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Abstract  

 
The mechanisms by which entire programs of gene regulation emerged during evolution are 

poorly understood. Neuronal microexons represent the most conserved class of alternative 

splicing in vertebrates and are critical for proper brain development and function. Here, we 

discover neural microexon programs in non-vertebrate species and trace their origin to 

bilaterian ancestors through the emergence of a previously uncharacterized ‘enhancer of 

microexons' (eMIC) protein domain. The eMIC domain originated as an alternative, neural-

enriched splice isoform of the pan-eukaryotic Srrm2/SRm300 splicing factor gene, and 

subsequently became fixed in the vertebrate and neuronal-specific splicing regulator 

Srrm4/nSR100 and its paralog Srrm3. Remarkably, the eMIC domain is necessary and 

sufficient for microexon splicing, and functions by interacting with the earliest components 

required for exon recognition. The emergence of a novel domain with restricted expression in 

the nervous system thus resulted in the evolution of splicing programs that qualitatively 

expanded the neuronal molecular complexity in bilaterians. 
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Main text 

 

Neural microexons are 3-27 nucleotide-long cassette exons that are activated during neuronal 

differentiation and generate protein isoforms with one to several additional amino acids 1,2. 

These amino acids are often located on protein surfaces and can impact protein-protein 

interactions. Given their very short length, which is expected to preclude standard spliceosomal 

interactions needed for exon definition, the presence of extensive microexon programs in 

vertebrates was surprising and mechanistically challenging. For most mammalian neural 

microexons, a single factor, the Ser/Arg repetitive matrix protein 4 (SRRM4; also known as 

nSR100) is the major factor responsible for their inclusion 1. Homozygous mutant mice 

deficient in Srrm4 show numerous neurodevelopmental defects affecting both the central and 

peripheral nervous system and most die at birth 3, and a mutation in Srrm4 has been linked to 

deafness in mice 4. In contrast, heterozygous mutant mice expressing reduced levels of Srrm4 

are viable, but show deficient neuronal excitability and synaptic transmission, and display 

several autistic-like neurodevelopmental and behavioral abnormalities 5. Misregulation of 

many of the orthologous microexons has also been linked to autism spectrum disorder (ASD) 

in human subjects, correlating with reduced expression of SRRM4 1. Consistent with their 

functional importance, among all classes of alternatively spliced exons, neural microexons are 

the most evolutionarily conserved and most likely to preserve coding frame 1,2. However, their 

evolutionary origin is not known.  

 

Results and discussion 

Srrm4 was previously defined as a vertebrate-specific neural splicing regulator 6 and target 

microexons were subsequently identified in all major vertebrate groups 1,7. To initially 

investigate the evolutionary origins of Srrm4 and neural microexons, we analyzed tissue-

specific RNA sequencing (RNA-seq) data from amphioxus (Branchiostoma lanceolatum). 

This non-vertebrate species shares a general chordate bodyplan with vertebrates, but lacks 

many of their key traits. Remarkably, this analysis revealed a microexon program comparable 

in size and neural specificity to that of zebrafish and mammals (Fig. 1a). Furthermore, RNA-

Seq data from multiple tissues from centipede (Strigamia maritima) and fruitfly (Drosophila 

melanogaster) also revealed neural-specific microexons programs in both species (Fig. 1a). 
Zebrafish and mammalian neural microexons were largely shared, highlighting the unusually 

high conservation of this splicing program within vertebrates (Fig. 1b). Moreover, although 

most microexons are not conserved between vertebrates and non-vertebrates, several are shared 
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among phyla, spanning 600 million years (MY) of evolution (Supplementary Dataset 1). These 

include the autism-linked microexon in human CPEB4 8, which is conserved across vertebrates 

and in the amphioxus and centipede Cpeb2/3/4 ortholog. These findings thus indicate that 

neural microexon programs predate the last common ancestor of bilaterian animals.  

 

To assess whether the non-vertebrate microexon programs are regulated by a mechanism that 

is homologous to that of their vertebrate counterparts, we first sought evidence of Srrm4-

dependent regulation by searching for UGC motifs, which are known to mediate direct Srrm4-

dependent regulation of microexons in mammals 1,4,7,9. In all cases, we found enrichment of 

UGC-containing motifs in the upstream intron, near the 3´ splice site (ss) (10-25 nt) (Fig. 1c 

and Supplementary Fig. 1a). Moreover, both vertebrate and non-vertebrate microexons were 

associated with strong 5’ splice sites (ss), branch points and polypyrimidine tracts, but with 

weak 3´ss AG contexts (Fig. 1d and Supplementary Fig. 1b), although some of these signals 

were less pronounced for Drosophila and Strigamia, probably due to the differences in gene 

structure that favor intron definition mechanisms in these species. Given these sequence 

similarities between vertebrate and non-vertebrate species, we next asked whether the inclusion 

of Drosophila microexons could be promoted by heterologous expression of human SRRM4. 

Strikingly, overexpression of SRRM4 in SL2 Drosophila cells promoted inclusion of two-

thirds (18/27) of probed neural microexons (Fig. 1e). Furthermore, among all alternative exons 

enhanced by SRRM4 overexpression in SL2 cells, microexons were strongly enriched (26/66 

vs 31/611, p=4.9x10-14, Fisher’s exact test). Thus, expression of human SRRM4 is sufficient 

to activate microexon splicing in non-vertebrate cells, as it is in non-neural mammalian cells 

(Supplementary Fig. 1c, 1).  

 

These results prompted us to next search for factors with SRRM4-like activity in non-

vertebrates. First, within vertebrates, based on phylogenetic and syntenic analyses, we 

identified Srrm2, Srrm3 and Srrm4 as paralogs resulting from the two rounds of whole genome 

duplication that occurred at the base of the vertebrate clade 10 (Fig. 2a and Supplementary Fig. 

2a). The three paralogs present as a mix-and-match of domain architecture, with domains 

ranging from shared across all three paralogs to paralog-specific (Supplementary Fig. 2a). 

Srrm2 (aka SRm300 in humans and Cwc21 in yeast) is a pan-eukaryotic, broadly expressed, 

splicing factor involved in both constitutive and alternative splicing 11-14. It is composed of an 

N-terminal ‘cwf21 domain’ that interacts with the core U5 snRNP spliceosomal protein Prp8, 

and a C-terminal region with an Arg/Ser-repeat (RS) domain and other repetitive features 
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(Supplementary Fig. 2a and 14,15). In contrast, Srrm4 contains an RS domain and an annotated 

domain of unknown function: PFAM15230 (hereafter "enhancer of microexons" or eMIC 

domain; Supplementary Fig. 2a). Srrm3, which shares ~30% identity with Srrm4, contains both 

cwf21 and eMIC domains found in Srrm2 and Srrm4, respectively (Supplementary Fig. 2a).  

 

By contrast, in most non-vertebrate bilaterian animals, we found a single gene orthologous to 

the three vertebrate loci, which contains all Srrm2/3/4 domains (Fig. 2b and Supplementary 

Fig. 2a). This gene shows greater sequence similarity to Srrm2 than to other family members 

(Fig. 2a). However, in contrast to the three vertebrate paralogs, non-vertebrate Srrm2/3/4 genes 

nearly always generate multiple isoforms derived from several alternative initiation, splicing 

and polyadenylation events (Fig. 2b-d). Two of these events were of particular interest given 

their tissue-specificity and level of evolutionary conservation: (i) an alternative promoter, 

which leads to the inclusion of a short motif conserved with vertebrate Srrm4, and that is 

neurally enriched both in centipede and amphioxus (Fig. 2c and Supplementary Fig. 2b); and 

(ii) an alternative last exon, which encodes the second half of the eMIC domain found in 

vertebrate Srrm3 and Srrm4, and that is primarily expressed in neural tissues in all three studied 

non-vertebrate species (Fig. 2d and Supplementary Fig. 2c,d). In contrast to the Srrm3 and 

Srrm4 vertebrate paralogs, no tissue-specificity was observed for total Srrm2/3/4 transcripts at 

the level of steady-state mRNA expression in non-vertebrates (Fig. 2e). Altogether, these data 

suggest that neural regulation of microexons in non-vertebrates might be associated with 

alternative isoform usage of the single Srrm2/3/4 splicing factor. 

