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Abstract

The pleasurable desire to move to music, also known as groove, is modulated by rhythmic

complexity. How the sensation of groove is influenced by other musical features, such as

the harmonic complexity of individual chords, is less clear. To address this, we asked people

with a range of musical experience to rate stimuli that varied in both rhythmic and harmonic

complexity. Rhythm showed an inverted U-shaped relationship with ratings of pleasure and

wanting to move, whereas medium and low complexity chords were rated similarly. Plea-

sure mediated the effect of harmony on wanting to move and high complexity chords attenu-

ated the effect of rhythm on pleasure. We suggest that while rhythmic complexity is the

primary driver, harmony, by altering emotional valence, modulates the attentional and tem-

poral prediction processes that underlie rhythm perception. Investigation of the effects of

musical training with both regression and group comparison showed that training increased

the inverted U effect for harmony and rhythm, respectively. Taken together, this work pro-

vides important new information about how the prediction and entrainment processes

involved in rhythm perception interact with musical pleasure.

Introduction

When listening to music we often find ourselves spontaneously tapping or moving to the beat.

This has led to the study of groove, which is the pleasurable desire to move to music [1–3].

Certain types of music are more likely to induce the sensation of groove than others. However,

which specific aspects of music contribute to this sensation is less clear. Research on groove

has focused on rhythmic complexity, but other musical properties may contribute as well. The

harmonic complexity of simultaneous notes forming a chord is a likely contributor because it

modulates affective responses [4], however, this may be influenced by musical expertise [5].

Therefore, in the current study we investigated whether rhythmic and harmonic complexity

work together to affect the sensation of groove and whether this depends on musical training.
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Early definitions of groove focused on the degree to which a piece of music will induce the

desire to move to the beat [6,7]. Moving along with music, especially through dance, is often

accompanied by feelings of pleasure. In a seminal study on groove, responses to a survey

emphasized both the desire to move and the associated positive affect [1]. Since then, several

rhythmic aspects have been studied in terms of their effectiveness in inducing groove. Music

with a strong beat leads to higher groove ratings [8,9] and is more likely to induce whole body

movements, compared to music with a weak beat [10].

A strong beat may be necessary for groove but is likely not sufficient. A ticking clock could

be considered to have a strong beat but is unlikely to be something people want to dance to.

Syncopation, when a note falls on a weak beat, and is then followed by a silence on a strong

beat [11,12], is a critical component of groove. It is often found in musical genres associated

with groove, such as jazz, soul, funk, Afro-Cuban, and Hip Hop [13,14], and is used by musi-

cians intentionally to create groove [15]. Meter is the pattern of differentially accented group-

ings and subdivisions of strong and weak beats which may or may not be acoustically present

in the rhythm. Syncopation works against the meter by emphasizing a weak beat and de-

emphasizing a strong beat. This creates tension with the established meter, violating expecta-

tions [16–18]. Listeners rate syncopated sequences as more enjoyable and sounding happier

than non-syncopated sequences [19], but this depends on the degree of syncopation. An

inverted U-shaped relationship has been shown between degree of syncopation, and ratings of

pleasure and the desire to move, where moderately syncopated rhythms are rated higher than

rhythms with low or high degrees of syncopation [3].

Non-rhythmic musical features have also been shown to contribute to groove, such as bass

frequency content and variability in dynamics [20]. While no current studies directly address

whether harmony affects groove, there is evidence that consonance (i.e., a pleasant relation

between notes in a chord) affects motor synchronization [21] and feelings of entrainment [22].

In the present study we tested the effect of harmony in single chords rather than chord

sequences, therefore harmonic complexity was operationalized as the degree of consonance.

Although chords most often occur in music as part of a sequence, some groove-based genres,

such as salsa, funk, and house music, frequently feature only one or two chords (James Brown’s

‘The Payback’ is a well-known example). Recent studies have shown that the harmonic com-

plexity of single chords affects ratings of emotion and arousal [5] and that chords of intermedi-

ate complexity are preferred over highly consonant or dissonant chords [23]. This result

supports the inverted U hypothesis which, as discussed above, has been shown for rhythmic

complexity, and is theorized to be a domain-general phenomenon [24]. The use of single

chords here allows for the modulation of affective responses by consonance alone, thus avoid-

ing a confound with responses to violations of harmonic expectations from chord sequences.

As affective, aesthetic and embodied effects of music are highly subjective and dependent

on experience, musical training likely influences how individuals experience groove. However,

the results of studies comparing musicians and non-musicians are somewhat contradictory.

Musicians have shown a greater effect of syncopation on groove ratings [25], stronger motor

response to high groove music [26], and larger error-related neural response to rhythmic viola-

tions, compared to non-musicians [27]. Conversely, several studies have suggested that musi-

cal training has little or no effect on groove ratings [3,26] or leads to lower groove ratings [28].

Furthermore, it has been suggested that the inverted U-shaped relationship between overall

complexity and liking disappears as musical training increases and other ‘learned aesthetic cri-

teria’ become stronger predictors for music preference ([29], pg. 608). These contradictory

results may be due to the fact that these studies differ in how musicianship is defined and

tested (i.e., as a continuous regressor or via group comparison). For harmonic complexity in

the context of chords the picture is somewhat clearer, as musicians show higher liking ratings
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[5], greater differences in ratings of consonance [4,30], and larger mismatch negativity brain

responses [31]. These results suggest that musical training leads to a greater sensitivity to con-

sonance-dissonance manipulations, which may translate to greater affective response in the

context of groove.

