to a better
evaluation result and also it never leads to a worse evaluation result.

No. Quality indicator Convergence Spread Uniformity Cardinality

33 Spread measure Ishibuchi and Shibata (2004) −
34 Cluster Wu and Azarm (2001) +
35 Deviation measure ∆ Deb et al. (2000) +
36 Evenness Messac and Mattson (2004) +
37 Hole relative size Collette and Siarry (2005) +
38 Minimal spacing Bandyopadhyay et al. (2004) +
39 Spacing (SP) Schott (1995) +
40 Spacing measure Collette and Siarry (2005) −
41 Uniformity Meng et al. (2005) +
42 Uniformity assessment Li et al. (2008) +
43 Uniformity distribution Tan et al. (2002) +
44 Uniformity level δ Sayın (2000) +

45 Cardinality D Sayın (2000) +
46 Number of unique nondominated solutions Berry and Vamplew (2005) +
47 Overall nondominated vector generation (ONVG) Van Veldhuizen (1999) +
48 Ratio of nondominated individuals Tan et al. (2002) +

49 C1 Hansen and Jaszkiewicz (1998) −
50 C2 Hansen and Jaszkiewicz (1998) −
51 Error ratio Van Veldhuizen (1999) +
52 ONVG ratio Van Veldhuizen (1999) +
53 Proportion of Pareto-optimal objective vectors found Ulungu et al. (1999) −
54 Success counting Sierra and Coello (2005) −
55 Cluster-based diversity metric Li et al. (2005) + −
56 Coverage over Pareto front (CPF) Tian et al. (2019) + +
57 HVd Jiang et al. (2016) + + +
58 Relative entropy Meunier et al. (2000) + − −
59 Extended spread Zhou et al. (2006) − +
60 Sparsity index Nicolini (2004) − −
61 ∆ Deb et al. (2002) + +
62 ∆Line Ibrahim et al. (2017) + −
63 Chi-square-like deviation Srinivas and Deb (1994) + −
64 Cover rate Hiroyasu et al. (2000) + −
65 Diversity comparison indicator (DCI) Li et al. (2014a) + − −
66 Diversity metric (DM) Deb and Jain (2002) + − −
67 DIR Cai et al. (2018) + − −
68 Entropy Farhang-Mehr and Azarm (2003a) + − −
69 M∗2 Zitzler et al. (2000) + −
70 M-DI Asafuddoula et al. (2015) + − −
71 Number of distinct choices Wu and Azarm (2001) + − −
72 Sigma diversity metric Mostaghim and Teich (2005) + − −
73 Sparsity Deb et al. (2005) + −
74 U-measure Leung and Wang (2003) + +

75 Averaged Hausdorff distance ∆p Schutze et al. (2012) + + − −
76 Dist1 (D1) Czyzak and Jaszkiewicz (1998) + + − −
77 Dist2 (D2) Czyzak and Jaszkiewicz (1998) + + − −
78 Degree of approximation (DOA) Dilettoso et al. (2017) + + − −
79 Delineation of Pareto optimal front Eskandari et al. (2007) + + − −
80 Dominance move (DoM) Li et al. (2019) + + − −
81 Epsilon indicator (ε-indicator) Zitzler et al. (2003) + + − −
82 ε performance Kollat and Reed (2005) + + − −
83 Front to set distance Bosman and Thierens (2005) + + − −
84 G-Metric Lizárraga-Lizárraga et al. (2008a) − − +
85 Inverted generational distance (IGD) Coello and Sierra (2004) + + − −
86 IGDp Schutze et al. (2012) + + − −
87 IGD+ Ishibuchi et al. (2015) + + − −
88 IGD-NS Tian et al. (2016) + + − −
89 ISDE Li et al. (2016, 2014b) + + −
90 ObjIGD Ibrahim et al. (2017) + + − −
91 Performance comparison indicator (PCI) Li et al. (2015a) + + − −
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Table 2: Quality indicators and their properties. “+” generally means that the indicator can well reflect the specified quality of
solution sets. “−” for convergence means that the indicator can reflect the convergence of a set to some extent; e.g.,
indicators only considering the dominance relation as convergence measure. “−” for spread means that the indicator
can only reflect the extensity of a set. “−” for uniformity means that the indicator can reflect the uniformity of a
set to some extent; i.e., a disturbance to an equally-spaced set may not certainly lead to a worse evaluation result.
“−” for cardinality means that adding a nondominated solution into a set is not surely but likely to lead to a better
evaluation result and also it never leads to a worse evaluation result.

No. Quality indicator Convergence Spread Uniformity Cardinality

92 Completeness indicator Lotov et al. (2013, 2002) + + − −
93 Coverage difference Zitzler (1999) + + − +
94 Hyperarea difference Wu and Azarm (2001) + + − +
95 Hyperarea ratio Van Veldhuizen (1999) + + − +
96 Hypervolume (HV) Zitzler and Thiele (1998) + + − +
97 Integrated preference functional (IPF) Carlyle et al. (2003) + + − −
98 IPF with Tchebycheff function Bozkurt et al. (2010) + + − −
99 R1, R2, R3 Hansen and Jaszkiewicz (1998) + + − −
100 Volume measure Fieldsend et al. (2003) + + − +

3.1.2 Distance-based QIs

The majority of QIs for convergence falls into this class (items 10–22 in Table 2). They can further
be classified into two groups. One is to measure the distance of the considered solution set to one or
several particular points derived from the Pareto front (items 10–14), such as the ideal point Zeleny
(1973), knee point(s) Emmerich et al. (2007); Jaimes and Coello (2009), the Zeleny point Viana
and de Sousa (2000) and the seven particular points Schott (1995). The ideal point is the point
constructed by the best value on each objective of the Pareto front. A knee point is the point on
the Pareto front having the maximum reflex angle computed from its neighbours. The Zeleny point
is the point obtained by minimising each objective separately. The seven points defined in Schott
(1995) are seven particular points derived from the ideal point and the extreme points of the Pareto
front for bi-objective problems.

The other group is to measure the distance to a reference set2 that well represents the Pareto
front (items 15–22). In this group, the indicator GD Van Veldhuizen and Lamont (1998) is most
frequently used. GD first calculates the Euclidean distance for each solution in the solution set to
the closest point in the reference set, and then takes the quadratic mean over all of these distances.
Other QIs in this group can be seen as variants of GD Kaji and Kita (2007); Nicolini (2004), for
example, taking the arithmetic mean of the distances Deb and Jain (2002); Zitzler et al. (2000) and
the power mean Schutze et al. (2012), considering the Tchebycheff distance Van Veldhuizen (1999)
and introducing the dominance relation between solutions and points in the reference set Ishibuchi
et al. (2015).

In the next two sections, we will introduce two representative convergence QIs in detail, one based
on dominance and the other based on distance.

3.1.3 C Indicator

The C indicator Zitzler and Thiele (1998) is arguably the best-known dominance-based QI. It con-
siders the dominance relation between two solution sets and measures their relative quality on con-
vergence and cardinality. Given two sets A and B, C(A,B) gauges the proportion of solutions of B
that are weakly dominated by at least one solution of A. Formally,

C(A,B) =
|b ∈ B | ∃a ∈ A : a � b|

B
(1)

2For benchmarking functions, the reference set is typically constructed by a set of densely and uniformly distributed
points over the Pareto front; for real world problems whose Pareto front is unknown, the reference set often consists
of the nondominated solutions of the collections of all solutions produced during the search.
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C(A,B) maps the pair of A and B to the interval [0, 1]. C(A,B) = 0 means that none of the solutions
in B is weakly dominated by any member of A, and C(A,B) = 1 means A � B.

Note that in quality comparison of two sets, both C(A,B) and C(B,A) need to be considered since
C(A,B) 6= 1−C(B,A) unless the two sets have no solutions being nondominated to each other. An-
other issue of the indicator is that due to the use of the “�” relation in the evaluation, C(A,A) 6= 0
and two nondominated sets can take any value in [0, 1] (depending on how many repetitive solutions
they have in common). Although a replacement by the “≺” relation can overcome the above prob-
lems Fieldsend et al. (2003), the resulting version does not satisfy the triangle inequality. In addition,
the C indicator has also been extended by taking into account the dominated solutions Meunier et al.
(2000) or by introducing other dominance relations and comparing any number of sets Datta and
Figueira (2012).

3.1.4 Generational Distance (GD)

As aforementioned, the GD indicator Van Veldhuizen and Lamont (1998) measures the quadratic
mean of the Euclidean distances of solutions in the given set to the closest point on the Pareto front.
Formally, given a solution set A = {a1,a2, ...,aN},

GD(A) =
1

N

(
N∑
i=1

(d2(ai,PF))2

)1/2

(2)

where d2(ai,PF) means the L2 norm distance (Euclidean distance) of solution ai to the Pareto front.
Usually, a reference set R that well represents the Pareto front is used in practice, thus

d2(ai,PF) = min
r∈R

d2(ai, r)

where d2(ai, r) denotes the Euclidean distance between ai and r. Of course, GD may not necessarily
require a reference set representing the Pareto front if the geometric property of the front is known.

The GD value is to be minimised; a result of zero indicates that the set is on the Pareto front/reference
set. As designed for generational evaluation, GD is often used to measure evolutionary progress of
the solution set towards the Pareto front. However, since GD considers the quadratic mean, it is
rather sensitive to outliers and returns a solution set having outliers a poor score no matter how the
rest performs. In addition, GD can be affected by the size of the solution set Schutze et al. (2012).
When N →∞, GD → 0 even if the set is far away from the Pareto front. Therefore, GD is reliably
usable only when the sets under consideration have the same/or very similar size. Fortunately, this
issue can be fixed if replacing the quadratic mean with the arithmetic mean in Equation (2). In fact,
in some recent studies (e.g., Schutze et al. (2012) and Ishibuchi et al. (2015)), a general form of the
GD indicator with the exponent “p” and “1/p” instead of “2” and “1/2” was adopted. Setting p = 1
has now been commonly accepted and used in line with its inverted version, IGD (cf. Equation (6))
which measures the arithmetic mean of the distances from points of the Pareto front to the closest
solution in the considered set.