 

To test this hypothesis, we performed heterologous expression experiments in HEK293 cells 

(which lack SRRM4 expression), using a measure of the inclusion levels of endogenous human 

neural microexons as readout of SRRM4-dependent activity (Fig. 3a). Expression of vertebrate 

(zebrafish) Srrm2 and Srrm4 served as negative and positive heterologous controls, 

respectively. Overexpression of four mRNA isoforms of the amphioxus Srrm2/3/4 locus 

combining the two alternative promoters (with and without cwf21 domain) and the two last 

exons encoding the alternative C-termini (Supplementary Fig. 3a) revealed that the microexon 

regulatory activity depends exclusively on the presence of the full eMIC domain in the C-

terminus of the protein, as indicated by the inclusion pattern of MEF2C, CERS6, APBB1 and 

other analyzed microexons (Fig. 3a and Supplementary Fig. 3b). Transfection of CG7971-A 

and CG7971-C, the equivalent isoforms of the Drosophila Srrm2/3/4 ortholog, confirmed that 

only the neural C-terminus isoform (i.e. containing the eMIC domain) promotes microexon 
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inclusion (Fig. 3a and Supplementary Fig. 3b). To exclude a potential contribution of the 

alternative N-termini of the Srrm2/3/4 proteins to microexon regulation, we performed RNA-

seq of stable HEK293 cell lines overexpressing the two different microexon-regulating 

amphioxus isoforms (with different N-termini). Both isoforms commonly regulated all 

detected SRRM4-dependent microexons in HEK293 cells (Fig. 3b). Furthermore, co-

transfection of the amphioxus ortholog with minigenes containing vertebrate microexons and 

flanking intronic sequences with either wild type or mutated UGC Srrm4-binding sites revealed 

the same dependency on this motif to mediate microexon inclusion as previously described for 

the human protein (Fig. 3c and (4,7)). RNA-seq from stable HEK293 cell lines overexpressing 

Srrm2/3/4 orthologs from zebrafish and fruitfly confirmed the ability of eMIC-containing 

proteins to enhance microexon inclusion genome-wide, irrespective of their N-termini (Fig. 3d 

and Supplementary Fig. 3c,d). Remarkably, this increased exon inclusion by eMIC-containing 

proteins affected up to 82% (138/169) of all neural microexon events with sufficient read 

coverage (Fig. 3d). Moreover, unlike other neural splicing factors, the splicing effect of eMIC-

containing proteins was extremely specific for short exons (Fig. 3e and Supplementary Fig. 

1c).  

 

To understand the history of the eMIC domain and its connection with neural microexon 

programs, we next studied the phylogenetic distribution of this domain across metazoans. This 

analysis identified two independent loses since the bilaterian ancestors, in the nematode and 

platyhelminth clades (Supplementary Fig. 4a). Tissue- and cell-type specific RNA-seq data 

from Caenorhabditis elegans revealed only few neural microexons with no enrichment of the 

intronic UGC-motif, consistent with the secondary loss of the eMIC domain (Fig. 3f and 

Supplementary Fig. 4b,c). Moreover, the absence of the eMIC domain in all non-bilaterian 

groups, as well xenacoelomorphs, precisely located its origin in nephrozoan ancestors. 

Consistently, RNA-seq of the cnidarian Nematostella vectensis showed few microexons 

overall, and no enrichment in Elav1::mOrange positive cells (i.e. neuronal cells 16) versus other 

cell populations from transgenic polyps (Fig. 3g and Supplementary Fig. 4d,e). As expected, 

transfection of the Nematostella Srrm2-like ortholog into HEK293 cells did not promote 

microexon inclusion (Fig. 3h third lane).  

 

The results thus far suggest an evolutionary scenario in which the ancient Srrm2-like gene 

acquired the eMIC domain in bilaterian ancestors, conferring the ability to promote microexon 

inclusion. To test this hypothesis, we fused the region encoded by the last two exons of the 
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human SRRM4 gene to the Nematostella Srrm2-like protein, and tested its regulatory activity 

in HEK293 cells (Supplementary Fig. 3e). Strikingly, this evolutionary chimera was able to 

promote microexon inclusion (Fig. 3h). Furthermore, fusing the C-terminal region of human 

SRRM4 to other unrelated SR proteins (i.e. SRRM1, SRSF1 and SRSF4) was sufficient to 

convert all of them into microexon regulators (Supplementary Fig. 3f,g). In fact, truncated 

versions of SRRM4 and SRRM3 consisting only of the two exons encoding the eMIC domain 

(referred to as 'C4' and 'C3' peptides, respectively) were sufficient to promote microexon 

inclusion genome-wide (Fig. 4a-c and Supplementary Fig. 5c-e), and a minimal construct of 

78 aminoacids including the eMIC domain and 8 SR repeats (referred to as ‘Min4’) had limited 

but detectable microexon regulatory activity (Fig 4 and Supplementary Fig. 5b). In contrast, 

deleting the 39 most conserved amino acids of the eMIC domain in the full-length SRRM4 

protein completely abrogated its function ('FL_M' in Fig. 4a-c and Supplementary Fig. 5c-e). 

Single point mutations in this region dramatically reduced the activity of the C-terminal 

peptides (Supplementary Fig. 5a) and combining only two point mutations resulted in the 

complete loss of function of the mutant peptides ('C3_M' and 'C4_M' in Fig. 4 and 

Supplementary Fig. 5). 

 

To elucidate how the eMIC domain exerts its function at the biochemical level, we stably 

expressed different Flag epitope-tagged domains of SRRM4 in HEK293 cell lines and analyzed 

their interaction partners by affinity purification coupled to mass-spectrometry (AP-MS) (Fig. 

4d and Supplementary Fig. 5h). The mutant lacking the eMIC domain (FL_M) interacts mainly 

with members of the exon junction complex (EJC) and associated factors, such as EIF4A3, 

PNN, ACIN1 or RNPS1. The latter has been recently identified as a major SRRM4 interactor 

in a genome-wide screen for factors regulating microexon splicing 9. On the other hand, the C-

terminal region interacts specifically with early spliceosomal factors, particularly proteins that 

function in the recruitment of U2 snRNP to the branch site region of pre-mRNA. Indeed, only 

SF1 and U2AF, which are among the earliest factors known to function in spliceosome 

assembly, were found to interact with all constructs containing an eMIC domain (Fig. 4d and 

Supplementary Fig. 5f,h), which we validated by co-immunoprecipitation and western-blot 

analysis (Fig. 4e and Supplementary Fig. 5g). These interactions thus suggest a role for the 

eMIC domain at the initial steps of spliceosome assembly. Consistent with this, in vitro 

spliceosome assembly assays using HeLa cell nuclear extracts and a pre-mRNA transcript 

containing the 6nt-long apbb1 microexon revealed an ATP- and U2 snRNP-dependent 

complex (Fig. 4f and Supplementary Fig. 6a) that was enhanced in nuclear extracts obtained 
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from cells expressing either the full-length SRRM4 or C4 as well as by addition of purified 

recombinant C4 / C3 peptides in a branch point- and UGC-dependent manner (Fig. 4g and 

Supplementary Fig. 6b,c). The effect of the peptide was independent of the 3' splice site AG 

(Fig. 4g), and was also detected on a substrate lacking a functional 5’ splice site 

(Supplementary Fig. 6c,d), suggesting that the eMIC domain promotes early steps of 3’ splice 

site recognition. Consistent with the results in cell culture (Fig. 3 and 4), different wild-type 

versions of both human- and zebrafish-derived C3 and C4 peptides were active in promoting 

spliceosomal A complex formation in vitro (Supplementary Fig. 6e), but mutant peptides 

displayed reduced or no activity (Supplementary Fig. 6f). Mass-spectrometry analysis of 

complexes assembled in vitro on wild-type and UGC-mutated apbb1 RNAs confirmed that 

eMIC-containing peptides enhanced formation of early stages of splicing complex formation 

by promoting the recruitment of SF1, U2AF, and U2 snRNPs (Fig. 4h, Supplementary Fig. 7, 

and Supplementary Dataset 2) 7,17. The effect of C3 peptide requires SF1 (Supplementary Fig. 

6h), indicating that the peptide does not overcome early BP recognition by this factor. 

Collectively, these experiments provide biochemical evidence that the eMIC domain is crucial 

for microexon inclusion by promoting the earliest stages of spliceosome assembly. 

 

In summary, our comparative approach has uncovered a genomic novelty in the Srrm2-like 

locus of bilaterian ancestors by which an alternative splicing event in a core splicing factor 

generated a new protein domain whose associated biochemical function enabled the specific 

recognition and inclusion of microexons. Therefore, unlike most reported cases (e.g. 18-20), this 

neofunctionalization occurred not via gene duplication but through novel domain emergence 

and alternative splicing of an ancestral locus. Intriguingly, we have not found sequence 

similarity between the eMIC domain and any other characterized protein domains in any 

species, suggesting de novo evolution as a specialized type of RS domain. Besides, secondary 

structure predictions of this domain indicate an unstructured conformation. Describing its 

precise activity in contacting early spliceosomal components thus remains an outstanding 

question. 

 

The 600 MY-old biochemical function provided by the eMIC domain qualitatively expanded 

the regulatory landscapes of animal proteomes by enabling the evolution of transcriptomic 

elements – microexons –, most of which could have not been previously recognized by the 

cellular machinery. The restriction of the eMIC-encoding isoforms to the nervous system 

facilitated the expansion and specialization of neuronal proteomes by innovations in a set of 
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genes involved in diverse cellular functions, including vesicle transport and release, 

cytoskeleton organization, and chromatin regulation, among others 1,5,21,22. During vertebrate 

evolution, duplication and subfunctionalization of a single ancestral Srrm2/3/4 gene gave rise 

to three splicing factors, SRRM2, SRRM3 and SRRM4. The latter two became specifically 

expressed in the nervous system and evolved to provide critical roles in nervous system 

development and function, a feature that is underscored by SRRM4 disruption causing nervous 

system developmental defects and neurological disorders.  

 

 

Materials and Methods  

RNA-seq datasets 

All RNA-Seq samples used in the current study are listed in Supp. Dataset 3. For human and 

mouse, we used publicly available data provided in VastDB (http://vastdb.crg.eu). For 

zebrafish (Danio rerio), amphioxus (Branchiostoma lanceolatum), worm (Caenorhabditis 

elegans) and fruifly (Drosophila melanogaster), we collected publicly available RNA-seq data 

from the NCBI Short Read Archive (SRA). For the centipede Strigamia maritima, we 

performed tissue dissections in adult specimens for nerve cords, heads, muscles, Malpighian 

tubes, male gonads and salivary glands. RNA was extracted using Trizol (Ambion, following 

manufacturer’s instructions). Ribosomal RNA depleted, strand-specific libraries were built, 

and sequenced using Illumina HiSeq2500 at the Genomics Unit at CRG. An average of 140 

million 75-nt paired-end reads were generated per sample. Raw data was submitted to SRA 

(accession number SRP149913).  