Taken together, current evidence shows that the sensation of groove involves both a motor

and affective response, and is predicted by syncopation, while the contribution of harmonic

complexity and the impact of musical training are less clear. Therefore, in the present study we

created stimuli that varied in both rhythmic and harmonic complexity. These stimuli were

then rated for pleasure and wanting to move by a large sample of people with a broad range of

musical training using an online paradigm. Based on previous research [3], rhythmic complex-

ity was expected to show an inverted U-shaped relationship with ratings of both pleasure and

wanting to move. Harmonic complexity was also expected to show an inverted U-shaped pat-

tern with pleasure ratings and affect wanting to move only indirectly, if at all. Harmonic com-

plexity was also expected to enhance the effect of rhythm via its effect on emotional valence. In

order to reduce methodological bias, the contribution of musical training was investigated

both as a continuous regressor and by comparing sub-groups of highly trained, practicing

musicians to non-musicians. Musical training was expected to increase sensitivity to both har-

monic and rhythmic complexity.

Methods

Ethics statement

This study investigates subjective experiences of music via a web-based survey. The study was

conducted through the Centre for Music in the Brain at Aarhus University, therefore, ethics

were governed by the Central Denmark Region Committees on Health Research Ethics.

According to their Act on Research Ethics Review of Health Research Projects (Act 593 of 14

July 2011, section 14.1), only health research studies shall be notified to the Committees. Our

study is not considered a health research study (section 14.2) and therefore did not require eth-

ical approval nor written/verbal consent, regardless of participants’ age. When recruited, par-

ticipants were informed that their responses would be used for research purposes. Participants

were anonymized, and no IP addresses were collected or stored. They were free to exit the sur-

vey at any time and were provided with an email address at the end of the survey to which they

could address any questions or concerns.

Participants

Two hundred and one participants between the ages of 17 and 79 (M = 34.74 SD = 13.24) com-

pleted the survey (96 reported as female). Participants reported their nationality as being from

countries in six different continents, with a majority in Europe (n = 130) and North America

(n = 47). As can be seen in Table A in the S1 File, there was a large range of musical training

backgrounds. A majority (n = 189) of participants reported no university-level music degree.

Of those currently playing music, a majority played piano (n = 50), guitar (n = 44) or sang

(n = 25) and had 14.5 (SD = 5.31) years for formal music training. Musician responders played

largely classical (n = 69) or pop/rock (n = 62) genres.

For the group analysis, two subsets of the total sample were categorized as musicians

(n = 58, 15 F) and non-musicians (n = 51, 18 F). Musicians were defined as those who reported

at least eight years of formal music training (M = 14.5, SD = 5.31) and were currently practic-

ing on a weekly or more frequent basis (hours per week: M = 6.52, SD = 8.51). Non-musicians

were defined as those who reported less than three years of formal training (M = 0.21,
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SD = 0.49) and were not practicing on a weekly or more frequent basis. Participants falling

between these categories were excluded from the group analysis only.

Stimuli

The stimuli consisted of short musical sequences with three levels (Low, Medium, High) of

both rhythmic and harmonic complexity. There were three different rhythm patterns for each

level of rhythmic complexity and three different chords for each level of harmonic complexity.

These were combined into nine versions of each rhythmic and harmonic complexity combina-

tion, of which six were selected for inclusion in this study, resulting in a total of 54 stimuli. All

stimuli were created using Cubase Pro version 8.0.30 (Steinberg Media Technologies).

Each sequence consisted of a rhythmic chord pattern with one repeated chord in a piano

timbre presented at 96 beats per minute in common time (see example stimuli in Fig 1). Each

sequence also included an isochronous hi-hat pattern with an inter-onset interval (IOI) of

.3125 seconds, corresponding to an eighth note. The hi-hat provided a metrical context for the

rhythms and prevented participants from perceptually shifting the beat of the high-complexity

rhythms to reduce perceived complexity. Each piano chord lasted approximately .373 seconds

including the full decay and were considered as eighth notes except in two of the high com-

plexity rhythms which included IOI’s of .234 seconds corresponding to a dotted sixteenth

note. Each sequence lasted one bar which was repeated four times for a total length of ten

seconds.

Rhythmic complexity. Rhythms at all three levels of complexity consisted of five onsets in

a 3+2 rhythmic pattern, that is, the first half of the bar consisted of 3 onsets, and the latter of 2

onsets. Medium complexity rhythms consisted of the son clave and the rumba clave, which are

popular Afro-Cuban five-stroke rhythm patterns, as well as an experimenter-created rhythm

(see Fig A in S1 File for a schematic depiction of all rhythms). The claves were chosen as they

induce a strong sense of beat despite including syncopations. The son clave and rumba clave

are widely used in South American and particularly Afro-Cuban music but are also found in

many forms of western music including pop, jazz and electronic dance music. Low complexity

rhythms followed the same 3+2 rhythmic pattern as the medium complexity rhythms with all

syncopation removed so that all onsets fall on strong beats. High complexity rhythms also

Fig 1. Stimuli example. Transcription of an example stimuli with a medium complexity rhythm (son clave) and a

medium complexity chord (four note chord with extensions). The upper bar denotes the hi-hat.

https://doi.org/10.1371/journal.pone.0204539.g001
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followed the 3+2 rhythmic pattern, however only the first of the five onsets fell on strong beat

points.

