

A novel online supervised hyperparameter tuning
procedure applied to cross-company software effort
estimation
Minku, Leandro

DOI:
10.1007/s10664-019-09686-w

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Minku, L 2019, 'A novel online supervised hyperparameter tuning procedure applied to cross-company software
effort estimation' Empirical Software Engineering. https://doi.org/10.1007/s10664-019-09686-w

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 13. Aug. 2019

https://doi.org/10.1007/s10664-019-09686-w
https://research.birmingham.ac.uk/portal/en/publications/a-novel-online-supervised-hyperparameter-tuning-procedure-applied-to-crosscompany-software-effort-estimation(16acd309-77df-4746-8691-5181651f1498).html

Empirical Software Engineering
https://doi.org/10.1007/s10664-019-09686-w

A novel online supervised hyperparameter tuning
procedure applied to cross-company software effort
estimation

Leandro L. Minku1

© The Author(s) 2019

Abstract
Software effort estimation is an online supervised learning problem, where new training pro-
jects may become available over time. In this scenario, the Cross-Company (CC) approach
Dycom can drastically reduce the number of Within-Company (WC) projects needed for
training, saving their collection cost. However, Dycom requires CC projects to be split into
subsets. Both the number and composition of such subsets can affect Dycom’s predictive
performance. Even though clustering methods could be used to automatically create CC
subsets, there are no procedures for automatically tuning the number of clusters over time
in online supervised scenarios. This paper proposes the first procedure for that. An inves-
tigation of Dycom using six clustering methods and three automated tuning procedures is
performed, to check whether clustering with automated tuning can create well performing
CC splits. A case study with the ISBSG Repository shows that the proposed tuning proce-
dure in combination with a simple threshold-based clustering method is the most successful
in enabling Dycom to drastically reduce (by a factor of 10) the number of requiredWC train-
ing projects, while maintaining (or even improving) predictive performance in comparison
with a corresponding WC model. A detailed analysis is provided to understand the condi-
tions under which this approach does or does not work well. Overall, the proposed online
supervised tuning procedure was generally successful in enabling a very simple threshold-
based clustering approach to obtain the most competitive Dycom results. This demonstrates
the value of automatically tuning hyperparameters over time in a supervised way.

Keywords Software effort estimation · Cross-company learning · Transfer learning ·
Concept drift · Online learning · Hyperparameter tuning

Communicated by: David Bowes, Emad Shihab and Burak Turhan

A preliminary version of this work appeared in Minku and Hou (2017). This work was supported by
EPSRC Grant No. EP/R006660/1.

� Leandro L. Minku
L.L.Minku@cs.bham.ac.uk

1 School of Computer Science, The University of Birmingham, Edgbaston,
Birmingham, B15 2TT, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09686-w&domain=pdf
http://orcid.org/0000-0002-2639-0671
mailto: L.L.Minku@cs.bham.ac.uk

Empirical Software Engineering

List of Acronyms
Machine Learning Acronyms:
CC Cross-Company
BagRT Bagging ensembles of Regression Trees
Dycom Dynamic Cross-company Mapped Model Learning
LogLR Linear Regression in the Logarithmic scale
SEE Software Effort Estimation
RT Regression Trees
WC Within-Company

Performance Metric Acronyms:
AE Absolute Error
IQR Inter-Quartile Range
LogAE Absolute Error in the Log scale
MAE Mean Absolute Error
MdAD Median Absolute Deviation
MdAE Median Absolute Error
MdLogAE Median Absolute Error in the Log scale
SA Standardised Accuracy
SAAE Standardised Accuracy with respect to Absolute Error
SALogAE Standardised Accuracy with respect to Absolute Error in the Log Scale

1 Introduction

Software Effort Estimation (SEE) is the process of estimating the effort required to develop
a software project. The use of machine learning for creating SEE models based on data
describing completed projects has been studied for many years (Boehm 1981; Jørgensen and
Shepperd 2007; Dejaeger et al. 2012; Sarro et al. 2016; Song et al. 2018). Such SEE models
could form useful tools to help experts to perform and/or re-think their effort estimations.
These estimations can then be used to inform many important project decisions, such as
project bidding, requirements selection, task allocation, etc. Therefore, several companies
in the software industry (for instance in the US and China) adopt model-based SEE methods
(Menzies et al. 2017). Such methods are also widely advocated by professional societies
and certification programs (see for example http://www.iceaaonline.com/, tiny.cc/gox9xy
and tiny.cc/hmx9xy).

However, the process of creating SEE models faces several challenges, such as the diffi-
culty in tuning hyperparameters1 of machine learning approaches, the fact that SEE models
may become unsuitable over time, the heterogeneity of software projects, and the high cost
associated to collecting Within-Company (WC) projects for training SEE models. The chal-
lenges faced by SEE can cause several of the SEE approaches to perform poorly under
certain conditions that one could encounter in practice. Research in the area has thus con-
tinued to better understand the problem and overcome these challenges, so that SEE can
become more widely applicable (Sarro et al. 2016; Lokan and Mendes 2017; Sarro and
Petrozziello 2018; Song et al. 2018). In particular, several studies have investigated the use

1In machine learning, hyperparameters are parameters that must be set before learning begins, as opposed to
model parameters learnt by the algorithm.

http://www.iceaaonline.com/
http://tiny.cc/gox9xy
http://tiny.cc/hmx9xy

Empirical Software Engineering

of Cross-Company (CC) projects to reduce the cost of collecting WC projects for training
SEE models (Kitchenham et al. 2007; Menzies et al. 2013; Minku and Yao 2017).

Despite the availability of potentially useful CC projects in software engineering repos-
itories (ISBSG 2011; Menzies et al. 2017), the different processes and environments
underlying different companies render CC projects potentially heterogeneous with respect
to the projects being estimated (Minku 2016). Therefore, several studies proposed ways to
tackle heterogeneity in CC SEE (Kocaguneli et al. 2010, 2015; Menzies et al. 2013; Minku
and Yao 2014, 2017). In particular, the approach Dycom (Minku and Yao 2014) managed
to drastically reduce the number of WC projects used for training while maintaining or
slightly improving predictive performance in comparison with WC models. Dycom is the
only approach able achieve that while treating the online learning nature of the SEE prob-
lem, i.e., the fact that new projects arrive over time and that SEE models must be able to
adapt to changes that could otherwise affect their suitability (Minku and Yao 2017).

An interesting observation here is that, even though Dycom has been investigated only in
the context of estimating the development effort of software projects as a whole, its general
framework could also potentially be very useful for Agile estimation (Usman et al. 2014). In
particular, its treatment of the estimation process as an online learning problem means that
not only feedback from estimations given to previous projects can be used for improving
and adapting estimates for future projects, but also feedback from estimations of previous
sprints of a project could be used for improving and adapting estimations for future sprints
of this project. Therefore, Dycom’s framework is compatible with Agile estimation, and
could potentially be used to support the improvement of Agile estimations during the course
of a project. This is a direction worth exploring in the future.

In order to use CC projects for SEE, Dycom splits the available CC projects into dif-
ferent CC subsets containing more homogeneous projects. Each CC subset is used to build
a different CC SEE model. Homogeneity is defined based on a given criterion, e.g., the
productivity of the projects. Mapping functions are then learned to dynamically map the
estimations given by the CC models to estimations reflecting the current context (in partic-
ular, the relationship between project input attributes and effort) of a given company. These
mapping functions are learned by using a small number of WC training projects received
over time.

However, the CC splits can have a significant impact on Dycom’s predictive perfor-
mance (Minku and Hou 2017), and it is unclear how to best split the CC projects into
different subsets. Clustering methods could potentially help to choose good splits. However,
they typically rely on pre-defining the number of clusters (CC subsets) to be created. This
number can itself affect Dycom’s predictive performance. Some clustering methods use
unsupervised procedures to automatically tune the number of clusters. However, these pro-
cedures do not make use of predictive performance information. Therefore, it is unknown
whether they could lead to good predictive performance for Dycom. Meanwhile, the liter-
ature on online learning lacks procedures for automatically choosing hyperparameters in
a supervised manner, i.e., based on predictive performance information. Even if an online
supervised tuning procedure was available, as Dycom is intended to reduce the number of
WC projects required for training, it is unknown whether the predictive performance cal-
culated based on such WC projects would be reliable enough for the tuning procedure to
succeed.

With that in mind, the first aim of this paper is to propose a novel procedure for auto-
matically tuning hyperparameters over time in online supervised learning. The proposed
procedure makes use of predictive performance information acquired over time to dynami-
cally select and update the most suitable number of CC subsets over time. The second aim

Empirical Software Engineering

of this paper is to investigate whether clustering methods are successful in avoiding poor CC
splits for Dycom when used in combination with (1) the proposed online supervised hyper-
parameter tuning procedure, and (2) existing offline unsupervised procedures for tuning the
number of CC subsets.

Here, success in avoiding poor CC splits is defined as the ability to create CC splits
that enable Dycom to obtain (1) better predictive performance than a (trivial) median base-
line model and than WC models, both trained on the same limited number of WC projects
as Dycom, and (2) at least similar predictive performance to WC models trained on a
much larger (e.g., 10 times larger) number of WC projects. How successful the approach
is in terms of (1) depends on the statistical significance, effect size and magnitude of the
improvements in predictive performance. How successful the approach is in terms of (2)
depends on whether the approach manages to at least maintain predictive performance while
using 10 times less WC training projects, based on statistical tests and effect size. More
details on the approaches compared against Dycom, the performance metrics, the statistical
tests and the measure of effect size used in this study are provided in Section 8.

This paper is further organised as follows. Section 2 presents the research questions
answered to achieve the aims of this work, and summarises the contributions of this work.
Section 3 explains related work. Section 4 explains Dycom. Section 5 explains how to use
Dycom with clustering methods. Section 6 explains the procedures for automatically tuning
the number of CC subsets, including the proposed online supervised hyperparameter tuning
procedure. Section 7 explains the datasets used in the case study. Section 8 explains the
setup of the experiments performed to achieve the aims of this work. Sections 9, 10, 11
and 12 present the analyses of the experiments. Section 13 presents a discussion regarding
running time and overfitting. Section 14 discusses threats to validity. Section 15 presents
the conclusions and future work.

2 Research Questions and Contributions

To achieve the aims outlined in Section 1, this paper proposes an online supervised
hyperparameter tuning procedure and answers the following research questions:

– RQ1: Which clustering and tuning approach is the most successful in improving
Dycom’s predictive performance in comparison to other approaches that also have
access to a limited number of WC training projects?

– RQ2: Why is this approach the most successful in achieving that?
– RQ3: Is this approach to Dycom always successful in reducing the number of WC

projects required for training while maintaining predictive performance in comparison
to WC models trained on more WC projects?

– RQ4: If not, why does it sometimes fail in achieving that? Can that give us any insights
into how to use it?

A case study using the ISBSG Repository (ISBSG 2011) is performed to answer the
research questions. Two of the approaches investigated with Dycom consist of Expectation-
Maximisation (Bishop 2006) and X-Means (Pelleg and Moore 2000), using their built-in
offline unsupervised tuning procedures. The other four consist of four other clustering
methods that do not have built-in tuning procedures, used in combination with the pro-
posed online supervised tuning procedure. These four clustering methods are: Threshold
(Minku and Yao 2014), K-Means (Rokach and Maimon 2005), Hierarchical Clustering
(Rokach and Maimon 2005) and Spectral Clustering (Kannan et al. 2000; Shi and Malik

Empirical Software Engineering

2000). All approaches are investigated with three different base learners: Regression Trees
(RTs), Bagging ensembles of RTs (BagRT), and Linear Regression in the Logarithmic Scale
(LogLR).

The study shows that the proposed online tuning procedure in combination with a sim-
ple threshold-based clustering method was the most successful approach in avoiding poor
CC splits for Dycom. In particular, it was the only Dycom approach that always outper-
formed both the median baseline and a corresponding WC approach trained on the same
number of WC projects (RQ1). Threshold clustering performed well in comparison to more
complex clustering methods because the CC training projects are exponentially distributed
and not really clustered (RQ2). In most cases, it enabled Dycom to use ten times less WC
training projects than a corresponding WC model, while maintaining its predictive per-
formance. Therefore, this approach was generally successful in avoiding poor CC splits.
However, in 3 out of 18 cases, it failed to reduce the number of WC training projects by
10 times while maintaining predictive performance (RQ3). The analysis found that not only
the characteristics of the CC projects, but also the base learners being used can affect the
number of WC projects required for training. When the CC projects were fewer and older,
RT and BagRT led to SEE models whose performance varied more. This caused the pro-
posed online supervised tuning procedure to struggle to keep track of the best number of
CC subsets, potentially requiring WC training projects to be collected more frequently.
LogLR led to more stable predictive performance in this scenario, facilitating the choice of
the number of CC subsets by the proposed online supervised tuning procedure and avoid-
ing the need for collecting a larger number of WC training projects (RQ4). Overall, the
proposed online supervised tuning procedure was generally successful in enabling a very
simple threshold-based clustering approach to obtain the most competitive results. This
demonstrates the value of automatically tuning hyperparameters over time in a supervised
way.

This paper provides the following novel contributions:

– The first hyperparameter tuning procedure for online supervised learning (Section 6.1).
– An investigation of how successful the SEE approach Dycom is in reducing the number

of requiredWC training projects when used in combination with hyperparameter tuning
to avoid the need for manually pre-defining the number of CC subsets (Sections 9 and
11).

– An investigation of which clustering method is the most adequate for use with Dycom
when adopting hyperparameter tuning for the number of CC subsets (Section 9), and
an investigation of why/when this method is expected to be adequate (Section 10).

– An investigation of Dycom using RT, BagRT and LogLR as base learners, demon-
strating how well Dycom performs with these base learners and when they are
recommended for use with Dycom (Sections 9 to 12).

– A detailed investigation of when and how to use the proposed online supervised
hyperparameter tuning procedure in the context of SEE (Section 12).

Through the use of Dycom with online supervised hyperparameter tuning, this work
is a step in the direction of better addressing four challenges: (1) high cost of collecting
WC training projects; (2) heterogeneity of projects, which can hinder SEE modelling; (3)
difficulty in tuning hyperparameters of machine learning approaches; and (4) changes in
the data generating process (a.k.a., concept drifts), which can affect the suitability of SEE
models over time. Better addressing these challenges contributes towards better applicabil-
ity of machine learning-based SEE, because it becomes easier and less costly to run SEE

Empirical Software Engineering

approaches when it is not necessary to collect large bodies of WC training projects, when
key hyperparameters can be automatically tuned, and when the approach can automatically
adapt to changes that would otherwise cause the software effort estimations to become
unsuitable over time.

A preliminary version of this work appeared in Minku and Hou (2017). However, that
paper focused mainly on clustering methods without automated tuning procedures. The only
clustering method investigated with automated tuning was Expectation-Maximisation. Dif-
ferent from that paper, the current paper has a strong focus on the use of automated tuning of
the number of CC subsets, with all clustering methods being investigated using automated
tuning. Therefore, this paper presents a completely new case study, where the only Dycom
approach that has already been investigated in previous work (Minku and Hou 2017) was
clustering Dycom with Expectation-Maximisation. This paper also investigates two addi-
tional clustering methods (X-Means and Spectral Clustering) which were not investigated
in Minku and Hou (2017), and two additional base learners (LogLR and BagRT). This is
the first work to investigate Dycom with other base learners than RTs, leading to additional
useful knowledge on the benefits of Dycom for SEE.