 

Computational analysis of tissue-specific microexons 

vast-tools 1,23 was used for identification of microexons and quantification of their inclusion 

levels (using the metric Percent Spliced In [PSI]) from RNA-seq data from different cell and 

tissue types in each of the seven species analyzed (Supplementary Dataset 3). In brief, vast-

tools uses different modules to identify and quantify all major types of alternative splicing, 

including simple and complex cassette exon events, retained introns, alternative acceptor and 

donor site choices and microexons 1,23. It has been used to analyze alternative splicing in 

multiple species, providing high validation rates by RT-PCR 1,3,5,7,23-29, especially for 

microexons 1. In particular, the microexon module compiles all annotated and de novo 

identified 3-15 nucleotide microexons and profiles their inclusion levels using exon-

microexon-exon junction read counts as support for inclusion, instead of the standard exon-
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exon junctions (details in 1). Associated VASTDB files to run vast-tools are available to 

download for each species (https://github.com/vastgroup/vast-tools): human (species key 

"Hsa", Hg19 or Hg38, http://vastdb.crg.eu/libs/vastdb.hsa.16.02.18.tar.gz), mouse ("Mmu", 

mm9 or mm10, http://vastdb.crg.eu/libs/vastdb.mmu.16.02.18.tar.gz), zebrafish (“Dre”, 

danRer10, http://vastdb.crg.eu/libs/vastdb.dre.01.12.18.tar.gz), amphioxus ("Bla", Bl71nemr, 

http://vastdb.crg.eu/libs/vastdb.bla.01.12.18.tar.gz), centipede ("Sma", Smar1, 

http://vastdb.crg.eu/libs/vastdb.sma.01.12.18.tar.gz), fruitfly ("Dme", BDGP6, 

http://vastdb.crg.eu/libs/vastdb.dme.01.12.18.tar.gz) and nematode ("Cel", WBcel235, 

http://vastdb.crg.eu/libs/vastdb.cel.01.12.18.tar.gz). For simplicity, only MIC_S (simple 

events) from the microexon pipeline were used for all species but Hsa and Mmu. 

 

Following previous studies 23, we defined as alternatively spliced (Fig. 1b) those microexons 

with 10 ≤ PSI ≤ 90 in at least 10% of the samples with sufficient read coverage (vast-tools 

score LOW or higher; for details, see https://github.com/vastgroup/vast-

tools/blob/master/README.md) or a range of PSIs ≥ 25 across the same samples. To identify 

microexons that were specifically enriched (or depleted) in neural tissues, we required a ΔPSI 

≥ 15 (or ΔPSI ≤ -15) between the neural and every other tissue with sufficient read coverage. 

Microexons that presented equivalent enriched inclusion patterns for any other tissue were 

grouped together according to the tissue type (Fig. 1a): muscle (skeletal and/or heart), visceral 

(liver, kidney, lung, digestive tract, Malpighian tube or salivary gland), skin (epidermis or 

skin), gonads (testis, ovary or female/male gonads) or other (early development or 

immune/blood tissues). For all analyses, we required that the microexon had sufficient read 

coverage in at least four different tissues (from a total of 12 tissues in vertebrates and 6 to 8 in 

non-vertebrates; Supplementary Dataset 3). 

 

Microexon orthology analysis 

To identify orthologous microexons among the analyzed species, we followed a similar 

methodology as previously described 29, with some modifications in the gene clustering step. 

In brief, we generated clusters of homologous genes for human, mouse, zebrafish, amphioxus, 

centipede and fruitfly taking into account the different number of whole genome duplication 

events experienced by each group (two for human and mouse, and three for zebrafish). For this 

purpose, we used orthology information from OMA 30, Multiparanoid 31 and pairwise BlastP 

between all six species, employing the longest protein-coding isoform for each gene. Then, for 
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each gene from species A versus each gene of species B, a combined orthology score was 

derived for the gene pair based on the information provided by the different sources:  

 (i) OMA: +1 if they belonged to the same OMA cluster. 

 (ii) Multiparanoid: +1 if they belonged to the same Multiparanoid cluster, and both 

genes had a Multiparanoid score ≥0.5. 

 (iii) BlastP: +1 if hitspA=>spB ≤ RspB/min(RspA,RspB) & hitSpB=>SpA ≤ RspA/min(RspA,RspB), 

or +0.5 if hitspA=>spB ≤ RspB/min(RspA,RspB) & hitSpB=>SpA = 1+(RspA/min(RspA,RspB)), where 

hitspA=>spB is the rank of the gene pair in the BlastP output of species A against species B, 

hitspB=>spA the rank in the reciprocal blast (i.e. species A against species B), RspA and RspB the 

levels of ancestral ploidy in species A and B (1x in non-vertebrates, 4x in mammals and 8x in 

zebrafish), and min(RspA,RspB) the lowest of these two values. 

 

Therefore, each pair of genes from any two species may have a maximum orthology score of 

3. Next, gene orthology clusters were built in an iterative manner with subsequently less 

stringent cut-offs ('ConfLevel' in Supplementary Dataset 4), and aiming at minimizing the 

number of false positive orthology assignments.  

 (L1) Only pairs of genes with an orthology score of 3 were considered orthologs and 

assigned to the same cluster. When a pair of orthologous genes belonged to two different 

clusters, the two clusters were merged. However, to avoid artifactual merging, the two clusters 

were merged only if the total ploidy complement of the merged cluster was closer to the 

idealized situation (4-4-8-1-1-1 for human, mouse, zebrafish, amphioxus, fruitfly and 

centipede, respectively) than each of the clusters individually. Note that this approach is 

conservative with regards to false positive orthology calls. At this stage, we also grouped 

clusters based on previously reported ohnology relationships (32, using their intermediate 

confidence level). 

 (L2) Next iterations are aimed at filling the potential gaps in the idealized ploidy 

complement. For each clusters generated in step (1), we searched for potential orthologs only 

in the species without an assigned ortholog or with a number of members lower than its 

ancestral ploidy (in the case of vertebrates). To assign novel orthologs to a gene cluster, we 

required an orthology score against any of the members of the clusters ≥2. Two different 

clusters could be merged if the missing ortholog already belonged to another cluster, with the 

limitations described above.  

 (L3) A similar process as in (2) to fill potential gaps was performed again, but requiring 

an orthology score ≥1.5 and not allowing cluster merges.  
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 Finally, to generate clusters based on less supported orthology relationships, genes that 

were not assigned to any cluster were reevaluated using iterations (L1) and (L3), but using a 

minimal orthology score ≥2.5 (L4) and 1.5 (L5), respectively. Clusters of gene orthologs are 

provided as Supplementary Dataset 4. 

 

Then, for each gene cluster in which at least one human gene hosts a neural-enriched 

microexon, we aligned all pairs of proteins from each species using MAFFT 33. Intron positions 

and their corresponding phases for each species' protein were integrated into the resulting 

pairwise protein alignment to introduce the exon-intron structure information 34. A microexon 

in a given species A was considered to be conserved in species B, if: (i) their upstream and 

downstream constitutive exons had at least 20% of protein similarity with the corresponding 

exons in species B, and (ii) their corresponding flanking upstream and downstream intron 

positions showed the same phase and an offset of no more than 5 residues in the protein 

alignment. Moreover for human and mouse microexons, additional homology information was 

obtained using liftOver (http://genome.ucsc.edu/cgi-bin/hgLiftOver) and curated manually. 

Finally, homologous microexon clusters were built using a guilt-by-association approach with 

all the homologous microexons identified between each pair of species (i.e. if the microexon 

was considered conserved between species A and B and A and C, a cluster for species A, B 

and C was produced). Clusters for human neural microexons that were found conserved in 

at least another studied species are provided in Supplementary Dataset 1.  

 

Analysis of sequence features associated with neural microexons 

For each species, we compared different sequence features of neural-enriched microexons 

against a set of 1,000 random longer (>27 nts) non-neural alternative exons, as control. We 

calculated the strength of the donor and acceptor splice sites (5′ss and 3′ss/AG, respectively) 

according to maximum entropy score models 35. For branch point and polypyrimidine tract 

score calculation, we employed the best predicted branch point for each exon 36. To test for 

differences in the median of the scores for each feature between the two groups (neural 

microexons vs. longer non-neural alternative exons), we used Mann-Whitney U tests. To 

generate the RNA maps in Fig. 1c, Extended Data Fig. 1a and 4c, we used rna_maps function 

from Matt 37, using sliding windows of 17 nts. Searches were restricted to the microexon, the 

first and last 150 nts of the upstream and downstream intron (or total intron length if shorter 

than 150 nts) and 13 nts into the upstream and downstream exons. Below the main RNA map, 
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we also displayed the percentage of the data that is used at every nucleotide position, to 

graphically depict the number of exons being analysed for each region. 

 

Stable heterologous expression of human SRRM4 in Drosophila SL2 cells 

Myc-tagged human SRRM4 was cloned into MT-STABLE1 vector 38 (kindly provided by Dr. 