The degree of syncopation was quantified using the syncopation index created by Fitch and

Rosenfeld [11] based on the formalization of syncopation by Longuet-Higgins and Lee [12].

Each syncopation in a sequence was given a weight based on the position of the rests and pre-

ceding notes involved, then these values are summed for an overall index for that sequence.

The syncopation indices are summarized in Fig 2A. C-scores were also calculated for each

Fig 2. Indices of rhythmic and harmonic complexity. Scatterplots of measures of rhythmic complexity: (A) syncopation indices and (B) C-scores; and

of harmonic complexity: (C) peak roughness and (D) inharmonicity.

https://doi.org/10.1371/journal.pone.0204539.g002
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rhythmic sequence (see Fig 2B). The C-score, created by Povel and Essens [32], measures the

amount of counterevidence a rhythm provides against a given metrical interpretation based on

the number of weak accents and silences falling on predicted beat points. C-scores and synco-

pation indices were highly correlated (r(7) = 0.99, p< .05) and both were highly consistent

within each level of rhythmic complexity.

Harmonic complexity. There were three chords for each of the three levels of harmonic

complexity (Low, Medium, and High). All chords were in the key of D major and included six

notes spanning four octaves (D2 to #D5; see Figure B in S1 File). Low complexity chords con-

sisted of the D major triad and two inversions. Medium complexity chords consisted of four

note chords with extensions. High complexity chords included a flat ninth interval between

chord note and extension which is considered highly dissonant, when not specifically occur-

ring as flat 9th on major 7th chord, according to contemporary harmonic theory [33–35].

Measures based on both acoustic and harmonic theory were used to quantify chord conso-

nance. The acoustic measures of roughness and inharmonicity were calculated with the MIR-

toolbox [36]. Roughness is due to combining sounds with similar frequencies, which causes

beating and sensory dissonance [37,38]. Inharmonicity is the degree to which the partials in a

chord are integer multiples of the fundamental frequency [36]. A measure of consonance

based on harmonic theory, called the aggregate dyadic consonance (ADC) [39] uses relations

between pitch class sets rather than acoustic properties. Each interval class is given a conso-

nance value which is multiplied by the number of occurrences of this interval class then

summed for each chord.

As can be seen in Fig 2C, peak roughness increased with level of harmonic complexity.

Mean roughness shows a similar pattern (see Figure C in S1 File). Inharmonicity increased

with level of harmonic complexity, however the medium and high complexity levels showed

similar values (see Fig 2D). The ADC shows an inverted U-shaped pattern where the medium

complexity chords have the highest value (see Figure C in S1 File). This is because ADC is

dependent on the number of distinct notes in a harmonic set, leading to increased potential

for consonant intervals as the number of notes increases [23,39].

Procedure

Participants were recruited to visit a website hosting the survey via social media, email lists

and word of mouth. Participants were offered the chance to win one of two Amazon gift

cards worth 50 euros. First, participants completed a questionnaire regarding demographics,

musical training, and musical preference. Participants reported years of formal training in

music, the age at which they began formal training, and how often they currently practiced.

Information regarding participants’ interest in groove music, how often they listen to groove

music, their enjoyment of dancing and how often they dance, were collected on five-point

rating scales (see Figure D in S1 File for results). All questions required an answer before

proceeding.

Participants then heard two sequences similar to the stimuli used in the survey and were

asked to adjust the volume on their computer to a comfortable level. They were told to main-

tain the chosen volume throughout the survey. The two sequences, which were not used in the

actual experiment, illustrated the range of possible levels of rhythmic and harmonic complex-

ity. The survey then began during which each stimulus was presented once in a randomized

order. After each stimulus was presented, two rating scales appeared for the two questions:

‘How much does this musical pattern make you want to move?’ and ‘How much pleasure do

you experience listening to this musical pattern?’. Participants used their mouse to select their

rating on the two five-point scales where one indicated ‘not at all/none’ and five indicated

The sensation of groove is affected by the interaction of rhythmic and harmonic complexity
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‘very much/a lot’. Participants were not able to proceed to the next stimulus until each stimulus

had been presented in its entirety and a rating had been selected on both scales.

Analysis

Only data from participants who completed all 54 trials were saved. Therefore, the analysis was

implemented with no missing values. In order to reduce the number of predictors in the main

analysis, ratings regarding interest and frequency of listening to groove music were combined

using a principle component analysis (PCA) and are henceforth referred to as groove engage-

ment PCA. The identical approach was taken with the two questions regarding whether partic-

ipants enjoy dancing and how often they dance (referred to as dance PCA) as well as hours of

practice per week and years of formal training (referred to as musicianship PCA).