3.2 QIs for Spread

Spread quality is concerned with the area of a solution set covering. A set with good spread should
contain solutions from every portion of the Pareto front without missing out any region. However,
most spread QIs only measure the extent of a solution set. Table 2 lists 11 spread QIs in the literature
(items 23–33). These QIs typically consider the range formed by the extreme solutions of the set,
such as maximum spread (MS) Zitzler et al. (2000) and its variants Adra and Fleming (2011); Goh
and Tan (2007); Ishibuchi and Shibata (2004); Meng et al. (2005); Wu and Azarm (2001); Zitzler

10



f1

f3

f2 f2

f3

f1 f2

f3

f1

(a) (b) (c)

Figure 2: A tri-objective example of boundary solutions and extreme solutions of a Pareto front. (a)
Pareto front, (b) boundary solutions, and (c) extreme solutions.

et al. (2008), or consider the range enclosed by the boundary solutions of the set, such as spread
assessment Li and Zheng (2009). We borrow a figure in Li et al. (2014) to illustrate the extreme
solutions and the boundary solutions. As seen in Figure 2, QIs that only take these solutions into
account could miss the inner regions of the Pareto front.

Fortunately, there do exist some QIs designed for the whole coverage of the solution set. For
example, area & length De et al. (1992) measures the area and length of the supported points of
a solution set. Coverage error ε Sayın (2000) calculates the maximum dissimilarity of a solution
set over the Pareto front. PD Wang et al. (2017) sums up the dissimilarity of each solution to the
remaining solutions of a solution set.

3.2.1 Maximum Spread (MS)

MS (or M∗3) Zitzler et al. (2000) is a widely used spread indicator, and it measures the range of a
solution set by considering the maximum extent on each objective. MS is defined as

MS(A) =

√√√√ m∑
j=1

max
a,a′∈A

(aj − a′j)2 (3)

where m denotes the number of objectives. MS is to be maximised; the higher the value, the better
extensity to be claimed. In the case of bi-objective scenarios, the MS value of a nondominated
solution set is the Euclidean distance of its two extreme solutions.

However, as mentioned previously, MS which only considers the extreme solutions of the set fails
to reflect the spread quality. In addition, as it does not touch on the convergence of the set, the
solutions that are far away from the Pareto front usually contribute a lot to the MS value. This
easily induces misleading evaluation. For example, a solution set that concentrates on a tiny portion
of the Pareto front but has one outlier far away from the front would be assigned a good MS value.
To deal with this, the range of the Pareto front is brought in as a reference in the evaluation, e.g,
MS’ Goh and Tan (2007) and modified MS Adra and Fleming (2011).

3.3 QIs for Uniformity

Quality indicators for uniformity measure how uniformly a set’s solutions are distributed. Since
the quality of a solution set can be seen as its ability of representing the Pareto front, a uniformly
distributed solution set, which provides a better Pareto front representation than a non-uniformly
one, can be considered to possess better quality. A desirable uniformity QI should rank highest to a
set consisting of solutions that are spaced completely equally to each other, and a little disturbance
to this set should lead to a worse evaluation result. Items 34–44 in Table 2 correspond to uniformity
QIs.

The uniformity quality of a solution set can typically be evaluated by measuring the variation of
the distance between the solutions. Many QIs in this class are designed along these lines, such as
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spacing (SP) Schott (1995), deviation measure ∆ Deb et al. (2000), uniformity distribution Tan et al.
(2002), minimal spacing Bandyopadhyay et al. (2004), spacing measure Collette and Siarry (2005) and
uniformity Meng et al. (2005). Other QIs for uniformity include considering the minimum/maximum
distance between solutions Collette and Siarry (2005); Messac and Mattson (2004); Sayın (2000), and
constructing clusters Wu and Azarm (2001) or a minimum spanning tree Li et al. (2008) (of all the
solutions of the set under consideration) to evaluate the uniformity quality.

It is worth mentioning that having equidistant solutions for a set does not guarantee having good
diversity. As such, QIs for uniformity should always be used in conjunction with a spread QI.

3.3.1 Spacing (SP)

As the most popular uniformity indicator, SP Schott (1995) gauges the variation of the distance
between solutions in a set. Specifically, given a solution set A = {a1,a2, ...,aN},

SP (A) =

√√√√ 1

N − 1

N∑
i=1

(d− d1(ai,A/ai))2 (4)

where d is the mean of all d1(a1,A/a1), d1(a2,A/a2), ..., d1(aN ,A/aN ), and d1(ai,A/ai) means the
L1 norm distance (Manhattan distance) of ai to the set A/ai, namely,

d1(ai,A/ai) = min
a∈A/ai

m∑
j=1

|aij − aj |

where m denotes the number of objectives and aij is the jth objective of solution ai. SP is to be
minimised; the lower the value, the better the uniformity. A SP value of zero indicates all members
of the solution set are spaced equidistantly on the basis of Manhattan distance. Note that SP
only gauges the distribution in the “neighbourhood” of solutions. Even if working with MS, SP
cannot cover the diversity quality of the set, though these two indicators were often used together
to serve this purpose in the literature. Taking Figure 2 as an example, the solution sets in both
Figures 2(b) and (c) will take full scores by SP and MS; however they are located only in boundaries
and extremes of the Pareto front, respectively.

3.4 QIs for Cardinality

QIs for cardinality can boil down to a simple idea — counting the number of nondominated solutions.
A desirable (necessary) property that cardinality-based QIs possess is that adding a different non-
dominated solution to the set under consideration should improve (does not degrade) the evaluation
result. This is in line with the concept of (weak) monotony in Knowles and Corne (2002). Table 2
lists 10 cardinality QIs (items 45–54).

Depending on involvement of the Pareto optimal solutions, cardinality-based QIs can be grouped
into two classes (items 45–48 and items 49–54). One is to directly consider the nondominated so-
lutions in a set, e.g., the indicators cardinality D Sayın (2000), number of unique nondominated
solutions Berry and Vamplew (2005), overall nondominated vector generation (ONVG) Van Veld-
huizen (1999) and ratio of nondominated individuals Tan et al. (2002). The other class makes a
comparison between nondominated solutions in the set and the Pareto optimal solutions of the prob-
lem. QIs in this class typically return a ratio of the nondominated solutions that belong to the
Pareto optimal set to the size of the optimal set (e.g., C1 Hansen and Jaszkiewicz (1998) and ONVG
ratio Van Veldhuizen (1999)), or to the size of the solution set itself (e.g., C2 Hansen and Jaszkiewicz
(1998) and error ratio Van Veldhuizen (1999)). Beside, there also exist other indicators that simply
count the number of solutions that are members of the optimal set Sierra and Coello (2005).
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Since cardinality of a solution set usually has little information relevant to the representativeness
of the Pareto front, it is often regarded less important than the other three quality aspects. However,
evaluating the cardinality quality may become more reasonable if an optimiser can find a significant
percentage of the problem’s Pareto optimal solutions. This is particularly true for some combinatorial
multi-objective optimisation problems where the total number of the Pareto optimal solutions is
small. In such problems, counting the number of the obtained Pareto optimal solutions is a reliable
indicator reflecting the solution set quality. In fact, this evaluation has been frequently used in some
early studies on combinatorial problems, for example, see Ishibuchi and Murata (1998).

3.4.1 Error Ratio (ER)

The ER indicator Van Veldhuizen (1999) considers the proportion of nondominated solutions of the
solution set that are the Pareto optimal solutions. Mathematically,

ER(A) =

∑
a∈A e(a)

N
(5)

where N is the size of set A, and

e(a) =

{
0, if a ∈ PF
1, otherwise

A smaller ER value is preferable. An ER value of zero indicates that every solution in the considered
set is the Pareto optimal solution of the problem. However, since ER only counts in the Pareto optimal
solutions, it may bring about some counter-intuitive cases. For example, adding more nondominated
solutions to a set may lead to a worse ER score. As such, considering the nondominated solutions in
the compared sets themselves (e.g., counting the unique nondominated solutions Berry and Vamplew
(2005)) may probably be a better option, and also there is no need for the Pareto front.

3.5 QIs for Spread and Uniformity

As stated before, the quality aspects of spread and uniformity are closely related, and they need to
be considered together to reflect the diversity of solution sets. This inspires QIs to cover both the
spread and uniformity quality. Most QIs in this category can be put into two classes, distance-based
indicators and region division-based indicators, despite the existence of alternatives, like the cluster-
based indicator Li et al. (2005); Meunier et al. (2000) and the volume-based indicator Jiang et al.
(2016); Tian et al. (2019). Table 2 lists 18 QIs for spread and uniformity in the literature (items
55–74).