James D. Sutherland) in the position of the puromycin resistance gene by NheI/XhoI restriction 

enzyme digestion. MT-STABLE1-myc-SRRM4 and empty MT-STABLE1 (used as a negative 

control) were co-transfected into D. melanogaster SL2 cells, together with the resistance 

plasmid Ac5-puro in a 9:1 ratio using Effectene transfection reagent (Qiagen), following 

manufacturer’s instructions. Cells were maintained under selection for 48h after transfection 

by adding 5ug/ml puromycin, reaching a stable population of >90% GFP-positive cells. Myc-

SRRM4 expression was induced with 500μM copper sulphate for 4 days. Total RNA was 

extracted from SRRM4-expressing and control cells using RNeasy® Plus Mini kit (Qiagen), 

following manufacturer’s instructions, and subjected to polyA-selected RNA-sequencing at the 

CRG Genomics Unit. An average of 66 million 125-nt paired reads were generated for each 

sample (Supplementary Dataset 3). The impact of SRRM4 expression on exon inclusion levels 

was calculated using vast-tools as the ΔPSI between the test and control samples. Only exons 

and microexons with coverage scores of LOW or higher in both samples were represented in 

Fig. 1e. 

 

Search for Srrm4 orthologs and generation of multi-species alignment 

Srrm4 orthologs for all organisms included in Fig. 2 and Extended Data Fig. 2a-c were 

identified by tblastn searches against NCBI and EnsemblMetazoa databases (Supplementary 

Dataset 5). We follow the conventional gene nomenclature from the community studying 

whole genome duplications in vertebrates, i.e. naming the non-vertebrate orthologous genes to 

the three vertebrate ohnologs (Srrm2, Srrm3 and Srrm4) as Srrm2/3/4. To generate the protein 

alignment to build the phylogenetic tree in Fig. 2a, Srrm2/3/4 orthologs from representative 

species of major metazoan groups were selected, and Srrm1 orthologs from the same species 

were used as outgroups. Protein sequence alignment was performed using MUSCLE 39. The 

phylogenetic tree was built using Mr. Bayes 40, with VT matrix with +G improvement as 

evolutionary model as determined by ProtTest 41, and visualized with FigTree v1.4.3 

(http://tree.bio.ed.ac.uk/software/figtree). Branch support values (posterior probabilities) are 

calculated for half million iterations in Mr. Bayes. For ancestral gene structure reconstruction, 

exon-intron structure of Srrm2/3/4 orthologs was assessed using GeneWise 42, and the resulting 
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protein sequences aligned taking into consideration intron position and phases 34. For alignment 

of the alternative N- and C-terminal regions in bilaterians, we searched for the presence of the 

conserved motifs in the genomic regions of Srrm4 orthologs using tblastn, since they are often 

not present in the annotation. Protein sequence alignments of these protein regions (Fig. 2c,d) 

were done using MUSCLE and visualized using MSAViewer 43. Information-content sequence 

logos were generated using Skylign 44. 

 

Quantification of expression and alternative isoform usage of Srrm2/3/4 orthologs 

To estimate the percentage of transcripts from the Srrm2/3/4 locus that use the alternative first 

and last exons in non-vertebrate bilaterians, we mapped RNA-seq data from different tissues 

to isoform-specific exon-exon junctions. For quantification of amphioxus alternative C-

terminus usage, we used the PSIs as quantified by vast-tools, since this is a simple exon 

skipping event in this species that can be readily measured with this pipeline. For quantification 

of the alternative promoter in amphioxus and Strigamia, and the alternative last exon of 

Drosophila, the number of reads mapping to all the potential donor or acceptor sites from the 

reference upstream or downstream exon, respectively, were obtained from the eej2 output of 

vast-tools, which reports the read counts for all possible exon-exon junction combinations 1. In 

the case of the alternative C-terminal isoform of Strigamia, we manually mapped reads to all 

the possible exon-exon junctions that could take place within this terminal region. In all cases, 

we displayed the percentage of reads mapping the exon-exon junction supporting the neural 

isoform (blue lines in Fig. 2c,d) over the total number of reads across all competing junctions. 

For gene expression analysis of Srrm2/3/4 homologs, gene counts reported by vast-tools were 

used as input for edgeR 45, which provided the total counts per million (CPM) as a measure of 

gene expression per species. To normalize the expression across the different orthologs, CPM 

values were converted to Z-scores within each gene and species. 

 

Generation of constructs used for HEK293 heterologous expression experiments 

Full-length open reading frames for each tested isoform were amplified from cDNA from 

various sources, 6xHistidine tagged at the N-terminus, cloned into pcDNA3.1(-), and 

sequence-verified for transient overexpression in HEK293 cells. Protein chimeras fusing the 

C-terminal region of human SRRM4 to several proteins (N. vectensis Srrm2, zebrafish Srrm1 

and Srrm2, and human SRSF1 and SRSF4) were performed using standard restriction/ligation 

methods (all primers provided in Supplementary Dataset 6). Point mutants of C4 and C3 

peptides and the full-length SRRM4 lacking the eMIC domain were generated by site-directed 
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mutagenesis (inverse PCR of plasmids encoding the wild-type sequences) using oligos as 

recommended by NEBaseChanger (http://nebasechanger.neb.com).  

 

Cloning of splicing reporters 

Minigene encompassing Exon – Intron – Microexon – Intron – Exon - First 25 nucleotides of 

the downstream intron were constructed for asap1 and apbb1 zebrafish microexons. The 

corresponding genomic regions were cloned using KpnI and NotI restriction sites in between 

PT1 and PT2 sequences, for detection by RT-PCR after transfection 46, and under a CMV 

promoter. To facilitate cloning, introns were shortened, resulting in constructs with the 

following structure (italics indicate intronic sequences):  

 

- asap 1 : 87 nts – 250 nts XhoI 250 nts – 9 nts – 163 nts HindIII 66 nts – 101 nts – 25 nts  (the 

endogenous upstream and downstream introns are 2032 and 1578 nts-long, respectively). 

- apbb1 : 128 nts – 279 nts – 6 nts – 250 nts PstI 230 nts – 115 nts – 25 nts (the endogenous 

upstream and downstream introns are 279 and 1784 nts-long, respectively). 

 

The splicing profile of the minigenes was assessed using PT1 and a reverse primer in the last 

exon for the asap1 minigene, and with zebrafish specific primers in the first and last exons for 

the appb1 minigene. 

 

Transient heterologous expression of Srrm4 orthologs 

HEK293 cell transfections were performed using Lipofectamine 2000 (Invitrogen, following 

manufacturer’s instructions) in 6-well plates with 1 ug of expression plasmid. For minigene 

analysis, 10 ng of plasmid bearing the minigene were co-transfected with the expression 

construct. Cell pellets were collected 24 h after transfection. RNA was extracted using RNeasy 

Plus Mini kit (Qiagen) and cDNA generated using SuperScript III (Thermo Fisher Scientific, 

following manufacturer’s instructions). RT-PCRs of microexon events were performed using 

primers annealing to the flanking upstream and downstream constitutive exons (all primer 

sequences are provided in Supplementary Dataset 6) or using PT1/PT2 to detect the pattern of 

alternative splicing of the minigene. 

 

Generation of HEK293 Flp-In T-REx Stable Cell Lines used for RNA-seq 

Flp-InTM (Thermo Fisher Scientific) expression plasmids: pcDNA5 and pcDNA5 containing 

GFP, 3xFlag-tagged human SRRM4, FL_M and C4; zebrafish Srrm2, Srrm3 and Srrm4; 
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Drosophila CG7971-C or amphioxus Srrm2/3/4 isoforms containing the eMIC domain, were 

generated using standard restriction/ligation methods (all primers provided in Supplementary 

Dataset 6). For each construct, tetracycline inducible Flp-In T-Rex 293 stable cell lines were 

generated by transfecting 400 ng of the pcDNA5 plasmid with 3.6 Pg of pOG44 Flp-

recombinase expression plasmid (Thermo Fisher Scientific, V600520) using lipofectamine 

2000 (Invitrogen). Cells containing stably integrated constructs were selected in 100 Pg/mL 

Hygromycin B until visible colonies were formed, and individual colonies were expanded and 

stored. For each protein, two clones from independent colonies were screened for transgene 

expression by qPCR before and 24 h after induction with 1 Pg/mL doxycycline. For each 

protein, we selected the clone with the closest transcript levels to the other lines for RNA-seq 

(RNA-seq-based quantifications are provided in Extended Data Fig. 3d). RNA coming from a 

well of a 6-well plate for every line was extracted after 24 h induction with doxycycline, using 

RNeasy Plus Mini kit (Qiagen). RNA quality was checked using Bioanalyzer (Agilent) and 

strand-specific Illumina libraries were prepared and sequenced at the CRG Genomics Unit. An 

average of 60 million 125-nt paired-end reads were generated for each sample (Supplementary 

Dataset 3). Raw RNA-seq data was processed with vast-tools and the impact on the endogenous 

human microexons was compared between the control and the different lines using the module 

compare. 