Analysis of the main effects and interactions of rhythmic and harmonic complexity, as well

as the effects of musical training, and enjoyment of dancing and groove music, were carried

out using linear mixed effects regression in R (version 3.4.1) and RStudio (version 1.0.143),

using the lme4 package [40]. Random intercepts for participants were included as well as by-

participant random slopes for the effects of rhythm and harmony, which accounted for inter-

individual differences in average rating and effects of complexity, respectively [41]. By-item

random intercepts were also included, which accounted for differences in ratings among the

versions of stimuli within each level of rhythmic and harmonic complexity. This also allowed

for analysis of the raw rather than by-level aggregated ratings. Note that boxplots show ratings

aggregated within complexity level for visualization purposes.

A hierarchical approach was used, starting with an intercept-only model including all ran-

dom effects. Predictors were then added incrementally and increases in model fit were assessed

using the likelihood ratio test [42]. A final model including all significant predictors and ran-

dom effects was then used to test follow-up contrasts. Along with visual inspection, inverted

U-shaped relationships between harmonic and rhythmic complexity and ratings were tested

using quadratic contrasts, which apply the contrast weights of 1, -2, and 1, corresponding to

the three levels of rhythmic and harmonic complexity. Therefore, inverted U-shaped relation-

ships result in negative contrast estimates (b). Following a significant interaction, pairwise con-

trasts were used to test whether the result of the quadratic contrast for rhythmic complexity

differed across levels of the other predictors (i.e., harmonic complexity and group). Linear

contrasts were not included as they compare low and high levels of complexity which was not

of interest here. Contrasts were carried out using the emmeans package in R [43]. Confidence

intervals were calculated using degrees of freedom approximated with the Satterthwaite

method and were adjusted for multiple comparisons using the multivariate t method. As all

contrasts involved comparing the estimates (b) to zero, confidence intervals not only reflect

the precision of the estimate but also were used as two-tailed significance tests where an inter-

val excluding zero indicates a statistically significant result. Diagnostic plots of the residuals

from all models were inspected for violations of the assumptions of normality and homosce-

dasticity. No violations were detected.

Linear regression models have been shown empirically to be robust to the potential viola-

tions of assumptions associated with Likert data [44]. However, many believe that parametric

statistics such as linear mixed effects models are not appropriate for Likert data [45]. However,

cumulative link mixed models (CLMM; from the ordinal package in R) [46], which are a stan-

dard method for analyzing ordinal data in a mixed effects context, do not allow for by-partici-

pant random slopes and are therefore less generalizable than linear mixed effect models [41].

Furthermore, simulations suggest that CLMMs are more prone to Type I errors than linear

mixed effects models for Likert data [47]. In the current study, secondary analyses were carried

The sensation of groove is affected by the interaction of rhythmic and harmonic complexity
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out using CLMMs to compare with the linear mixed effects approach. Overall the pattern of

results was very similar for both types of models with slightly more statistically significant beta

estimates in the CLMM models. Given their increased generalizability and potentially lower

Type I error rates compared to CLMMs, only the results of the linear mixed effects models are

reported here.

Mediation analysis. Harmonic complexity was expected to affect pleasure directly and

wanting to move only indirectly, while rhythmic complexity was expected to affect both vari-

ables directly. Therefore, following the main analysis, a mediation analysis was carried out to

further examine the effect of harmonic and rhythmic complexity on wanting to move ratings,

specifically to test whether their effects were mediated by pleasure. This analysis involved com-

paring two models predicting wanting to move ratings; one identical to that in the main analy-

sis, and another including the addition of pleasure ratings as a predictor. If pleasure is a

significant mediator, then the contributions of rhythmic and/or harmonic complexity will be

reduced in the second model.

The mediation effect was assessed using the mediation package [48] which provided point

estimates and 95% confidence intervals for the mediation (indirect) and direct effects after tak-

ing the mediators’ effects into account. The mediation and direct effect estimates were consid-

ered significant if the confidence interval did not contain zero. Confidence intervals were

calculated using a quasi-Bayesian Monte Carlo simulation with the number of simulations set

to 1000. Given the limitations of the mediation package, the models included a by-subject ran-

dom intercept only and only the medium versus high and medium versus low pairwise con-

trasts were tested.

Group analysis. In addition to the main analysis which regressed a continuous musician-

ship variable on ratings, an additional group analysis was carried out to compare the ratings of

two subsets of the whole sample; those who were trained musicians (n = 58) and those with lit-

tle-to-no training (n = 51; see Table A in S1 File for musical background information). First,

groove engagement and dance PCA scores were compared between the musicians and non-

musicians to test whether musical training affected interest in groove and dance. A linear

mixed effects analysis compared ratings between groups and tested for interactions between

group and rhythmic and harmonic complexity.

Results

Wanting to move

For the wanting to move ratings, likelihood ratio tests showed that model fit was significantly

improved by adding rhythmic complexity (χ2(2) = 280.46, p< .001) and harmonic complexity

(χ2(2) = 134.71, p< .001). Follow-up contrasts showed that both rhythmic (b(198) = 2.269,

95% CI [-2.530, -2.008]) and harmonic complexity (b(199) = -0.327, 95% CI [-0.431, -0.223])

showed significant quadratic trends, with rhythmic complexity showing a more pronounced

trend. As can be seen in Fig 3A, rhythmic complexity showed a clear inverted U with highest

ratings for medium complexity rhythms compared to both low and high. For harmony, despite

a significant quadratic trend, an inverted U-shaped relationship was not shown as low and

medium complexity chords were rated similarly, with a drop in ratings for high complexity

chords.