3.5.1 Distance-based QIs

QIs in this class (items 59–62 in the table) typically consider distances between a solution and its
neighbours and then sum up these distances, so as to estimate the coverage of the whole set. The
first QI along this line is ∆ Deb et al. (2002), followed by sparsity index Nicolini (2004), extended
spread Zhou et al. (2006), and ∆Line Ibrahim et al. (2017). However, such evaluation can only work in
bi-objective problems as where nondominated solutions are located consecutively on either objective.
Another issue of these QIs is that they require information of the Pareto front (e.g., the boundaries)
as a reference, which is often unknown in practice.
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3.5.2 Region Division-based QIs

The basic idea of this class (items 63–74 in the table) is to divide a particular space into many
equal-size cells (with overlapping or not), and then to count the number of cells having solutions
of the set. This is based on the fact that a set of more diversified solutions usually occupy more
cells. The majority of QIs for spread and uniformity falls into this class, taking into account different
shapes of the cells. Some of them consider niche-like cells which are centred by solutions themselves,
such as Chi-square-like deviation Srinivas and Deb (1994), U-measure Leung and Wang (2003) and
sparsity Deb et al. (2005). Some consider grid-like cells which divide the space into many hyperboxes,
such as cover rate Hiroyasu et al. (2000), number of distinct choices Wu and Azarm (2001), diversity
metric Deb and Jain (2002), entropy Farhang-Mehr and Azarm (2003a) and diversity comparison
indicator Li et al. (2014a). The rest considers fan-shaped cells which divide the space by a group of
uniformly-distributed rays (i.e., weight vectors), such as Sigma diversity metric Mostaghim and Teich
(2005), M-DI Asafuddoula et al. (2015) and DIR Cai et al. (2018). In addition, dividing the space
via considering the minimum energy points (s-energy) Hardin and Saff (2004) is also a potential way
as they can well represent the space with various shapes.

3.5.3 Diversity Comparison Indicator (DCI)

Quality indicators in this category may not be very pragmatic, especially in high-dimensional sce-
narios. In distance-based QIs, the information of the problem’s Pareto front is required, and in
region division-based QIs, the number of the considered cells typically increase exponentially with
the objective dimensionality. However, DCI Li et al. (2014a) seems an exception on this point. It
does not need problem information, and the computational complexity is also quadratic.

DCI evaluates the relative quality amongst several solution sets. To do so, first all the sets under
consideration are placed into a grid so there are some boxes having one or several solutions. DCI
considers the boxes where nondominated solutions of the combined collection of all the sets are
located. Then for each of these boxes, DCI calculates the contribution degree of every set to it. The
contribution degree is a value ∈ [0, 1], decreasing monotonously with the increase of the distance from
the set to the box. A value of one means that there exist at least one solution in the box, and zero
means that there is no solution in the box’s neighbourhood, where the neighbourhood size increases
consistently with the number of objectives. Finally, DCI averages the contribution degree of the set
to all the considered boxes as its evaluation result. It assigns n scores (in the range of [0, 1]) to n
solution sets. A set will have a high score if its solutions cover or are close to all the boxes, and if
its solutions are far away from most of the boxes, a low score will be obtained. However, it is worth
noting that as the considered boxes are usually not distributed uniformly, DCI may prefer the set
which has a similar distribution with others.

3.6 QIs for All Quality Aspects

Quality indicators in this category are most commonly used in the literature, as they cover all the
four aspects of solution sets’ quality. Items 75–100 in Table 2 list these QIs. They, in general, can
be divided into two classes: distance-based QIs (items 75–91) and volume-based QIs (items 92–100).

3.6.1 Distance-based QIs

The basis idea of distance-based QIs is to measure the distance of the Pareto front to the solution set
under consideration. As such, a reference set that well represents the Pareto front is required. Only
the solution set that is close to every member of the reference set can have a good evaluation value,
thus a reflection of all the quality aspects convergence, spread, uniformity, and cardinality. This idea
can be materialised by averaging (or summing up) the distances of the reference set’s members to
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their closest solution in the solution set, or finding the maximum value from these distances. With the
former, inverted generational distance (IGD) Coello and Sierra (2004) is a representative example,
which considers the average Euclidean distance. Other examples include Dist1 (D1) Czyzak and
Jaszkiewicz (1998) and some IGD’s variants Bosman and Thierens (2005); Eskandari et al. (2007);
Ibrahim et al. (2017); Tian et al. (2016). They use difference distance metrics (e.g., Tchebycheff
distance Czyzak and Jaszkiewicz (1998) and Hausdorff distance Schutze et al. (2012)) or introduce
the dominance relation Dilettoso et al. (2017); Ishibuchi et al. (2015) or additional points Tian et al.
(2016) in the evaluation.

Measuring the maximum difference (distance) of the Pareto front to the solution set can easily
identify the gap between them, thus telling whether the solution set has a good coverage over the
front Hadka and Reed (2012). Dist2 (D2) Czyzak and Jaszkiewicz (1998) and ε-indicator Zitzler
et al. (2003) are such QIs. The Dist2 indicator considers Tchebycheff distance, while the ε-indicator
considers the maximum difference on the objectives where the point of the reference set is superior to
the solution of the considered set. Unlike averaging difference-based QIs, maximum difference-based
QIs may have clear physical meaning; for example, the ε-indicator is to measure the minimum value
added to any solution in the set to make it weakly dominated by at least one point in the reference
set. However, their results typically only involve one particular solution on one particular objective,
thus naturally lots of information loss.

Very recently, a quality indicator, called dominance move (DoM) Li et al. (2019), has been presented
and can be seen as a combination of the above two types of QIs. DoM considers the minimum move
of one set needed to weakly Pareto-dominate the other set. Specifically, given two solution sets A
and B, the DoM of A to B is the minimum total distance of moving some points in A such that any
point in B is weakly Pareto-dominated by at least one point in A. This intuitive indicator has many
desirable properties, e.g., a natural extension of the comparison between two solutions, compliance
with Pareto dominance, and no need of problem knowledge and parameters. However, its calculation
is not trivial. While an efficient calculation method in the bi-objective case has been presented Li
et al. (2019) , how to efficiently calculate it in the case with three or more objectives remains to be
explored. It is worth mentioning that an earlier quality indicator Li et al. (2015a) could be seen kind
of a simplified version of DoM. It divides the reference set (i.e., A ∪B) into many clusters and then
sums up the maximum difference of A to each cluster. This renders the calculation efficient, but
naturally loses its physical meaning.

3.6.2 Volume-based QIs

QIs in this class (items 92–100 in Table 2) measure the size of the volume determined by the con-
sidered solution set in conjunction with some specifications. For example, the widely used indicator
hypervolume (HV) Zitzler and Thiele (1998) calculates the volume of the area enclosed by the set and
a reference point specified by the user. Later, the HV indicator was modified/extended by incorpo-
rating normalisation before the calculation, e.g., hyperarea ratio Van Veldhuizen (1999) and hyperarea
difference Wu and Azarm (2001), or by considering the difference of the areas that two solution sets
dominate, e.g., coverage difference Zitzler (1999) and volume measure Fieldsend et al. (2003). In
addition, the QI completeness indicator Lotov et al. (2013, 2002), which calculates the probability
that a randomly generated solution from the decision space is weakly dominated by the considered
solution set, is closely related to HV. The difference between them is that the completeness indicator
needs sampling in the decision space but not the reference point in the objective space.

Other volume-based QIs include the R family (i.e., R1, R2 and R3) Hansen and Jaszkiewicz (1998)
and integrated preference functional (IPF) Carlyle et al. (2003) and its variants Bozkurt et al. (2010);
Fowler et al. (2005); Kim et al. (2006). Conceptually, the R family and IPF are similar to each
other; both integrate over a set of utility functions (aka scalarising functions) which are assumed
to be in accordance with the DM’ preferences. Difference between them is that IPF considers a
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parameterised set of utility functions with respect to the continuous weight space, while the R family
directly considers the integration of the utility functions, despite that it is implemented by a discrete,
finite set of weights.

Finally, it is worth noting that as seen in Table 2, there is no QI that is able to well reflect all
the four quality aspects. This should not be surprising, since quality aspects can be conflicting
to each other to some extent, such as convergence versus uniformity. For example, consider a set
of uniformly distributed solutions. One can move one solution in the set a little to make it have
better convergence. This will result in a new set having a better convergence but worse uniformity.
Apparently, it is impossible for a single QI to catch both quality aspects in this example. On
another note, it can be seen from the table that only HV (and its variants, items 93–96 and 100)
in this category is able to well reflect the quality cardinality. This is because HV is the only known
indicator fully consistent with the “better” relation (see Section 2.1), and thus it is sensitive to any
change of nondominated solutions in a set.

3.6.3 Inverted Generational Distance (IGD)

IGD Coello and Sierra (2004) is amongst the most commonly used indicators, despite some similar
ideas presented earlier Bosman and Thierens (2003); Czyzak and Jaszkiewicz (1998); Ishibuchi et al.
(2003). As the name suggested, IGD is an inversion of the GD indicator, namely, to measure the
distance from the Pareto front to the solution set.

Formally, given a solution set A and a reference set R = {r1, r2, ..., rM},

IGD(A,R) =
1

M

M∑
i=1

min
a∈A

d2(ri,a) (6)

where d2(ri,a) denotes the Euclidean distance between ri and a. A low IGD value is preferable, and
it should indicate that the set has good combined quality of convergence, spread, uniformity and
cardinality.

However, the accuracy of the IGD evaluation largely depends on the approximation quality of the
reference set to the Pareto front. Different reference sets can make the indicator prefer different
solution sets. Usually, a large reference set with high resolution to the Pareto front is suggested.
As shown in Ishibuchi et al. (2018b, 2015), insufficient points in the set can easily lead to counter-
intuitive evaluations. In addition, the reference set consisting of all nondominated solutions generated
by the optimisers may also cause misleading results, although this practice has been widely adopted
in real-world problems. This issue will be discussed in detail in Section 4.4.2.

3.6.4 ε-indicator

Unlike IGD, the ε-indicator Zitzler et al. (2003) considers the maximum difference between solution
sets. It is inspired by ε-approximation, a well-known measure for designing and comparing approxi-
mation algorithms in optimisation, operational research and theoretical computer science Helbig and
Pateva (1994); Papadimitriou and Yannakakis (2000); Vaz et al. (2015).