3 RelatedWork

Section 3.1 presents related work on CC learning and heterogeneity in SEE. Section 3.2
presents related work on supervised hyperparameter tuning procedures in software analyt-
ics. Unsupervised hyperparameter tuning procedures are explained in Section 6, being part
of the methodology to answer the research questions posed in Section 2.

3.1 CC Learning and Heterogeneity in SEE

Many studies have investigated the predictive performance of CC versus WC SEE models.
A systematic literature review published by Kitchenham et al. (2007) found ten studies,
seven of which were independent. Three of these concluded that the predictive performance
of CC and WC models was similar, whereas the other four concluded that the predictive
performance of CC models was worse. McDonell and Shepperd (2007) also performed
a systematic literature review to investigate whether CC models have similar predictive
performance to WC models, and found no strong evidence in support of either type of
model. Ordinary Least Squares Regression, Stepwise Regression, Robust Regression, RTs
and k-Nearest Neighbours were among the machine learning approaches investigated.

Several of these studies used CC projects in an attempt to completely eliminate the need
for WC projects (Kitchenham et al. 2007; McDonell and Shepperd 2007). They compared
WC models against models created only with projects from other companies (e.g., Briand
et al. 2000; Wieczorek and Ruhe 2002). Some other studies used both CC and WC projects
in at least part of the procedure for building SEE models (Jeffery et al. 2010; Kitchenham
and Mendes 2004; Lefley and Shepperd 2003). For example, Lefley and Shepperd (2003)
trained SEE models with both CC and WC projects, in an attempt to overcome the small
number of WC projects (Lefley and Shepperd 2003).

Both systematic reviews mention that the level of heterogeneity of the single-company
being estimated may vary and influence the WC models’ performance. This has influenced
more recent studies that use local learning approaches to tackle the heterogeneity of WC
and CC projects. For example, Kocaguneli et al. (2010) used a tree-based filtering mech-
anism, obtaining very encouraging results. Models trained solely with different types of

Empirical Software Engineering

projects (or projects from different centres of a company) from the ones being estimated
obtained overall similar performance to models trained on projects of the same type (or
from the same centre). Turhan and Mendes (2014) investigated the use of a filtering mecha-
nism based on k-Nearest Neighbours, obtaining very encouraging results in the area of web
effort estimation. Specifically, filtered Stepwise Regression CC models achieved similar
predictive performance to WC models in seven out of eight datasets, and worse predictive
performance in only one dataset.

Menzies et al. (2013) proposed to cluster WC+CC projects to tackle heterogeneity using
a method called WHERE. This method splits projects according to the input attributes of
highest variability. Prediction rules are then created for each cluster based on a method
called WHICH. Given a certain cluster, its neighbouring cluster with the lowest required
efforts was referred to as the envied cluster. When making predictions for WC projects
belonging to a cluster, rules created using only the CC projects from the envied cluster were
better than rules created using only the WC projects from the envied cluster. So, the authors
recommended to cluster WC+CC projects, but to learn rules using solely the CC projects
from the envied cluster. This study was in the context of both SEE and software defect
prediction, but this particular conclusion was based only on the defect prediction data.

Other studies also investigated the use of clustering methods to tackle heterogeneity.
For example, Huang et al. (2008) investigated K-Means and Scheffe’s method to cluster
CC projects based on their input attributes. An Ordinary Least Squares model was created
for each cluster. When estimating a new project, the cluster to which this project belongs
is determined and its corresponding SEE model is used for performing the estimation.
The predictive performance obtained using clustering was similar to that obtained with-
out clustering. Gallego et al. (2007) partitioned CC projects into different subsets based on
certain input attributes of interest. Each of the partitions was then further clustered using
Expectation-Maximisation. Linear or Exponential Regression models were created for each
cluster. Predictions were made in a similar way to Huang et al. (2008)’s method. The authors
concluded that clustering can improve predictive performance, even though no statistical
tests were used in this comparison. These methods were evaluated for making predictions
for CC projects, i.e., no WC dataset was used in these studies.

It is important to note that, even though CC/WC projects could be considered as poten-
tially more/less heterogeneous with respect to the projects being estimated, WC projects
may also be heterogeneous. Therefore, the terms CC/WC should not be considered as
synonyms of heterogeneous/homogeneous (Minku 2016), and the possible heterogeneity
of WC projects should be tackled. Kocaguneli et al. (2012) and Minku and Yao (2013)
investigated the use of tree-based SEE models to tackle heterogeneity in general, i.e., not
restricted to CC projects. Other local approaches such as k-Nearest Neighbours (Shepperd
and Schofield 1997; Amasaki et al. 2011) could also be seen as tackling heterogeneity.

The studies above did not take into account the fact that SEE is an online learning
problem, where new projects need to be predicted over time, and changes suffered by the
company may affect the quality of existing SEE models (Minku and Yao 2012, 2017). With
that in mind, Dynamic Cross-company Learning (Minku and Yao 2012, 2017) creates an
ensemble of WC and CC models and dynamically identifies which of them is currently
beneficial for SEE. The beneficial models are emphasised when the ensemble is asked to
estimate a new WC project. This approach managed to improve predictive performance in
comparison with a WC model. However, Dynamic Cross-company Learning can only ben-
efit from CC projects when they match the current WC context reasonably well. It still
requires a fair amount of WC projects to achieve good performance during the periods when
the CC models are not beneficial.

Empirical Software Engineering

Kocaguneli et al. (2015) investigated a tree-based filtering mechanism called TEAK
(Kocaguneli et al. 2012) to tackle heterogeneity. This mechanism creates trees to represent
training projects and provide effort estimations. CC or WC training projects correspond-
ing to sub-trees of high variance are assumed to be detrimental and filtered out. Besides
investigating TEAK for CC web effort estimation, Kocaguneli et al. (2015) also investi-
gated its ability to transfer knowledge from the past to the present in conventional WC
SEE. The approach managed to obtain similar performance when using only training pro-
jects from the same time period as the project being estimated, and when using a mix of
training projects from the same and different time periods. However, similar to Dynamic
Cross-company Learning (Minku and Yao 2012, 2017), this approach still relies on a good
number of projects from the same time period to be available for the process of generating
the SEE model.

The approach Dycom (Minku and Yao 2014) was proposed to overcome this limitation.
Similar to Dynamic Cross-company Learning, it maintains an ensemble of WC and CC
models. However, instead of just identifying which past WC or CC models are more ben-
eficial, it maps the estimations given by the CC models to the WC context. In this way,
it can significantly reduce the number of WC projects needed for training while main-
taining or slightly improving predictive performance in comparison with a WC model.
However, Dycom requires CC projects to be split into different subsets to create its CC
models, and the choice of CC split can significantly affect its predictive performance. As
explained in Section 1, this paper aims to investigate which clustering methods and auto-
mated hyperparameter tuning procedures can help with that. Section 4 explains Dycom in
more detail.

3.2 Supervised Hyperparameter Tuning in Software Analytics

Supervised machine learning approaches are frequently sensitive to the choice of hyper-
parameter values (Lavesson and Davidsson 2006; Song et al. 2013; Nair et al. 2018). For
example, in the context of online SEE, a study (Song et al. 2013) showed that Multilayer
Perceptrons (Bishop 2006) are highly affected by hyperparameter choice, specially when
used as single learners. The use of Bagging (Breiman 1996) to combine multiple Multi-
layer Perceptrons into ensembles helped to decrease their sensitivity to hyperparameters,
but hyperparameter choice still had a significant effect. The preliminary study leading to
the current paper (Minku and Hou 2017) also showed that Dycom (Minku and Yao 2014)
is sensitive to the number of CC subsets. Conversely, WEKA’s REPTree RTs (Hall et al.
2009), and especially Bagging ensembles of REPTrees, tended to perform well with default
hyperparameter values (Song et al. 2013).

Even though the studies above show that online supervised learning for SEE is affected
by hyperparameter choice, there is no agreed procedure to tune hyperparameters in the
online supervised learning literature. The difficulty in tuning hyperparameters for online
supervised learning algorithms is due to the fact that there may not be data beforehand to
evaluate different hyperparameter choices and identify which of them is most adequate.
Moreover, even if there is an initial portion of data, the best hyperparameter values for this
initial portion may not be the same as the best ones for later periods of time, because the data
generating process may change over time (Minku and Yao 2014; Ditzler et al. 2015). No
general purpose hyperparameter tuning procedure for online supervised learning is available
to dynamically and automatically tune hyperparameters at runtime.

Different from the literature on online supervised learning, the literature on offline super-
vised learning has several studies investigating procedures for tuning hyperparameters of

Empirical Software Engineering

machine learning approaches (Nair et al. 2018). For example, in the context of SEE, Oliveira
et al. (2010) investigated the use of a Genetic Algorithm to automatically tune hyperpa-
rameters and select input attributes for several offline supervised learning algorithms. The
search for good hyperparameter values is guided by their resulting predictive performance
on the training set. It is then hoped that these values will also lead to good predictive per-
formance on the test set. The study investigated this tuning procedure with the following
offline supervised learning approaches: Support Vector Regression, Multilayer Perceptrons
and M5 model trees. This procedure was evaluated on six datasets and shown to lead to both
improvements in predictive performance and reduction in the complexity of the resulting
predictive model.

Corazza et al. (2013) investigated the use of Tabu Search to tune the hyperparameters
of (offline) Support Vector Regression in the context of SEE. The search for good hyper-
parameter values is guided by their resulting validation predictive performance, calculated
through the cross-validation procedure. Cross-validation is run based on all data that are not
used for testing. The advantage of using validation predictive performance over training pre-
dictive performance is that it works as an estimate of the predictive performance on data not
used for training. This can avoid overfitting and potentially result in better predictive per-
formance on the test set. An investigation based on 21 datasets found that Tabu Search led
to significantly better predictive performance than random hyperparameter values, default
values provided by WEKA (Hall et al. 2009), and grid-search, with very few exceptions. In
particular, the Median Absolute Error obtained using the Support Vector Regression model
with the best estimates without Tabu Search was on median about one half the error obtained
by the model tuned with Tabu Search.

More recently, Xia et al. (2018) investigated the use of Differential Evolution to tune the
hyperparameters of (offline) Analogy-Based SEE. Their instance of the Differential Evolu-
tion algorithms was given a small budget of model evaluations to find the hyperparameter
values that lead to the best Magnitude of the Relative Error or Standardised Accuracy on
a data set set not used for training. They found that their method led to significantly better
results than untuned Analogy-Based SEE and a baseline called Automatically Transformed
Linear Model. Differences in Standardised Accuracy with respect to untuned Analogy-
Based SEE varied from 17% to 27%. Xia et al. (2018) further investigated Non-dominated
Sorting Genetic Algorithm II and Multiobjective Evolutionary Algorithm Based on Decom-
position to tune hyperparameters. They showed that time-consuming optimisers such as
Non-dominated Sorting Genetic Algorithm II did not lead to improvements in Standardised
Accuracy in comparison to faster optimisers such as Differential Evolution using a small
budget of model evaluations.

Tantithamthavorn et al. (2016) investigated the impact of hyperparameter tuning in soft-
ware defect prediction based on a case study with 18 datasets and 26 offline supervised
learning algorithms. They tuned hyperparameters based on 100 repetitions of the out-of-
sample bootstrap procedure. The tuned hyperparameters led to improvements of up to 40
percentage points in the Area Under the Curve. This study was later on extended, includ-
ing three more hyperparameter tuning procedures (Random Search, Genetic Algorithms
and Differential Evolution) and several performance metrics (Tantithamthavorn et al. 2018).
They found that different hyperparameter tuning procedures led to similar benefits in terms
of performance improvement when applied to software defect prediction. They emphasised
that, even though hyperparameter tuning can lead to large performance improvements, this
depends on the machine learning algorithm being tuned. Some machine learning algorithms
such as Random Forests were not so much affected by hyperparameter choice in software
defect prediction. This complements Song et al. (2013)’s study, which found that Bagging

Empirical Software Engineering

ensembles of REPTrees were not much affected by hyperparameter choice in the context of
SEE.

Agrawal and Menzies (2018) investigated the use of Differential Evolution to automat-
ically tune hyperparameters used by the SMOTE offline learning algorithm in the context
of software defect prediction. Their Differential Evolution attempts to find the hyperparam-
eter values that lead to the best predictive performance on a validation set. This validation
set is a portion of the data that is not used for training or testing the predictive model. Their
experiments, which were based on seven datasets, showed that Differential Evolution can
lead to large improvements in predictive performance (area under the curve increased by up
to 60%) when tuning SMOTE’s hyperparameters. Differential evolution is also applicable
to other offline machine learning algorithms (Fu et al. 2016).

Fu and Menzies (2017) applied Differential Evolution as a hyperparameter tuner to
(offline) Support Vector Machines for the problem of finding which questions in the Stack
Overflow programmer discussion forum can be linked together. Their Differential Evolu-
tion attempts to find the hyperparameter values that lead to the best F1-score on a validation
set (called tuning data in their work). Their approach usually led to similar or better results
than a state-of-the-art Deep Learning Convolutional Neural Network in terms of precision,
recall and F1-score, while being 84 times faster to run.

Overall, even though several studies emphasize the importance of tuning hyperparam-
eters of machine learning approaches in software analytics, and several hyperparameter
tuning procedures have been used in offline learning scenarios in this context, there is no
hyperparameter tuning procedure for online supervised learning.

4 Dycom

Dycom (a.k.a. Dynamic Cross-company Mapped Model Learning) is an SEE online ensem-
ble learning approach which aims at reducing the number of WC projects required for
training, while ensuring that the ensemble is updated to reflect potential changes in the
underlying data generating process of a given company. This approach achieves that by
using a small number of WC training projects received over time to learn how to map the
effort estimations given by CC models to the current context of the single company in which
we are interested. It is based on the observation that there is a relationship between the
SEE context of a given company and other companies. Minku and Yao (2014) formalise the
relationship between two companies CA and CB as follows:

fA(x) = gBA(fB(x)) (1)

where CA is the company in which we are interested; CB is another company (or a depart-
ment of this other company); fA and fB are the true functions providing CA’s and CB ’s
required efforts, respectively; gBA is a function that maps the effort from CB ’s context
to CA’s context; and x = [x1, x2, · · · , xn] are the input attributes describing a software
project. The functions fA, fB and gBA can be of any type. An illustrative example where
fA(x) = gBA(fB(x)) = 1.2 · fB(x) can be found in Minku and Yao (2014).

Empirical Software Engineering

Given (1), the task of learning an SEE model for a company CA can involve the task
of learning the relationship between CA and other companies. Therefore, Dycom uses CC
training projects to learn one or more CC models, and uses a very limited number of WC
training projects to learn a function that maps the estimations given by each CC model to
estimations in the WC context. It is hoped that the task of learning the mapping functions is
less difficult than the task of learning a whole WC model based solely on the WC training
projects, as this would considerably reduce the amount ofWC projects required for learning.
As summarised by Minku et al. (2015), Dycom works as follows.