Likelihood ratio tests also showed a significant interaction between rhythmic and harmonic

complexity (χ2(4) = 55.27, p< .001). Follow-up contrasts showed a greater quadratic trend for

rhythmic complexity when combined with medium harmonic complexity than high harmonic

complexity (b(9840.02) = 0.201, 95% CI [-0.005, 0.406]) suggesting a more prominent inverted

U-shaped relationship. However, this difference did not reach statistical significance after
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correction for multiple comparisons. There was a smaller difference in the quadratic trend

between medium and low complexity chords which was also not significant (b(9840.02) =

0.129, 95% CI [-0.076, 0.335]). Musicianship PCA scores showed a significant interaction with

harmonic complexity (χ2(2) = 12.26, p< .01) with the follow-up contrast showing a more

prominent quadratic trend as musicianship increased (b(199) = -0.108, 95% CI [-0.212,

-0.004]). This was driven by lower ratings for low complexity chords as musicianship

increased.

Dance PCA scores showed a significant main effect (χ2(1) = 8.20, p< .01). Those with

greater interest in dancing showed higher wanting to move ratings overall (b(195.77) = 0.154,

95% CI [0.033, 0.275]). There were also significant interactions between rhythmic complexity

and both dance PCA (χ2(2) = 7.14, p< .05) and groove PCA (χ2(2) = 6.79, p< .05) scores

however, the follow-up contrasts were not significant.

Pleasure

For pleasure ratings, a likelihood ratio test revealed that there was a main effect of rhythmic

complexity (χ2(2) = 227.49, p< .001). When harmonic complexity was added, the model failed

to converge [41]. Therefore, the main effect of harmonic complexity was added at the same

step as the harmony by rhythm interaction, which together significantly improved model fit

(χ2(6) = 295.69, p< .001). Follow-up contrasts showed that both rhythmic (b(198) = -1.673,

95% CI [-1.900, -1.446]) and harmonic complexity (b(199) = -0.546, 95% CI [-0.681, -0.411])

showed significant quadratic trends. As in the wanting to move results, rhythm showed a pro-

nounced inverted U shape, whereas harmonic complexity did not, as low and medium

Fig 3. Ratings as a function of complexity. Boxplots showing the interaction between rhythmic and harmonic complexity for wanting to move ratings

(A) and pleasure ratings (B). Boxplots represent ratings aggregated over items within each level of complexity for visualization purposes. Center line,

median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. Dots represent means calculated from the raw ratings.

https://doi.org/10.1371/journal.pone.0204539.g003
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complexity chords were rated similarly, with a drop in ratings for high complexity chords (see

Fig 3B).

Follow-up contrasts for the rhythm by harmony interaction showed that the quadratic

trend for rhythmic complexity was significantly more pronounced for medium than high com-

plexity chords (b(9840.02) = 0.345, 95% CI [0.137, 0.553]). There was a smaller, non-significant

difference in the trend between medium and low complexity chords (b(9840.02) = 0.138, 95%

CI [-0.069, 0.347]). Therefore, the inverted U relationship between rhythm complexity and

pleasure was more pronounced for medium complexity chords compared to high complexity

chords. As in the wanting to move results, there was a significant interaction between musi-

cianship PCA scores and harmonic complexity (χ2(2) = 19.39, p< .001) showing that as musi-

cianship increased, so did the quadradic trend (b(199) = -0.014, 95% CI [-0.023, 0.039]).

Likelihood ratio tests showed significant interactions between rhythmic complexity and

both musicianship PCA (χ2(2) = 6.04, p< .05) and Dance PCA scores (χ2(2) = 7.25, p< .05).

Due to convergence issues, both Dance and Groove PCA scores were added together which

significantly improved model fit (χ2(2) = 7.06, p< .05). However, follow-up contrasts based

on these effects were not significant suggesting that these were weak effects or, in the case of

the interactions, were not related specifically to the quadratic trend of rhythmic complexity.

Mediation analysis

Based on our finding that harmonic complexity affected wanting to move ratings and given

that harmonic complexity was only expected to affect wanting to move ratings indirectly, we

used a mediation analysis to test the extent to which the effects of rhythmic and harmonic

complexity on wanting to move were mediated by their effects on pleasure ratings.

For rhythmic complexity, adding pleasure ratings led to a significant drop in the effect of

rhythmic complexity for the medium versus low contrast (b = 0.378, 95% CI [0.329, 0.430]).

However, the direct effect of rhythm complexity for this contrast remained significant in the

mediation model (b(1634.9) = 0.294, 95% CI [0.227, 0.361]). The identical pattern was seen in

the difference in ratings between the medium and high complexity rhythms. Adding pleasure
ratings significantly reduced the effect of this contrast (b = 0.777, 95% CI [0.718, 0.840]), while

the direct effect remained significant (b(1729.54) = 0.821, 95% CI [0.741, 0.900]). Therefore,

for both the medium versus low and medium versus high rhythm complexity contrasts, plea-
sure showed a significant mediation effect, while the direct effect remained significant.