Given two solution sets, the ε-indicator is the minimum factor by which one set has to be trans-
lated in the objective (in the way of addition or multiplication) so as to weakly dominate the other
set. This thereby leads to two versions: the additive ε-indicator and the multiplicative ε-indicator.
Mathematically, the additive ε-indicator of a set A to a set B is defined as

ε+(A,B) = max
b∈B

min
a∈A

max
j∈{1...m}

aj − bj (7)

where aj denotes the objective of a in the jth objective and m is the number of objectives. The
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multiplicative ε-indicator of A to B is defined as

ε×(A,B) = max
b∈B

min
a∈A

max
j∈{1...m}

aj
bj

(8)

Both indicators are to be minimised. A value of ε+(A,B) ≤ 0 or ε×(A,B) ≤ 1 implies that A
weakly dominates B. When replacing B with a reference set R that represents the Pareto front, the
ε-indicator can be used as a unary indicator. It measures the gap of the considered set to the Pareto
front. However, as the returned value only involves one particular objective of one particular solution
in either set (where the maximum difference is), the indicator may omit a significant amount of sets’
difference. This can lead to differently-performed solution sets having the same/similar evaluation
results, as observed in Liefooghe and Derbel (2016).

3.6.5 Hypervolume (HV)

HV Zitzler and Thiele (1998) was first presented as the size of the space covered, and later used
as several terms hyperarea metric Van Veldhuizen (1999), S metric Zitzler (1999), and Lebesgue
measure Fleischer (2003). The HV indicator is arguably the most commonly used QIs, due to its
desirable practical usability and theoretical properties. Calculating HV does not need a reference set
of representing the Pareto front, which makes it suitable for many real-world optimisation scenarios.
The HV result is sensitive to any improvement to a set with respect to Pareto dominance. Whenever
a set A is better than another set B (i.e., A C B), then HV returns A a higher quality value than
B. Consequently, a set that achieves the maximum HV value for a given problem will contain all
Pareto optimal solutions.

The HV indicator can be defined as follows. Given a solution set A and a reference point r, HV
can be calculated as

HV (A) = λ(
⋃
a∈A
{x|a ≺ x ≺ r}) (9)

where λ denotes the Lebesgue measure. Put it simply, the HV value of a set can be seen as the
volume of the union of the hypercubes determined by each of its solutions and the reference point
(as the left-bottom vertex and the right-top vertex, respectively).

A limitation of the HV indicator is its exponentially increasing runtime with regards to the number
of objectives (unless P = NP ) Bringmann and Friedrich (2010a). A review of the HV computational
complexity will be given later (Section 4.2). Another issue of the HV indicator is the setting of
its reference point. There is still no consensus on how to choose a proper reference point for a
given problem, despite some common practices, e.g., the nadir point of the Pareto front or 1.1
times the nadir point of the compared solution sets’ collection. Different reference points can lead
to inconsistent HV evaluation results Knowles and Corne (2003). There is a lack of systematic
studies/theoretical guidelines on the choice of the reference point in HV, except for a few in particular
situations Auger et al. (2009b); Cao et al. (2015). Recently, Ishibuchi et al. (2017, 2018a) have
demonstrated a clear difference of specifying the proper reference point for problems with a simplex-
like Pareto front and an inverted simplex-like Pareto front. They have also shown experimentally
that a slightly worse reference point than the nadir point is not always appropriate especially for the
case of many-objective optimisation and/or a small population size. In addition, the HV indicator
prefers the knee regions, and is biased to convex regions over concave regions Zitzler and Thiele
(1998). As proven in Auger et al. (2009b), the distribution of a set of solutions that achieves the
maximum HV value depends largely on the slope of the Pareto front. For example, HV may be in
favour of very non-uniform solution sets on a highly non-linear Pareto front. This has been shown
in Li et al. (2015a).
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3.6.6 Integrated Preference Functional (IPF)

As a group of well-established QIs in operational research, IPF Carlyle et al. (2003) measures the
volume of the polytopes determined by each of nondominated solutions in a set and a given utility
function over the corresponding optimal weights. It can be perceived as representing the expected
utility that a solution set carries for the DM Bozkurt et al. (2010). The IPF indicator is calculated by
two steps: 1) to find the optimal weight interval for each nondominated solution and 2) to integrate
the utility function over these optimal weight intervals.

Formally, let A ⊂ Rm be a set of nondominated solutions, where m denotes the number of ob-
jectives. Consider a parameterised family of utility functions u(a, w) in which a given weight w
produces a value function to be optimised, where a ∈ A and w ∈ W ⊂ Rm. For a given w, let
u∗(A, w) be the best utility function value of the solutions in A. Given a weight density function
h : W −→ R+ that stands for the probability distribution of the (unknown) weight w and it holds
that

∫
w∈W h(w)dw = 1, then the IPF value of the set A is

IPF (A) =

∫
w∈W

h(w)u∗(A, w)dw (10)

The utility functions can be represented as a convex combination of objectives Carlyle et al. (2003)
(i.e., the weighted linear sum function) or the weighted Tchebycheff function Bozkurt et al. (2010).
The former takes only the supported solutions into account, while the latter covers all nondominated
solutions. The IPF indicator can be used in/without the presence of the DM’s input. When the
preferences of the DM can be expressed in accordance with some partial weight space, IPF measures
how well the set represents the preferred potions of the Pareto front. When there is no preference
information available, where all weights can be assumed to occur equally (i.e., h(w) = 1, ∀w ∈ W ),
IPF measures how well the set represents the whole Pareto front. A lower IPF value is preferable.
However, a limitation of using the IPF indicator is that its computational complexity increases
exponentially with the number of objectives Bozkurt et al. (2010); Kim et al. (2006), as it needs to
integrate over the (continuous) weight space.

3.6.7 R Family

Similar to the IPF indicator, the R family Hansen and Jaszkiewicz (1998) also integrates the DM’s
preferences into the evaluation. However, different from IPF, the integration in theR quality indicator
is based on utility functions (rather than on the weight space). Given two solution sets A and B, a
utility function space U and a utility density function h(u), it can be defined as

R(A,B, U) =

∫
u∈U

h(u)x(A,B, u)du (11)

Depending on the outcome function x(A,B, u), the R family has three indicators. R1 considers the
probability of one preferred by the DM over the other, R2 takes into account the expected values
of the utility functions (which is like the IPF indicator), and R3 introduces the ratio based on R2.
Among them, R2 is most frequently used, and can be expressed as

R2(A,B, U) =

∫
u∈U

h(u)u∗(A)du−
∫
u∈U

h(u)u∗(B)du (12)

where u∗(A) means the best value achieved by A on this specific utility function. As can be seen, the
R2 value of two sets can be calculated separately. Like in the IPF indicator, h(u) can be uniformly
distributed over U , when the preference information unavailable. However, a discrete and finite set
U is typically employed in the calculation, which is in contrast to a continuous set W considered in

18



IPF. This can make R2 computation friendly. In particular, if the set of utility functions u can be
represented by a set of weights W and a parameterised utility function on these weights, then R2
can further be calculated as

R2(A) =
1

|W |
∑
w∈W

u∗(A, w) (13)

Like in IPF, multiple choices exist in materialising u(A, w), such as the weighted linear sum function
and the weighted Tchebycheff function, though the latter is widely used in practice Brockhoff et al.
(2012, 2015); Zitzler et al. (2008).

Comparing Equation (13) with Equation (10) when h(w) is set to 1, the R2 and IPF indica-
tors appear quite similar. The IPF indicator, which considers a continuous weight space, requires
exponentially growing computational time with respect to objective dimensionality, while the R2
indicator, which considers a discrete set of weights, is calculated quickly but naturally has a lower
accuracy than IPF.

4 Important Issues in Quality Evaluation

In this section, we discuss several important issues about quality evaluation. It consists of attributes
that QIs possess (Sections 4.1–4.2) and properties that QIs are desirable to have (Sections 4.3–4.6).
Table 3 summarises these attributes and desirabilities with respect to the example QIs detailed in
the last section.

4.1 Unary, Binary or M-nary indicators

The number of solution sets that QIs handle can be different. Although most QIs are unary indicators
which independently evaluate a solution set by assigning it a real number, there exist some M -nary
indicators (M > 2) which give relative quality of M solution sets by typically assigning them M real
numbers. For example, the R family Hansen and Jaszkiewicz (1998) and the C indicator Zitzler and
Thiele (1998) are amongst the earliest binary QIs, followed by the ε-indicator Zitzler et al. (2003),
while G-metric Lizárraga-Lizárraga et al. (2008a), DCI Li et al. (2014a), and PCI Li et al. (2015a)
were designed to compare any number of sets at one run. Compared with unary QIs, M -nary QIs
have some strengths, such as less reference information required (as the considered sets can mutually
be referred to each other), and more easily compliant with Pareto dominance (if introducing the
comparison of the dominance relation amongst the sets in the evaluation).

However, as pointed out in Knowles and Corne (2002), M -nary indicators may induce cyclic re-
lationship of the evaluation results. This contrasts with the fact that a QI is expected to have the
transitivity property in the sense of providing a complete order of the solution sets being compared.
For example, consider three bi-dimensional solution sets A = {(2, 2), (0, 4)}, B = {(3, 1.1), (0.8, 3.2)},
and C = {(3.4, 0.8), (1, 3)}. The additive ε-indicator evaluates A better than B (ε+(A,B) =
0.9 < ε+(B,A) = 1), B better than C (ε+(B,C) = 0.3 < ε+(C,B) = 0.4), but A worse than
C (ε+(A,C) = 1.2 > ε+(C,A) = 1). Other binary relations, e.g., symmetry, asymmetry and an-
tisymmetry, are usually not satisfied in binary QIs as well. In addition, regarding the property of
triangle inequality, it holds for some QIs, e.g., the ε-indicator, but not for some others, e.g., the C in-
dicator. For the latter, taking three bi-dimensional sets A = {(1, 1)}, B = {(0, 3)}, and C = {(2, 2)}
as an example, we have that C(A,B) + C(B,C) = 0 + 0 = 0 < C(A,C) = 1.