CC training projects: Dycom uses CC training projects that are available before-
hand. Past CC projects were found to be beneficial for prolonged periods of time (e.g.,
10 years), even though these periods of time are typically intercalated with periods where
such projects are detrimental (Minku and Yao 2017). Therefore, so long as the benefi-
cial and detrimental CC projects are properly distinguished and mapped to the context of
the company being estimated, CC training projects available beforehand are of practical
use. In particular, acquiring additional CC projects over time was found to be benefi-
cial only in cases where the initial CC dataset was small (Minku 2018). If one wishes
to use Dycom with additional CC projects, it can be reset and retrained with those pro-
jects. Such reset does not need to be performed often, given the prolonged periods of
time where CC projects can be beneficial.
CC training project subsets: the original Dycom study split CC projects into M dif-
ferent training subsets CBi , 1 ≤ i ≤ M based on productivity thresholds (Minku and
Yao 2014). For example, if the productivity of the CC training projects in terms of
effort (in person-months) divided by size varies from 3 to 38, one may wish to separate
these projects into three subsets, one containing projects with productivity below 10, one
containing projects with productivity between 10 and 15, and one for projects with pro-
ductivity higher than 15. Each subset CBi is considered as a separate CC training set.
Dycom can also use clustering methods to create the CC splits, as further explained in
Section 5. The reason for splitting CC projects will be explained later in the paragraph on
mapping functions. Note that we use the term CC loosely herein. For example, projects
from different departments within the same company could be considered as CC projects
if such departments employ largely different practices.
CC SEE models: Each of the M CC training sets is used to create a different CC model
f̂Bi , 1 ≤ i ≤ M , using a given base learning algorithm.
WC training projects: Dycom considers that the WC projects arrive in order of com-
pletion, i.e., online. Each moment in time when a new WC project arrives is referred to
as a time step. Even though a new WC project needs to be estimated at each time step,
information on the true effort required to develop the project is assumed to be collected
for only a small portion of the WC projects. This is because such information is expen-
sive to collect (Kocaguneli et al. 2013). Only the WC projects for which the true required
effort is collected can be used as WC training projects.
Mapping functions: Whenever a new WC training project arrives, each model f̂Bi is
asked to perform an SEE. Each SEE is then used to create a mapping training example
(f̂Bi(x), y). A mapping function ĝBiA that receives estimations f̂Bi(x) in the context
of CBi as input and maps them to estimations in the context of CA is trained with the
mapping training example. Dycom considers that the relationship formalised in (1) can
be modelled reasonably well by linear functions of the format ĝBiA(f̂Bi(x)) = f̂Bi(x)·bi

Empirical Software Engineering

when different subsets containing relatively more similar CC training projects are considered
separately. This is the reason to split CC training projects into different subsets.

Learning a function of the format ĝBiA(f̂Bi(x)) = f̂Bi(x) · bi is equivalent to learning
the factor bi . This is done using (2):

bi =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if no mapping training example has been received yet
y

f̂Bi(x)
, if (f̂Bi(x), y) is the first mapping training example

lr · y

f̂Bi(x)
+ (1 − lr) · bi, otherwise.

(2)

where (f̂Bi(x), y) is the mapping training example being learnt, lr (0 < lr < 1) is a
pre-defined smoothing factor and the factor bi in the right side of the equation is the pre-
vious value of bi . This equation enables the mapping function to dynamically adapt to
potential changes affecting software effort over time. The fact that a dynamically adap-
tive mapping function is used means that Dycom can dynamically adapt to changes in
the context of the company being estimated even considering that its CC models are not
updated over time. For a more detailed explanation of this equation, we refer the reader
to Minku and Yao (2014).
The factor bi represents the relationship between the effort required by a given com-

pany and that required by other companies. Therefore, it can be used to monitor how this
relationship changes over time (Minku and Yao 2014). In this way, it is possible to check
the effectiveness of strategies to improve the productivity of a company.
WC SEE model: Whenever a new WC training project arrives, it is used to train a WC
model f̂WA

. This model is not expected to perform very well, because it will be trained
on a limited number of projects. However, its effort estimations may be helpful when
used in an ensemble together with the mapped estimations, given that ensembles have
been showing to improve SEE considerably (Minku and Yao 2013, 2012, 2017). It is
also worth noting that, despite being potentially more homogeneus than CC projects, the
WC projects could possibly also present a significant level of heterogeneity. In order to
tackle this heterogeneity, it is recommended to use Dycom with base learners that are
local approaches, such as RTs (Minku and Yao 2013).
Dycom’s SEEs: Both the mapped models ĝBiA(f̂Bi) and theWCmodel f̂WA

can provide
an SEE in the WC context when required. The SEE given by Dycom is the weighted
average of these M + 1 estimations:

f̂A(x) =
[

M∑

i=1

wBi · ĝBiA(f̂Bi(x))

]

+ wWA
f̂WA

(x), (3)

where the weights wBi and wWA
represent how much we trust each of the models, are

positive and sum to one. So, Dycom uses an ensemble of mapped and WC SEE models.
Weights: The weights are initialised so that they have the same value for all models being
used in the ensemble and are updated as as follows: whenever a newWC training project
is made available, the model which provided the lowest absolute error is considered to
be the winner and the others are the losers. The losers have their weights multiplied by
a pre-defined hyperparameter β (0 < β ≤ 1), and then all weights are normalised in
order to sum up to one. In this way, the weights can distinguish between CC models
that are currently beneficial and detrimental to the single company being estimated. In
particular, β gives exponentially less importance to models that perform less well on
the WC training projects. Such exponential decay enables poor models to be quickly

Empirical Software Engineering

identified in the presence of a small number of WC training projects. It is therefore a key
feature of Dycom to save the cost of collecting WC training projects.
Algorithm 1 presents Dycom’s learning process, and Fig. 1 illustrates it with a dia-

gram. Dycom first splits the CC projects based on a CC splitting algorithm (e.g., split
based on productivity thresholds) and learns the CC models based on a supervised base
learning algorithm (lines 1 to 4). The weight associated to each CC model is initialised to
1/M , so that each model has equal weight and all weights sum to one (line 5). The map-
ping functions are initialised to bi = 1 (line 6). Before any WC training project is made
available, the weight wWA

corresponding to the WC model is initialised to zero (line 8),
because this model has not received any training yet. In this way, CC models can be used
to make predictions while there is no WC training project available (line 9). After that,

Fig. 1 Dycom’s learning process

Empirical Software Engineering

for each new WC training project, the weights are updated (lines 12–21). In particular,
if the WC training project is the first one, the weight of the WC model needs to be set
for the first time to a value different from zero (line 19). After updating the weights,
the mapping training examples are created and used to learn (update) the corresponding
mapping functions based on an algorithm that implements (2) (lines 24 and 25). Finally,
the WC model is updated with the WC training project using a supervised base learning
algorithm (line 28).

Empirical Software Engineering

5 Clustering Dycom

CC projects could potentially be split into M different CC subsets based on clustering algo-
rithms, rather than pre-defined productivity thresholds. For that, each cluster of CC projects
can be considered as a CC subset. Using clustering with Dycom offers potential advan-
tages over pre-defined productivity thresholds. Clustering algorithms could automatically
find out which CC projects are most similar to each other and group them together. In this
way, project managers do not need to analyse the CC projects and their productivity to
determine good productivity thresholds. A good clustering algorithm may be able to further
boost Dycom’s predictive performance, or avoid low predictive performance resulting from
poor thresholds.

We referred to the use of clustering with Dycom as Clustering Dycom in our preliminary
study (Minku and Hou 2017). However, as the original method for creating CC splits is
adopted with automatically defined thresholds rather than pre-defined ones, it will also be
referred to as a clustering method in this paper. Therefore, for convenience, we will always
use the term Dycom instead of Clustering Dycom in this paper.

Different features can be used to describe training projects for clustering. For instance,
the following three different sets of clustering features could potentially be used:

1. Productivity, measured in terms of effort divided by size. This clustering feature was
used in the original Dycom study (Minku and Yao 2014), leading to good results.

2. Size and effort. Together, size and effort represent the productivity associated to a
project. However, two projects with similar productivities could still have very differ-
ent sizes. Therefore, using size and effort as clustering features is not the same as using
productivity, and worth being investigated separately.

3. All project input and output attributes. This could potentially lead to a more detailed
characterisation of the projects to be split.

It is worth noting that it is ok to use the effort as (part of) a feature for clustering, because
(a) clustering is applied only to the CC training projects, and (b) Dycom does not require to
determine the cluster to which a WC project being estimated belongs.

Our preliminary study (Minku and Hou 2017) found that the clustering features (2)
and (3) above did not lead to good results as clustering features for Dycom. Therefore,
this study will concentrate on productivity as a clustering feature. Six different cluster-
ing methods are investigated: Threshold Clustering, K-Means (Rokach and Maimon 2005),
Hierarchical Clustering (Rokach and Maimon 2005), Spectral Clustering (Kannan et al.
2000; Shi and Malik 2000), Expectation-Maximisation (Bishop 2006) and X-Means (Pelleg
and Moore 2000). These clustering methods, as well as the reasons for choosing them for
the investigation, are explained below.

5.1 Threshold Clustering

We will refer to the original rule used by Dycom (Minku and Yao 2014) to create CC
subsets as Threshold Clustering when the CC subsets and their corresponding productivity
thresholds are determined based on Algorithm 2.

Empirical Software Engineering

This clustering method was included in the experiments because it is based on Dycom’s
original rule for separating CC projects into subsets (Minku and Yao 2014).

5.2 K-Means

K-Means (Rokach andMaimon 2005) is an iterative clustering method that tries to minimise
the distance of the projects to their cluster centres. It first randomly assigns projects to a
pre-defined number k of clusters, where k equals to the desired number M of CC subsets
to be generated. The centre of each cluster is calculated as the mean of all projects within
that cluster. Then, in each iteration, projects are reassigned to the clusters with the closest
centres, and the clusters’ centres are re-computed. This iterative procedure is typically halted
when projects stop moving between clusters, or when a maximum number of iterations is
reached.

Different distance measures can be used to calculate how close a project x is to a cluster
centre c. In this work, the Manhattan distance was adopted:

D(x, c) =
F∑

i=1

|xi − ci |,

where F is the number of clustering features, and xi and ci represent the ith clustering
feature of project x and of cluster centre c, respectively. As Manhattan distance is affected
by the scale of the features, all numeric clustering features are normalised to be within [0, 1].
As explained in the beginning of Section 5, a single numeric feature (productivity) is used
in this work.

This clustering method has been chosen because it is one of the most popular and well
known clustering methods in the literature.

5.3 Hierarchical Clustering

Hierarchical clustering methods (Rokach and Maimon 2005) build a hierarchy of clusters
by putting together projects that are similar to each other. In this work, we have used an

Empirical Software Engineering

agglomerative hierarchical method. This method uses a bottom-up approach in which each
project is considered to be a cluster in the lowest level of the hierarchy. Then, at each step
of the algorithm, the two clusters that are closest to each other are merged together. In the
end of the procedure, a single cluster containing all the projects is created.

In order to use the clusters provided by this method, the level of the hierarchy correspond-
ing to the desired number M of CC subsets has to be specified. Different ways to measure
the similarity between clusters can be used. In this work, the distance between two clusters
is defined as the Manhattan distance between the two most distant projects, one from each
cluster.

This clustering method has been chosen because hierarchical SEE models have obtained
promising results for tackling heterogeneity (Kocaguneli et al. 2012; Minku and Yao 2013).
Hierarchical clustering also has the advantage of being a deterministic method, i.e., it will
always retrieve the same clusters when the same projects and clustering features are used.

5.4 Spectral Clustering

Spectral Clustering is a set of advanced clustering methods based on the spectrum (eigen-
values) of the similarity matrix between instances. In this work, the WEKA version
implemented by Luigi Dragone http://www.luigidragone.com/software/spectral-clusterer-
for-weka/ was adopted. This version is based on the work of Kannan et al. (2000) and Shi
and Malik (2000).

This method considers the instances to be clustered as nodes in a graph. The weight of
each edge represents the similarity between two instances. The method’s goal is then to
find the minimum normalised cut in the graph. This cut is, roughly speaking, a cut that
partitions the graph into two subgraphs whose edges connecting them have low weights.
Eigenvalue decomposition techniques are used to find the minimum normalised cut. The
method then recursively cuts each of the subgraphs. The cutting process stops when it can-
not find a cut that has a value below a hyperparameter α∗, 0 ≤ α∗ ≤ 1. This means
that the hyperparameter α is linked to the number of clusters that will be generated. In
the end of the cutting process, each subgraph is considered to be a different cluster. As
with K-Means and Hierarchical Clustering, Manhattan Distance was used as the similarity
measure.

This method has been chosen for being an advanced clustering method that obtained
promising results in the machine learning literature (Kannan et al. 2000; Shi and Malik
2000), and whose working mechanism is quite different from the other clustering methods
investigated in this work.

5.5 Expectation-Maximisation

Expectation-Maximisation (Bishop 2006) is a density-based clustering method, which
assumes that the projects belonging to each cluster are drawn from a specific probability
distribution. This method thus tries to identify the clusters and their probability distributions.

Given a number of clusters M , Expectation-Maximisation first randomly assigns random
values for the parameters θj of the probability distributions associated to each cluster Cj . It
then performs two steps: expectation and maximisation. In the expectation step, the posterior
probability p(Cj |x) that a given project x belongs to a given cluster Cj is estimated based
on the current parameters of the probability distributions. In the maximisation step, the
parameters that maximise the log likelihood of the projects ln p(x|θ) are calculated (note
that p(Cj |x) is used to compute that) and used to replace the previous parameters. The

http://www.luigidragone.com/software/spectral-clusterer-for-weka/
http://www.luigidragone.com/software/spectral-clusterer-for-weka/

Empirical Software Engineering

algorithm iterates through the expectation and maximisation steps until a stopping criterion
is met. This could be when a pre-defined maximum number of iterations is reached, or
when the the changes in the log likelihood ln p(x|θ) become smaller than a threshold. The
distributions are assumed to be Gaussian for numeric clustering features.

This algorithm has been chosen because it is associated to a potentially useful offline
unsupervised procedure to automatically determine the number of clusters. This procedure
is explained in Section 6.2.

5.6 X-Means

X-Means (Pelleg and Moore 2000) is a clustering method proposed to accelerate K-Means
(Rokach and Maimon 2005). Each iteration of K-Means has to go through each project
to determine which centre is the closest to (i.e., owns) that project. This can be a time
consuming process when the number of projects is large. X-Means uses a tree-like structure
to create a hierarchy of projects and reduce the number of projects that have to be compared
against cluster centres. This structure is used to recursively rule out centroids as owners of
any project represented by a given node or its children. Once it is determined that there is
only one possible centroid to own a given project, this centroid is automatically considered
to own all the children of that project as well, accelerating the algorithm.