For harmonic complexity, the difference in ratings between medium and low complexity

chords was not significant in the initial model (b(1592) = 0.012, 95% CI [-0.075, 0.099]) or the

mediation model (b(1591.03) = 0.019, 95% CI [-0.044, 0.081]). For the medium minus high

harmonic complexity contrast, adding pleasure ratings led to a significant drop in the estimate

(b = 0.371, 95% CI [0.323, 0.420]) with the direct effect going from significant in the first

model (b(1592) = 0.339, 95% CI [0.252, 0.426]) to non-significant in the mediation model

(b(1633.31) = -0.031, 95% CI [-0.098, 0.036]).

These results, summarized in Fig 4, show that pleasure ratings fully mediated the effect of

harmonic complexity on wanting to move ratings. However, pleasure only partially mediated

the effect of rhythmic complexity on wanting to move ratings such that a direct effect of rhyth-

mic complexity remained.

Musician vs non-musicians

Dance and groove engagement PCA scores were not significantly different between musicians

and non-musicians (b(106.31) = 0.324, 95% CI [-0.257, 0.906]: b(105.61) = - 0.099, 95% CI

[-0.675, 0.477]) and were thus excluded from the analysis.
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Wanting to move. There was no significant main effect of group (χ2(1) = 0.0014, p> .05),

but there was a significant interaction between group and rhythmic complexity (χ2(2) = 7.47,

p< .05) on wanting to move ratings. A follow-up contrast showed that the quadratic trend for

rhythmic complexity was greater for musicians than non-musicians (b(109) = 0.770, 95% CI

[0.213, 1.331]; see Fig 5A). Therefore, musicians showed a more prominent inverted U-shaped

relationship between rhythmic complexity and wanting to move than non-musicians.

Fig 4. Path model. Path model based on the mediation analysis showing the relations between the predictors—

rhythmic and harmonic complexity; the mediator—pleasure ratings; and the outcome variable—wanting to move

ratings. Regression estimates for the effects of rhythmic and harmonic complexity on wanting to move ratings are from

the mediation model that takes into account the effect of pleasure ratings on wanting to move ratings. The dashed line

indicates that the direct effect of the medium—high harmonic complexity contrast was no longer significant once

pleasure ratings were included in the model. L = Low, M = Medium, H = High; � p< .05.

https://doi.org/10.1371/journal.pone.0204539.g004

Fig 5. Ratings as a function of musical training. A) Box plot showing the interaction between group and rhythmic complexity. Lines represent means

calculated from raw ratings. B) Box plot of the effect of musical training on pleasure ratings. Boxplots represent ratings aggregated over items within

each level of complexity for visualization purposes. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points,

outliers. Dots represent means calculated from the raw ratings.

https://doi.org/10.1371/journal.pone.0204539.g005
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Pleasure. There was a significant effect of group (χ2(1) = 4.52, p< .05) showing that musi-

cians had higher pleasure ratings overall compared to non-musicians (b(107) = 0.227, 95% CI

[0.023, 0.431]; see Fig 5B).

Discussion

This study used ratings of pleasure and wanting to move to assess whether harmony and

rhythm work together to affect the sensation of groove. Rhythm showed a strong inverted U-

shaped relationship with both pleasure and wanting to move ratings while harmony did not.

Consistent with our hypotheses, rhythm and harmony interacted such that medium complex-

ity chords enhanced the inverted-U effect of rhythm complexity, particularly for pleasure rat-

ings. Mediation analysis showed that rhythm directly affected both wanting to move and

pleasure while the effect of harmony on wanting to move was driven by pleasure. Together

these results suggest that rhythm plays a primary role in generating the sensation of groove,

with harmony providing a modulatory role through its effect on pleasure.
In the group analysis musicians showed a stronger effect of rhythmic complexity on want-

ing to move ratings and higher pleasure ratings overall. Further, musicianship was associated

with greater sensitivity to harmonic complexity. Together these results show that musical

training strengthens the connection between syncopation and the desire to move and leads to

greater reported pleasure. Finally, for all participants, interest in dance was associated with

higher wanting to move ratings.

The inverted U effect of rhythm complexity on ratings may be interpreted in the context of

predictive processes whereby listeners develop internal models, or musical expectancies, based

on prior experience [16–18]. The strongest responses arise when listeners can make predic-

tions, but expectancies are subtly violated, creating a balance between predictability and uncer-

tainty [49]. In the current context, medium levels of syncopation achieve this balance by

creating an optimal level of tension between a predictive model—the meter—and the current

sensory input—the rhythm [27,50,51]. According to this view, pleasure ratings show an

inverted U-shaped relationship with rhythmic complexity because this tension between model

and input engenders prediction errors, or violations of expectations, which are rewarding as

they lead to further predictions and thus learning [51]. Similarly, the desire to move is highest

for medium syncopation because this tension encourages the listener to reinforce and/or test

their model by synchronizing their movements and fill in the gaps in the rhythmic surface cre-

ated by syncopations [52,53]. It is also possible that familiarity may have contributed to the U-

shaped relationship observed here because the medium complexity rhythms consist of son and

rumba claves that are common to many types of popular music. However, the stimuli used

here were entirely novel, and therefore would not be individually recognizable.