It is worth mentioning that some M -nary QIs can be converted into unary ones. When evaluating
solution sets, if an M -nary QI is modified not to compare them with each other, but to compare
them with the Pareto front of the problem or the collection of all the sets under consideration. This
leads to a unary indicator, despite that this conversion does not work for all M -nary QIs, e.g., the C
indicator. The resulting unary QI now has the transitivity property and induces a complete order of

19



Table 3: Attributes and desirabilities of the example quality indicators in Section 3. The symbol “
√

”
in the last four columns means the QI has the specified desirability.

Indicator Number of
sets

Computational
effort

Pareto
compliant

Additional
problem knowl-
edge

No need of scal-
ing before calcu-
lation

Effect of dominated
or duplicate solu-
tions

C indicator binary quadratic
√ √ √

both
GD unary quadratic Pareto front both
MS unary linear

√
dominated

SP unary quadratic
√

both
ER unary quadratic Pareto front

√
both

DCI arbitrary quadratic
√a grid division

√
dominated

IGD unary quadratic reference
solution set

dominated

ε-indicator unary/binary quadratic
√ √

for binary ε
√

HV unary exponential in m strictly
√

reference point
√ √

IPF unary exponential in m
√

reference
weight set,
(possibly)
reference point

√

R2 unary/binary quadratic
√

reference
weight set,
reference point

√

aDCI is Pareto compliant when comparing two solution sets, but not if more sets are involved.

solution sets. On the other hand, some unary QIs can be converted into binary QIs. For example,
HV Zitzler and Thiele (1998) can be easily transformed into a binary indicator as done in Zitzler and
Thiele (1999) (as the coverage difference indicator), where the areas that one set dominates but the
other not are considered.

4.2 Computational Effort

Most QIs are cheap to compute. The time complexity of cardinality QIs and diversity QIs (i.e.,
evaluating spread and/or uniformity) is typically linear and quadratic, respectively, in the size of
the solution set. QIs involving a reference solution/weight set often require O(mNR) comparisons,
e.g., the GD, IGD and R2 indicators, where m denotes the number of objectives, N the size of the
solution set, and R the size of the reference set; thus, no need to worry about the running time of
such QIs under the reasonable size of the reference set. For M -nary QIs, O(mN2M) comparisons
are usually required as they need to compare each solution in a set to all solutions of other sets,
such as the C, DCI and ε indicators. HV, IPF and their variants are amongst expensive QIs, with
their computational time increasing exponentially with the number of objectives. This may limit
their application in the high-dimensional space, especially as an indicator integrated into the search
process of an optimiser. The most costly QI is DoM Li et al. (2019) whose computational time known
increases exponentially with the size of the solution set.

Computing the HV indicator has received intensive attention in the last 15 years. This problem
was shown to be a special case of Klee’s measure problem Beume (2009). For the 2D and 3D case,
the optimal computational time is O(N logN) Beume et al. (2009). To reduce the theoretical time
complexity in the general case, lots of attempts have been made, see for example Beume et al. (2009);
Bringmann (2013); Bringmann and Friedrich (2010b); Fonseca et al. (2006); While et al. (2006);
Yildiz and Suri (2012). Among them, the best known algorithm achieves a O(Nm/3polylogN) upper
bound Chan (2013), where N denotes the size of the set and m denotes the number of objectives.
However, there seems no available implementation of this method and no evidence of its practical
efficiency. From a practical viewpoint, methods in Guerreiro et al. (2012); Jaszkiewicz (2018); Lacour
et al. (2017); Russo and Francisco (2014); While et al. (2012) are amongst the most efficient ones.
These efforts make the HV indicator workable in evaluating solution sets (with a reasonable size)
having more than 10 objectives, but may still struggle when used as an indicator to guide the search
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in an optimiser. Although approximating HV by the Monte Carlo sampling can significantly reduce
its calculation time Bader and Zitzler (2011); Bringmann et al. (2013); Ishibuchi et al. (2010), it
is still faced the issue of “curse of dimensionality” — it may fail to distinguish between different
solution sets when the number of objectives reaches up to 20.

The space requirement of QIs is usually minor, with the exception of those using the grid in the
evaluations, such as DM Deb and Jain (2002) and the entropy indicator Farhang-Mehr and Azarm
(2003a). In these QIs, one needs to access each box in the grid to record its information; for a
solution set with m dimensions, dm boxes need to be considered, where d is the number of divisions
in each dimension. This problem, though, seems not intractable if only considering the non-empty
boxes instead (i.e., the boxes have at least one solution of the set) Yang et al. (2013). In this case,
there are at most N boxes whose information needs to be stored.

4.3 Pareto Compliance

A quality indicator is said to be Pareto compliant Knowles et al. (2006); Zitzler et al. (2003) (or
monotonic Zitzler et al. (2008)) if and only if, when comparing one solution set with another, “at least
as good” in terms of the dominance relation implies “at least as good” in terms of the QI values Zitzler
et al. (2008). Formally, it can be expressed as follows (assuming that a smaller evaluation result is
preferable):

∀A,B : A � B⇒ I(A) ≤ I(B) (14)

For M -nary QIs, I(A) can be seen as the relative quality of the set A in comparison with the other
set(s). Pareto compliance guarantees that a QI does not contradict the order of solution sets induced
by the weak Pareto dominance relation (also by the other comparison relations introduced in Section
2.1 as the weak Pareto dominance relation is the weakest out of them), i.e., if set A is evaluated
better than set B, it would never happen that B weakly Pareto dominates A.

Many widely-used QIs are Pareto non-compliant, such as GD, SP, MS, and IGD. It has been
frequently shown that they may violate the partial order of Pareto dominance amongst solution
sets Ishibuchi et al. (2015); Knowles and Corne (2002); Knowles et al. (2006); Schutze et al. (2012);
Zitzler et al. (2003). This is particularly true for QIs that measure the diversity (i.e., spread and/or
uniformity) of solution sets, since they rarely take into account the closeness of solution sets. DCI
is the only known diversity QI that is compliant with Pareto dominance when comparing two sets.
But if more sets are involved, DCI does not guarantee the Pareto compliance property. Some Pareto
non-compliant QIs involving convergence evaluation can be compliant under some specific situations,
such as GD and IGD when used for a bi-objective problem with a continuous Pareto front Schutze
et al. (2012). On the other hand, some non-compliant QIs, after modifications, can become Pareto
compliant. The studies in Ishibuchi et al. (2015) are an example along these lines, where GD and
IGD are transformed into two Pareto compliant indicators GD+ and IGD+, respectively. It is worth
mentioning that M -nary indicators seem more easy to be transformed, as they can introduce the
dominance relation of the compared solution sets first in the evaluation.

Note that Pareto compliant QIs may not fully distinguish between solution sets subject to the
“better” relation, namely, the most general form of superiority of solution sets. That is, when
A C B, a Pareto compliant indicator I may return I(A) = I(B). To deal with this, a stronger
condition is introduced in Zitzler et al. (2007), called strict Pareto compliance:

∀A,B : A C B⇒ I(A) < I(B) (15)

The strict Pareto compliance implies that only the Pareto front achieves a unique optimal value for
a problem. So far, the HV indicator (and its variants) is the only popular unary QI having this
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property.3

4.4 Additional Problem Knowledge

Most QIs require additional problem information, especially for convergence-related QIs which typi-
cally need some sort of reference of the problem’s Pareto front for a comparison, e.g., the ideal point,
the nadir point, or a reference set that represents the front. As the accuracy of QIs can be largely
dependent on such references, it is desirable for QIs to have as little reference information as possible.
When reporting the results of a study, it is strongly advised to accompany the evaluation values with
the reference information used, for example, by explicitly noting the reference point used or making
the reference set used public, so that others can stand on the same page to compare their results.

4.4.1 Reference Point

The frequently-used reference points in QIs are the ideal point and the nadir point (or the one derived
from them). For example, Tchebycheff utility function-based IPF and R2 need the ideal point of
the problem and the HV indicator needs a reference point that is typically derived from the nadir
point. Although the true ideal point of the problem is usually unavailable, we may use an estimated
point obtained by the solution sets under consideration, or by separately optimising each of the
objectives of the problem. Note that it is crucial to not underestimate the ideal point as this may
lead to solutions that are non-dominated with the estimated ideal point not to contribute fully to the
evaluation results. Furthermore, even if an accurate ideal point is used, boundary solutions may still
contribute less than the inner ones, such as in IPF and R2. As such, it is advised to use a reference
point slightly better than the ideal point, say refj = idealj − lj/(2N − 2) in a bi-objective scenario,
where lj is the range of the objective j and N is the size of the solution set. This setting is able
to make the boundary solutions contribute (approximately) equally as the other internal solutions
in the calculation of the concerned indicator (when considering a uniformly distributed solution set
which spreads over a linear Pareto front).

Compared to the ideal point, determining the nadir point can be very difficult, even for simple
problems Hansen and Jaszkiewicz (1998). One important reason for this is the presence of the
dominance resistant solutions (DRSs) in a solution set Ikeda et al. (2001), i.e., the nondominated
solutions with an extremely poor value in one objective but with (near) optimal values in some other
objectives. If one estimates the nadir point by the collection of the solution sets under consideration
in which there exist DRSs, the evaluation results could be largely affected. For example, in HV,
setting the reference point equal to (or worse than) such DRSs on the corresponding objective may
make some outer solutions contribute significantly more than the inner ones.

4.4.2 Reference Set

A reference set representing the Pareto front is needed in many QIs, such as IGD, the unary ε-
indicator, and the relative HV (i.e., hyperarea ratio Van Veldhuizen (1999)). Ideally, such a reference
set is expected to consist of sufficient points that are distributed uniformly and densely on the Pareto
front.4 This, though, is not feasible in most cases. A practical alternative is to use the collection of
the solution sets under consideration as the reference set. However, this common practice may come
with two issues. First, whenever new solution sets are included in the comparison, the reference set
needs to be reconstructed. And more importantly, such a collection of the sets may not well represent
the Pareto front, and consequently the QI could return inaccurate results.

