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The generation of drops from a jet spiralling out of a spinning device, under the action of
centrifugal force, is considered for the case of small perturbations introduced at the inlet.
Close to the inlet, where the disturbances can be regarded as small, their propagation
is found to be qualitatively similar to that of a wave propagating down a straight jet
stretched by an external body force (e.g. gravity). The dispersion equation has the same
parametric dependence on the base flow but the base flow is, of course, different. Further
down the jet, where the amplitude of the disturbances becomes finite and eventually
result in the drop formation, the flow appears to be quite complex. As shown, for
the regular/periodic process of the drop generation, the wavelength corresponding to
the frequency at the inlet, increasing as the wave propagates down the stretching jet,
determines, in general, not the volume of the resulting drop but the sum of volumes of
the main drop and the satellite droplet that follows the main one. The proportion of
the total volume forming the main drop depends on how far down the jet the drops are
produced, i.e. on the magnitude of the inlet disturbance. The volume of the main drop is
found to be a linear function of the radius of the unperturbed jet evaluated at the point
where the drop breaks away from the jet. This radius, and the corresponding velocity
of the base flow, have to be found simultaneously with the jet’s trajectory by using a
jet-specific non-orthogonal coordinate system described in detail in [Y. D. Shikhmurzaev
and G. M. Sisoev, J. Fluid Mech. 819, 352 (2017)]. Some characteristic features of the
nonlinear dynamics of the drop formation are discussed.

1. Introduction

Applications of liquid jets (or ‘ligaments’) produced by using the centrifugal force
broadly fall into two main groups. The first one, dealing primarily with non-Newtonian
fluids, purports to keep the jets continuous so that on solidification they become fibers.
This technique routinely used to manufacture polymer and glass fibers (Pearson 1985)
has been extended recently to produce nanofibers (Mellado et al. 2011). In the second
group of applications, the liquid jets spiralling out of a rotating container, as, for example,
in the prilling process (Saleh et al. 2015), or driven from the edge of a spinning disc (Li
et al. 2018), as in the spinning disc atomization (Senuma et al. 2000), are used as a source
of droplets which on solidification become pellets or powder particles. In both types of
application, it is important to understand the dynamics of rotating jets, their instability
mechanisms and, for atomization techniques, the process of formation of drops, satellite
droplets and the factors that control the distribution of their sizes.
The difficulties arising in the analysis of stability and evolution of disturbances prop-

agating along rotating liquid jets are twofold. The first aspect of the problem is that, as
follows from simple qualitative arguments, this is a particular case from a class of free-
boundary problems where the perturbations propagate over a base flow which itself varies
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2 Y. Li, G. M. Sisoev and Y. D. Shikhmurzaev

along the direction of propagation (Huerre & Monkewitz 1990). This requires essentially
different mathematical treatment than that needed for the classic problem of stability of
a straight uniform cylindrical jet (Rayleigh 1878; Weber 1931). The second difficulty is
that the jet’s trajectory is not known a priori and can be found only together with the
base flow in the framework of a certain approximation, and neither the trajectory nor
the base flow can be expressed analytically.
The first of the above aspects is common with the case of a spatially-varying straight

jet. This case has been the subject of research, first, for the inertialess (creeping) flow
(Mikami et al. 1975), and later for the ideal (Frankel & Weihs 1985) and then viscous
jets (Frankel & Weihs 1987) stretching linearly. Recently, the analysis has been extended
to the straight jets driven by gravity (Cheong & Howes 2004; Sauter & Buggisch 2005;
Senchenko & Bohr 2005; Le Dizès & Villermaux 2017). These investigations deal primarily
with the perturbations generated all along the jet, physically, by background noise. The
frequencies corresponding to the fastest growing disturbances, and the amplitude of the
latter, are analyzed in the framework of the linear theory by considering the standing wave
(Frankel & Weihs 1985) in essence following Rayleigh’s approach. Nonlinear approxima-
tions of the full Navier-Stokes problem for a straight jet were used in (Chesnokov 2000)
to model the jet disintegration in the case of space-periodic solutions and in (Cheong &
Howes 2004; van Hoeve et al. 2010) to simulate the spatiotemporal evolution.
Le Dizès & Villermaux (2017) have brought into consideration a different physical

situation, where disturbances are introduced at the inlet, e.g. at the nozzle from which
the jet is generated, and grow as they are convected by the longitudinally varying base
flow. This case is particularly relevant to applications where vibrations come primarily
from the jet-producing device. For this situation, Le Dizès & Villermaux (2017) analyzed
the linear regime of the propagation of waves excited at the inlet and calculated the
gain in amplitude of the disturbances as function of the distance along the jet. In the
context of the rotating jet instability, the results obtained for straight jets can be seen as
providing a qualitative guide indicating what to expect, but the analysis itself becomes
more complicated in several ways.
As already mentioned, in the case of a rotating jet the jet’s trajectory is not known

a priori. Furthermore, as is always the case with curved jets, the very notion of ‘trajectory’
becomes meaningful and the trajectory well defined only if the characteristic length scales
along and across the jet are separated so that one can describe the jet’s trajectory and
the base flow in the framework of the slender-jet approximation as the leading order in
the asymptotic limit of the ratio of the two scales going to zero. This description, by
necessity, requires the use of a jet-specific generally non-orthogonal coordinate system,
and, as reviewed in Shikhmurzaev & Sisoev (2017), this technical element alone has
become a major hurdle for many theoretical studies. The system of nonlinear ordinary
differential equations describing the jet’s trajectory and the base flow (Shikhmurzaev &
Sisoev 2017) cannot be solved analytically even approximately and hence the subsequent
analysis of the propagation of disturbances has to be numerical as well. Furthermore,
when it comes to the drop formation, the numerics by necessity has to resolve the
flow on disparate length scales leading to a three-dimensional unsteady free-boundary
problem which, if approached straightforwardly, is beyond available computer resources.
A body of numerical work dealing with the dynamics of dripping (Ambravaneswaran
et al. 2000; Chakraborty et al. 2016; Borthakur et al. 2017), where the unsteady free-
boundary problem is two-dimensional and, importantly, the jet is short enough to
make the computations feasible, can again provide a qualitative guide. However, the
difficulty remains and has to be addressed with controllable and acceptable computational
accuracy.
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Experiments on rotating liquid jets have been focussed primarily on the final outcome
of their evolution, i.e. the size distribution of the drops that are produced by particular
jet-generating atomizers, depending on the values of the global control parameters of
the flow (Frost 1981; Senuma & Hilborn 2002; Ahmed & Youssef 2012, 2014). Some
details have also been reported on the post-breakup behavior of the drops (Senuma &
Hilborn 2002), whilst the pre-breakup evolution and the drop formation received very
little attention.
The last stage of the drop formation process, i.e. the dynamics of the capillary breakup