The acceleration achieved by X-Means is not necessarily an advantage of this method
for SEE, given that the number of projects is typically not large enough to make K-Means’
running time a concern. However, X-Means also contains a built-in mechanism to decide the
number of clusters to be used. This automated tuning procedure is presented in Section 6.3,
and is the main reason to investigate X-Means in this study.

6 Procedures for Automatically TuningDycom’S Number of CC Subsets

As Dycom is sensitive to the number of CC subsets to be used (Minku and Hou 2017),
a procedure for automatically choosing this number is desirable. However, Dycom is an
online supervised learning approach, and no existing general methods for automatically tun-
ing hyperparameters of online supervised learning approaches are available. Therefore, this
section proposes a novel procedure for automatically tuning hyperparameters in an online
supervised manner. This procedure is presented in Section 6.1. It benefits from predictive
performance information acquired over time, so that the best number of CC subsets can be
determined and updated over time.

Despite having the advantage of being a dynamic adaptive procedure with an explicit
goal of choosing the number of CC subsets that leads to better predictive performance,
the number of WC training projects available to compute predictive performance over time
when using Dycom is small. This is because Dycom’s main goal is to reduce the number of
WC projects required for training. Therefore, it is unknown whether an online supervised
hyperparameter tuning procedure would be suitable for Dycom. This paper will investigate
that as part of research question RQ1 and RQ3, posed in Section 2.

In addition to investigating the proposed online supervised tuning procedure, this paper
will also investigate the use of two offline unsupervised tuning procedures. These proce-
dures are presented in Sections 6.2 and 6.3, and are linked to the clustering algorithms
Expectation-Maximisation and X-Means, respectively. Even though Dycom is an online
supervised learning approach (it is able to learn new WC training projects over time), the
clustering procedure used for its CC projects is offline and unsupervised (see Section 5).

Empirical Software Engineering

Therefore, it is possible to use existing offline unsupervised procedures to decide the
number of CC subsets.

The advantage of using offline unsupervised procedures is that they can determine the
number of CC subsets without requiring access to the true effort of the WC projects. The
disadvantage is that they do not take Dycom’s predictive performance into account, not
having an explicit target of choosing the number of CC subsets that leads to better predictive
performance. This paper investigates the suitability of such tuning procedures as part of
RQ1.

6.1 Proposed Online Supervised Tuning Procedure

Offline supervised tuning procedures use a pre-existing dataset with known output attribute
values to estimate the predictive performance obtained by different hyperparameter choices.
In the case of SEE, the known output attribute values are the true software required efforts.
Such strategy is not applicable to online supervised learning algorithms. This is because (1)
a dataset with known output attribute values may not be available before training starts, and
(2) even it it was, the best hyperparameter values for this dataset may not be the best for later
periods of time, due to changes that the data generating process may suffer. This section
thus proposes a novel hyperparameter tuning procedure that does not require a pre-existing
dataset with known output attribute values, being applicable to online supervised learning
approaches such as Dycom.

The general idea of the proposed procedure is to maintain a number of Dycom instances
created using different numbers of CC subsets, and select to provide effort estimations only
the one which currently has the smallest validation error. The scheme of the procedure when
applied to Dycom is shown in Fig. 2. The pseudocode is shown in Algorithm 3.

Fig. 2 Online supervised hyperparameter tuning procedure applied to Dycom. The procedure chooses an
instance of Dycom, trained based on a given number of CC subsets, to be used for predictions

Empirical Software Engineering

The proposed procedure enables learning and hyperparameter tuning to occur concur-
rently by maintaining C different instances of Dycom, created using C different pre-defined
numbers of CC subsets. As the number of CC projects available for training is typically not
very large, it is possible for the tuning procedure to cover a wide range of values, enabling
good hyperparameter choices to be found. In particular, one could consider that a CC SEE
model trained with less than 10 projects is unlikely to perform well. Therefore, if N CC
training projects are available, one could specify all CC numbers from 1 to �N/10� to be
considered by the tuning procedure, i.e., C = �N/10�. Even though the different CC sub-
sets may not have an equal number of CC projects, this strategy could work as a good rule
of thumb to enable a wide range of numbers of CC subsets to be investigated.

For example, the ISBSG dataset with the maximum number of CC projects used in this
study had 224 CC projects. This would mean that 22 different numbers of CC subsets would
be investigated (from 1 to 22) for this dataset. Even if all 1010 ISBSG projects with good
data quality were used as CC projects (Minku and Yao 2017), this would still lead to the
investigation of only C = 101 different numbers of CC subsets. Therefore, investigating
a large portion of (or even all) meaningful values for the number of CC subsets does not
demand very large runtime, and does not require advanced algorithms such as the offline
evolutionary algorithms mentioned in Section 3.2.

Whenever a new WC training project is received, it is used to update the estimate of
the current predictive performance (validation error) of each Dycom instance in an online
manner (lines 3 and 4). The current validation error Li of a given Dycom instance i at a
given time step is estimated using (4):

Li =
{

Ei(y, ŷi), if (x, y) is the first WC training project

αLi + (1 − α) · Ei(y, ŷi), otherwise
(4)

where Ei(y, ŷi) is the error of Dycom’s instance i on a single project (x, y) for which the
estimation was ŷi ; and α, 0 ≤ α < 1, is a fading factor (Gama et al. 2009).

This equation enables the tuning procedure to adapt to changes in the data generating
process which may result in the best number of CC subsets to change over time. In par-
ticular, the fading factor α controls how much importance should be given to the past.
Values very close to one lead to more emphasis on the past, resulting in more stable selec-
tion of the number of CC subsets, but slower adaptation to changes. Smaller values lead
to faster adaptation, but more unstable selection of the number of CC subsets. Following

Empirical Software Engineering

Shepperd and McDonell’s recommendations (Shepperd and McDonell 2012), the absolute
error is used as a performance metric for the online supervised hyperparameter tuning pro-
cedure in this work, given that it is unbiased towards under or overestimations. Therefore,
Ei(y, ŷi) = |y − ŷi |.

After using a given WC training project for updating the current validation error of each
Dycom instance, the procedure uses this WC training project to train each Dycom instance
(line 5). Training is performed using the algorithms described in Sections 4 and 5. The use
of theWC training projects for training after using them to estimate Dycom’s predictive per-
formance avoids overly optimistic predictive performance estimations. The Dycom instance
with the best estimated predictive performance at a given time step is selected to be used for
SEE (line 6) until a new WC training project is received.

6.2 Expectation-Maximisation’s Offline Unsupervised Tuning Procedure

Expectation-Maximisation can automatically determine the number of clusters by runing
10-fold cross-validation on the CC training projects being clustered, using the log likelihood
as the validation measure. This is done through the procedure shown in Algorithm 4 (Hall
et al. 2009). If there are less than 10 projects, the number of folds is set to the number of
projects in order to perform cross-validation. In this study, this offline unsupervised tuning
procedure is integrated within Dycom as illustrated in Fig. 3.

6.3 X-Means’ Offline Unsupervised Tuning Procedure

X-Means contains a built-in mechanism for determining the number of clusters (Pelleg and
Moore 2000). The mechanism starts with running the accelerated K-Means with the mini-
mum number of clusters minC, which is a pre-defined hyperparameter. After running the
accelerated K-Means, the centres of each cluster are split into two children. The two child
centroids are moved a distance proportional to the size of the region covered by the cluster
in opposite directions, along a randomly chosen vector.

A local accelerated K-Means is then run inside each child cluster, using the two child
centroids as the initial centroids. A test is performed on each pair of children to check
whether the parent centroid or the new children centroids are better to describe the under-
lying distribution of the data. This test is used to decide whether to maintain the split of the
cluster into two children or not. It is based on the Bayesian Information Criterion, which is
defined as the log likelihood of the data given the clusters, minus a value that penalises a
larger number of clusters. This penalty is used to avoid overfitting.

Empirical Software Engineering

Fig. 3 Offline unsupervised hyperparameter tuning procedure applied to Dycom

If the children clusters describe the data distribution better, the procedure is repeated
recursively inside each child cluster, to decide whether to split them further. A maximum
number of clusters maxC can also be specified as a hyperparameter. In this study, this
offline unsupervised tuning procedure is integrated within Dycom as illustrated in Fig. 3.

7 Datasets

This paper answers the research questions posed in Section 2 by performing a case study
based on the ISBSG Repository Release 10 (ISBSG 2011). This repository has been cho-
sen because (1) it contains projects developed by several different companies worldwide,
enabling CC projects to be used; (2) the implementation date of projects is available,
enabling chronology to be taken into account; and (3) information on which projects belong
to a single company for composing a WC dataset was provided to us upon request, enabling
software effort estimations to be performed and evaluated for a given company of interest.
Datasets without information about the implementation date or where the input attributes
were too limited were not used, so that the case study represents real world scenarios.

The ISBSG data were preprocessed as in previous work (Minku and Hou 2017; Minku
and Yao 2017; 2014), maintaining only projects with:

– Data and function points quality A (assessed as being sound with nothing being iden-
tified that might affect their integrity) or B (appears sound but there are some factors
which could affect their integrity).

– Recorded effort that considers only the development team.
– Normalised effort equal to total recorded effort, meaning that the reported effort is the

actual effort across the whole life cycle.
– Functional sizing method IFPUG version 4+, or identified as with addendum to existing

standards.
– Available implementation date.

Empirical Software Engineering

The preprocessing resulted in 184 projects from a single-company (WC) and 826 pro-
jects from other companies (CC). Four input attributes (development type, language type,
development platform and functional size) and one output attribute (software effort in
person-hours) were used.

Three different datasets were created, representing different scenarios as follows:

– ISBSG2001 – 224 CC projects implemented from 1993 until the end of 2001, and 69
WC projects implemented from the year 2002 until the end of March 2003 (Minku and
Hou 2017).

– ISBSG2000 – 168 CC projects implemented from 1993 until the end of 2000, and 119
WC projects implemented from the year 2001 until the end of March 2003 (Minku and
Hou 2017).

– ISBSGAll – 94 CC projects implemented from 1993 until the end of February 1996,
and 184 WC projects implemented from March 1996 until the end of March 2003. This
scenario uses all of the WC projects provided by ISBSG.

These scenarios represent situations with varying numbers of CC projects and varying
lengths of time covered by the WC projects. Different data (e.g., different CC projects)
available prior to online learning can greatly influence the predictive performance of online
learning approaches (Minku and Yao 2017). In particular, the results of the experiments
using this case study show that Dycom’s behaviour varies for these datasets, as will be
shown in Sections 9 and 10. Therefore, it is useful to investigate these different scenar-
ios, rather than a single scenario. The productivities associated to the CC projects of each
scenario are shown in Fig. 4.

8 Experimental Setup

In order to answer the research questions outlined in Section 2, the following approaches
were compared:

• Dycom: only one at every P = 10 projects in the WC projects stream were assumed
to have their true effort collected for training. So, Dycom used only 10% of the WC
projects for training, as in previous work (Minku and Yao 2014; Minku and Hou 2017).
Whenever a new WC training project was made available, the WC model used by
Dycom was rebuilt from scratch using all WC training projects so far. This is not a time
consuming process because the number of WC projects available for training is small.
The following different Dycom approaches were investigated:

– Threshold Clustering, K-Means, Hierarchical Clustering, Spectral Clus-
tering: for simplicitly, we will use the name of the clustering methods to refer
to Dycom with a given clustering method and the online supervised tuning
procedure explained in Section 6.1. This tuning procedure was used for all
clustering methods that do not have a built-in tuning procedure for choos-
ing the number of clusters. For Threshold Clustering, K-Means, Hierarchical
Clustering and Spectral Clustering, all numbers of clusters from M = 1 to
�N/10�, where N is the number of CC projects, were investigated. For Spec-
tral Clustering, 19 different α∗ values from 0.05 to 0.95 with increments of
0.05 were used to determine the number of clusters.

– Expectation-Maximisation: we will use the name of the clustering
method Expectation-Maximisation to refer to Dycom using Expectation-

Empirical Software Engineering

a b

c

Fig. 4 CC projects’ productivities. Y-axis shows effort divided by size. X-axis lists projects sorted from the
most productive to the least productive

Maximisation with the offline unsupervised tuning procedure described in
Section 6.2. The minimum number of clusters was set as M = 1. This
procedure does not require a maximum number of clusters to be specified.

– X-Means: we will use the name of the clustering method X-Means to refer
to Dycom using X-Means with the offline unsupervised tuning procedure
described in Section 6.3. The minimum and maximum number of clusters
were set to minC = 1 and maxC = �N/10�, where N is the number of CC
projects.

• WC: this is a WC SEE model trained with all WC projects received up to each given
time step, i.e., with P = 1. This approach is used to check whether Dycom is successful
in drastically reducing the number of WC projects required for training. In particular,
we can consider Dycom to be successful if it obtains predictive performance similar to
or better than WC.

• WC-P10: this is a WC SEE model trained with one in every P = 10 WC projects. This
is used as a control approach to better understand the behaviour of Dycom and of the
WC model described above. In particular, if WC-P10 has similar performance to WC,
this means that several WC projects are detrimental if used for training. In this case,
it would not be necessary to collect the true required effort for a large number of WC
projects, even when Dycom is not used.

Empirical Software Engineering

• Median-P10: this is a Median baseline SEE model trained with one in every P = 10
WC projects. Median is a typical baseline used in SEE studies. It predicts the median
of the efforts of all previously seen WC training projects. The Median baseline was
selected instead of the Mean baseline because it can frequently provide better estimates
(Minku et al. 2015), as its estimations are not affected by outlier projects. Reasonable
SEE approaches should perform better than Median.

Apart from the number of clusters, the clustering hyperparameters were set so as to
run the methods described in Section 5. The stopping criteria for K-Means, Expectation-
Maximisation and X-Means were set to the same default value of 500 iterations, and
Expectation-Maximisation’s minimum standard deviation was set to the default value of
1.0E-6. Dycom’s hyperparameters β and lr were the same default values of 0.5 and 0.1,
respectively, used in Minku and Yao (2014), Minku and Hou (2017).

The use of default values avoids giving an unfair advantage to Dycom over the WC
models and Median baselines in the experiments. If Dycom using default hyperparameters
performs similar to or better than the WC SEE model, this already represents a success
of Dycom. This success could potentially be improved further by fine tuning these hyper-
parameters. However, as explained in Section 3.2, there are no agreed methods for tuning
hyperparameters of online learning algorithms due to the unavailability of pre-existing data
to compose a validation set. Future work could potentially investigate the online supervised
tuning procedure proposed in Section 6.1 for automatically tuning other hyperparame-
ters than the number of CC subsets. However, given that the default values already lead
to successful results (Minku and Yao 2014), it is better to spend the whole budget of
hyperparameter value investigations to tune the number of CC subsets, which is known to
significantly affect Dycom’s predictive performance.