3The potential function in Laumanns and Zenklusen (2011) also possesses this property, but its calculation involves
the whole search space.

4A recent paper has shown that a well-distributed reference set could lead to IGD to prefer the internal points, and
suggested an extension of the Pareto front as the reference set used in the evaluation Ishibuchi et al. (2018b).
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Figure 3: Illustrations that the collection of solution sets as the reference set may lead to misleading IGD results. (a)
For three bi-dimensional sets A = {(0, 10), (5, 5), (0, 10)}, B = {(2.5, 7.5), (7.5, 2.5)} and C = {(2, 8), (7, 3)},
in general A can be seen to outperform B and C as it provides better spread and cardinality, but IGD
gives opposite results: IGD(A) ≈ 1.82 > IGD(B) ≈ 1.72 > IGD(C) ≈ 1.61. (b) For two bi-dimensional sets
A = {(1, 3), (2, 2), (3, 1)} and B = {(0.75, 10), (3, 3), (10, 0.75)}, the two boundary points of B can be seen
as the dominance resistant solutions Ikeda et al. (2001) (i.e, slightly better on one objective but significantly
worse on the other objective), thus unlikely to be preferred by the DM, but IGD gives opposite results:
IGD(A) ≈ 2.80 > IGD(B) ≈ 1.08.

On one hand, the reference set may make QIs prefer a specific distribution pattern consistent with
the majority of the considered solution sets. This means that if one solution set is distributed very
differently from others, then this set is likely to assign a poor evaluation value whatever its actual
distribution is. This particularly applies to a QI that is sensitive to the reference set’s distribution,
such as IGD and IGD+. Figure 3(a) gives such an example with respect to IGD. When comparing
A with B, if the reference set is composed of these two sets, we will have A evaluated better than B
(IGD(A) ≈ 1.41 < IGD(B) ≈ 2.12). But if adding another set C which has the similar distribution
pattern to B into the evaluation, and now the reference set is composed of the three sets, we will
have A worse than B (IGD(A) ≈ 1.82 > IGD(B) ≈ 1.72). A potential method to deal with this
issue is to cluster crowded points in the reference set first and then to consider these well-distributed
clusters instead of arbitrarily-distributed points, as done in the PCI indicator Li et al. (2015a). But
this induces another issue: how to properly cluster the points in the reference set with potentially
highly irregular distribution.

On the other hand, as discussed previously, the dominance resistant solutions (DRSs) can affect
the evaluation results if they are contained in the reference set. Take Figure 3(b) as an example,
where the two boundary solutions of the set B can be seen as the DRSs. The IGD indicator evaluates
B better than A, despite the fact that A converges significantly better than B and is likely to be
preferred by the DM. This issue can be well overcome if only taking into account the superiority
between two points when measuring their distance Li et al. (2014b), which was done in IGD+ and
PCI.

Overall, the reference set consisting of points with an arbitrary distribution and location may bring
inconsistent evaluation results. But, the extent of this effect could be different to QIs. A QI, which
is little sensitive to the distribution and DRSs of the reference set, can always accurately reflect the
quality of the solution set, such as the ε-indicator and PCI which are able to work with the reference
set having any distribution and location. The relative HV has no requirement of the reference set
having uniformly distributed points, while IGD+ is insensitive to the DRSs.

In addition, it is worth noting that other kind of reference sets may need in QIs, such as a set
of reference weights used in the IPF and R2 indicators. Similar to the situation of the reference
point set, the evaluation results are affected by the distribution of the reference weight set. In the
implementation, typically a set of uniformly distributed weights in a unit simplex are considered.
This implies a risk to perform the evaluation for problems without a simplex-like Pareto front. In
which case, the QIs may prefer a set having specific distribution of solutions (e.g., more solutions
concentrating around the boundaries of the set for problems with an inverted simplex Pareto front)
to one having uniformly distributed solutions.
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4.4.3 Parameters

Some QIs require setting parameters in the evaluation, e.g., the size of the niche in niche-related
indicators and the number of divisions in grid-based ones. These parameters can be affected by the
size of the considered solution set, the number of objectives, and also the actual dimensionality of the
Pareto front. For the last one, it is hard to estimate as the manifold of different solution sets can be
diverse. In addition, the “sweet-spot” of indicator parameter settings that produces reliable results
could shrink significantly as the number of objectives increases. Two high-dimensional solution sets
easily return opposite results when evaluated by a QI with slightly different settings of its parameter.

4.5 Scaling and Normalisation

Scaling (or normalisation) may need for QIs whose calculation involves objective blending. When the
objectives are incommensurable, usually the bigger the range of the objective, the bigger the effect
of that objective to the indicator values. This is opposite to the fact that typically we hope that
different objectives contribute equally to the indicator values. So, a proper transformation of the
objectives is unavoidable, in order to enable their values to lie in the (approximately) same range,
e.g., [0, 1].

A standard objective transformation form is a′j = (aj −minj)/(maxj −minj), where minj and
maxj are the minimum and maximum respectively on the objective j with respect to the problem’s
Pareto front ideally, or with respect to the nondominated set of the collection of all the considered
solution sets practically. However, this can also be affected by the DRSs. In this case, most solutions
could be transformed into a tiny portion of the normalised range (e.g., [0, δ], where δ is a very small
decimal) on some of the objectives, and consequently these objectives contribute less to the indicator
values than the other objectives. A potential method to tackle this is to use nonlinear transformations
by, for example, taking into account the dispersion of the solutions on the objectives. In addition,
other ways to determine the range of the scaling include using the anti-ideal point, the probabilistic
approach and the pay-off table, and adding “common sense” to these methods, which fit in particular
situations Hansen and Jaszkiewicz (1998).

Note that one may not need to perform the normalisation if the concerned QI is scaling indepen-
dent Zitzler et al. (2008). An indicator is called scaling independent if the order of solution sets
induced by the indicator always remains the same after applying any monotonic transformation to
the objective values Zitzler et al. (2008). But this desirable property only holds for QIs having no
“blending” of the objectives, e.g., those dominance-based QIs and cardinality-based QIs.

It is worth pointing out that blending objectives in quality evaluation does not certainly need
the normalisation, since different objectives may still contribute equally to the indicator values after
blending. For example, in the HV calculation objectives need a “multiplication”. Objectives with
different ranges contribute proportionally the same amount to the volume. As a result, the ratio of
HV before and after the normalisation remains unchanged for different solution sets (provided that
the choice of the reference point takes the objective ranges into consideration). This observation is
actually not in line with the common practice in the area, which normalises the solution set before
calculating its HV value.

4.6 Effect of Adding Dominated or Duplicate Solutions

In general, it is desirable for a QI that adding dominated or duplicate solutions into a solution set
does not affect the indicator results as these solutions bring no more useful information to the DM
in the context of Pareto optimality. However, this does not hold for many QIs, particularly for those
taking into account the contribution of each solution in the set to the indicator values, e.g., many
convergence QIs and most diversity QIs. For cardinality QIs, adding duplicate solutions often has
a problem as duplicate solutions are conceptually nondominated with the existing ones. For QIs
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covering all the aspects of set quality, adding dominated solutions may affect the indicator values,
such as IGD, but many Pareto compliant QIs possess this desirability in which dominated solutions
contribute nothing to the indicator values, such as HV, IGD+, IPF, PCI, R2, and the ε-indicator.

5 Future Research Directions

After providing a general review of the research currently done and important issues in quality
evaluation, this section is devoted to indicating what are some of the promising research directions
for the next few years, and also to giving some guidelines on these directions. This section focuses on
major topics and some other interesting open problems can also be found in http://simco.gforge.

inria.fr/doku.php?id=openproblems, such as parameter sensitivity, k-replacement landscape and
set-gradient.

5.1 QI Design

An ideal quality indicator is cheap to compute, Pareto compliant, immune to dominated/duplicate
solutions, does not need a normalisation and not need any additional problem knowledge. However,
as can be seen in the last two sections, such an indicator does not exist currently. Even only for
the two desirabilities Pareto compliance and additional problem knowledge, there is no unary QI
both possessing them. All the unary Pareto compliant QIs (e.g., HV and the ε-indicator) require a
reference point/set, while all the unary diversity QIs which typically need less parameter information
(e.g., MS and SP) are not compliant with Pareto dominance. In this regard, M -nary QIs seem to be
a better option, since it is easier for them to be Pareto compliant and the sets under consideration
can be mutually used as the reference to each other. In addition, we would like to note that if it is
unavoidable to introduce reference information in designing QIs, it may be better for them to relate
to the ideal point of the problem, than on the nadir point, than on a reference set, as they are of
different achievable levels in practice.

It is worth noting that a caveat needs to keep in mind when designing uniformity QIs. In a
high-dimensional space, the ratio between the distances of a solution to its nearest and farthest
solutions approaches 1, i.e., the solutions essentially become uniformly distant from each other. This
phenomenon can be observed for a variety of distance metrics, but it is more pronounced for the
Euclidean distance than, say, the Manhattan distance. So if a QI considers the Euclidean distance
in its evaluation, then the evaluation results of different solution sets may tend to be similar in a
high-dimensional space. To alleviate this issue, the Lp norm metric with p < 2 can be introduced. In
this regard, the Manhattan distance (i.e., p = 1) is a good option as it does not violate the triangle
inequality.