itself, has been studied, both experimentally and theoretically, in a number of works; see,
for example, (Shikhmurzaev 2007, Ch. 7) for a review. A particular aspect of the problem
is the modelling of the breakup in a singularity-free way so that the topological transition
in the flow domain is not accompanied by unphysical behavior of the flow characteristics
(Shikhmurzaev 2005, 2007; Li & Sprittles 2016). This becomes increasingly important as
the cross-sectional dimension of the jet, and of the drops produced from it, get smaller
and the scales associated with the specific physics of breakup become no longer separated
from those characterizing the jet’s flow itself.
In the present paper, we consider how the disturbance, which is the spatially fastest

growing one at the inception of the jet, evolves down the jet and eventually leads to the
formation of drops and satellite droplets emitted from the end of the jet. In Section 2,
the jet-specific non-orthogonal coordinate system needed to describe the jet, and the
scalar form of the governing equations in the slender-jet approximation, are introduced.
The dispersion equation for the linear waves is derived in Section 3, and, in Section 4,
the nonlinear dynamics that follows the linear stage of the wave propagation and leads
to the drop formation is considered. In Section 5, the main results are summarized and
compared with previous studies of the generation of drops by spiralling liquid jets.

2. Mathematical formulation

Consider a jet of an incompressible inviscid fluid emitted from some device spinning at
a constant angular velocity Ω. The fluid’s velocity u and pressure p satisfy the continuity
equation and the equation of motion which in vector form, in the reference frame rotating
with the jet, are given by

∇ · u = 0,
∂u

∂t
+ u · ∇u = −1

ρ
∇p+ g− 2Ω × u−Ω × (Ω × r), (2.1)

where ρ is the fluid’s density, g is the acceleration due to gravity and r is the radius-
vector of a point in the fluid. The last term on the right-hand side of the second equation
(2.1) is the centrifugal force and the preceding term is the Coriolis force.
On the free surface of the jet, implicitly given as f(r, t) = 0, where the function f is

to be found, the standard kinematic and dynamic boundary conditions take the form:

∂f

∂t
+ u · ∇f = 0, (2.2)

p = σκs, (2.3)

where κs is the mean curvature of the jet’s free surface and σ is the surface tension.
For the above equations in scalar form to be manageable and amenable to meaningful

simplifications, it is necessary to write them down in a convenient jet-specific coordinate
system. The most appropriate choice for such a system is a generalization of the cylin-
drical coordinate frame where the z-axis now becomes a curved ‘baseline’ passing inside
the jet. Then, as for the cylindrical frame, the jet-specific coordinates are the distance, ξ,
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along this baseline and, at every ξ, the plane polar coordinates, i.e. the polar radius η and
angle θ, in the plane normal to the baseline. The polar angle θ can be measured from the
principal normal to the baseline towards the bi-normal. Formally, this coordinate system
is introduced by expressing the radius-vector in terms of the above coordinates,

r(ξ, η, θ) = R(ξ) + η cos θ n(ξ) + η sin θ b(ξ), (2.4)

where R(ξ) is the radius-vector of the point on the baseline corresponding to the distance
ξ along it measured from some reference point and vectors n(ξ) and b(ξ) are the normal
and the bi-normal to the baseline at this point. The expressions for n, b and the tangent
τ to the baseline in terms of R(ξ) are as follows:

τ =
dR

dξ
= X ′(ξ)x̂+ Y ′(ξ)ŷ + Z ′(ξ)ẑ, X ′2 + Y ′2 + Z ′2 = 1, (2.5)

n =
dτ

dξ

∣

∣

∣

∣

dτ

dξ

∣

∣

∣

∣

−1

=
d2R

dξ2

∣

∣

∣

∣

d2R

dξ2

∣

∣

∣

∣

−1

=
X ′′x̂+ Y ′′ŷ + Z ′′ẑ√
X ′′2 + Y ′′2 + Z ′′2

(2.6)

b = τ × n =
(Y ′Z ′′ − Z ′Y ′′) x̂+ (Z ′X ′′ −X ′Z ′′) ŷ + (X ′Y ′′ − Y ′X ′′) ẑ√

X ′′2 + Y ′′2 + Z ′′2
, (2.7)

where X(ξ), Y (ξ) and Z(ξ) are the Cartesian components of R(ξ) in a reference frame
where the z-axis is directed along the axis of rotation, x̂, ŷ, ẑ are the basis of this
frame and the primes denote differentiation with respect to ξ. The full details of the
geometric framework introduced by the coordinate system (2.4), including the metric
tensor and Christoffel symbols, as well as the scalar form of the governing equations
(2.1) and the boundary conditions (2.2), (2.3), both without simplifications and in the
slender-jet approximation, can be found elsewhere (Shikhmurzaev & Sisoev 2017).

It should be noted that, although the coordinate system (ξ, η, θ) introduced by (2.4)
might seem orthogonal, in a general case it is not (Entov & Yarin 1984; Shikhmurzaev &
Sisoev 2017), so that the technique of ‘scaling factors’ (i.e. the Lamè coefficients) becomes
inapplicable, and, in particular, to write down differential operators in a scalar form,
expressions for the Christoffel symbols corresponding to (2.4) are required. An efficient
way of calculating these expressions can be found in Appendix A of Shikhmurzaev &
Sisoev (2017).

In most applications, the length scale H characterizing the jet’s thickness is much
smaller than the scale L along the jet, so that the scalar form of the set of equa-
tions (2.1) and boundary conditions (2.2), (2.3), rather complicated in the general case
(Shikhmurzaev & Sisoev 2017), can be considerably simplified by using the slender-jet
approximation as ǫ = H/L → 0. Then, if U is the scale for velocity in the direction along
the jet, one has the scale ǫU for the cross-sectional components of velocity, σ/H as the
scale for the pressure and L/U as the scale for time. After non-dimensionalization, the
continuity equation (2.1) takes the form (Shikhmurzaev & Sisoev 2017)

∂

∂ξ

(

uξ√
g11

)

+
∂uη

∂η
+

1

η

∂uθ

∂θ
− ǫη cos θ

1− ǫηκ1 cos θ

dκ1

dξ

uξ√
g11

+

(

1− ǫηκ1 cos θ

1− ǫηκ1 cos θ

)

uη

η
+

ǫκ1 sin θ

1− ǫηκ1 cos θ
uθ = 0, (2.8)

where subscripts ξ, η, θ denote the corresponding components of the velocity vector,

g11 = (1− ǫηκ1 cos θ)
2 + ǫ2(ηκ2)