Three different base learning algorithms were used to generate Dycom’s, WC’s and WC-
P10’s SEE models:

– RT: this base learner was chosen because its locality can potentially help to deal with
the heterogeneity among the WC projects. It has been used as a base learner in previ-
ous studies with Dycom (Minku and Yao 2014; Minku et al. 2015), and demonstrated
to be a competitive algorithm for SEE (Minku and Yao 2013) with respect to sev-
eral other machine learning algorithms (Multilayer Perceptrons, Radial Basis Function
networks, BagRTs, Bagging Ensembles of Multilayer Perceptrons, Bagging ensembles
of Radial Basis Function networks, Random ensembles of Multilayer Perceptrons and
Negative Correlation Learning ensembles of Multilayer Perceptrons) on a study involv-
ing thirteen datasets. In particular, together with BagRT, it was the approach whose
Mean Absolute Error (MAE) was less frequently considerably worse than that of the
best ranked approach.

– BagRT: this base learner was chosen because it can improve predictive performance
over RTs (Minku and Yao 2013), even though it produces less readable SEE models.
In particular, it was the top ranked approach in terms of MAE in the above mentioned
study (Minku and Yao 2013). This rank was similar to that of Bagging ensembles
of Multilayer Perceptrons and Bagging ensembles of Radial Basis Function networks
(Minku and Yao 2013), but BagRT was less frequently considerably worse than the best
ranked approach.

– LogLR: this base learner was chosen because it was the top ranked base learner in
terms of Spearman’s rank correlation in a SEE study involving several machine learning
algorithms (Least Squares Support Vector Machines, Case-Based Reasoning, Multi-
layer Perceptrons, Radial Basis Function networks, M5 model trees, Classification and

Empirical Software Engineering

Regression Trees, Multivariate Adaptive Regression Splines, Robust Regression, Ridge
Regression, Ordinary Least Squares Regression with Box Cox transformation, and
Ordinary Least Squares Regression) on a study involving nine datasets. This rank was
similar to that of Ordinary Least Squares with Box Cox transformation, Ridge Regres-
sion, M5 model trees, Ordinary Least Squares, Least Squares Support Vector Machines
and Classification and Regression Trees.

All models estimate the effort of the development team in person-hours based on devel-
opment type, language type, development platform and functional size, as per the output
and input attributes of the datasets described in Section 7.

LogLR is parameterless, whereas RTs and BagRTs are known not to be much affected
by their hyperparameters in the context of online SEE (Song et al. 2013). Therefore, this
study does not concentrate on tuning these hyperparameters, and uses the values that most
commonly led to the best results in previous work (Minku and Yao 2013) as default values.
These are value of 1 for the minimum total weight for the instances in a leaf (for RT and
BagRT); value of 0.0001 for the minimum proportion of the variance of all the data that
need to be present at a node for splitting to be performed (for RT and BagRT); and value of
50 for the number of RTs (for BagRT).

WEKA’s (Hall et al. 2009) implemention was used for all clustering methods and base
learners. For Spectral Clustering, the WEKA implementation provided by Luigi Dragone2

was used. For RT, the REPTree implementation of RTs (Hall et al. 2009) was used. For
LogLR, WEKA’s implementation of Ridge Regression (Hall et al. 2009) was modified to
operate in the logarithmic scale, and the ridge factor was set to a very low value (10−8) to
simulate Ordinary Least Squares Regression.

It is worth noting that this is the first time for Dycom to be investigated with other base
learners than RTs. Therefore, the results of the experiments are expected to not only lead to
answers to the research questions posed in Section 2, but also further insights into the use
of Dycom with other base learners.

The predictive performance of all approaches was evaluated based on the time-decayed
Absolute Error (AE) and time-decayed AE on the log scale (LogAE). Time-decayed perfor-
mance evaluation is recommended for online learning studies (Gama et al. 2009), because
it enables to track the current predictive performance of a given online learning algorithm
over time, reflecting potential changes in the data generating process. Absolute error was
adopted because it is unbiased towards under and overestimations (Shepperd and McDonell
2012). Absolute error in the log scale was adopted because it not influenced by project size.
These performance measures were computed as follows:

AEt =
{ |yt − ŷt |, if t = 1

αAEt−1 + (1 − α) · |yt − ŷt |, otherwise
(5)

LogAEt =
{ |ln(yt) − ln(ŷt)|, if t = 1

αLogAEt−1 + (1 − α) · |ln(yt) − ln(ŷt)|, otherwise
(6)

where yt is the actual effort of the WC project received at time t , ŷt is the effort estimation
given by an approach for the example received at time t , and α, 0 ≤ α < 1, is a fading factor
similar to that of (4). The fading factor was set to 0.9, both for the performance evaluation of
the compared approaches, and for the online supervised hyperparameter tuning procedure.

2http://www.luigidragone.com/software/spectral-clusterer-for-weka/

http://www.luigidragone.com/software/spectral-clusterer-for-weka/

Empirical Software Engineering

This value was found to provide a good trade-off between smoothness of the performance
over time and adaptability to changes. It is the same factor found to be suitable in previous
work on online learning (Wang et al. 2015). When summarising the predictive performance
across time steps, the median of the AEt and LogAEt values across time steps was used.
The medians are referred to as MdAE and MdLogAE, respectively. Median Absolute
Deviation (MdAD) is reported as a measure of the deviations of AEt and LogAEt values.

The unit of time-decayed AE is person-hours, whereas the unit of time-decayed LogAE
is ln of person-hours. As such, these performance metrics have a minimum value of zero
(for ln, the minimum value of zero is guaranteed only for effort values and estimations equal
to or larger than 1 person-hour). However, these performance metrics do not have an upper
bound. This could make their interpretability difficult. To facilitate the interpretability of
the results, Standardised Accuracies (SAs) across time steps with respect to MdAE (SAAE)
and MdLogAE (SALogAE) were also used. They are defined as follows:

SAAE = 1 − MdAE

MdAEmedian

, (7)

SALogAE = 1 − MdLogAE

MdLogAEmedian

, (8)

where MdAEmedian and MdLogAEmedian are the MdAE and MdLogAE of the Median-
P10 baseline. This metric is similar to that proposed by Shepperd and McDonell (2012),
but represents how much better/worse a given approach is than the Median baseline, rather
than the Mean. More specifically, positive SA indicates how much better the approach is
than the Median baseline. The absolute value of negative SAs indicates how much worse a
given approach is than the Median baseline. As explained earlier, the Median baseline tends
to perform better than the Mean, leading to a stricter performance comparison.

It is worth noting that all WC projects can be used for evaluating the compared
approaches, but only the WC training projects are available for the online hyperparameter
tuning procedure to use. This reflects a real world scenario where the true effort is not col-
lected for all WC projects. It is also important to note that no WC training project is used
for training before being used for evaluation. This avoids overly optimistic evaluation of
predictive performance.

The comparisons among the approaches were supported by the Scott-Knott multiple
comparison procedure, as recommended by Mittas and Angelis (2013). This procedure has
the advantages of (1) separating different approaches into non-overlapping groups and (2)
reducing the number of statistical tests performed, being a powerful test. As suggested by
Menzies et al. (2017), Scott-Knott was run with non-parametric bootstrap sampling, making
the test non-parametric. In addition, Vargha and Delaney’s non-parametric A12 effect size
(Vargha and Delaney 2000) was used to further reduce the number of bootstrap tests run
by the Scott-Knott procedure, saving running time (Menzies et al. 2017) and ensuring that
groups with small differences are merged. Specifically, Scott-Knott only performed statis-
tical tests to check whether groups should be separated if the A12 effect size was medium
or large. If A12 effect size was not medium or large, groups were not separated. As sug-
gested by Vargha and Delaney (2000), A12 ≥0.56 is considered small, ≥0.64 is considered
medium and ≥0.71 is considered large. The code provided by Tim Menzies3 was used to

3https://github.com/txt/ase16/blob/master/doc/stats.md

https://github.com/txt/ase16/blob/master/doc/stats.md

Empirical Software Engineering

Table 1 Median predictive performance across time steps when using RT as base learner

Cells in orange (dark grey) highlight negative SA values, indicating poor results in comparison with Median-
P10

Empirical Software Engineering

Table 2 Median predictive performance across time steps when using BagRT as base learner

Cells in orange (dark grey) highlight negative SA values, indicating poor results in comparison with Median-
P10

Empirical Software Engineering

Table 3 Median predictive performance across time steps when using LogLR as base learner

Cells in orange (dark grey) highlight negative SA values, indicating poor results in comparison with Median-
P10

Empirical Software Engineering

run the Scott-Knott procedure. Tim Menzies also shared the latex commands to generate
quartile plots in a concise and informative way to analyse the results.

It is worth mentioning that Tantithamthavorn et al. (2017, 2018) also recommended to use
effect size and strategies to avoid problems with violations of normality when using Scott-
Knott. The differences are that their proposed variation of Scott-Knott is based on applying
log transformation to avoid violations of normality and Cohen’s effect size (Cohen 1992)
as the (sole) criterion for deciding whether to merge different groups. mIn addition, they
enable groups to be split based on small effect sizes, whereas the procedure explained in the
previous paragraph ensures that groups can only be split if medium or large effect sizes exist
between them. Therefore, the results of the application of Tantithamthavorn et al. (2017,
2018)’s procedure and the procedure explained in the previous paragraph are unlikely to be
the same. Tantithamthavorn et al. (2017, 2018)’s procedure would result in some algorithms
or configurations being considered significantly different despite their differences having
only a small effect size, whereas the procedure described in the previous paragraph would
not. As medium or large effect sizes are more likely to be meaningful in practice, this paper
adopted the procedure described in the previous paragraph.

RTs, LogLRs, Threshold Clustering, Hierarchical Clustering and Spectral Clustering
are deterministic, whereas BagRTs, K-Means, Expectation-Maximisation and X-Means
are non-deterministic. Experiments involving any non-deterministic algorithm were run 30
times. The median of the results obtained across these 30 runs was used for evaluation
purposes.

9 RQ1—Improving Predictive PerformanceWhen a Limited Number
of WC Training Projects is Available

This section presents the analysis done to answer RQ1: Which clustering and tuning approach is
the most successful in improving Dycom’s predictive performance in comparison to other
approaches that also have access to a limited number of WC training projects?

Tables 1, 2 and 3 show the median predictive performance across time steps when
using RT, BagRT and LogLR as base learners, respectively. Among all Dycom approaches,
Threshold Clustering and K-Means are the only two that never led to negative SA val-
ues. Negative SAs represent predictive performance similar to or worse than Median-P10,
meaning that it is not worth adopting the approach. Therefore, all Dycom approaches but
Threshold Clustering and K-Means can be risky to adopt, as they cannot always avoid poor
CC splits.

However, to check how successful Threshold Clustering and K-Means are in improving
predictive performance when there is a limited number ofWC training projects, we still need
to further analyse how these Dycom approaches perform in comparison with Median-P10
and WC-P10. In particular, if the positive SA values obtained by these Dycom approaches
are still linked to similar MdAE and MdLogAE to Median-P10 or WC-P10, they are still
not successful in improving predictive performance when there is a limited number of WC
training projects. Therefore, to investigate this further, Tables 4, 5 and 6 show the results of
the Scott-Knott procedure to compare all approaches when using RT, BagRT and LogLR
as base learners, respectively. As each table contains the results for all approaches using
the same base learner, we can separate the effect of the base learner from the effect of the
clustering method and its associated tuning procedure, facilitating the analysis to answer
RQ1.

Empirical Software Engineering

Table 4 Results of Scott-Knott procedure when using RT as base learner

ISBSG2000

RQIEAdMdohteMknaR

1 Threshold Clustering 2034 835

1 Hierarchical Clustering 2071 871

1 K-Means 2112 1130

2 Expectation-Maximisation 2212 1344

3 Median-P10 2804 928

60519682CW3

3 X-Means 2919 949

3 Spectral Clustering 2919 949

4 WC-P10 3546 1398

RQIEAgoLdMdohteMknaR

1 Hierarchical Clustering 0.73 0.28

1 Threshold Clustering 0.77 0.34

1 K-Means 0.83 0.30

2 Expectation-Maximisation 0.86 0.28

91.078.0CW2

3 Median-P10 0.99 0.19

4 X-Means 1.06 0.27

4 Spectral Clustering 1.06 0.27

34.011.101P-CW5

ISBSG2001

RQIEAdMdohteMknaR

1 K-Means 2021 767

1 X-Means 2074 670

1 Spectral Clustering 2074 670

2 Threshold Clustering 2086 949

2 Hierarchical Clustering 2195 431

2 Expectation-Maximisation 2364 916

3 Median-P10 3070 559

836224301P-CW4

39213414CW5

RQIEAgoLdMdohteMknaR

1 Threshold Clustering 0.81 0.28

1 K-Means 0.83 0.27

2 Expectation-Maximisation 0.87 0.34

2 X-Means 0.88 0.35

2 Spectral Clustering 0.88 0.35

3 Hierarchical Clustering 0.95 0.21

4 Median-P10 1.12 0.26

72.022.101P-CW4

84.003.1CW5

Empirical Software Engineering

Table 4 (continued)

ISBSGAll

RQIEAdMdohteMknaR

18415182CW1

2 Threshold Clustering 3139 1234

3 K-Means 3311 1678

3 X-Means 3400 1969

3 Spectral Clustering 3400 1969

3 Hierarchical Clustering 3400 1970

3 Median-P10 3778 1969

4 Expectation-Maximisation 4459 1755

7162112501P-CW5

RQIEAgoLdMdohteMknaR

1 X-Means 0.84 0.34

1 Spectral Clustering 0.84 0.34

52.048.0CW1

1 Hierarchical Clustering 0.85 0.30

1 Threshold Clustering 0.85 0.29

1 K-Means 0.85 0.29

2 Expectation-Maximisation 0.91 0.32

3 Median-P10 1.06 0.39

14.041.101P-CW4

Rank is the rank retrieved by Scott-Knott, IQR is the Inter-Quartile Range (75–25th percentiles). The IQR
range is shown in the right column with black dot at the median

According to the Scott-Knott procedure, Threshold Clustering always outperformed
Median-P10. As the Scott-Knott procedure already takes the effect size A12 into account,
this means that the differences between Threshold Clustering andMedian-P10 have medium
or large effect size. From Tables 1 to 3, Threshold Clustering’s SAAE and SALogAE varied
from 11% to 36% and from 16% to 30%, respectively. This means that Threshold Cluster-
ing performs from 11% to 36% better than Median-P10 in terms of MdAE, and from 16% to
30% better than Median-P10 in terms of MdLogAE. The magnitudes of such improvements
could be considered as large, being potentially practically significant.

According to the Scott-Knott procedure, K-Means did not outperform Median-P10
in terms of MdAE for ISBSGAll when using RT as the base learner (Table 4). There-
fore, the only clustering method that always led Dycom to achieve better results than
Median-P10 was Threshold Clustering with the proposed online supervised tuning pro-
cedure. This Dycom approach can thus be considered more successful than the other
Dycom approaches in improving predictive performance when there are few WC training
projects.