 

Western blot analysis of FLAG-tagged SRRM4 constructs 

Total cellular proteins were extracted from HEK293 Flp-In cells growing in a 6-well plate after 

24h induction with 1 μg/mL doxycycline, using 2x Laemmli buffer (125mM Tris-HCl pH 6.8, 

20% glycerol, 4% SDS). Cell lysates were subjected to sonication (5 x 30 sec pulses with 30 

sec between them). BCA assay (Thermo Fisher Scientific) was used for determining protein 

concentration. Western blots were performed using 10% SDS-polyacrylamide gels and the 

nitrocellulose membranes were probed with antibodies against FLAG-tag anti-FLAG M2 

(F1804, Sigma) and α-tubulin (3873S, Sigma) at dilution 1:1000 in TBST x% milk. 

Immunolabelling was detected by enhanced chemiluminiscence (Luminata Forte Western HRP 

substrate WBLUC0100, Merck) and visualized with a digital luminescent image analyzer 

(Amersham Imager 600). 

 

Analysis of target exon length distribution for tissue-specific splicing factors 
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Published RNA-seq datasets for Nova1/2, Rbfox1/2/3, Srrm4 and Esrp1/2 knockout or 

knockdown experiments (Supplementary Dataset 3) were analysed using vast-tools to calculate 

exon inclusion changes dependent on the depletion of these splicing factors. The top 100 exons 

regulated by each protein family (i.e. having the highest absolute ΔPSI compared to the control 

condition), were used for exon size distribution calculation as depicted in Fig. 3e. 

 

Cell dissociation and RNA isolation of sorted populations from N. vectensis 

Neuron-specific transgenic NvElav1::mOrange polyps of N. vectensis 16 were spawned and 

reared as previously described 47. Several hundreds of mOrange positive primary polyps (12-

14 days old) were dissociated at 37 ºC for ~30 min in calcium- and magnesium-free 

Nematostella medium (CMF/NM) containing EDTA and 0.25% of trypsin. Single cell 

suspensions were then stained at room temperature with Hoechst 33342 and 7-

aminoactinomycin D (7-AAD) to exclude debris and non-viable cells by Fluorescent-Activated 

Cell Sorting (FACS). Doublet/multiplet exclusion was performed by plotting Hoechst-H vs 

Hoechst-A. Approximately 650,000 viable mOrange positive or negative cells were sorted into 

CMF/NM containing 0.5% of BSA (pH=7.8) using a BD FACSAria that was maintained at 4 

ºC throughout the procedure. Cells were collected by centrifugation (800 x g) for 10 min at 4 

ºC and resuspended into TRIzol® LS reagent (3:1 reagent to sample ratio) in four independent 

sorts. Total RNA from the positive and negative populations was isolated using Direct-zolTM 

RNA Microprep columns (Zymo Research), following manufacturer’s instructions, and RNA 

quality was assessed by Bioanalyzer (Agilent). Two replicates of the elav+ and elav- samples 

with RNA Integrity Number ≥ 9.0, each consisting of pooled RNA extractions from two 

different sorting experiments, were sequenced in a Illumina HiSeq2500 at the CRG Genomics 

Unit, generating an average of 65 million 126-nt paired-end strand-specific reads per sample 

(Supplementary Dataset 3). Raw fastq data was processed using vast-tools, and the number of 

differentially regulated microexons between the elav+ and elav- fractions obtained employing 

vast-tools compare with default parameters (ΔPSI ≥ 15 and a pairwise differences between all 

replicates of ΔPSI ≥ 5). VASTDB libraries for N. vectensis can be downloaded in the vast-tools 

web site ("Nve", GCA_000209225, http://vastdb.crg.eu/libs/vastdb.nve.10.05.18.tar.gz). 

 

Generation of HEK293 Flp-In T-REx Stable Cell Lines used for mass-spectrometry 

Flp-InTM (Thermo Fisher Scientific) compatible expression plasmids (5’ pcDNA5-BirA*-

FLAG, modified from Thermo Fisher Scientific V6010-20) containing full length and mutant 

human SRRM4 and SRRM3 cDNA constructs were generated using Gateway cloning (Thermo 
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Fisher Scientific). For each bait protein, tetracycline inducible Flp-In T-Rex 293 stable cell 

lines were generated by transfecting 200 ng of the pcDNA5-BirA*-FLAG bait construct with 

2 Pg of pOG44 Flp-recombinase expression plasmid (Thermo Fisher Scientific, V600520) 

using jetPRIME transfection reagent (Polyplus, CA89129-924). Cells containing stably 

integrated constructs were selected in 200 Pg/mL Hygromycin B until visible colonies were 

formed and passaged to a 150 mm plate. Stable HEK293 Flp-In T-REx cell lines expressing 

BirA*-FLAG, BirA*-FLAG-NLS, or FLAG without a bait cDNA were generated in parallel 

to be used as negative controls. For FLAG affinity purification experiments, all HEK293 Flp-

In stable cell lines, including controls, were grown to a70% confluency and induced for 24 h 

with 1 Pg/mL tetracycline to express the BirA*-FLAG tagged bait protein. After induction, 

each 150 mm plate was harvested by scraping in 1 mL ice-cold PBS, pelleted, and then frozen 

at -80qC until purification.  

 

Sample Preparation for FLAG AP-MS 

FLAG Affinity Purification Coupled with Mass Spectrometry (AP-MS) experiments were 

performed in two biological replicates, essentially as described in 48, with slight modifications. 

In brief, cell pellets for each bait protein were lysed in ice cold TAP lysis buffer containing 50 

mM HEPES-NaOH (pH 8.0), 100 mM NaCl, 2 mM EDTA, and 10% glycerol with freshly 

added 0.1% NP-40, 1 mM DTT, 1 mM PMSF, and 1:500 Protease inhibitor cocktail (Sigma-

Aldrich, P8340) at a 1:4 pellet weight to volume ratio (for 0.1 g add 0.4 mL of lysis buffer). 

Resuspended pellets were placed on dry ice for 5 minutes and thawed in a 37 qC water bath 

until only a small ice pellet remained. Samples were quickly moved back on to ice and 

sonicated with three 10 sec bursts with 2 sec rest at an amplitude of 35%. To solubilize 

chromatin and reduce the detection of interactions mediated by RNA or DNA, 250U of 

Benzonase Nuclease (Sigma-Aldrich, E8263) was added to each tube and incubated 30 minutes 

with rotation at 4qC. Lysates were cleared by centrifugation at 20,000 x g for 20 minutes at 

4qC and the lysates transferred to tubes containing 25 PL of 50% magnetic anti-FLAG M2 

slurry beads (Sigma-Aldrich, M8823) pre-washed in lysis buffer. FLAG immunoprecipitation 

was allowed to proceed for 3 h at 4qC with rotation. After incubation, beads were pelleted by 

centrifugation (1,000 rpm for 1 min) and magnetized to aspirate the unbound lysate. The beads 

were then demagnetized and washed with 1 mL of lysis buffer and the total volume (with 

beads) transferred to a new tube. Beads were washed once more with 1 mL of lysis buffer 

followed by one wash with 50 mM ammonium bicarbonate (ABC) at pH 8. All wash steps 
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were performed on ice using cold lysis buffer and ABC. After the final wash, any residual ABC 

was aspirated from the beads, and 1 Pg of trypsin (Sigma-Aldrich, T6567) in 10 PL of ABC 

was added to each tube. The samples were incubated at 37qC overnight with rotation. The 

following morning, beads were magnetized, and the supernatant transferred to a new tube. 

Another 250 ng of trypsin was added to each supernatant in 5 PL of ABC (total volume of 15 

PL) and further digested with rotation for another 4 h at 37qC. Samples were acidified with 

formic acid to a final concentration of 2.5% and dried in a centrifugal evaporator. 

 

AP-MS Data Acquisition  

Data acquisition from AP-MS was done following 49. Digested peptides were dissolved in 5% 

formic acid in a volume in which 6 μL contained purified material from one-quarter of a 150 

mm plate. For each sample, 5 μL of each sample was directly loaded at 800 nL/min onto a 15 

cm 100 Pm ID emitter tip packed in-house with 3.5 Pm Reprosil C18 (Dr. Maische). The 

peptides were eluted from the column at 400 nL/min over a 90 min gradient generated by a 425 

NanoLC (Eksigent, Redwood, CA) and analyzed on a TripleTOFTM 6600 instrument (AB 

SCIEX, Concord, Ontario, Canada). The gradient started at 2% acetonitrile with 0.1% formic 

acid and increased to 35% acetonitrile over 90 min followed by 15 min at 80% acetonitrile, 

and then 15 min at 2% acetonitrile for a total of 120 min. To minimize carryover between each 

sample, the analytical column was flushed for 1 h at 1500 nl/min with an alternating sawtooth 

gradient from 35% acetonitrile to 80% acetonitrile, holding each gradient concentration for 5 

min. Analytical column and instrument performance were verified after each sample by 

analyzing 30 fmol bovine serum albumin (BSA) tryptic peptide digest with 60 fmol α-casein 

tryptic digest with a short 30 min gradient. MS mass calibration was performed on BSA 

reference ions between each sample. Acquisition was in Data Dependent mode and consisted 

of one 250 millisec MS1 TOF survey scan from 400-1250 Da followed by twenty 100 millisec 

MS2 candidate ion scans from 100–2000 Da in high sensitivity mode. Only ions with a charge 

of 2+ to 4+ that exceeded a threshold of 200 counts per second were selected for fragmentation, 

and former precursors were excluded for 10 seconds after 1 occurrence.  