2
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is the covariant ξξ-component of the metric tensor, and

κ1(ξ) =

∣

∣

∣

∣

d2R

dξ2

∣

∣

∣

∣

=
√

X ′′2 + Y ′′2 + Z ′′2, (2.9)

κ2(ξ) =

〈

dR

dξ
,
d2R

dξ2
,
d3R

dξ3

〉 ∣

∣

∣

∣

dR

dξ
× d2R

dξ2

∣

∣

∣

∣

−2

=
X ′(Y ′′Z ′′′ − Z ′′Y ′′′) + Y ′(Z ′′X ′′′ −X ′′Z ′′′) + Z ′(X ′′Y ′′′ − Y ′′X ′′′)

(Y ′Z ′′ − Z ′Y ′′)2 + (Z ′X ′′ −X ′Z ′′)2 + (X ′Y ′′ − Y ′X ′′)2
(2.10)

are the curvature and the torsion of the baseline, respectively. In the above expressions,
the angular brackets denote the so-called parallelepipedal product, i.e. the determinant
where the components of the three vectors inside the brackets form the rows.

The scalar form of the equations of motion (2.1) in the coordinate frame (2.4) without
simplifications (derived in Shikhmurzaev & Sisoev (2017) and given in the appendix of the
present paper) is rather complicated. Nevertheless, should the multiple-scales method be
applied, with the jet’s slenderness and the wave amplitude as small parameters, and terms
beyond the leading order considered, it is these equations, in their full complexity, that
have to be used, with the interplay of small parameters carefully handled. Below, we will
be interested only in the leading-order terms and it is convenient, just as a preliminary
step, to give the equations of motion from the Appendix in a simplified form, where
the terms of O(ǫ) as ǫ → 0, which will not appear in the leading-order equations in the
multiple-scales methods used below, are dropped. It can be can easily verified that the
use of the full and simplified equations yields the same result for the leading order. The
simplified equations, also given in (Shikhmurzaev & Sisoev 2017), have a more intelligible
form:

∂uξ

∂t
+ uξ

∂uξ

∂ξ
+ uη

∂uξ

∂η
+

uθ

η

∂uξ

∂θ
= − 1

We

(

∂p

∂ξ
− κ2

∂p

∂θ

)

− 1

Fr2
τz +

1

Rb2
(Xτx + Y τy),

(2.11)

u2
ξκ1 = − 1

ǫWe

(

cos θ
∂p

∂η
− sin θ

η

∂p

∂θ

)

− 1

Fr2
nz −

2

Rb
uξ(τxny− τynx)+

1

Rb2
(Xnx+Y ny),

(2.12)

0 = − 1

ǫWe

(

sin θ
∂p

∂η
+

cos θ

η

∂p

∂θ

)

− 1

Fr2
bz−

2

Rb
uξ(τxby−τybx)+

1

Rb2
(Xbx+Y by), (2.13)

where

We =
ρU2H

σ
, Rb =

U

ΩL
, Fr =

U√
gL

are the Weber, Rossby and Froude number, respectively. As pointed out in (Shikhmurzaev
& Sisoev 2017), these equations are in essence the continuum-mechanics analogue of the
equations of motion of a material point in projection on the Frenet basis.

Using f = h(ξ, θ, t)− η to represent the free surface, where h is the distance from the
baseline to the free surface in the plane normal to the baseline, the kinematic boundary
condition (2.2), without simplifications, is written down as

∂h

∂t
+

uξ√
g11

∂h

∂ξ
+

uθ

η

∂h

∂θ
= uη at η = h(ξ, θ, t), (2.14)
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and the dynamic boundary condition (2.3), also without simplifications, takes the form

p =

{

(1− ǫκ1h cos θ)

[

(1− ǫκ1h cos θ)
2 + ǫ2

(

∂h

∂ξ

)2

+ ǫ2 (κ2h)
2

]

×
[

−h
∂2h

∂θ2
+ 2

(

∂h

∂θ

)2

+ h2

]

+

[

(

∂h

∂θ

)2

+ h2

]

×
[

ǫ3h

(

κ1κ2h sin θ −
dκ1

dξ
h cos θ − 2κ1

∂h

∂ξ
cos θ

)(

∂h

∂ξ
− κ2

∂h

∂θ

)

+(1− ǫκ1h cos θ)

(

−ǫ2h
∂2h

∂ξ2
+ ǫ2

(

dκ2

dξ
h+ 2κ2

∂h

∂ξ

)

∂h

∂θ
+ ǫ2κ2

2h
2

−ǫκ1 (1− ǫκ1h cos θ)

(

∂h

∂θ
sin θ + h cos θ

))]

−2ǫ2
(

∂h

∂ξ

∂h

∂θ
+ κ2h

2

)[

ǫκ1h

(

h sin θ − ∂h

∂θ
cos θ

)(

∂h

∂ξ
− κ2

∂h

∂θ

)

+(1− ǫκ1h cos θ)

(

−h
∂2h

∂ξ∂θ
+

(

∂h

∂ξ
+ κ2

∂h

∂θ

)

∂h

∂θ
+ κ2h

2

)]

}

×
{

(1− ǫκ1h cos θ)
2

[

h2 +

(

∂h

∂θ

)2
]

+ ǫ2h2

(

∂h

∂ξ
− κ2

∂h

∂θ

)2
}

−
3

2

, (2.15)

where the expression for the curvature κs on the right-hand side comes from Appendix B
of Shikhmurzaev & Sisoev (2017). Note that here no preliminary simplifications are made
as the expression for κs is quite manageable.