According to the Scott-Knott procedure, Threshold Clustering and K-Means performed
similarly in 7 out of 9 cases in terms of MdAE, and in 8 out of 9 cases in terms of MdLo-
gAE. For the 3 cases where there were significant differences in terms of MdAE, 2 were
in favour of Threshold Clustering and 1 in favour of K-Means. The difference in SAAE

among these approaches was up to 13% when Threshold Clustering won, but only 2% when

Empirical Software Engineering

Table 5 Results of Scott-Knott procedure when using BagRT as base learner

ISBSG2000

RQIEAdMdohteMknaR

1 Threshold Clustering 1802 874

2 K-Means 2159 1154

3 Expectation-Maximisation 2217 1237

3 Hierarchical Clustering 2283 952

30511962CW3

4 Median-P10 2804 928

4 X-Means 2880 1215

4 Spectral Clustering 2880 1215

4921463301P-CW5

RQIEAgoLdMdohteMknaR

1 K-Means 0.77 0.31

91.087.0CW1

1 Threshold Clustering 0.79 0.32

1 Expectation-Maximisation 0.79 0.21

1 Hierarchical Clustering 0.80 0.24

2 Median-P10 0.99 0.19

2 X-Means 1.01 0.32

2 Spectral Clustering 1.01 0.32

23.011.101P-CW3

ISBSG2001

RQIEAdMdohteMknaR

1 Threshold Clustering 2107 927

1 K-Means 2109 959

1 X-Means 2218 767

1 Spectral Clustering 2218 767

1 Expectation-Maximisation 2266 1025

2 Hierarchical Clustering 2348 634

3 Median-P10 3070 559

248793301P-CW4

4598663CW4

RQIEAgoLdMdohteMknaR

1 K-Means 0.83 0.33

1 Expectation-Maximisation 0.83 0.35

1 Threshold Clustering 0.84 0.31

2 X-Means 0.90 0.34

2 Spectral Clustering 0.90 0.34

3 Hierarchical Clustering 0.98 0.26

4 Median-P10 1.12 0.26

64.091.1CW4

23.012.101P-CW4

Empirical Software Engineering

Table 5 (continued)

ISBSGAll

RQIEAdMdohteMknaR

13517142CW1

2 Expectation-Maximisation 2823 1219

3 Threshold Clustering 3354 1623

3 K-Means 3754 2414

4 Median-P10 3778 1969

4 Hierarchical Clustering 4117 2268

4 X-Means 4253 1804

4 Spectral Clustering 4253 1804

1172609401P-CW5

RQIEAgoLdMdohteMknaR

22.057.0CW1

2 Expectation-Maximisation 0.79 0.23

3 Threshold Clustering 0.85 0.21

4 K-Means 0.89 0.28

4 X-Means 0.91 0.35

4 Spectral Clustering 0.91 0.35

4 Hierarchical Clustering 0.93 0.29

5 Median-P10 1.06 0.39

13.061.101P-CW5

Rank is the rank retrieved by Scott-Knott, IQR is the Inter-Quartile Range (75 − 25th percentiles). The IQR
range is shown in the right column with black dot at the median

K-Means won. The difference in SALogAE
among these approaches was 4% in favour of

Threshold Clustering. This shows that these two approaches frequently performed similarly.
However, the magnitude of the difference of 13% in favour of Threshold Clustering can be
considered fairly large, being potentially practically significant. In practice, even if the dif-
ferences in predictive performance between K-Means and Threshold Clustering are small
or non-existent, there would be no reason for practitioners to adopt K-Means instead of the
much simpler Threshold Clustering method.

The Scott-Knott procedure also shows that both Threshold Clustering and K-Means
always managed to obtain better predictive performance than WC-P10. In fact, WC-P10
performed very poorly, frequently even worse than Median-P10. As shown in Tables 1 to
3, its SAAE varied from −38% to 29%, having always been smaller than -10% except for
one case. Its SALogAE varied from −13% to 23%, having always been negative except
for one case. These values are much lower than those obtained by Threshold Clustering
and K-Means. In particular, the differences in SAAE and SALogAE between Threshold
Clustering and WC-P10 were of up to 56% and 37%, respectively, and were typically
higher than 40% and 25%, respectively. Such large values demonstrate that the practi-
cal significance of the difference in predictive performance is likely to be very high. As
Threshold Clustering and K-Means use the same number of WC training projects as WC-
P10, their improved predictive performance is due to their ability to benefit from CC
projects.

Empirical Software Engineering

Table 6 Results of Scott-Knott procedure when using LogLR as base learner

ISBSG2000

RQIEAdMdohteMknaR

1 K-Means 2119 1240

1 Hierarchical Clustering 2162 1421

1 Threshold Clustering 2208 1314

0397622CW1

1 Expectation-Maximisation 2345 1355

2 X-Means 2486 1555

2 Spectral Clustering 2486 1555

3 Median-P10 2804 928

2703963301P-CW4

RQIEAgoLdMdohteMknaR

1 Hierarchical Clustering 0.77 0.20

32.008.0CW1

1 Expectation-Maximisation 0.82 0.30

1 K-Means 0.82 0.28

1 Threshold Clustering 0.83 0.28

2 X-Means 0.88 0.33

2 Spectral Clustering 0.88 0.33

3 Median-P10 0.99 0.19

59.090.101P-CW4

ISBSG2001

RQIEAdMdohteMknaR

1 Hierarchical Clustering 2194 1005

1 K-Means 2319 1523

1 Threshold Clustering 2319 1479

1 Expectation-Maximisation 2539 1489

72111952CW1

2 X-Means 2640 1805

2 Spectral Clustering 2640 1805

2 Median-P10 3070 559

4365869301P-CW3

RQIEAgoLdMdohteMknaR

1 Threshold Clustering 0.85 0.39

1 K-Means 0.85 0.38

1 Expectation-Maximisation 0.86 0.40

1 X-Means 0.89 0.37

1 Spectral Clustering 0.89 0.37

1 Hierarchical Clustering 0.94 0.24

13.059.0CW1

2 Median-P10 1.12 0.26

65.062.101P-CW3

Empirical Software Engineering

Table 6 (continued)

ISBSGAll

RQIEAdMdohteMknaR

60314222CW1

1 K-Means 2422 1138

1 Threshold Clustering 2451 1189

1 Hierarchical Clustering 2461 1134

1 Expectation-Maximisation 2561 1193

5491007201P-CW2

2 X-Means 2728 1535

2 Spectral Clustering 2728 1535

3 Median-P10 3778 1969

RQIEAgoLdMdohteMknaR

1 Expectation-Maximisation 0.73 0.22

1 K-Means 0.74 0.20

1 Threshold Clustering 0.74 0.20

1 Hierarchical Clustering 0.74 0.21

22.057.0CW1

2 X-Means 0.78 0.18

2 Spectral Clustering 0.78 0.18

12.028.001P-CW2

3 Median-P10 1.06 0.39

Rank is the rank retrieved by Scott-Knott, IQR is the Inter-Quartile Range (75 − 25th percentiles). The IQR
range is shown in the right column with black dot at the median

RQ1: In summary, Threshold Clustering (using the proposed online supervised tuning
procedure)was themost successfulDycom approach in improving predictive performance
in comparison to other approaches with access to a limited number of WC training pro-
jects. It always managed to improve the MdAE and MdLogAE of WC-P10 (a WC model
trained on few WC projects), with differences in and typically higher
than 40% and 25%, respectively. It was the only approach to always outperform the
Median-P10 baseline in terms of these performance metrics.

10 RQ2—Why Threshold ClusteringWorkedWell?

This section answers RQ2: Why is Threshold Clustering the most successful Dycom
approach in improving predictive performance in comparison to other approaches that also
have access to a limited number of WC training projects?

The main reason for this approach to have been competitive is that the functional size
of CC training projects was exponentially distributed and not really clustered. This is illus-
trated in Fig. 5. As a result, more complex clustering algorithms than Threshold were either
unable to find more than one cluster, or created skewed clusters, where some clusters con-
tained very few projects. A single cluster mixes very heterogeneous projects, leading to

Empirical Software Engineering

a b

c

Fig. 5 CC projects’ functional sizes. Y-axis shows functional size. X-axis lists projects sorted from the
smallest to the largest

unsuitable CC models. Small clusters have too few training examples, leading to weak CC
models, which are again not useful. They were therefore inadequate for use with Dycom
with these CC training projects. Threshold Clustering ensures that CC subsets have a bal-
anced number of CC training projects, being expected to perform better for CC training
projects distributed in this way. The proposed online supervised hyperparameter tuning pro-
cedure then helped to use Threshold Clustering without having to manually tune its number
of clusters (CC subsets).

Table 7 gives an example of the sizes of the clusters obtained by different clustering
algorithms. Threshold Clustering, by definition, always produced clusters of similar size.
Spectral Clustering and X-Means failed to find more than one cluster, except for X-Means
for ISBSGAll. X-Means for ISBSGAll, Expectation-Maximisation, Hierarchical Clustering
and K-Means produced skewed clusters, with some clusters containing even a single CC
training project. K-Means’ clusters were skewed to a much lesser extent than the other
methods. This is in line with the fact that K-Means was the most competitive clustering
algorithm against Threshold Clustering.

RQ2: In summary, the main reason for Threshold Clustering to have performed better
than other clustering methods was because the CC training projects were exponentially
distributed and not really clustered.

Empirical Software Engineering

Table 7 Example of cluster sizes produced by different clustering algorithms

ISBSG2000 ISBSG2001 ISBSGAll

56 75 276

Threshold Clustering 56 75 276

56 74 275

21 27 99

K-Means 58 73 254

89 124 473

1 1 1

Hierarchical Clustering 20 12 5

147 211 820

Spectral Clustering 168 224 826

4 10 13

Expectation-Maximisation 44 73 81

121 141 196

224

312

12

X-Means 168 224 814

For the algorithms that require the number of clusters to be pre-defined (Threshold Clustering, K-Means
and Hierarchical Clustering), the number of clusters presented in the table is 3. For Spectral Clustering,
the number of clusters was always the same independent of its hyperparameter α used. For the others
(Expectation-Maximisation and X-Means), the number of clusters most commonly determined by the algo-
rithm for each given dataset is presented. For the stochastic algorithms, the rounded average of the cluster
sizes across 30 runs is presented

11 RQ3—Predictive Performance in Comparison to Approaches
that UseMoreWC Training Projects

From Section 9, we can see that Threshold Clustering was in general the most successful
Dycom approach in improving predictive performance in comparison to other approaches
that also have access to a limited number of WC training projects. The current section
presents the analysis done to answer to RQ3: Is this approach to Dycom always successful
in reducing the number of WC projects required for training while maintaining predictive
performance in comparison to WC models trained on more WC projects?

When comparing Threshold Clustering against WC, the Scott-Knott results (Tables 4 to
6) show that Threshold Clustering was ranked similar or better than WC in most cases (15
out of 18). Therefore, Threshold Clustering was usually successful in maintaining (or even
improving) WC’s predictive performance while requiring 10 times less WC training projects.

The 3 out of 18 cases where Threshold Clustering did not manage to achieve that were
in terms of MdAE when using RT and BagRT as base learners for ISBSGAll (5th sub-

Empirical Software Engineering

tables within Tables 4 and 5), and in terms of MdLogAE when using BagRT as base
learner for ISBSGAll (6th subtable within Table 5). In these cases, the differences in SAAE

between Threshold Clustering and WC were 8% and 25%, respectively, and the differ-
ence in SALogAE was 10% (Tables 1 and 2). These are differences of considerable size,
meaning that the CC splits obtained by Threshold Clustering were not always successful in
maintaining WC’s predictive performance while using 10 times less WC training projects.

Additional experiments giving Threshold Clustering access to P = 5 rather than 10
times less WC training projects than WC show that P = 5 enabled Threshold Clustering
to achieve similar performance in terms of MdAE when using RT as base learner for ISBS-
GAll. The results of the Scott-Knott procedure including Threshold Clustering with P = 5
are shown in Table 8. However, when using BagRT, this number of WC training projects
was still not enough to enable Threshold Clustering to achieve similar predictive perfor-
mance to WC. Therefore, even though Threshold Clustering was successful in improving
predictive performance with respect to WC-P10, it was unable to maintain the predictive
performance of WC in this case.

RQ3: In summary, Threshold Clustering managed to produce CC splits that enabled
Dycom to maintain or even improve the MdAE and MdLogAE of a corresponding WC
model while using 10 times less WC training projects in most (15 out of 18), albeit not all
cases.

12 RQ4—Why Threshold Clustering Sometimes Failed

As Threshold Clustering sometimes did not manage to reduce the number of WC training
projects so drastically while maintaining WC’s predictive performance, this section investi-
gates RQ4: Why does it sometimes fail to maintain predictive performance with respect to
WC models trained on more WC projects? Can that give us any insights into how to use it?

Table 8 Results of Scott-Knott procedure when using RT as base learner, including threshold clustering with
P = 5

ISBSGAll

RQIEAdMdohteMknaR

1 Threshold Clustering-P5 2621 1662

18415182CW1

2 Threshold Clustering 3139 1234

87611133snaeM-K3

96910043snaeM-X3

3 Spectral Clustering 3400 1969

3 Hierarchical Clustering 3400 1970

3 Median-P10 3778 1969

4 Expectation-Maximisation 4459 1755

7162112501P-CW5

Rank is the rank retrieved by Scott-Knott, IQR is the Inter-Quartile Range (75 − 25th percentiles). The IQR
range is shown in the right column with black dot at the median

Empirical Software Engineering

According to Tables 4, 5 and 6, we can see that all cases for which Threshold Clustering
did not maintain WC’s predictive performance while using 10 times less WC training pro-
jects involved ISBSGAll, and either RT or BagRT. To understand Threshold Clustering’s
behaviour on this dataset in more detail, Fig. 6 shows its time-decayed AE over time when
using RT, BagRT and LogLR as the base learners. Time decayed AE is also shown for WC
and the Dycom instances investigated by the proposed online supervised tuning procedure.
For simplicity, we will refer to time-decayed AEs as simply AEs in this section.

When reading these plots, it is not necessary to distinguish between individual lines
representing different Dycom instances selected for use, or between individual lines rep-
resenting different Dycom instances not selected for use by the online supervised tuning
procedure. Instead, these lines are shown to give an idea of how much better or worse the
AEs of such Dycom instances is in comparison to those of WC and Threshold Clustering.

The AEs of some of the Dycom instances were larger than WC’s from around time steps
65 to 180 when using RTs (Fig. 6a), from around time steps 60 to 120 and 150 to 180
when using BagRT (Fig. 6b), and around time step 20 when using LogLR (Fig. 6c). The
AEs obtained by Threshold Clustering were smaller than those obtained by some Dycom
instances during these time periods. Therefore, the online supervised tuning procedure man-
aged to avoid the poor predictive performance of some Dycom instances. However, when
using RTs and BagRT, WC still performed better than Threshold Clustering, specially dur-
ing the middle range of the time period analysed (Fig. 6a and b), as shown by its lower
AEs.

Part of the reason for Threshold Clustering’s poorer AEs when using RTs and BagRTs is
that, even though the tuning procedure was successful in avoiding poor Dycom instances, it
did not always select the best possible Dycom instance. For example, the AEs of some of
the unused Dycom instances were closer to those obtained by WC during the middle range
of the time period analysed in Fig. 6b. Had the online supervised tuning procedure selected
those Dycom instances to be used during those time periods, Dycom would have obtained
AEs closer to WC’s.