 

AP-MS Data Analysis 

MS data were stored, searched and analyzed using the ProHits laboratory information 

management system (LIMS) platform 50. The WIFF data files were converted to MGF format 

using WIFF2MGF and subsequently converted to an mzML format using ProteoWizard 
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(3.0.4468) and the AB SCIEX MS Data Converter (V1.3 beta). The mzML files were searched 

using Mascot (v2.3.02) and Comet (2014.02 rev.2). The results from each search engine were 

jointly analyzed through the Trans-Proteomic Pipeline (TPP) 51 via the iProphet pipeline 52. 

The spectra were searched against a total of 72,482 proteins consisting of the NCBI human 

RefSeq database (v57, Aug 9th, 2016, forward and reverse sequences) supplemented with 

“common contaminants” from the Max Planck Institute 

(http://141.61.102.106:8080/share.cgi?ssid=0f2gfuB) and the Global Proteome Machine 

(http://www.thegpm.org/crap/index.html), as well as sequences from common fusion proteins 

and epitope tags. The database parameters were set to search for tryptic cleavages, allowing up 

to 2 missed cleavage sites per peptide, MS1 mass tolerance of 40 ppm with charges of 2+ to 

4+ and an MS2 mass tolerance of ± 0.15 amu. Asparagine/glutamine deamidation and 

methionine oxidation were selected as variable modifications. A minimum iProphet probability 

of 0.95 was required for protein identification with a minimum number of 2 unique peptides 

required for protein interaction scoring (Supplementary Dataset 2). Significance Analysis of 

INTeractome (SAINTexpress version 3.6.1 53) was used as a statistical tool to calculate the 

probability value of each potential interaction from background contaminants. Briefly, our 

experimental design included specific negative controls (BirA*-FLAG, BirA*-FLAG-NLS, 

and FLAG), each run in several biological replicates (12 total). Each biological replicate of a 

bait was analyzed independently against these controls before averaging of the score values 

and assessment of the Bayesian False Discovery Rates (FDR; 53). High-confidence interactions 

are those with FDR ≤ 1%.  

 

Co-immunoprecipitation experiments  

HA-tagged constructs were transiently transfected into HEK293 Flp-In cells grown in 6 well 

plates using Lipofectamine 2000 (Invitrogen, following manufacturer’s instructions). After 24 

hours, cells were treated with 0.2 μg/mL (C4 and Min4) or doxycycline 10μg/mL (C4_M) and 

24 h later cells were harvested in cold phosphate buffered saline (PBS) and cells lysed in 250 

μL cold 1xTAPS buffer (50 mM Hepes pH 8.0, 100 mM NaCl, 10% glycerol, 2mM EDTA, 

0.1% NP-40, 1mM DTT and protease inhibitors).  Lysates were subject to sonication (7x 1 sec 

pulses with 1 sec in between at 30% power). For nuclease digestion, 250U Benzonase was 

added and lysates were incubated at 4°C for 60 minutes with rotation. Lysates were cleared in 

a microcentrifuge by spinning at 15,000 x g for 10 minutes at 4°C.  Clarified lysates were pre-

cleared with 10 uL Dynabeads protein G (Thermo Fisher Scientific) for 30 minutes at 4°C.  

Anti-HA (for SF1 and U2AF2) or anti-Flag (to test for U2AF1 interaction) 
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immunoprecipitation were performed using magnetic Dynabeads protein G (Thermo Fisher 

Scientific) complexed with Rat anti-HA antibody (Roche) or mouse anti-Flag M2 antibody 

(Sigma). Antibody was incubated with lysates for 1 hour at 4°C followed by incubation with 

washed Dynabeads protein G for 1 hour at 4°C with rotation. Following the incubation step, 

the complexes were washed 3 times with cold 1x TAPS buffer. Elution was performed by 

boiling in 1x Laemmli buffer at 95°C for 5 min.  

 

In vitro spliceosome assembly assays 

Cy5-CTP/Cy5-UTP-labelled RNAs were in vitro transcribed from PCR products using T7 

Megascript kit (Ambion). Sequences of apbb1 and asap1 RNAs used are provided in 

Supplementary Dataset 6. IgM bears the 3’ 70 nucleotides and exon 2 containing an exonic 

enhancer. Spliceosome assembly assays were performed as described previously 54 with 15 

ng/µL of fluorescently labelled RNA and the indicated recombinant proteins. Mixes with 

recombinant proteins were incubated for 18 minutes either on ice or at 30°C before heparin 

treatment. Complexes were resolved by native agarose/polyacrylamide gel electrophoresis. 

After electrophoresis, fluorescence was detected using a PhosphorImager Typhoon. To 

perform DNA-directed RNAse H inactivation of U1 and U2 snRNAs, 40 µl of HeLa cell 

nuclear extracts were supplemented with 1.25 mM ATP, 6.25 mM CP, 2.8 mM MgCl2 and 1 

µL RNAse H and 14.25 µM oligonucleotide complementary to U1 or U2 snRNAs (U1 position 

1 to 15: CTGCCAGGTAAGTAT, U2 position 28 to 42 : CAGATACTACACTTG) and 

incubated for 15 minutes at 37ºC and 30 minutes at 30ºC. Depletion of U2 snRNP extracts was 

achieved following 55 with an oligonucleotide targeting U2 snRNA (position 1 to 14, 56). 

Nuclear extracts from HeLa Flp-In cells were prepared as described in 57.  

 

Generation of HeLa Flp-In T-REx Stable Cell Lines 

Flp-In T-Rex HeLa cells were kindly provided by Stephen Taylor (University of Manchester, 

Manchester, England, United Kingdom). Flp-In T-Rex tetracycline transactivator HeLa cells 

were transfected with 0,5 μg of pcDNA5 vector and 4,5 μg of pOG44 vector in a 10 cm plate 

(106 cells) using Lipectamine 2000 (Invitrogen). Colonies were selected as for HEK293 Flp-In 

T-Rex but 150 g/mL Hygromycin B was used.  

 

Expression and purification of recombinant peptides 

The optimized cDNAs were cloned in pEMT-11 vector to facilitate the expression of His-

tagged SRRM3/4 derived peptides. The vectors were transformed in BL21 DE3 bacterial strain, 
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one colony was grown overnight in 10 mL LB culture under antibiotic selection, the culture 

was diluted in 200 mL and the induction of expression was started at OD (600 nm) 0.6 with 1 

mM IPTG for 4 hours at 37°C. The cells were sedimented and resuspended in 1 mL Cell Lytic 

B Cell Lysis buffer (Sigma) supplemented with 0.4 mg/mL lysozyme. The samples were 

incubated 20 minutes at room temperature, sonicated for 10 minutes (30 sec ON / 30 sec OFF 

cycles, Bioruptor) and centrifuged 20 minutes at 13000 rpm at 4ºC. 7.5 mL of buffer A (50 

mM Tris pH 8.0, 500 mM NaCl, 1% Triton-X100) and 1.5 ml slurry TALON Metal affinity 

resin (BD Biosciences) were added to the supernatant and incubated for 45 minutes with 

rotation at 4ºC. Beads were sedimented and washed 3 times with 8 ml of buffer A, once with 

8 ml buffer A without Triton-X100 and eluted with 500 mM imidazole in buffer A without 

Triton-X100. Fractions were analysed on a 15% SDS-PAGE by Coomassie staining, the most 

concentrated one was dialyzed against buffer D (20 mM Hepes-KOH 8.0, 20% glycerol, 0.2 

mM EDTA, 150 mM KCl, 1 mM DTT) and the protein concentration was estimated by 

Bradford quantification.  

MS2-MBP was expressed in BL21 DE3 cells, and after centrifugation of the induced cells, the 

pellet was resuspended in 20 mM Tris-HCl pH 7.6, 200 mM NaCl, complete EDTA-free 

protease inhibitor tablet and sonicated. After centrifugation, the supernatant was incubated with 

amylose resin pre-equilibrated in the same buffer for 2 hours with rotation at 4ºC. The resin 

was washed with 20 mM Hepes-KOH pH 7.9, 150 mM NaCl, 0.05% NP40 and the protein 

eluted with 5 mM Na2HPO4, 15 mM maltose. The eluate was loaded onto a Heparin-Sepharose 

column (Amersham), the beads were washed with 5 mM Na2HPO4 and eluted with 20 mM 

Hepes-KOH pH7.9, 100 mM KCl, 15% glycerol, 0.5 mM DTT, 0.2 mM PMSF.  

 

Purification of the RNP associated to apbb1 substrate 

To allow the formation of protein-RNA complexes, 6 µg of RNA bearing 3 MS2 stem loops at 

their 3’ end were boiled for 1 min, cooled on ice for 5 minutes, mixed with 20-fold excess of 

MS2-MBP recombinant protein in 20 mM Hepes-KOH pH 7.9 and further incubated for 30 

minutes on ice. The complexes were then mixed with HeLa cells nuclear extracts (CilBiotech) 

in a final volume of 250 µl containing 24 mM Hepes-KOH pH 7.9, 65 mM KCl, 0,0024 mM 

MgCl2, 2 mM ATP, 20 mM CP, 40% nuclear extracts and complemented or not with 875 ng 

His-tagged C3 peptide (3.5 ng/µL) and incubated for 9 minutes at 30ºC. From this, 240 µL 

were loaded on a 4 mL 10-30% glycerol gradient (Beckman Coulter Polypropylene ultra 

centrifugation tubes) and run for 3 hours at 55,000 rpm (SW60Ti rotor). The gradient was 

fractionated in three parts (top-middle-bottom), the middle and bottom parts were mixed and 
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incubated with 90 µl slurry amylose resin (NEB) pre-equilibrated in 20 mM Hepes-KOH pH 

7.9, 200 mM NaCl. The samples were incubated with rotation for 10 minutes at 4ºC, beads 

were washed 5 times with 1 mL of 20 mM Hepes-KOH pH 7.9, 0.05 % NP40, 150 mM NaCl 

and eluted with 12 mM maltose added to this last buffer. Eluted proteins were precipitated in 

ethanol for 20 minutes at -20°C and centrifuged at 13,000 rpm for 30 minutes at 4°C, one third 

of the precipitated proteins were loaded on a 10% SDS-PAGE and silver stained using the 

Silver Quest Staining kit (Invitrogen). The remaining two thirds of each replicate were sent to 

LC-MSMS mass spectrometry analysis for identification at the CRG Proteomics Unit. The 

sequences of the peptides were added in the search for identification and quantification.  