3. Close to the inlet: small-amplitude disturbances

Unlike the case of a jet driven by gravity (Le Dizès & Villermaux 2017), where the base
flow can be found analytically and then perturbed, the base flow for the rotating jet can be
found only approximately from an asymptotic analysis in the slender-jet approximation
(Shikhmurzaev & Sisoev 2017). Then, the perturbation of this flow has to be inscribed
into the asymptotic procedure and found alongside the base flow. The local perturbations
near an arbitrarily chosen cross-section ξ = ξa, and about a moment t = ta, are considered
using the multiple-scales method in the following form:

uξ = uξ,0(ξ1) + ǫuξ,1(ξ1, η, θ) + . . .+ δ [ũξ,0(ξ0, t0) + ǫuξ,1(ξ0, η, θ, t0) + . . .] , (3.1)

uη = uη,0(ξ1, η) + ǫuη,1(ξ1, η, θ) + . . .+ δ
[

ǫ−1ũη,0(ξ0, η, θ, t0) + . . .
]

,

uθ = ǫuθ,1(ξ1, η, θ) + . . .+ δ [ũθ,1(ξ0, η, θ, t0) + . . .] ,

p = p0(ξ1, η, θ) + ǫp1(ξ1, η, θ) + . . .+ δ [p̃0(ξ0, η, θ, t0) + . . .] ,

h = h0(ξ1) + ǫh1(ξ1, θ) + . . .+ δ
[

h̃0(ξ0, θ, t0) + . . .
]

,

where ǫ = H/L is, as before, the aspect ratio of the jet and δ is the (asymptotically
small) amplitude of the wave propagating along the jet. The independent variables in
(3.1) are given by

t0 =
t− ta

ǫ
, ξ0 =

ξ − ξa
ǫ

, ξ1 = ξ − ξa,
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and we will assume that ǫδ−1 = o(1), δ2ǫ−1 = o(1) as ǫ → 0, i.e., in engineering terms,
ǫ ≪ δ ≪

√
ǫ ≪ 1. The above expansions use that, as shown in Shikhmurzaev & Sisoev

(2017), for the unperturbed jet to leading order in ǫ as ǫ → 0, the jet’s cross-section
is circular and hence the baseline of the coordinate system can be chosen to be the
centerline of the jet, so that h0 is independent of θ.
In order to find the terms in (3.1) beyond the leading order, these expansions must

be substituted in the full (not simplified) equations, including the equations of motion
given in the Appendix, and the rather intricate interplay of small parameters must be
considered. Below, the case We = O(1) as ǫ → 0 is studied, and only the leading-order
terms in the perturbation of the base flow are dealt with. For this purpose, the simplified
equations equations (2.11)–(2.13) can be used, where the terms of O(ǫ) are dropped. For
brevity, the subscript 0 from ũξ, ũη, p̃ and h̃ is also dropped. It is worth noting that an
asymptotic approach similar to the one used here is already known in the case of straight
jets, where Bechtel et al. (1995) considered the O

(

ǫ2
)

approximation of the full Navier-
Stokes problem which was then used by Chesnokov (2000) for the secondary expansion
with regard to a small amplitude δ.
For convenience, as a preliminary step, the dynamic boundary condition (2.15) are

expanded to obtain

p =
1

h0

[

1− δ

(

h̃

h0
+ h0

∂2h̃

∂ξ20
+

1

h0

∂2h̃

∂θ2

)

− ǫ

(

h0κ1 cos θ +
h1

h0
+

1

h0

∂2h1

∂θ2

)

]

+. . . . (3.2)

In this equation, the last term in brackets on the right-hand side explicitly depends on
θ and therefore, once the terms of O(ǫ) come into play, the cross-section of the jet is no
longer circular. By contrast, the preceding term does not depend on θ explicitly, and a
solution with h̃ independent of θ can be sought, which corresponds to disturbances where
the cross-section remains circular.
After expansions (3.1), where now the terms proportional to δ are assumed to be

independent of θ, are substituted into (2.8), (2.11)–(2.13), where, as a reminder, the
terms of O(ǫ) are already dropped, and (2.14), the standard asymptotic procedure yields
the problem for the base flow already considered in Shikhmurzaev & Sisoev (2017). It
results in the following set of nonlinear ODEs

(

u2
ξ,0 −

u
1/2
ξ,0

WeQ
1/2
1

)

(X ′′2 + Y ′′2 + Z ′′2) +
1

Fr2
Z ′′

+
2

Rb
uξ,0(X

′Y ′′ − Y ′X ′′)− 1

Rb2
(XX ′′ + Y Y ′′) = 0, (3.3)

1

Fr2
(X ′Y ′′ − Y ′X ′′) +

2

Rb
uξ,0[X

′(Z ′X ′′ −X ′Z ′′)− Y ′(Y ′Z ′′ − Z ′Y ′′)]

− 1

Rb2
[X(Y ′Z ′′ − Z ′Y ′′) + Y (Z ′X ′′ −X ′Z ′′)] = 0, (3.4)

X ′2 + Y ′2 + Z ′2 = 1, (3.5)

where the primes denote differentiation with respect to ξ1 and uξ,0(X,Y, Z) is specified
by

u2
ξ,0 +

2

WeQ
1/2
1

u
1/2
ξ,0 +

2

Fr2
Z − 1

Rb2
(X2 + Y 2) +Q2 = 0, (3.6)

with Q1 and Q2 being constants of integration specified by boundary conditions at one
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Figure 1. Representative trajectories viewed from above (left) and the corresponding
distributions of the component of velocity directed along the jet (right). Curve 1 corresponds to
We = 10, Rb = 1, Fr = 5. Variations of the base case 1 are defined as: 2: We= 5; 3: Rb= 0.8; 4:
Fr= 2.5. The dashed lines show the trajectory and the corresponding velocity distribution for a
jet with the velocity at the starting point directed at the angle of 30◦ from the radial direction.
The solid circle at the bottom of the left figure shows the path of the nozzle from which the jet

is generated. For all velocities h0 = 1/u
1/2
ξ,0 ; with the velocity and the jet radius scaled by their

values at the inlet, Q1 = 1. Note that the trajectories on the left figure do not lie in a plane;
spatially, each of them is a helix spiralling out.

point in the jet. The unperturbed radius of the jet, h0, the radial velocity, uη,0, and the
pressure, p0, are given by

h0 =

√

Q1

uξ,0
, uη,0 = −η

2

duξ,0

dξ1
, p0 =

1

h0
. (3.7)

The azimuthal component of velocity uθ,0 is determined by considering higher-order
terms in the asymptotic expansion.

The solution of (3.3)–(3.7) describes the jet’s trajectory, the distribution of the velocity,
and the jet’s radius along it for the base (unperturbed) flow. In order to find this solution,
the system (3.3)–(3.7) must be re-arranged into the standard form, i.e. resolved with
respect to the highest derivatives, and then integrated numerically using one of the
standard methods. In the present study, the fourth-order Runge-Kutta scheme has been
used. Some representative trajectories for jets with the initial velocity directed radially
and deviating from the radial direction by 30◦ are shown in Fig. 1 (left). Figure 1 (right)
gives the corresponding distributions of the longitudinal components of velocity along
the trajectories. Note that, since Fr 6= ∞, the jet’s trajectory does not lie in a plane and
Fig. 1 (left) gives the top view of what spatially are helices spiralling out.