5.2 QI Selection

An interesting phenomenon in QI selection is that in spite of the considerably large number of QIs
currently available (see Table 2), many researchers adopt just a handful of them. Some QIs (e.g.
HV) have a clear preference over others (e.g., the ε-indicator). We think that this may be attributed
to several reasons. First, researchers in the field tend to work by analogy. An example in this regard
is that the indicator GD, which actually has an obvious drawback (i.e., sensitive to the size of a
solution set because of the “quadratic mean” considered, cf. Section 3.1.4), is, however, used widely.
In contrast, the indicatorM∗1 Zitzler et al. (2000) which is similar to GD but overcomes its drawback,
is, however, used rarely. This interesting phenomenon results from “inertia”; people tend to use QIs
which was (widely) used before, and may not be fully aware of their drawbacks. Second, some QIs
are more practical/user-friendly. For example, the HV indicator does not need a reference set that
estimates the Pareto front, while the ε-indicator needs one (when used as a unary indicator), despite
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both being Pareto compliant. The binary ε-indicator, like any binary QI, does pairwise comparisons
of two solution sets. For n solution sets, they need

(
n
2

)
evaluations, more than unary QIs requiring n

evaluations. Also, to compare results obtained by binary QIs, more complicate statistical testing is
needed. The last reason is that researchers in different fields may prefer different QIs. For example,
people in the operational research field tend to consider the indicator IPF and its variants Bozkurt
et al. (2010); Carlyle et al. (2003), while people in the search-based software engineering field like
to choose the contribution indicator Meunier et al. (2000) to compare sets (through the dominance
relation of their solutions) obtained by different algorithms. Overall, these reasons altogether suggest
the importance of understanding the properties and advantages/drawbacks of various QIs, from which
the user could find her/his suited one(s).

In general, it is expected to select QIs which together are able to cover all the four quality aspects.
Many papers, especially those appeared one decade ago, are used to consider multiple QIs, each
of which is responsible for one specific aspect. For example, a common practice is using GD for
convergence, MS and/or SP for diversity, and ER for cardinality Adra and Fleming (2011); Coello
et al. (2004). In contrast, now there is a trend of using a comprehensive QI to evaluate all the quality
aspects, such as HV and IGD. However, there is no clear evidence indicating this practice better
than a combination of multiple isolated QIs, which suggests further studies needed. But anyway, no
matter what kind of combination (or comprehensive indicator), one needs to ensure it sufficient to
properly cover all the four aspects, in which case, MS or SP (or their combination) may not suffice
for diversity, as they omit how the solution set spreads over the space.

Recently, some studies have paid attention to the ensembles of several QIs Yen and He (2014)
and the hierarchical evaluation through multiple QIs Lizárraga-Lizárraga et al. (2008a); Zitzler et al.
(2008), but this relies heavily on the diversity amongst the selected QIs. When all selected QIs have
similar behaviours, e.g., all preferring boundaries of the Pareto front, being better with respect to
one QI usually implies being better with respect to the others, thereby failing to make a reliable
conclusion of solution sets’ comprehensive quality. In addition, as the importance of different quality
aspects may be different (generally in the order of convergence, spread, uniformity, and cardinality),
when designing a QI ensemble strategy one needs to take this order into consideration.

The above discussions are based on generic multiobjective problems. For a particular class of
problems, there could be preferred QIs. For example, many problems in data mining, such as
the feature selection problem, could be regarded as combinatorial problems Mukhopadhyay et al.
(2014a,b). As combinatorial problems often have a relatively small Pareto front, evaluating the
cardinality quality of solution sets (against all the known Pareto optimal solutions) may be preferred.
Besides, for some problems we know the range of the Pareto front, such as the optimal product
selection problem in software product line Hierons et al. (2016); Xiang et al. (2018). In this case, the
indicator HV is a good option to evaluate solution sets as the reference point is able to properly set.

5.3 Connection between QIs

As diverse QIs are desirable to together evaluate solution sets, it is of high importance to understand
the connection between existing QIs. Such study should be stressed on QIs responsible for same
quality aspect(s) (e.g., those responsible for all the four aspects), since QIs for different aspects are
typically independent of each other. Recently, there have been a few attempts along these lines.
Wessing and Naujoks (2010) analysed the correlation structure between HV, R2 and the ε-indicator,
and have reported that HV and R2 are highly correlated. Similar observations have been found
in Liefooghe and Derbel (2016), where the authors conducted an extensive empirical study of the
correlation between four QIs. They have also found that IGD appears to behave more differently from
the other Pareto compliant QIs. But we may not know whether this claim results from the Pareto
non-compliance property of IGD or not. In addition, Jiang et al. (2014) investigated the difference
in indicator values and have shown the inconsistent results obtained by HV and IGD. More recently,
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Table 4: QIs used in indicator-based search methods.

Indicator(s) indicator-based search methods
HV IBEA Zitzler and Künzli (2004), SMS-EMOA Beume et al. (2007); Emmerich

et al. (2005), MO-CMA-ES Igel et al. (2007), HypE Bader and Zitzler (2011),
POSEA Yevseyeva et al. (2014)

ε-indicator IBEA Zitzler and Künzli (2004), PBEA Thiele et al. (2009)
R2 R2-EMOA Brockhoff et al. (2015); Trautmann et al. (2013), R2-IBEA Phan and

Suzuki (2013), R2-MOGA Diaz-Manriquez et al. (2013), MOMBI Hernández and
Coello (2013), MOMBI-II Hernández and Coello (2015)

∆p indicator DDE Villalobos and Coello (2012), AS-EMOA Rudolph et al. (2014)
IGD or its variants IGD+-MOEA Lopez and Coello (2016), AR-MOEA Tian et al. (2017),

MaOEA/IGD Sun et al. (2018)
SDE ISDE+ Pamulapati et al. (2018)

ε-indicator + SDE SRA Li et al. (2016)
ε-indicator + SDE + PBI K-MBFA Wang et al. (2018)

Indicator ensemble BIBEA-P Phan et al. (2012)

Ravber et al. (2017) studied the difference among QIs by ranking several well-established optimisers
and have reported that HV, IGD+ and the ε-indicator do not perform significantly differently in the
optimiser ranking.

The above studies, however, have not provided deep insight of how to select QIs properly. They did
not touch on the issues like if it is possible for several specific QIs to (approximately) cover another
QI, or suggesting a proper (minimal) set of QIs which have a good coverage of solution set quality. In
addition, studies on theoretical connection between QIs are also highly desirable. An important step
in this respect has been made in Bringmann and Friedrich (2010c), showing that HV approximates
the (additive) ε-indicator with asymptotically optimal convergence speed, and a set that maximises
the HV value is near optimal on the ε-indicator as well, with the “gap” diminishing as quickly as
O(1/N), where N denotes the set size.

5.4 Optimal Distribution

Given a quality indicator and a Pareto front, optimal µ-distribution refers to the geometrical prop-
erties of solution sets (with the size µ) that maximise the indicator. Determining the optimal dis-
tribution is an important research topic as it is of relevance to understanding the bias of QIs and
also to knowing the limiting distribution achieved by multiobjective optimisers with a bounded size
of populations.

Optimal distribution is typically considered in comprehensive QIs. It was first described in Auger
et al. (2009b) for the HV indicator, where it has shown that in the 2D case, the optimal distribution
of solutions is most dense as parts of the Pareto front where the angle of the tangent with the x-
axis is −45◦, and it decreases to 0 for angles close to 0◦ and 90◦. Later on, they have shown some
preliminary results in the 3D case Auger et al. (2010). Other results include determining the optimal
distributions for HV with α-approximation Friedrich et al. (2009) and for the R2 indicator Brockhoff
et al. (2012) in certain condition. However, it remains widely unclear the dependency of the density
on the curvature of the Pareto front when three or more dimensions are involved.

5.5 QI-based Search

A trend in multiobjective optimisation is to integrate QIs into optimisers themselves. As the outcome
of optimisers is eventually evaluated by QIs, it is natural and logical to directly optimise the QI
value during the search process, thus resulting in the search in the space of sets rather than in the
space of solutions. Such indicator-based search, along with Pareto-based search and decomposition-
based search, have become three mainstream techniques in evolutionary multiobjective optimisation.
Table 4 summarises indicator-based search methods and their corresponding QIs.
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Early indicator-based optimisers typically integrate the HV or ε-indicator into their search, such as
IBEA Zitzler and Künzli (2004), SMS-EMOA Beume et al. (2007), MO-CMA-ES Igel et al. (2007),
PBEA Thiele et al. (2009), and HypE Bader and Zitzler (2011), Recent indicator-based optimisers
introduce other quality indicators, including the R2 indicator Brockhoff et al. (2015); Diaz-Manriquez
et al. (2013); Hernández and Coello (2015); Phan and Suzuki (2013), averaged Hausdorff distance
∆p Rudolph et al. (2016, 2014); Villalobos and Coello (2012), IGD (or its variants) Lopez and Coello
(2016); Sun et al. (2018); Tian et al. (2017), among others Basseur and Burke (2007); Thiele (2015).
These methods have been found to be particularly promising in problems with many objectives as
they can provide sufficient selection pressure (against Pareto dominance), returning a scalar value
for a solution set with any dimension.

However, such set-based selection, compared with solution-based selection, typically accompanies
with high computational cost. Every time we remove one solution in the set, it potentially needs
N evaluations to determine which one having the least contribution to the indicator. Another issue
of indicator-based optimisers is that they of course rely on the accuracy and the behaviours of the
considered QI. Since each indicator represents one particular preference structure, it seems promising
to combine an indicator with the general Pareto dominance relation or to consider multiple indicators
with different preference structures. The former has been demonstrated in Li et al. (2018b), and the
latter has been practised in several recent studies Li et al. (2016); Phan et al. (2012); Wang et al.
(2018).

5.6 Hypervolume-Related Issues

The HV indicator has long been one of the central topics in the evolutionary multiobjective optimi-
sation area. There exist several open problems that constantly attract the attention of researchers,
such as the computational complexity, incremental update in HV-based search and subset selec-
tion. Readers of interest could refer to the following two webpages in detail, http://simco.gforge.
inria.fr/doku.php?id=openproblems and http://www.hypervolume.org.