 

RNP Mass Spectrometry Acquisition 

Samples were analyzed using a LTQ-Orbitrap Velos Pro mass spectrometer (Thermo Fisher 

Scientific, San Jose, CA, USA) coupled to an EasyLC (Thermo Fisher Scientific (Proxeon), 

Odense, Denmark). Peptides were loaded onto a 2-cm pre-column and separated by reverse-

phase chromatography using a 25-cm column with an inner diameter of 75 μm, packed with 5 

μm C18 particles (Nikkyo Technos Co., Ltd. Japan). Chromatographic gradients started at 97% 

buffer A and 3% buffer B with a flow rate of 300 nL/min, and gradually increased to 93% 

buffer A and 7% buffer B in 1 min, and to 65% buffer A / 35% buffer B in 60 min. After each 

analysis, the column was washed for 10 min with 10% buffer A / 90% buffer B. Buffer A: 

0.1% formic acid in water. Buffer B: 0.1% formic acid in acetonitrile. 

 

The mass spectrometer was operated in positive ionization mode with nanospray voltage set at 

2.2 kV and source temperature at 250°C. Ultramark 1621 for the FT mass analyzer was used 

for external calibration prior the analyses. Moreover, an internal calibration was also performed 

using the background polysiloxane ion signal at m/z 445.1200. The instrument was operated 

in DDA mode and full MS scans with 1 micro scans at resolution of 60,000 were used over a 

mass range of m/z 350-2000 with detection in the Orbitrap. Auto gain control (AGC) was set 

to 1e6, dynamic exclusion (60 seconds) and charge state filtering disqualifying singly charged 

peptides was activated. In each cycle of DDA analysis, following each survey scan the top ten 

most intense ions with multiple charged ions above a threshold ion count of 5000 were selected 

for fragmentation at normalized collision energy of 35%. Fragment ion spectra produced via 

collision-induced dissociation (CID) were acquired in the Ion Trap, AGC was set to 5e4, 

isolation window of 2.0 m/z, activation time of 0.1 ms and maximum injection time of 100 ms 

was used. All data were acquired with Xcalibur software v2.2. 
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RNP Mass Spectrometry Data Analysis 

Raw MS/MS files were processed using Proteome Discoverer version 1.4 (Thermo Fisher 

Scientific, Bremen). Peak lists were searched using Mascot software version 2.5.1 (Matrix 

Science, UK) against the human swissProt database (version of April 2017) containing 20,797 

protein entries, a list of 600 common contaminants, and all the corresponding decoy entries. 

The precursor ion mass tolerance was set to 7 ppm, and the fragment ion mass tolerance was 

set to 0.5 Da. Up to three missed cleavages were allowed, and Oxidation (M) and Acetylation 

(Protein N-term) were defined as variable modifications, whereas carbamidomethylation (C) 

was set as fixed modification. Significance Analysis of INTeractome (SAINTexpress version 

3.6.1 53 was used as a statistical tool to calculate the probability value of each potential 

interaction compared with background samples with no RNA, requiring a minimum of 2 unique 

peptides. Each biological replicate was analyzed independently against no-RNA controls 

before averaging of the score values and assessment of the Bayesian False Discovery Rates 

(Supplementary Data S5, 53). High-confidence interactions are those with FDR ≤ 1%.  For Fig. 

4g and Extended Data Fig. 4b-d, background (i.e. no-RNA samples) numbers of spectral counts 

were subtracted from the average spectral counts between replicates, and log2 fold-change 

enrichment between each pair of conditions was calculated.  

 

Code availability 

All software used to analyze the data is publicly available and listed in the Reporting Summary. 

VASTDB files to run vast-tools are available to download for each species 

(https://github.com/vastgroup/vast-tools) as indicated in the methods section. Custom code to 

generate orthologous gene clusters and figure plots are available upon request.  

 

Data availability 

Raw RNA-seq data was submitted to the Sequence Read Archive (SRP149913). Mass 

spectrometry data was submitted to ProteomeXchange Consortium: AP-MS through MassIVE 

(massive.ucsd.edu, accession codes: MSV000082361, PXD009779) and RNP-MS via 

PRIDE58 (PXD010034). All other RNA-seq datasets used in the study are listed in 

Supplementary Dataset 3. 
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Figure 1 | Neural microexon programs in bilaterian animals 

a, Phylogenetic tree of the main species used in the study and presence of tissue-specific 

microexons in bilaterians. Alternatively spliced microexons are classified based on their 

enrichment in a particular tissue type: neural, muscle (skeletal and/or heart), visceral (liver, 

kidney, lung, salivary gland, digestive tract or Malpighian tube), skin (or epidermis), gonads 

(female or male) and others (blood or early development). The number of neural microexons 

is indicated for each species. b, Evaluation of the conservation of human neural microexons in 

five other bilaterian species at different levels. Gene: presence of the gene ortholog in the 

second species; Exon: presence of the microexon ortholog in the same intron; AS: the 

orthologous microexon is also alternatively spliced; Neural: the orthologous microexon is also 

enriched in neural tissues. c, Enrichment of UGC motifs in the upstream intronic region of 

neural microexons. In brackets, number of exons analyzed per species. ‘Data’ subpanel refers 

to the proportion of total sequences used for the RNA map at each position as implemented by 
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Matt37. d, Splicing regulatory features of neural microexons compared to longer alternatively 

spliced exons. 5′ss and AG: splicing donor and acceptor MaxEnt scores, respectively; BP: best 

predicted branch-point sequence score; pY: polypyrimidine tract sequence score. Median score 

differences per feature were normalized to the maximum difference observed per feature type 

across species. P-values correspond to Mann-Whitney U tests: * <0.01, ** <0.001, *** < 

0.0001. See Supplementary Fig. 1b and Supplementary Materials for details. e, Change in exon 

inclusion levels (ΔPSI) upon heterologous expression of human SRRM4 in Drosophila SL2 

cells for all endogenous alternative spliced exons with sufficient read coverage. Blue dots 

indicate neural-enriched exons. X-axis scales linearly between every indicated exon length 

mark. Species abbreviations: Bla, B. lanceolatum; Dme, D. melanogaster; Dre, D. rerio; Hsa, 

H. sapiens; Mmu, M. musculus; Sma, S. maritima. 
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Figure 2 | Evolution of the Srrm2/3/4 locus in metazoans 

a, Bayesian phylogenetic tree of Srrm proteins in metazoans. Blue and green lines mark the 

vertebrate-specific duplication of the locus. Posterior probabilities lower than 1 are indicated 

for each node. Scale bar: aminoacid substitution frequency. Species abbreviations: Aqu, 

Amphimedon queenslandica; Nve, N. vectensis; Dme, D. melanogaster; Dre, D. rerio; Hsa, H. 

sapiens; Mmu, M. musculus; Sma, S. maritima; Lan, Lingula anatina; Spu, Strongylocentrotus 

purpuratus; Bla, B. lanceolatum. b, Prototypic gene structure of the Srrm2/3/4 locus in non-

vertebrate bilaterian animals highlighting the main protein features (refN/altN: reference 

(containing the cwc21 domain)/alternative N-terminus; refC/altC: reference/alternative 

(containing the full eMIC domain) C-terminus; RS domain: arginine/serine-rich domain). 