Dealing now with perturbations, the continuity equation (2.8) considered at O(δǫ−1)
as ǫ → 0 gives

∂ũξ

∂ξ0
+

∂ũη

∂η
+

ũη

η
= 0. (3.8)

This equation may be integrated with respect to η, given that ũξ is assumed to be
independent of η, to obtain

ũη = −η

2

∂ũξ

∂ξ0
, (3.9)

which is similar to (3.7) for the base flow. Using this in the kinematic condition (2.14)
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at O(δǫ−1) as ǫ → 0, the equation

∂h̃

∂t0
+ uξ,0

∂h̃

∂ξ0
+

h0

2

∂ũξ

∂ξ0
= 0 (3.10)

is obtained, where uξ,0 is evaluated at ξ1 = 0, i.e. ξ = ξa.
Equations (2.12), (2.13) to order O(δǫ−1) as ǫ → 0 give that p̃ is independent of η and

θ, i.e. uniform across the cross-section. Then, using that from (3.2)

p̃ = − h̃

h2
0

− ∂2h̃

∂ξ20
.

equation (2.11) to the same order yields

∂ũξ

∂t0
+ uξ,0

∂ũξ

∂ξ0
− 1

We

(

1

h2
0

∂h̃

∂ξ0
+

∂3h̃

∂ξ30

)

= 0. (3.11)

Substituting

(ũξ, h̃) = (Au, Ah)e
i(kξ0−ωt0), (3.12)

where Au, Ah are amplitudes, k is the wavenumber and ω is the frequency, into (3.10),
(3.11), the following system is obtained

(kuξ,0 − ω)Ah +
kh0

2
Au = 0, (3.13)

k

We

(

k2 − 1

h2
0

)

Ah + (kuξ,0 − ω)Au = 0. (3.14)

This system of equations has a nontrivial solution only if

(kuξ,0 − ω)2 − k2

2Weh0
(h2

0k
2 − 1) = 0, (3.15)

which is the dispersion equation for the waves in question. This equation is completely
analogous to (2.17) of Le Dizès & Villermaux (2017) apart from the viscous term
accounted for in the latter. It should be remembered though that the base flow char-
acteristics, uξ,0 and h0, vary along the jet differently, since for the case considered here,
they come from solving (3.3)–(3.7). In particular, although the dispersion equation (3.15)
depends only on We , the base flow variables, uξ,0 and h0, depend also on Fr and Rb.
In applications of rotating jets, the disturbances are introduced mainly at the starting

point of the jet, the orifice or the edge of a spinning disc, where the jet is subjected to
vibrations of the spinning device. It is this situation that is of interest here. Therefore, ω
in (3.15) is considered to be the frequency of the wave that is spatially the fastest growing
one corresponding to the base flow at the start of the jet. The evolution of this wave down
the jet is followed until the nonlinear regime to see what drops will be produced as a
result.
Considering ω in (3.15) as real and the wavenumber k as complex, k = kr + iki,

equation (3.15) can be split into real and imaginary parts:

(kruξ,0 − ω)2 − (kiuξ,0)
2 − 1

2Weh0

[

h2
0

(

(k2r − k2i )
2 − (2krki)

2
)

− (k2r − k2i )
]

= 0,

2kiuξ,0(kruξ,0 − ω)− 1

Weh0

[

2krkih
2
0(k

2
r − k2i )− krki

]

= 0,
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where the last equation, after dividing it by krki 6= 0 and rearranging, takes the form

k2i = k2r −
1

2h2
0

[

2Weh0uξ,0

(

uξ,0 −
ω

kr

)

+ 1

]

.

The frequency ωini, for which ki < 0 has its minimum, is the slender-jet analogue of the
Rayleigh frequency; the corresponding real part, kr will then determine the wavelength
of the propagating disturbance.

The amplitude of the initially generated wave increases as the wave propagates down
the jet. Eventually, the jet dynamics enters the nonlinear regime where the amplitude
of the wave is no longer small so that the viscous effects have to be taken into account.
The distance from the starting point of the jet to the region where the jet’s dynamics
becomes essentially nonlinear depends on the amplitude of the disturbance at the inlet.
In practical applications, this amplitude is not known. Therefore, instead of calculating
the gain in the amplitude of the wave in the linear regime from its unknown initial value,
as in Le Dizès & Villermaux (2017), the initial magnitude of the wave is taken as a free
parameter characterized implicitly by the distance from the starting point of the jet to
the point where the jet breaks up. The conventional boundary between the regions of
small and finite-amplitude perturbations and the amplitude of the perturbations at this
boundary become parameters linked by the constraint that the distance to the point of
the jet breakup remains the same for the same case.
Note that the above picture of the propagating and spatially growing waves corresponds

to convective instability which takes place for the Weber number above a certain critical
value. This critical Weber number in the case of a straight jet is known to be We = 3.15
for inviscid flow (Leib & Goldstein 1986b) and lower for viscous flow (Leib & Goldstein
1986a), with the value depending on the Reynolds number. In the calculations below, as
in for the trajectories given above, the Weber number is taken to be above the critical
value; the Reynolds number needed to characterize the flow in the nonlinear regime is
introduced below.

4. Finite-amplitude waves and formation of drops

Consider how the convective instability develops, i.e. how the wave generated at the
start of the jet, with the frequency corresponding to the fastest spatially growing wave
at this point, will evolve and lead to the drop formation. This section focusses on the
regular regime of the drop generation, with the drops reproducibly emitted from the jet’s
end, and the initial conditions used to start the calculations play no role anymore. A
representative case is studied where a jet with a circular cross-section is generated at a
distance L from the axis of rotation (the distance used as the characteristic length scale
for nondimensionalisation) with the velocity at the onset of the jet directed radially.

Using the initial velocity U and the initial radius of the jet H as the scales for the
longitudinal velocity and the cross-sectional length, respectively, the base case We = 10,
Rb = 1, Fr = 5 is considered and, to illustrate the influence of the flow parameters,
variations from these values as in Fig. 1, i.e. We = 5, Rb = 0.8 and Fr = 2.5, are used.
For the slender-jet approximation and hence the equations for kr and ki to be applicable,
it is necessary that ǫ = H/L ≪ 1. ExpressingH , L and U in terms of the nondimensional
parameters as

H =
σWe

ρU2
=

σWeΩ2Rb2

ρg2Fr4
, L =

Fr2

Rb2

g

Ω2
, U = ΩRbL =

Fr2

Rb

g

Ω
,
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Figure 2. The dependence of kr and ki on the longitudinal velocity of the base flow, uξ,0. Left:
We = 10, right: We = 5. The dashed lines show kr and ki corresponding to the local analogue
of the Rayleigh wave.

the condition on the applicability of the slender-jet approximation takes the form

ǫ =
H

L
=

σΩ4

ρg3
WeRb4

Fr6
≪ 1.