Harmonic complexity modulated the inverted U-shaped relationship between rhythmic

complexity and pleasure and to a lesser degree, the desire to move. Combined with the results

of the mediation analysis, this suggests that harmony primarily influences groove by modulat-

ing the affective component of music. Positive mood has been shown to broaden auditory

attention in a musical context [54]. By contributing to positive affect, pleasant chords may

broaden attention to rhythmic aspects of the stimuli thus enhancing the effect of rhythmic

complexity, while unpleasant chords may focus attention on harmony. The interaction

between rhythm and harmony may also be accounted for by rhythmic entrainment. Theories

of entrainment suggest that attentional focus predictively aligns with the onsets of a periodic

stimulus thereby enhancing perceptual processing [55], which is crucial for meter and beat

perception [56,57]. Subjective feelings of entrainment predict positive affective responses to

music [58] which is in line with the idea that entrainment at neural, cognitive, physiological,
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and social levels results in a positive affective response [59]. Harmony, by modulating affect,

may therefore alter the degree of entrainment to rhythmic stimuli thus affecting the precision

of the temporal prediction processes that rely on this entrainment. Although this hypothesis

has yet to be tested, promising evidence comes from a study showing that auditory-motor syn-

chronization, which relies on precise temporal predictions, was reduced for dissonant com-

pared to consonant tones [21]. Intriguingly, motor regions in the brain are thought to be the

origin of the neural processes underlying temporal predictions [60]. Therefore, one possibility

is that enhancement of entrainment by pleasant stimuli may also enhance motor activity lead-

ing to a greater desire to move, thus providing a possible mechanism for the interaction seen

here.

Overall, harmonic complexity did not show an inverted U-shaped pattern because low and

medium complexity chords were rated similarly, and only high complexity chords were rated

lower. This may be because low and medium complexity chords are both relatively common

in groove music while high complexity chords are uncommon, and thus were not only per-

ceived as unpleasant but also violated expectations. In addition, rhythmic features appear to

dominate for these stimuli, which may have reduced the attention paid to harmonic complex-

ity. Another possibility is that the range of harmonic complexity was too limited to capture an

inverted U-shaped relationship. The addition of lower complexity chords such as the octave,

might lead to lower ratings than the low complexity chords used here. However, as musician-

ship increased, ratings for the low complexity chords decreased, making the relationship more

U-shaped. This adds to evidence suggesting that musical training leads to greater sensitivity to

harmonic complexity in the context of single chords [4,30]. Although, this interaction effect

occurred for both pleasure and wanting to move ratings, given the results of the mediation

analysis, it is likely that this effect was driven by pleasure ratings. Therefore, those with higher

levels of musical training and who practice more frequently may be more susceptible to the

effects of harmony on groove.

In the group analysis, musicians showed a more prominent inverted U-shaped relationship

between rhythm and wanting to move. Musical training may lead to an increased awareness

and appreciation of syncopation and its effect on the desire to move. For example, musicians

have been shown to use syncopation intentionally to convey groove [15] and musical expertise

has been positively linked with the effect of syncopation on groove ratings [25]. Musical train-

ing may lead to more developed internal models that lead to stronger rhythmic expectations.

This is supported by studies showing that musicians have greater error-related neural

responses to rhythmic violations [27] and enhanced neural entrainment to natural music [61].

Finally, a stronger connection between sound and movement may also account for the greater

effect of rhythm on wanting to move in musicians [26,62]. Consistent with previous work [3],

enjoyment and interest in dancing was also associated with higher wanting to move ratings

overall. This further supports the link between motor processes and groove-based music in

those with strong associations between music and movement.

The musician group also showed greater overall pleasure ratings compared to non-musi-

cians. This is consistent with evidence that musicians demonstrate greater enjoyment of and

increased neural reward activity for a range of musical stimuli [5,63,64]. Some studies have

shown no effect of musicianship [3], or reduced groove ratings in musicians [28]. However,

these studies defined musicianship less strictly, thus perhaps attenuating the effects of train-

ing-based internal models or expectancies on the sensation of groove.

There were differing results depending on whether musicianship was tested as a continuous

regressor with the whole sample or in a group comparison with a subset of the sample. This

was despite the fact that both analyses used hours of weekly practice and years formal training

as determinants. We originally hypothesized that the effect of harmonic complexity on groove
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would be greater for musicians, however, we only saw this in the main analysis and not in the

group comparison. There are several possible reasons for this. First, the continuous regressor

approach is more likely to reveal small effects that are distributed in a population, which likely

applies to the interaction between musicianship and harmonic complexity seen here. Secondly,

the characteristics that define the musician group compared to others in the sample are many

years of formal training, and active current practice. This suggests that the effect of musician-

ship on sensitivity to rhythmic complexity is less normally distributed or present only at the

extremes. Together, these results highlight that the inverted U effect for both rhythm and har-

mony is sensitive to musicianship. Importantly, these results also provide further evidence that

both the statistical approach used, and the way musicianship is defined, are important when

testing the effects of musical training [65].