As explained in Section 9, the use of P = 5 was enough to make Threshold Clustering
successful in maintaining WC’s AE when using RTs (Table 8). To investigate if P = 5 led
to better choices of Dycom instances, Fig. 7a shows Threshold Clustering’s AEs when using
RTs with P = 5. We can see an improvement in the AEs obtained by Threshold Clustering
in comparison to when P = 10 was used (Fig. 6a). In particular, around time steps 20, 60,
100 and 130, Threshold Clustering’s AE when using P = 5 was more similar to the best
AEs among the Dycom instances than when using P = 10. This indicates that the tuning
procedure was more successful at selecting the best Dycom instances when using P = 5 in
this scenario.

To complement this analysis, Fig. 8 shows the number of CC subsets selected by the
tuning procedure when using Threshold Clustering with RTs and P = 10 and P = 5. As
we can see, P = 5 led to more changes in the number of CC subsets (in total 6 differ-
ent values were used instead of 4). For instance, the tuning procedure chose 4 CC subsets
from time steps 16 to 20 when using P = 5, but 1 CC subset when using P = 10. At
around time step 100, P = 5 led to the choice of 5 CC subsets, whereas P = 10 led to
the choice of 6 CC subsets. Around time 130, P = 5 again led to the use of 5 CC subsets,
whereas P = 10 led to the choice of 7 CC subsets. These different choices correspond to
time periods when P = 5 led Threshold Clustering to better AEs than when using P = 10
(Figs. 6a and 7a). This analysis indicates that more frequent collection of WC training pro-
jects enables the tuning procedure to better keep track of the best number of CC subsets to be
used.

Empirical Software Engineering

Fig. 6 Time-decayed AE over
time for ISBSGAll. Dycom
instances that were selected for
use at any given point in time by
the online supervised tuning
procedure are represented using
lines of the same style. The same
is valid for Dycom instances that
were never selected for use at any
point in time

a

b

c

Empirical Software Engineering

a

b

Fig. 7 Time-decayed AE over time for When Using RT. Dycom instances that were selected for use at any
given point in time by the online supervised tuning procedure are represented using lines of the same style.
The same is valid for Dycom instances that were never selected for use at any point in time

The investigation above partly reveals the reasons why Threshold Clustering sometimes
failed. However, an investigation of the reason why a larger number of WC training pro-
jects was necessary could potentially provide more insights into Threshold Clustering’s
behaviour and how to use it. From Fig. 6, we can see that the AEs obtained by the Dycom
instances varied much more for RT and BagRT (Fig. 6a and b) than for LogLR (Fig. 6c).
This could cause some of the selected Dycom instances with good AEs in the beginning of
the period analysed to perform poorly in the end of this period. When using LogLR, the AEs
of different Dycom instances varied much less throughout time. As a result, instances that
performed well in the beginning of the period analysed are more likely to still perform well

Empirical Software Engineering

Fig. 8 Number of CC subsets selected by Threshold Clustering with RTs for ISBSGAll when using P = 10
and P = 5

by the end of the period analysed. This makes it easier for the tuning procedure to avoid
poor choices of Dycom instances, requiring less WC training projects.

Figure 7b shows the AEs obtained by Threshold Clustering with RTs on a dataset
(ISBSG2000) for which this approach was successful in maintaining WC’s AE with P =
10. We can see that the variations in the AEs of the Dycom instances were larger than those
obtained with LogLR in Fig. 6c, but still smaller than those obtained when using RT in
Fig. 6a. This again makes it easier for the tuning procedure to avoid poor choices of Dycom
instances, requiring less frequent collection of WC training projects.

Therefore, when the predictive performance of Dycom’s instances varies more, a more
frequent collection of WC training projects is necessary to enable selecting good Dycom
instances. Such larger variance could possibly be observed during runtime based on the WC
training projects, and used to decide whether to collect more or less WC training projects.
However, a more detailed understanding of the reasons why this variance was larger for
ISBSGAll when using RTs and BagRTs could potentially support early decisions on how to
use Threshold Clustering. So, potential reasons are dicussed over the next paragraphs.

One of the main differences between ISBSGAll and ISBSG2000 is that ISBSGAll’s
CC projects are much fewer and older. They amount to 94 projects, covering the period
from 1993 to February 1996. ISBSG2000’s CC projects form a total of 168 CC projects
implemented until the year 2000. It would be reasonable to expect that the fewer and older
CC projects could lead to CC models whose suitability varies more over time. In such cases,
a more frequent collection of WC training projects can potentially help to better track the
best Dycom instances.

However, the experiments also suggest that the base learner being used can avoid fewer
and older CC projects to cause such larger variability in the predictive performance. In
particular, LogLR was a better base learner for Dycom when the CC projects were fewer
and older. It led to less performance variability and did not require the collection of a larger
number ofWC training projects. This means that, depending on the base learner and its error
variability, it is not necessary to collect more and more recent WC training projects. For the
datasets with more and more recent CC projects, RT and BagRT obtained better results as

Empirical Software Engineering

base learners of Threshold Clustering, as indicated in Tables 1, 2 and 3. A valuable future
work would be to investigate whether such findings are generalisable to other datasets, when
they become available.

RQ4: Threshold Clustering was less successful in reducing the number of required WC
training projects when the predictive performance of the Dycom instances used by the
online supervised tuning procedure varied more. This occurred when using RT or BagRT
in the scenario with fewer and older CC projects. Increasing the frequency with whichWC
training projects are collected can potentially help the tuning procedure to better track the
best Dycom instance to use in such case. However, the use of LogLR as base learner was
able to avoid collecting more WC training projects, by leading to more stable predictive
performance in this scenario. It is thus recommended for it. For scenarios with newer
and more abundant CC projects, RT and BagRT were better base learners for Threshold
Clustering.

13 Further Considerations

This section presents further considerations in terms of running time (Section 13.1) and
overfitting (Section 13.2).

13.1 Running Time

Table 9 shows the running times in seconds for WC, Threshold Clustering without tuning
the number of CC splits, and Threshold Clustering with the proposed online supervised
parameter tuning procedure. The algorithms were run on a 2.9 GHz Intel Core i5 with 16
GB and macOS High Sierra. The running time reported for Threshold Clustering without
the proposed online supervised parameter tuning procedure is the average running time with
the �N/10� different cluster numbers investigated in the study, where N is the size of the
CC dataset. The running times reported for BagRT are based on the average across 30 runs.
All running times consider the time taken for training plus the time taken for predicting the
whole dataset.

Table 9 Running time in seconds

Base learner Method ISBSG2000 ISBSG2001 ISBSGAll

RT WC 0.25 0.12 0.39

Threshold Clustering without tuning 0.10 0.10 0.20

Threshold Clustering with tuning 1.55 2.09 1.78

BagRT WC 2.39 1.18 4.61

Threshold Clustering without tuning 0.61 0.54 0.54

Threshold Clustering with tuning 9.82 11.80 4.90

LogLR WC 0.22 0.14 0.36

Threshold Clustering without tuning 0.13 0.11 0.15

Threshold Clustering with tuning 2.09 2.5 1.34

Empirical Software Engineering

We can see that the time taken to run Threshold Clustering without CC split tuning is
smaller than the time taken to run WC. This is because, despite Threshold Clustering having
learners for each CC subset, it is trained on only a tenth of the WC projects. We can also
see that Threshold Clustering with CC split tuning took roughly �N/10� times longer than
Threshold Clustering without CC split tuning to run. This is in line with the fact that the
proposed online supervised parameter tuning procedure runs �N/10� instances of Threshold
Clustering. The running time of Threshold Clustering with CC split tuning was also larger
than that of WC.

The time taken to run Threshold Clustering with CC split tuning could be reduced by
running each instance of Threshold Clustering in parallel. However, it is reasonable to say
that this would not be necessary – the runtime of all approaches can be considered negligible
as the rate of incoming projects is far much smaller than the maximum running time of
11.80 second shown in Table 9. It is also worth noting that the heaviest computational cost
comes from training. The time taken for making N predictions at the end of the whole
training process was always smaller than 0.1 s for all approaches, meaning that any of these
approaches can provide very fast predictions whenever a new project has to be estimated.

13.2 Overfitting

When the proposed online hyperparameter tuning procedure uses a given WC training
project for estimating the predictive performance of a given instance of Dycom, this is done
before this instance is trained on this training project. Therefore, the estimation of the pre-
dictive performance used for tuning works as a validation error, rather than training error.
This helps to avoid overfitting (Corazza et al. 2013).

Overfitting is also less likely to occur in non-stationary environments, where the data
generating process suffers changes over time. This is because the examples used for param-
eter tuning are likely to come from different distributions over time. As we learn over time,
when there is overfitting, one would expect to see an initial decrease in the test error, fol-
lowed by an increase as more training data is used. This does not happen in Fig. 6. Instead,
we see several spikes of test error followed by decreases in test error, in line with what one
would expect when there are changes in the underlying data generating process (Gama et al.
2004).

The fact that the proposed online supervised tuning procedure does not use the train-
ing error for tuning, the trend in the errors obtained by Dycom with the proposed online
hyperparameter tuning procedure over time, and the successful Threshold Clustering results
in terms of improving predictive performance with respect to WC approaches trained on
the same number of WC projects give us confidence that there are no detrimental levels of
overfitting.

14 Threats to Validity

When using machine learning approaches, it is important that the approaches being com-
pared use fair hyperparameter choices to address internal validity (Menzies and Shepperd
2012; Song et al. 2013). In this paper, the base learners used as WC models and within
Dycom were either hyperparameterless, or were shown not to be much affected by hyperpa-
rameter choice in previous work (Song et al. 2013). This avoids unfair comparisons. Dycom
has two extra hyperparameters (β and lr) which were set to the same values for all datasets
used in this study, i.e., they were not fine tuned for each dataset and therefore should not lead

Empirical Software Engineering

to an unfair advantage to Dycom over the WC models. This paper also investigates a proce-
dure that eliminates one hyperparameter from Dycom’s design—the number of CC subsets.
This hyperparameter is automatically chosen by the proposed tuning procedure, which turns
this hyperparameter into an internal parameter automatically learnt by the overall Dycom
approach.

The choice of base learner to be used with Dycom was shown to affect its predictive
performance in this work. One could possibly consider the type of base learner as a hyperpa-
rameter. However, a different tuning procedure from the online supervised tuning procedure
proposed in this paper would be required to automatically choose the base learner. This is
because the same variability that caused the proposed tuning procedure to struggle when
using RT and BagRT for ISBSGAll would be present if different base learners had been
used to create Dycom instances, making the tuning procedure less effective. Other hyperpa-
rameter tuning procedures should be proposed as future work to automatically choose the
type of base learner. For now, this study provides insights into the scenarios where each type
of base learner could be potentially more adequate (Section 10).

ISBSG2000, ISBSG2001 and ISBSGAll have an overlap of projects. Therefore, these
datasets are not independent. However, in online learning, the conclusions that may be
obtained with different numbers of preceding and following projects can be very different
(Minku and Yao 2017). For example, as shown in Section 9, Dycom with automated tun-
ing managed to achieve similar predictive performance to a WC model for ISBSG2000,
but sometimes failed to achieve that for ISBSGAll. Therefore, it is important to include all
versions of the ISBSG dataset in the analysis.

In order to address construct validity, this study used AE and LogAE. These are measures
unbiased towards over or underestimations, being recommended for SEE studies (Shep-
perd and McDonell 2012). LogAE is also independent of project size. SA (Shepperd and
McDonell 2012) was used to give a better idea of the magnitude of the differences in pre-
dictive performance and of the impact that they are likely to have in practice. Scott-Knott
procedure with bootstrap test was used to check the statistical significance of the differ-
ences in predictive performance. Effect size A12 was used to support the comparisons done
by the Scott-Knott procedure. Moreover, the predictive performance was time-decayed, so
that it tracks the changes in predictive performance over time, as recommended for studies
involving data streams (Gama et al. 2009).

In terms of external validity, besides never using a WC project for training before
using it for testing, three datasets derived from the ISBSG Repository (ISBSG 2011) were
investigated in this study. As with other studies involving data, we cannot claim that the
results obtained for ISBSG generalise to other datasets. Obtaining additional datasets for
this study is difficult due to the need for non-proprietary datasets with information about
chronology and about which projects belong to a single-company among the projects of
a cross-company dataset. However, the datasets used in this study can be made available
through ISBSG (ISBSG 2011). So, researchers and companies willing to use Dycom could
use the same CC datasets used in this study.

Even though the most successful approach in drastically reducing the number of WC
projects identified in RQ1 is not guaranteed to be the same for other datasets, the answer to
RQ2 provides an explanation of the characteristics of the CC datasets that made Threshold
Clustering more suitable than other clustering methods, contributing to external validity.
In particular, Threshold Clustering is likely to remain suitable for other CC datasets that
are also exponentially distributed and not clustered. RQ3 shows that the proposed online
supervised hyperparameter tuning approach is not always successful, and RQ4 complements
it by explaining why that was the case, again contributing to external validity. In particular,

Empirical Software Engineering

it is likely that the proposed online supervised hyperparameter tuning procedure will work
well in cases where the predictive performance of the Dycom instances does not vary wildly
over time, whereas this approach is likely to fail in cases where there are wild variations.

It is worth noting that this paper investigated cross-company SEE in an online learning
scenario, where the data generating process may change over time. Changes in the ISBSG
data used in this study are very likely to have ocurred between 1993 and 2003 (Minku and
Yao 2017), meaning that the approaches have been evaluated under changing conditions in
this paper. As it is likely that changes would also happen in future data, approaches designed
to cope with changes such as the one proposed in this paper are likely to remain useful over
time.

Dycom considers CC projects as fixed CC datasets available prior to learning, as in previ-
ous work Minku and Yao (2017, 2014). Such fixed CC datasets can be useful for prolonged
periods of time, as shown in Minku and Yao (2017). Therefore, Dycom as investigated here
is applicable in practice. If the weights of all CC mapped models become too low for a
prolonged period of time, this may be an indication that Dycom needs to be re-built with
updated CC datasets. However, the results obtained in this and previous work involving
Dycom (Minku and Yao 2014) indicate that Dycom does not need to be reset often.

As with other machine learning studies involving ensembles, we cannot claim that the
results obtained with RTs, BagRTs, and LogLR generalise to other base learners. However,
this threat is mitigated by examining the conditions under which the approach is or is not
recommended to be used (Section 12). In particular, if the errors of the adopted base learners
do not wildly vary over time, it is likely that the proposed online supervised hyperparameter
tuning approach will work well.

15 Conclusions

Dycom is a promising online supervised learning approach for SEE. It is able to reduce
the amount of WC training projects required for training SEE models while maintaining
or improving the predictive performance of a corresponding WC approach. However, its
good predictive performance depends on the choice of the number of CC subsets (and the
CC subsets themselves) to create its CC models. A poor choice can lead to worse predic-
tive performance than WC approaches. This paper therefore proposed the first procedure
for automatically tuning hyperparameters in online supervised learning, and investigated
whether clustering methods can help to create good CC splits for use with Dycom when
used in combination with automated procedures to choose the number of CC subsets.