For the base case (We = 10, Rb = 1, Fr = 5) and the values of the dimensional
parameters in a typical experiment Ω = 150 s−1, σ = 50 dyn/cm, ρ = 1 g/cm3, g = 981
cm/s2, it follows that ǫ ≈ 0.017.
The dispersion equation (3.15) depends on uξ,0, h0 = 1/

√
uξ,0 and We ; then the non-

dimensional frequency of the spatially fastest growing disturbance at the onset of the
jet (uξ,0 = 1, h0 = 1) for We = 10 and We = 5 are ωini = 0.736 and ωini = 0.774,
respectively.
With the value of ωini fixed, the evolution of kr and ki corresponding to this value

may be considered along the jet for the linear regime of the wave propagation. These
distributions as functions of the base velocity uξ,0 are shown in Fig. 2; the dependence on ξ
can then be obtained by combining these curves with the distributions of the longitudinal
velocity along the jet shown in Fig. 1 (right).
As the perturbations introduced at the starting point of the jet propagate along the

jet, their amplitude grows and gradually they enter the nonlinear stage of evolution.
Then, in addition to capillarity and inertia, it becomes necessary to take into account
the fluid’s viscosity and hence add to the set of parameters characterizing the flow the
Reynolds number, defined using the inlet parameters, Re = ρUH/µ.
To match the small-amplitude wave treated as the linear solution close to the jet’s

starting point with the finite-amplitude nonlinear numerical solution further down the
jet, an artificial boundary between the two regions is introduced, which is a cross-section
where, using the known linear solution, the boundary conditions for the nonlinear one are
set. This boundary is characterized by its distance from the starting point of the jet and
the amplitude of the wave at this cross-section. These two parameters can be varied to
ensure that the results, notably the distance from the start of the jet to the point where
the drop is produced and the drop’s volume, are independent of the boundary’s location.
In particular, this means that the ‘end code’ which is used to describe the nonlinear stage
of the wave’s evolution takes the solution where the flow is yet in the linear regime and
the effects of viscosity are negligible. In other words, a smaller-amplitude linear wave
set as the boundary conditions at the matching boundary located closer to the starting
point of the jet, and a larger-amplitude wave set at the matching boundary located
further down the jet, correspond to the same initial disturbance if they produce the
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same drops at the same distance from the jet’s starting point. This simple check ensures
that the flow between the two matching boundaries is accurately described by the linear
solution, i.e. the wave amplitude is ‘small’ and the effect of viscosity is negligible. The
nonlinear regime of the wave’s evolution was studied using the ‘end code’ based on the
finite-element method; the code has been developed as an appropriate modification of
the code used earlier (Li & Sprittles 2016).
The code uses an Arbitrary Lagrangian-Eulerian (ALE) approach, known as the

method of spines and described in detail in Kistler & Scriven (1984), so that the free-
surface dynamics is captured with high accuracy. The structured mesh with triangular
elements uses a quadratic approximation for velocity and a linear approximation for
pressure to satisfy the Ladyzenskaya-Babuska-Brezzi condition (Aziz 1972). The main
development compared with (Li & Sprittles 2016) is the re-meshing algorithm which
increases the mesh density as the free surface slope increases and the jet approaches the
breakup and reduces it as the jet recovers after the breakup before the next cycle of
the drop generation starts. This algorithm considerably reduces the computational time
whilst maintaining the computational accuracy.
At the cross-section separating the linear and the nonlinear regimes, for a given ω = ωini

the wavenumber k is known from the dispersion equation (3.15) and, after prescribing,
for example, the amplitude of the free-surface oscillations Ah, the amplitude and phase
of the velocity oscillations Au can be found from one of the equations (3.13), (3.14).
Then, using (3.12) with δ absorbed into Au, the longitudinal velocity can be prescribed
as uξ,0 + ũξ. The radial component of velocity, needed as the ‘end code’ accounts for
the fluid’s viscosity, is then given by (3.9). These boundary conditions, once fed into the
‘end code’ describing the bulk flow, make it possible to compute how the drops form.
Note that, although the two parameters characterizing the linear-nonlinear boundary
(the location and amplitude Ah) can be varied independently (subject to the constraints
outlined above), the physical process itself has only one degree of freedom, namely the
magnitude of the initial disturbance introduced at the start of the jet. In practice, the
amplitude associated with vibrations of the jet-producing device is usually difficult to
determine, and it is more convenient to characterize the solutions not by this amplitude
but by looking at the process ‘from the other end’, using the easily measurable distance
ξb from the starting point of the jet to the point where the drops break away from the
rest of the jet.
As mentioned in Section 1, the exact computation of the nonlinear regime of evolu-

tion of a curved jet would require resolving widely disparate length scales in a three-
dimensional unsteady free-boundary problem which is beyond what the available com-
putational resources allow, especially for the regular regime of the drop generation.
To make calculations feasible, an approximation actually employing the disparity

of the length scales and the known/computed trajectory may be used to reduce the
dimensionality of the problem as follows. The spiralling shape of the jet’s trajectory
influences the flow dynamics in two ways. Firstly, the role of stretching the jet played
by the gravity force in the case of a straight jet (Le Dizès & Villermaux 2017) is played
by the projections of the centrifugal and the gravity force on the jet’s trajectory in the
case of the spiralling jet. These projections depend on the shape of the trajectory and
vary along it. Then, given that the jet’s trajectory has been found, the effect of this
factor can be captured by projecting the centrifugal force and the gravity force onto the
known trajectory and using them as the external body forces acting along a straight
jet. In other words, instead of a constant gravity force acting along a straight jet, the
prescribed spatial variation of body force (calculated as described above) acting along a
straight jet can be used to model the stretching effect that the centrifugal and gravity



On the breakup of spiralling liquid jets 13

20 30 40 50

-2
0
2

-2
0
2

-2
0
2

-2
0
2

ξ/ǫ

(b)

(c)

(d)

(a)h

20 30 40 50

-2
0
2

-2
0
2

-2
0
2

-2
0
2

ξ/ǫ

(e)

(f)

(g)