In conclusion, we have shown that rhythm and harmony interact to afford the sensation of

groove. While rhythmic complexity is the primary driver, harmony both modulates the effect

of rhythm and makes a unique contribution via its effect on pleasure. Syncopated rhythms cre-

ate the optimal level of tension between expectancy and violation which increases pleasure and

the desire to move. Harmony also affects pleasure, and by influencing emotional valence, may

alter the attentional and temporal prediction processes that underlie rhythm perception. These

predictive processes are encoded in auditory-motor networks and are influenced by experi-

ence, which may account for the increased sensitivity to groove in those with strong associa-

tions between movement and music, such as musicians and those who enjoy dancing. In

addition, greater sensitivity to harmonic manipulations as musicianship increases may

enhance the affective component of groove. Taken together, this work provides important new

information about how the predictive and entrainment processes involved in rhythm percep-

tion interact with musical pleasure.
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(ESCOM 2009) Jyväskylä, Finland. 2009. p. 573–82.

3. Witek MAG, Clarke EF, Wallentin M, Kringelbach ML, Vuust P. Syncopation, body-movement and plea-

sure in groove music. PLoS One. 2014; 9(4): 1–12.

4. Pallesen KJ, Brattico E, Bailey C, Korvenoja A, Koivisto J, Gjedde A, et al. Emotion processing of major,

minor, and dissonant chords: A functional magnetic resonance imaging study. Ann N Y Acad Sci. 2005;

1060: 450–3. https://doi.org/10.1196/annals.1360.047 PMID: 16597801

5. Lahdelma I, Eerola T. Single chords convey distinct emotional qualities to both naive and expert listen-

ers. Psychol Music. 2014; 44(1): 37–54.

6. Madison G. Experiencing Groove Induced by Music: Consistency and Phenomenology. Music Percept.

2006; 24(2): 201–8.

7. Pressing J. Black atlantic rhythm: Its computational and transcultural foundations. Music Percept. 2002;

19(3): 285–310.

8. Madison G, Gouyon F, Ullen F. Musical groove is correlated with properties of the audio signal as

revealed by computational modelling, depending on musical style. In: Proceedings of the SMC 2009—

6th Sound and Music Computing Conference. 2009. p. 239–40.

9. Madison G, Gouyon F, Ullén F, Hörnström K. Modeling the tendency for music to induce movement in

humans: First correlations with low-level audio descriptors across music genres. J Exp Psychol Hum

Percept Perform. 2011; 37:1578–1594. https://doi.org/10.1037/a0024323 PMID: 21728462

10. Burger B, Thompson MR, Luck G, Saarikallio S, Toiviainen P. Influences of rhythm- and timbre-related

musical features on characteristics of music-induced movement. Front Psychol. 2013; 4(183): 1–10.

11. Fitch WT, Rosenfeld AJ. Perception and production of syncopated rhythms. Music Percept An Interdis-

cip J. 2007; 25(1): 43–58.

12. Longuet-Higgins HC, Lee CS. The Rhythmic Interpretation of Monophonic Music. Music Percept An

Interdiscip J. 1984; 1(4): 424–41.

13. Danielsen A. Presence and Pleasure. The Funk Grooves of James Brown and Parliament. Middletown,

CT: Wesleyan University Press; 2006.

14. Greenwald J. Hip-Hop drumming: The rhyme may define, but the groove makes you move. Black Music

Res J. 2002; 22(2): 259–71.

15. Madison G, Sioros G. What musicians do to induce the sensation of groove in simple and complex mel-

odies, and how listeners perceive it. Front Psychol Audit Cogn Neurosci. 2014; 5(894): 1–14.

16. Huron D. Sweet Anticipation: Music and the Psychology of Expectation. MIT Press. Cambridge, MA;

2006.

The sensation of groove is affected by the interaction of rhythmic and harmonic complexity

PLOS ONE | https://doi.org/10.1371/journal.pone.0204539 January 10, 2019 15 / 17

https://doi.org/10.1037/a0024208
http://www.ncbi.nlm.nih.gov/pubmed/21767048
https://doi.org/10.1196/annals.1360.047
http://www.ncbi.nlm.nih.gov/pubmed/16597801
https://doi.org/10.1037/a0024323
http://www.ncbi.nlm.nih.gov/pubmed/21728462
https://doi.org/10.1371/journal.pone.0204539


17. Meyer LB. Emotion and Meaning in Music. Chicago: University of Chicago Press; 1956.

18. London J. Hearing in Time. New York: Oxford University Press; 2012.

19. Keller P, Schubert E. Cognitive and affective judgements of syncopated musical themes. Adv Cogn

Psychol. 2011; 7(1): 142–56.

20. Stupacher J, Hove MJ, Janata P. Audio features underlying perceived groove and sensorimotor syn-

chronization in music. Music Percept. 2016; 33(5): 571–89.

21. Komeilipoor N, Rodger MWM, Craig CM, Cesari P. (Dis-)Harmony in movement: effects of musical dis-

sonance on movement timing and form. Exp Brain Res. 2015; 233(5): 1585–95. https://doi.org/10.

1007/s00221-015-4233-9 PMID: 25725774
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