5.6.1 Computational Complexity

As stated previously, the known upper bound runtime is O(Nm/3polylogN), where N denotes the
set size and m denotes the number of objectives Chan (2013). A lower bound of Ω(N logN) was
given in Beume et al. (2009). Now it still remains unknown to find better lower bound and upper
bound when m > 3. Also algorithms with a small constant (hidden in the O() notation) would be
desirable, even in small dimensions. In addition, computing sizes of the facets of the dominated HV
polytope is of interest as it is closely related to the computation of the HV contribution Emmerich
and Deutz (2014).

5.6.2 Incremental Update

Incremental update of HV (also called computing HV contributions) is to measure how much the
HV value of a set changes, when one solution is added into or removed from the set. It plays an
important role in HV-based archive maintenance Knowles et al. (2003) and HV-based evolutionary
search Emmerich et al. (2005). Computing the HV contributions exactly is #P-hard and approxi-
mating them is NP-hard Bringmann and Friedrich (2012). In the 2D and 3D cases, computing all HV
contributions requires O(N logN) comparisons Emmerich and Fonseca (2011), and in the 4D case,
it can be obtained in O(N2) comparisons Guerreiro and Fonseca (2018). The asymptotically fastest
known algorithms in more dimensions were presented in Bringmann and Friedrich (2012); Igel et al.
(2007). Also it has been pointed out that the computation of a single HV contribution in dimension
d has at least the complexity of the computation of the HV indicator in d−1 Emmerich and Fonseca
(2011). In addition, as shown in Hupkens and Emmerich (2013), updating all HV contributions in an
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archive of N nondominated solutions can be achieved with an amortised time complexity of Θ logN
after adding or removing a single solution in the 2D case. For the 3D and 4D cases, algorithms
are known with (amortised) runtime linear and quadratic in N , respectively Guerreiro and Fonseca
(2018). However, similar to the computation of the HV indicator, the time complexity of computing
HV contributions in more than 3 dimensions remains unknown.

5.6.3 Subset Selection

Finding the optimal K-size subset with respect to HV from an N -size solution set is of interest in
multiobjective optimisation. It maximises the probability that the DM finds at least one solution
in the subset acceptable Emmerich et al. (2015), and is also relevant for maintaining a high quality
population/archive in the search. This problem is in general NP hard for 3 and more dimensions Rote
et al. (2016). In the 2D case, algorithms of time complexity O(N(K + logN)) were presented Bring-
mann et al. (2014); Kuhn et al. (2016), faster than a dynamic programming-based algorithm of
O(KN2) Auger et al. (2009a). Recently, a fixed parameter approximation algorithm for the general
case was given in Bringmann et al. (2017). However, it is still unknown whether there exist more
efficient algorithms for 2 dimensions and whether the problem is W [1] complete for more than 2
dimensions. In addition, the subset selection problem also applies to other quality indicators, see for
example Vaz et al. (2013) where finding a subset with respect to the best ε value was considered.

It is worth mentioning that recently some work Qian et al. (2018, 2016, 2015) converts a general
subset selection problem into a bi-objective problem with an additional objective, the set size, and
uses a simple evolutionary algorithm to optimise it. Such a Pareto optimisation subset selection can
achieve the same general approximation guarantee as the greedy algorithm, but has better ability to
avoid local optima.

5.7 Preference Incorporation from the DM

The ultimate goal of multiobjective optimisation is for the DM to select a single solution which most
stands for their preferences. When the DM’s preferences are unavailable, a set of well-converged, well-
distributed solutions are favoured as they have a great probability of containing a solution picked
by the DM. When the DM’s preferences are available, it is certainly desirable to incorporate these
preferences into the evaluation of solution sets.

Preference information of the DM can be manifold. When the preferences are clearly articulated,
e.g., the DM preferring the knee of the problem or there being a hierarchy relation among objectives,
quality evaluation of solution sets can be easily conducted on the basis of these preferences (see Li et al.
(2018a)). When the articulation of the DM’s preferences is general/rough, QIs need to be designed
carefully to incorporate these preferences. Common ways of preference articulation in this regard are
aspiration levels and reference weights. The aspiration levels are the levels on some/all objectives
satisfied by the DM, and they usually result in a reference point in the objective space. To incorporate
such information, indicators are designed to give the solutions that dominate or are close to the
reference point (depending on the position of the point against the Pareto front) better evaluation
results, such as those in Li and Deb (2016); Mohammadi et al. (2013); Yu et al. (2015). The weight
articulation is to model the DM’s preference by controlling the distribution of the weights in the space.
This approach is also precisely the motivation behind some QIs, such as the R family Hansen and
Jaszkiewicz (1998) and IPF Carlyle et al. (2003), as stated previously. Articulating the preferences
by a set of weights seems promising, given the following advantages. First, it can be used to reflect
the importance of different objectives and to control the distribution and range of solutions in the set.
Second, it can easily be incorporated into many QIs (e.g., HV Zitzler et al. (2007) and R2 Wagner
et al. (2013)). Finally, it works with/without the availability of preference information. Other
types of preference articulation include the utility function and trade-off information. The former is

29



already incorporated in several indicators (see the R family and IPF), whereas the latter has rarely
been considered in the literature.

5.8 Comprehensibility from User Perspective

Another issue of QIs is the comprehensibility of the evaluation outcome to the user. Based upon one
or several scalar values returned by a QI evaluating solution sets, it could be difficult for the user to
understand the quality of the solution sets, especially for those having no expertise in multiobjective
optimisation. For example, given two solution sets A and B, a quality indicator I evaluates A better
than B, say I(A) = 0.3 < I(B) = 0.6. Apparently, we cannot see much from this evaluation result.
We do not know whether the DM will certainly choose the solution in A other than in B or not; or if
the latter is the case, whether the chance of A being picked is twice as high as that of B. As such, it
is desirable to provide more meaningful interpretation of set evaluation, like what is the probability
of the DM in favour of A (when the preference information of the DM is unavailable). Applying such
an indicator to the above example, when I(A) = 0.3 and I(B) = 0.6, we know that the probability
of A being picked is half as great as that of B. If I(A) = 0.0 and I(B) = 1.0, we know that A is
dominated by B.

Table 5: A summary of representative quality indicators and their usage note/caveats and applicable
situations.

Indicator Quality aspect Usage note/caveats Applicable situation
C convergence removing duplicate solutions before the

calculation
more suitable for combinatorial problems
where the Pareto front size is relatively small

GD convergence normalisation needed; replacing quadratic
mean with arithmetic mean in the calcula-
tion

when the compared sets are nondominated to
each other (i.e., no C relation between the sets,
cf. Section 2.1), and the Pareto front range can
be estimated properly (e.g., no DRS points)

GD+ convergence normalisation needed; replacing quadratic
mean with arithmetic mean in the calcula-
tion

various situations

MS spread normalisation needed; removing the solu-
tions that are dominated by some solution
in the other sets before the calculation; this
indicator only evaluates a set’s extensity

when the compared sets are nondominated to
each other

SP uniformity normalisation needed when the compared sets are nondominated to
each other

ER cardinality when the compared sets are nondominated to
each other, and the sets have the same (or very
similar) size

DCI spread and
uniformity

properly setting the grid division parame-
ter

more accurate for the comparison between two
solution sets

ε-indicator comprehensive
quality

normalisation needed; differently-
performed sets may have the same/similar
evaluation results

various situations, particularly for real-world
problems

R2 comprehensive
quality

normalisation needed; setting the reference
point slightly better than the ideal point

various bi-objective situations

IGD comprehensive
quality

normalisation needed when the compared sets are nondominated to
each other, and a Pareto front representation
with densely, uniformly distributed points is
available

IGD+ comprehensive
quality

normalisation needed when a Pareto front representation with
densely and uniformly distributed points is
available

HV comprehensive
quality

properly setting the reference point; expo-
nentially increasing computational cost in
objective dimensionality

when the objective dimensionality is not very
high, and the problem’s nadir point can be well
estimated (e.g., in most benchmarking func-
tions)
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6 Conclusions

Problems to which multiobjective optimisers have been applied are ubiquitous in real life, and this
suggests the need of careful analysis and fair evaluation of the optimisers’ outcome. In this paper,
we have carried out a comprehensive overview of quality evaluation in multiobjective optimisation.
We have categorised 100 quality indicators, detailed several representative ones, and discussed some
properties that quality indicators possess or are desirable to have. This all implies a conclusion that
there is no ideal quality indicator to evaluate solution sets and different indicators fit in different
situations. For instance, HV, thanks to its sensitiveness to dominance improvement, could be a good
option when the problem’s nadir point can be well estimated, e.g., in most benchmarking scenarios.
R2 works for various bi-objective scenarios where we advise to use a reference point slightly better
than the ideal point. The ε-indicator is an option for real world scenarios, as it is unaffected by the
distribution and location of the reference set. GD and IGD needs to be replaced by GD+ and IGD+,
respectively. The latter, in contrast to HV, can be used in benchmarking scenarios with the high
objective dimensionality and/or the big set size provided that a densely and uniformly distributed
reference set is available. Table 5 summarises the usage note/caveats and applicable situations of
several quality indicators.

Finally, we have suggested several future research directions, in which linking quality evaluation
with the DM’s preferences needs much attention. In this regard, there are two paths forward. One is
to design/modify quality indicators such that certain articulations of the DM’s preferences are easily
incorporated, such as in the R family Hansen and Jaszkiewicz (1998), IPF Carlyle et al. (2003), and
HV Zitzler et al. (2007). The other is to consider to design/adapt quality indicators according to
particular problem scenarios where the DM’s preferences are given explicitly or implicitly, as in Li
et al. (2018a).
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