(h)

h

Figure 3. The evolution of the free-surface profile for the case where the ‘end code’ considers
the jet’s dynamics from the outset, i.e. from uξ,0 = 1 with Ah = 0.04. Frames (a)–(d) describe
the formation of the main drop and correspond to t = 0, 1.7, 3.3, 5.0, respectively; frames (e)–(h)
show the formation of the satellite droplets and correspond to t = 5.0, 6.1, 7.3, 8.5, respectively
(the time is measured from the beginning of the cycle). The pinch-off point of the main drop is
located at a distance of about 46 times the initial jet radius. We = 10, Rb = 1, Fr = 5, Re = 50,
ǫ = 0.0172.
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Figure 4. The evolution of the free-surface profile for the case where the ‘end code’ is used
from uξ,0 = 1.7 with Ah = 0.04. Frames (a)–(d) describe the formation of the main drop and
correspond to t = 0, 0.8, 1.6, 2.4, respectively; frames (e)–(h) show the formation of the satellite
droplet and correspond to t = 2.4, 4.4, 6.5, 8.5, respectively. The main drop breaks away at a
distance of approximately 124 times the initial jet radius.

force have on the spiralling jet. Secondly, the free-surface curvature deviates from axial
symmetry with regard to the jet’s centerline affecting the base flow accordingly. This
effect in the slender-jet regime is of O(ǫ) as ǫ → 0. Note that the terms of O(ǫ) in
(3.2) have been fully accounted for in calculating the trajectory (Shikhmurzaev & Sisoev
2017). Thus, an a priori estimate of the accuracy is O(ǫ) if (a) the flow in the spiralling
jet is computed using, as the external body force, the projection of the centrifugal and
gravity forces onto the jet’s trajectory and (b) the expression for the full curvature of a
straight jet is used. This approximation tested a posteriori against the full-scale three-
dimensional unsteady code for jets where such computations were feasible appears to be
surprisingly accurate, well within the computational accuracy of both codes. Both codes
use the finite-element method; the code implementing the approximation outlined above
is a modified version of the code used in Li & Sprittles (2016).
Figures 3 and 4 show the evolution of the free-surface profile with the matching
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boundary between the linear and nonlinear dynamics located at different distances from
the starting point, and the same amplitude of the wave at this point. In other words, these
plots correspond to different magnitude of disturbances at the inlet and hence different
distances to the breakup point, ξb. In Fig. 3, the ‘end code’ is attached straight to the inlet,
i.e. starts from uξ,0 = 1, and Au = 0.04. Fig. 4 corresponds to uξ,0 = 1.7 and Ah = 0.04
at the matching boundary. The frames (a)–(d) of each figure show the formation of the
main drop; frames (e)–(h) describe the detachment of the satellite droplet. It should be
noted here that the ‘primary’ satellite shown in the figures, if sufficiently long, potentially
can undergo further breakup which is not studied here. The full cycle, which includes
the formation of the main drop and the primary satellite, corresponds to the period of
the initial excitation.

Qualitatively, the formation of the main and the satellite drop is broadly the same as
in the dripping process, as described originally by Lenard (1887) and then studied in
detail in many works, notably (Ambravaneswaran et al. 2000; Chakraborty et al. 2016;
Borthakur et al. 2017); see also references therein and in (Shikhmurzaev 2007, Ch. 7).
At the same time, there are several features indicating a different balance of physical
factors. As Fig. 3 and 4 show, unlike slow dripping, where the frontal side of the main
drop is almost spherical throughout the process of the drop formation and detachment,
the process is more dynamic and the tip almost flattens as it recoils after the detachment
of the satellite. Another characteristic feature is that, as seen in frames (e)–(h) of both
figures, the bulge on the jet takes the shape of the future main drop while the satellite is
still forming before breaking away, and the subsequent pinch-off of the neck connecting
the main drop with the jet is assisted by the recoil of the forming drop driven by the
capillary pressure due to the curvature of its frontal side. It is also worth pointing out
that, in the regular regime of the drop generation, the value of ξb for the satellite droplet
is slightly smaller than ξb for the main drop.

Comparing Fig. 3 and 4, it is seen that, whilst the whole cycle where the main drop and
the satellite droplet are produced remains the same (within the computational accuracy),
the proportion of time taken by the main drop and the satellite droplet to form and detach
depends on how far down the jet this happens. It can be said that globally the whole
process is, in a certain sense, linear, with the global periodicity controlled by the linear
regime, whilst the nonlinearity of the drop formation is in this sense local, i.e. manifesting
itself in the local dynamics as the breakup itself is approached within the globally preset
cycle. The shortening of the time for the main drop to form and detach can be attributed
to the fact that its detachment is assisted by the recoil of the forming drop after emitting
the satellite, and, as the jet gets thinner down the trajectory, the capillary pressure at
the drop’s frontal side which leads to an increase in the recoil velocity. By contrast, the
satellite droplet is produced out of a stretched ligament and, as it can be seen in Fig. 3
and 4, its detachment from the main body of the jet happens long before the recoiling
end generates an appreciable wave along it. It should be noted that the proportion of the
liquid’s volume that goes into the main drop and the satellite droplet also varies along
the jet.

This last feature is illustrated in Fig. 5 showing how the volumes of the main drops
and the satellite droplets depend on the distance along the jet where they are produced.
The volume of the fluid contained within one wavelength is the sum of volumes of the
main drop and the primary satellite, whilst the size of the main drop decreases as a
linear function of the radius of the unperturbed jet evaluated at the point of breakup.
The linear fits

V (ξb) = C1h0(ξb) + C2 (4.1)
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Figure 5. Dependence of the volumes of the main drop (upper markers) and the satellite droplet
(lower markers) on the distance, ξb, of their appearance measured from the starting point of
the jet for different We , Rb and Re. (�) We = 10, Rb = 1, Fr = 5, Re = 50 (base case); (▽)
We = 5; (△) Rb = 0.8; (©) Re = 25. Solid lines 1 and 1′ show the volume of fluid contained
within one wavelength obtained from the dispersion equation (3.15) with the initial frequency
ωini for We = 10 and We = 5, respectively; it is equal to the sum of the volumes of the main and
the satellite drops. Dashed lines 2 and 2′ correspond to the volumes of fluid contained within one
wavelength of the locally most unstable wave, i.e. the local Rayleigh volume obtained from (3.15)
with the frequency of the fastest growing wave, for We = 10 and We = 5, respectively; this
volume is proportional to h3

0. Curves 3–6 (dotted lines) are the linear fits V = C1h0(ξb)+C2 with
the following parameters: (3) C1 = 45.1, C2 = −7.7; (4) C1 = 42.6, C2 = −7.5; (5) C1 = 37.3,
C2 = −6.9; (6) C1 = 50.8, C2 = −12.6.

are shown as the dotted lines in Fig. 5 with the values of the fitting parameters given
in the figure caption. This last feature indicates that an estimate for the size of the
main drop based on the linear theory without considering the nonlinear dynamics of the
jet’s breakup becomes increasingly inaccurate the further away one gets from the jet’s
starting point. As one can also see in Fig. 5, the prediction based on the local Rayleigh
instability is far from the computed results. This is in fact what one should expect in the
case of incident excitation, and this feature could be used in the analysis of experiments
to identify the dominant source of disturbances.