Six different clustering methods were investigated, along with three different matching
tuning procedures for the number of CC subsets. The experiments show that a very simple
clustering procedure (Threshold Clustering) associated with the proposed online supervised
tuning procedure was the most successful in improving MdAE and MdLogAE when a lim-
ited number of WC training projects was available (RQ1). In particular, it managed to
produce up to 36% better MdAE and up to 30% better MdLogAE than the median baseline
(Median-P10). It also obtained SAAE up to 40% better and SALogAE

up to 25% better than
WC models trained with a limited number of WC projects (WC-P10). Threshold Cluster-
ing was more adequate than other clustering methods because the CC training projects were
exponentially distributed and not really clustered (RQ2).

Most of the time (in 15 out of 18 cases), Threshold Clustering with the proposed online
supervised tuning procedure was successful in enabling Dycom to use 10 times less WC
projects than a corresponding WC model while maintaining or even improving MdAE and

Empirical Software Engineering

MdLogAE (RQ3). The 3 out of 18 cases in which this approach failed in achieving that
had fewer and older CC projects, which led to higher variability in the predictive perfor-
mance of the Dycom instances being monitored by the online supervised tuning procedure
when using RTs or BagRTs as the base learners. Increasing the frequency with which WC
training projects are collected can potentially help the tuning procedure to better track the
best Dycom instance to use in such scenario. However, the use of LogLR led to more stable
predictive performance in this scenario, avoiding the need to increase the number of WC
training projects (RQ4).

Overall, the proposed online supervised tuning procedure was generally successful in
enabling a very simple threshold-based clustering approach to obtain the most competi-
tive results. This demonstrates the value of automatically tuning hyperparameters over time
in a supervised way. Future work includes an investigation of procedures for automati-
cally deciding the number of WC training projects to be collected for training, as well as
for choosing the best base learner to use. An extension of this study with more datasets
is a valuable future direction when suitable datasets become available, and so is a case
study with industry. mAn investigation of Dycom and the proposed online hyperparame-
ter tuning approach in the context of Agile estimation would also form a valuable future
contribution.

Acknowledgements The author is thankful to Siqing Hou for the implementation of the initial version of
the code to integrate Dycom with WEKA’s clustering algorithms, which was created during his internship at
the University of Birmingham (UK). The author is thankful to Tim Menzies, for sharing his Scott-Knott and
Bootstrap implementation, as well as his latex commands for creating quartile plots. The author is thankful to
Luigi Dragone, for making his Spectral Clustering code available. The author is also thankful to the editors
and anonymous reviewers, for their constructive comments. This work was supported by EPSRC Grant No.
EP/R006660/1.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

Agrawal A, Menzies T (2018) Is “better data” better than “better data miners”? In: International conference
on software engineering (ICSE), pp 1050–1061

Amasaki S, Takahara Y, Yokogawa T (2011) Performance evaluation of windowing approach on effort
estimation by analogy. In: IWSM-MENSURA, pp 188–195

Bishop C (2006) Pattern recognition and machine learning. Springer, Berlin
Boehm B (1981) Software engineering economics. Prentice-Hall, Englewood Cliffs
Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140
Briand L, Langley T, Wieczorek I (2000) A replicated assessment of common software cost estimation

techniques. In: International conference on software engineering (ICSE). Como, Italy, pp 377–386
Cohen J (1992) A power primer. Psychol Bull 112:155–159
Corazza A, Di Martino S, Ferrucci F, Gravino C, Sarro F, Mendes E (2013) Using tabu search to configure

support vector regression for effort estimation. Empir Softw Eng J (EMSE) 18(3):506–546
Dejaeger K, VerbekeW,Martens D, Baesens B (2012) Data mining techniques for software effort estimation:

a comparative study. IEEE Trans Softw Eng (TSE) 38(2):375–397

http://creativecommons.org/licenses/by/4.0/

Empirical Software Engineering

Ditzler G, Roveri M, Alippi C, Polikar R (2015) Learning in nonstationary environments: a survey. IEEE
Comput Intell Mag (CIM) 10(4):12–25

Fu W, Menzies T (2017) Easy over hard: a case study on deep learning. In: Symposium on the foundations
of software engineering (FSE), pp 49–60

Fu W, Menzies T, Shen X (2016) Tuning for software analytics: is it really necessary? Inf Softw Technol
(IST) 76:135–146

Gallego J, Rodriguez D, Sicilia M, Rubio M, Crespo A (2007) Software project effort estimation based on
multiple parametric models generated through data clustering. J Comput Sci Technol (JCST) 22(3):371–
378

Gama J, Medas P, Castillo G, Rodrigues P (2004) Learning with drift detection. In: Proceedings of the 7th
Brazilian symposium on artificial intelligence (SBIA’04) - Lecture notes in computer science, vol 3171.
Springer, São Luiz do Maranhão, pp 286–295

Gama J, Sebastiao R, Rodrigues P (2009) Issues in evaluation of stream learning algorithms. In: ACM
SIGKDD conference on knowledge discovery and data mining (KDD), pp 329–337

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software:
an update. SIGKDD Explor 11(1):10–18

Huang SJ, Chiu NH, Liu YJ (2008) A comparative evaluation on the accuracies of software effort estimates
from clustered data. Inf Softw Technol (IST) 50:879–888

ISBSG (2011) The international software benchmarking standards group. http://www.isbsg.org
Jeffery R, Ruhe M, Wieczorek I (2010) A comparative study of two software development cost modeling

techniques using multi-organizational and company-specific data. Inf Softw Technol (IST) 42(14):1009–
1016

JørgensenM, ShepperdM (2007) A systematic review of software development cost estimation studies. IEEE
Trans Softw Eng (TSE) 33(1):33–53

Kannan R, Vempala S, Vetta A (2000) On clusterings—good, bad and spectral. Tech. rep., Yale University
Kitchenham B, Mendes E (2004) A comparison of cross-company and within-company effort estimation

models for web applications. In: METRICS, Chicago, pp 348–357
Kitchenham B, Mendes E, Travassos G (2007) Cross versus within-company cost estimation studies: a

systematic review. IEEE Trans Softw Eng (TSE) 33(5):316–329
Kocaguneli E, Cukic B, Menzies T, Lu H (2013) Building a second opinion: learning cross-company data.

In: International conference on predictive models in software engineering (PROMISE), pp 12.1–10
Kocaguneli E, Gay G, Menzies T, Yang Y, Keung JW (2010) When to use data from other projects for effort

estimation. In: Automated software engineering (ASE). Antwerp, Belgium, pp 321–324
Kocaguneli E, Menzies T, Bener A, Keung JW (2012) Exploiting the essential assumptions of analogy-based

effort estimation. IEEE Trans Softw Eng (TSE) 38(2):425–438
Kocaguneli E, Menzies T, Mendes E (2015) Transfer learning in effort estimation. EMSE 20(3):813–843
Lavesson N, Davidsson P (2006) Quantifying the impact of learning algorithm parameter tuning. In: AAAI

conference on artificial intelligence
Lefley M, Shepperd M (2003) Using genetic programming to improve software effort estimation based on

general data sets. In: Genetic and evolutionary computation conference (GECCO), vol LNCS 2724,
Chicago, pp 2477–2487

Lokan C, Mendes E (2017) Investigating the use of moving windows to improve software effort prediction:
a replicated study. Empir Softw Eng J (EMSE) 22:716–767

McDonell S, Shepperd M (2007) Comparing local and global software effort estimation models—reflections
on a systematic review. In: ESEM, Madrid, pp 401–409

Menzies T, Shepperd M (2012) Special issue on repeatable results in software engineering prediction. EMSE
17:1–17

Menzies T, Butcher A, Cok D, Marcus A, Layman L, Shull F, Turhan B, Zimmerman T (2013) Local vs.
global lessons for defect prediction and effort estimation. IEEE Trans Softw Eng (TSE) 39(6):822–834

Menzies T, Krishna R, Pryor D (2017) The seacraft repository of empirical software engineering data.
tiny.cc/seacraft

Menzies T, Yang Y, Mathew G, Boehm B, Hihn J (2017) Negative results for software effort estimation.
Empir Softw Eng J (EMSE) 22(5):2658–2683

Minku L (2016) On the terms within- and cross-company in software effort estimation. In: International
conference on predictive models and data analytics in software engineering (PROMISE). Ciudad Real,
Spain, pp 4.1–4.4

Minku L (2018) Oates: a fully dynamic transfer learning approach for software effort estimation (under
review)

Minku L, Hou S (2017) Clustering Dycom: an online cross-company software effort estimation study. In:
International conference on predictive models and data analytics in software engineering (PROMISE),
pp 12–21

http://www.isbsg.org
http://tiny.cc/seacraft

Empirical Software Engineering

Minku L, Yao X (2012) Can cross-company data improve performance in software effort estimation? In:
International conference on predictive models in software engineering (PROMISE), Lund, pp 69–78

Minku L, Yao X (2013) Ensembles and locality: insight on improving software effort estimation. Inf Softw
Technol (IST) 55(8):1512–1528

Minku L, Yao X (2014) How to make best use of cross-company data in software effort estimation? In:
International conference on software engineering (ICSE), Hyderabad, pp 446–456

Minku L, Yao X (2017) Which models of the past are relevant to the present? A software effort estimation
approach to exploiting useful past models. Automat Softw Eng J 24(3):499–542

Minku L, Sarro F, Mendes E, Ferrucci F (2015) How to make best use of cross-company data for web effort
estimation? In: International symposium on empirical software engineering and measurement (ESEM).
Bergamo, Italy

Mittas N, Angelis L (2013) Ranking and clustering software cost estimation models through a multiple
comparisons algorithm. IEEE Trans Softw Eng (TSE) 39(4):537–551

Nair V, Agrawal A, Chen J, Fu W, Mathew G, Menzies T, Minku L, Wagner M, Yu Z (2018) Data-driven
search-based software engineering. In: Mining software repositories (MSR), pp 341–352

Oliveira A, Braga P, Lima R, amd Cornelio R (2010) GA-based method for feature selection and parameters
optimization for machine learning regression applied to software effort estimation. Inf Softw Technol
(IST) 52:1155–1166

Pelleg D, Moore A (2000) X-means: extending k-means with efficient estimation of the number of clusters.
In: International conference on machine learning (ICML), pp 727–734

Rokach L, Maimon O (2005) Clustering methods. Springer, Berlin, pp 321–352
Sarro F, Petrozziello A (2018) Linear programming as a baseline for software effort estimation. In: ACM

transactions on software engineering and methodology (TOSEM) (in press)
Sarro F, Petrozziello A, Harman M (2016) Multi-objective software effort estimation. In: International

conference on software engineering (ICSE), pp 619–630
Shepperd M, McDonell S (2012) Evaluating prediction systems in software project estimation. Inf Softw

Technol (IST) 54(8):820–827
Shepperd M, Schofield C (1997) Estimating software project effort using analogies. IEEE Trans Softw Eng

(TSE) 23(12):736–743
Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell

22(8):888–905
Song L, Minku L, Yao X (2013) The impact of parameter tuning on software effort estimation using learning

machines. In: International conference on predictive models and data analytics in software engineering
(PROMISE), Article No. 9, 10p. Baltimore

Song L, Minku L, Yao X (2018) A novel automated approach for software effort estimation based on data
augmentation. In: Symposium on the foundations of software engineering (FSE) (accepted)

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2016) Automated parameter optimization
of classification techniques for defect prediction models. In: International conference on software
engineering (ICSE)

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2017) An empirical comparison of model
validation techniques for defect prediction models. IEEE Trans Softw Eng (TSE) 43(1):1–18

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2018) The impact of automated parameter
optimization for defect prediction models. IEEE Trans Softw Eng (TSE) (in press)

Turhan B, Mendes E (2014) A comparison of cross- versus single- company effort prediction models for web
projects. In: SEAA, Verona, pp 285–292

Usman M, Mendes E, Weidt F, Brito R (2014) Effort estimation in agile software development: a systematic
literature review. In: Proceedings of the 10th international conference on predictive models in software
engineering, pp 82–91

Vargha A, Delaney HD (2000) A critique and improvement of the cl common language effect size statistics
of Mcgraw and Wong. J Educ Behav Stat 25:101–132

Wang S, Minku L, Yao X (2015) Resampling-based ensemble methods for online class imbalance learning.
IEEE Trans Knowl Data Eng 27:1356–1368

Wieczorek I, Ruhe M (2002) How valuable is company-specific data compared to multi-company data for
software cost estimation? In: METRICS, Ottawa, pp 237–246

Xia T, Chen J, Mathew G, Shen X, Menzies T (2018) Why software effort estimation needs SBSE.
arXiv:1804.00626v1

Xia T, Krishna R, Chen J, Mathew G, Shen X, Menzies T (2018) Hyperparameter optimization for effort
estimation. arXiv:1805.00336v2

http://arxiv.org/abs/1804.00626v1
http://arxiv.org/abs/1805.00336v2

Empirical Software Engineering

Dr. Leandro L. Minku is a Lecturer in Intelligent Systems at the School of Computer Science, University
of Birmingham (UK). Prior to that, he was a Lecturer in Computer Science at the University of Leicester
(UK), and a research fellow at the University of Birmingham (UK). He received the PhD degree in Computer
Science from the University of Birmingham (UK) in 2010. Dr. Minku’s main research interests are machine
learning for software engineering, search-based software engineering, machine learning for non-stationary
environments / data stream mining, and ensembles of learning machines. His work has been published in
internationally renowned journals such as IEEE Transactions on Software Engineering, ACM Transactions
on Software Engineering and Methodology, IEEE Transactions on Knowledge and Data Engineering, and
IEEE Transactions on Neural Networks and Learning Systems. Among other roles, Dr. Minku is the general
chair for the International Conference on Predictive Models and Data Analytics in Software Engineering
(PROMISE 2019 and 2020), the co-chair for the Artifacts Evaluation Track at the International Conference on
Software Engineering (ICSE 2020), an associate editor for the Journal of Systems and Software, an editorial
board member for Neurocomputing and a conference correspondent for IEEE Software.

	A novel online supervised hyperparameter tuning procedure applied to cross-company software effort estimation
	Abstract
	List of Acronymsto
	Introduction
	Research Questions and Contributions
	Related Work
	CC Learning and Heterogeneity in SEE
	Supervised Hyperparameter Tuning in Software Analytics

	Dycom
	Clustering Dycom
	Threshold Clustering
	K-Means
	Hierarchical Clustering
	Spectral Clustering
	Expectation-Maximisation
	X-Means

	Procedures for Automatically Tuning Dycom'S Number of CC Subsets
	Proposed Online Supervised Tuning Procedure
	Expectation-Maximisation's Offline Unsupervised Tuning Procedure
	X-Means' Offline Unsupervised Tuning Procedure

	Datasets
	Experimental Setup
	RQ1—Improving Predictive Performance When a Limited Number of WC Training Projects is Available
	RQ2—Why Threshold Clustering Worked Well?
	RQ3—Predictive Performance in Comparison to Approaches that Use More WC Training Projects
	RQ4—Why Threshold Clustering Sometimes Failed
	Further Considerations
	Running Time
	Overfitting

	Threats to Validity
	Conclusions
	References