The computed data shown on Fig. 5 for different values of parameters correspond to
the same starting points of the ‘end code’, namely uξ,0 = 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,
1.8, 1.9, and the same amplitude Ah = 0.04 at this point. The influence of the parameters
on the breakup distance can also be seen. In particular, higher viscosity increases the
breakup distance and leads to marginally larger drops being produced. It should be noted
also that as the volumes of the main and the satellite drops become closer, the free-surface
shape becomes more and more complicated making it necessary to increase the spatial
resolution of the code.

The gradual convergence of the volumes of the main and the satellite drop can be
seen in Fig. 5. This may suggest revisiting the results obtained by Rutland & Jameson
(1970), who found in their pressurized dripping experiment that, despite their theoretical
expectations, the satellite drops are always present and conjectured that uniformity of the
drop sizes could be achieved once the satellites reach the size of the main drop. Whether
this is indeed possible remains an open question as the nonlinear dynamics of the jet
as it approaches breakup becomes increasingly complex as its cross-sectional dimension
decreases (Castrejón-Pita et al. 2015).
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5. Concluding remarks

The analysis of the linear regime of propagation of disturbances generated at the onset
of a jet produced by a spinning device is qualitatively similar to that in the case of
a straight jet stretched by gravity (Le Dizès & Villermaux 2017) with the dispersion
equation (3.15) having the same parametric dependence on the base flow. However, the
linear regime gives insufficient information about the size of the drops to be produced,
and the numerical analysis of the nonlinear dynamics of the drop formation shows that
the wavelength of the initial excitation, increasing as the wave propagates down the
stretching jet, determines not the volume of the drops produced but the total volume of
the main drop and the satellite droplet that follows the main one. A feature potentially
important for practical applications is that the volume of the main drop, V , can be
accurately approximated by a linear dependence (4.1) of V on the unperturbed radius
of the jet, h0, evaluated at the breakup point. Notably, not only the share of the total
volume of the fluid contained within one wavelength that form the main drop but also
the share of the time it takes for each of them to develop depends on where along the jet
the drops are produced.

The drop formation process is very complex, starting from linear disturbances propa-
gating down the jet which soon enter a nonlinear regime, eventually culminating in the
pinch-off of the main drop followed by the recoil of the jet’s tip and the pinch-off of the
satellite droplet. This level of complexity requires a consistent multiple-scales analysis of
the linear stage and a careful numerical simulation of the much more intricate nonlinear
regime and the topological transition. An attempt to predict the outcome on the basis
of a linear analysis stands a very small chance of success. For example, Wallwork et al.

(2002) applied the local linear analysis to estimate the breakup length by equating the
amplitude of a linear (exponential) wave to the radius of the jet, i.e. stretching the linear
regime to the breakup. Unsurprisingly, it was found that the breakup length obtained
in this way disagrees with the authors’ own experimental data, and the discrepancy was
attributed, quite plausibly, to their “using a linear theory while the breakup mechanism
is a nonlinear effect” as well as to the jet’s trajectory not lying in a plane as was assumed
in their theory. However, in the subsequent works (Decent et al. 2002, 2009) the same
linear approach was used to estimate the volumes of the main drop and even of the
satellite droplet, though in Wallwork et al. (2002) the reader was cautioned that the
satellite droplets “are not predicted by the linear theory as they are a nonlinear effect”.
Nevertheless, in a follow-up paper, the small size of the satellite droplets is explained
using the linear theory: “shorter waves become unstable which could produce satellite
drops” (Decent et al. 2009, p. 4295). As the results of the numerical simulations in the
present study show, the linear analysis is inadequate for describing the nonlinear stage
of the wave propagation as well as the drop formation, and, as for the satellite droplets,
they result from the pinch-off of a long thin ligament connecting the main drops, not
from short waves, which may be considered in the linear stage of the wave propagation.
This is what can be seen in the experimental photographs of Wallwork et al. (2002) as
well as in numerous experimental studies of particular atomization systems (see Li et al.
(2018) for a recent overview of the most nontrivial one).

Finally, we would like to draw attention to one rather nontrivial aspect of the use
of the linear analysis. Strictly speaking, the linear analysis is applicable to waves of an
infinitesimal amplitude whilst, in practice, its results are applied to describe waves of
a small but finite amplitude. Not an issue for spatially uniform jet, this point becomes
nontrivial when it comes to jets with a spatially varying base flow, like the jets driven
by gravity or the jets spiralling out under the action of the centrifugal force considered
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here. Then, for the relatively short jets of the kind that can be typically encountered in
practical applications, i.e. if the amplitude of disturbances at the outlet is ‘not too small’,
it is the initially fastest spatially growing wave that transitions to the nonlinear regime
and ultimately determines the subsequent nonlinear dynamics and its outcome (the drops
produced). However, for ‘very small’ disturbances at the outset (and, consequently, very
long jets), the initially fastest growing wave could become increasingly irrelevant before it
reaches an appreciable amplitude and its role could be taken over by the fastest growing
waves corresponding to the points further down the jet. This would require using at the
linear stage the maximum-net-gain approach developed by Le Dizès & Villermaux (2017).
The results presented here, which come from the combination of the linear analysis and
numerical simulations of the nonlinear regime, where the location of the linear-nonlinear
interface is varied, show that for waves with the initial amplitude (in terms of the jet’s
radius variation) of 0.01 or larger, the initially fastest spatially growing wave approach
can be relied upon. Interestingly, this approach appears to be working even when applied
to the spinning disc atomization process (Li et al. 2018), where, pictorially, there is no
well-defined ‘starting point of the jet’ as it has to be determined from the dynamic
properties of the gradually forming jet.

This work was supported by the Engineering and Physical Sciences Research Council
(UK) under Grant EP/K028553/1 and in part by the Russian Foundation for Basic
Research in the framework of Project 17–01–00057. The authors are also grateful to Dr
C.J. Bennett for critically reading the manuscript and making some helpful suggestions.

6. Appendix: Exact form of equations of motion

The Euler equation in projections on the Frenet basis τ , n, b, of the baseline has the
following form (Shikhmurzaev & Sisoev 2017).
In projection on τ :
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In projection on n:
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In projection on b:
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Here τx, τy, τz , nx, ny, nz, bx, by and bz are the Cartesian components of τ , n and b

in the coordinate frame rotating with the jet and the z-axis directed along the axis of
rotation.
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