Arrows, red circles and non-horizontal lines represent promoters, stop codons and conserved 

alternative spliced isoforms, respectively. c, Alternative N-terminus of Srrm2/3/4 in non-

vertebrate bilaterians. Usage of the alternative promoter ‘altN’ (illustrated by blue lines) leads 

to the inclusion in neural tissues of a protein motif with high sequence similarity to vertebrate 

Srrm4. d, Alternative C-terminal region of Srrm2/3/4 in non-vertebrate bilaterians. Usage of a 

different last exon by alternative splicing and/or alternative polyadenylation (altC, illustrated 

by blue lines) leads to the incorporation of the full eMIC domain (PFAM15230). e, Expression 

profile of Srrm2/3/4 orthologs across tissues, quantified in counts per million (CPM) from 

RNA-seq data, and Z-score normalized per gene. Boxes represent the average value of the 

normalized CPM per tissue group (neural or non-neural). Other: non-neural tissues. 
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Figure 3 | The eMIC domain is key for neural microexon splicing 

a, Effect on the inclusion of endogenous neural microexons of heterologous expression of 

Srrm2/3/4 orthologs in human non-neural HEK293 cells. refN/altN, reference/alternative N-

terminus; refC/altC, reference/alternative C-terminus. Band descriptions: constitutive flanking 

exons in grey and neural microexons in blue, asterisk in CERS6 gel marks a heteroduplex. b, 

Both eMIC-containing amphioxus isoforms produce similar transcriptome-wide effects in 

microexon inclusion (ΔPSI) when stably heterologously expressed in HEK293 cells 

irrespectively of their N-terminus. c, Co-transfection of amphioxus Srrm2/3/4 eMIC-

containing isoforms (refN-altC and altN-altC) with wild-type and UGC-mutated microexon 

minigenes from zebrafish in HEK293 cells. Numbers indicate quantifications from three 

replicates (average ± standard deviation). d, Effect of the heterologous expression of Srrm2/3/4 

orthologs on endogenous neural microexons as quantified by RNA-seq, grouped by the 

magnitude of ΔPSI. e, Distribution of exon lengths for the top 100 most affected exons by the 

knock-down of several tissue-regulated splicing factors, as quantified from public mouse RNA-

seq datasets. AS exons: all mouse alternatively spliced exons. f, Tissue-enriched microexons 

in C. elegans. The number of neural microexons is indicated. g, Number of microexons in N. 

vectensis enriched in each of the two cell populations sorted from transgenic Elav1::mOrange 

polyps (Elav1+ is a marker of neuronal identity, Supplementary Figure 4d,e). h, Heterologous 

expression in HEK293 cells of N. vectensis Srrm2-like and a chimera fusing the C-terminal 

region of human SRRM4 to the N. vectensis ortholog. For details on the chimeric construct, see 

Supplementary Fig. 3e. Species abbreviations: Hsa, H. sapiens; Dre, D. rerio; Bla, B. 

lanceolatum; Dme, D. melanogaster; Cel, C. elegans; Nve, N. vectensis. 
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Figure 4 | The eMIC domain interacts with early spliceosomal factors to promote 

microexon inclusion 

a, Schematic representation of protein constructs used to interrogate eMIC function. FL, full-

length SRRM4; FL_M, SRRM4 with eMIC domain deleted; C4, C-terminal peptide of 

SRRM4; C4_M, loss-of-function mutant of C4 (T510A, K514Q); C3, C-terminal peptide of 

SRRM3; C3_M, loss-of-function mutant of C3 (T577A, K581Q); Min4: minimal construct 

with microexon regulatory capacity in HEK293 cells (see Supp. Fig. 5). End and start amino 

acid positions are relative to full-length SRRM4 or SRRM3. b, Overexpression of human 

SRRM4- and SRRM3-derived constructs in HEK293 cells. c, Genome-wide effect of C4 

(containing the eMIC domain, green) compared to FL_M (no eMIC domain, yellow) on 

microexon inclusion measured as ΔPSI respect to the control (stable line overexpressing GFP). 

d, AP-MS identification of protein interaction partners for specific regions of SRRM3 and 

SRRM4. Green box: set of proteins interacting with all constructs containing the eMIC domain. 

RelSpec, relative spectral counts across each bait; AvgSpec, average number of spectral counts 

across replicates. e, Co-immunoprecipitation assay showing interaction of Flag-tagged eMIC-
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containing constructs with HA-tagged SF1 and U2AF2. f, C3 peptide promotes pre-

spliceosome -complex A- assembly on apbb1 RNA in functional U2 snRNP containing nuclear 

extracts. HeLa cell nuclear extracts were RNAse-H inactivated with a control (Ctr) 

oligonucleotide or with oligonucleotides complementary to the 5' end of U1 snRNA (U1i) or 

to the branch point recognition sequence of U2 snRNA (U2i); or depleted of U2 snRNP (U2Δ) 

and its control (CtrΔ); His-C3: His-tagged C3 peptide. The position of the H and A complexes 

are indicated. g, C3 peptide promotes pre-spliceosome -complex A- assembly on apbb1 

microexon minigene RNA in a sequence-dependent manner. WT: wild type RNA; BP, AG, 

UGC: branch point, 3' splice site AG and UGC element mutants, respectively; All: mutation of 

all three sequence elements. h, Effect of adding C3 peptide on the protein composition of 

complexes assembled onto the apbb1 microexon RNA, as quantified by MS. AvgSpec: average 

number of spectral counts per protein in complexes formed in the absence of C3 peptide. FC: 

fold-change after addition of C3 peptide. Proteins are colored by protein complex, as per Fig. 

4d. 

 



 
 

 
 

1 

Supplementary Materials for:  

 

A novel protein domain drove the emergence of neural microexons in bilaterian animals 

 
Antonio Torres-Méndez †, Sophie Bonnal †, Yamile Marquez, Jonathan Roth, Marta Iglesias, Jon 

Permanyer, Isabel Almudí, Dave O’Hanlon, Tanit Guitart, Matthias Soller, Anne-Claude Gingras, 

Fátima Gebauer, Fabian Rentzsch, Benjamin J. Blencowe, Juan Valcárcel,  and Manuel Irimia * 

 

Correspondence to: mirimia@gmail.com 

 

 

 

 

 

 

 



 
 

 
 

2 

 

Supplementary Figure 1 | Neural microexon programs in bilaterian animals 

a, Absence of UGC-motif enrichment in the intronic regions surrounding long (>27 nts) 

alternatively spliced exons. 1,000 randomly sampled exons were used per species. ‘Data’ subpanel 

refers to proportion of total sequences used for the RNA map at each position as implemented in 

Matt. b, Related to Fig. 1D, comparison of score distributions for several splicing features between 

neural microexons and longer alternatively spliced exons. Boxplot elementes: center line, median; 

box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. P-value from Mann-

Whitney U-tests. c, Effect on inclusion levels of heterologously expressing human SRRM4 in non-

neural HEK293 cells for all endogenous alternatively spliced exons with sufficient read coverage, 

grouped by tissue-specificity and sorted by exon length. x-axis scales linearly between each 

indicated exon length mark. Exon groups: Neural, higher inclusion in neural samples; Other, 

alternatively spliced exons with no neural enrichment. Species abbreviations: Hsa, H. sapiens; 

Mmu, M. musculus; Dre, D. rerio; Bla, B. lanceolatum; Sma, S. maritima; Dme, D. melanogaster. 



 
 

 
 

3 

 
 

Supplementary Figure 2 | Evolution of Srrm2/3/4 loci in bilaterians  

a, Exon-intron structure of Srrm2/3/4 genes across metazoans. Conservation of the structure (solid 
line) requires that the introns are in the same position of the alignment (+/- 5 residues) and share 
the same phase. In vertebrates, duplication of the locus resulted in three paralogs with different 
protein domain composition. refN: reference N-terminus (containing the cwc21 domain), altN: 
alternative N-term, refC: reference C-terminus, altC: alternative C-term (containing the full eMIC 
domain), K: lysine, RS domain: arginine/serine-rich domain. Arrows at the start of the gene 
represent promoters; red circles, open reading frame ends; non-horizontal lines represent possible 
alternative spliced isoforms. The arrow in last intron of Srrm4 matches the arrow in (c). b, Protein 
alignment of the N-terminal sequence of vertebrate Srrm4 (indicated with a '4' after the species 
name) and the conserved altN in non-vertebrate bilaterians. c, Protein alignment of the eMIC 
domain at the C-terminus of vertebrate Srrm3 and Srrm4 and of neural non-vertebrate Srrm2/3/4 
isoforms (altC), used for the protein logo in Fig. 2d. The arrow indicates the position of the last 
intron (as in panel (a)). d, RT-PCR assays showing the alternative usage of the eMIC domain (altC) 
in different tissues from S. maritima and D. melanogaster. Arrows indicate the position of the 
oligonucleotides used for RT-PCR.  
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Supplementary Figure 3 | Microexon regulatory activity of Srrm4 orthologs 

a, Schematic representation of the four main isoforms of the Srrm2/3/4 gene from amphioxus that 
were heterologously expressed in human HEK293 cells (related to Fig. 3a). Stars indicate the two 
isoforms with microexon regulatory activity, i.e. containing the eMIC domain. refN: reference N-
terminus (containing the cwc21 domain), altN: alternative N-term, refC: reference C-terminus, 
altC: alternative C-term (containing the full eMIC domain), K: lysine, RS domain: arginine/serine-
rich domain. b, Effect of the transient heterologous expression of different Srrm2/3/4 orthologs in 
non-neural HEK293 cells on VAV2 and KIF1B endogenous microexons. Band descriptions: 
constitutive flanking exons in grey and neural microexons in blue. c, RT-PCR assays of two 
SRRM4-dependent microexons in the stable lines heterologously expressing different Srrm2/3/4 
orthologs or green fluorescent protein (GFP). d, Expression levels of Srrm2/3/4 orthologs and GFP 
in the doxycycline-inducible HEK293 cell lines after 24h induction, as quantified from RNA-seq 
reads in RPKMs (reads per kilobase per million mapped reads). e, Protein domain composition of 
N. vectensis Srrm2-like and the chimera generated by fusing the cnidarian protein with the region 
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encoded by the last two exons of human SRRM4 (containing the eMIC domain). In brackets, 
protein length in number of amino acids. f, Protein domain composition of other SR proteins tested 
for microexon regulatory activity and schematic representation of their corresponding protein 
chimeras with the last two exons of human SRRM4. g, Microexon regulatory activity of several 
SR proteins and chimeras fusing the eMIC domain of SRRM4, as indicated by the inclusion level 
of MEF2C, CERS6 and VAV2 microexons. wt: wild-type protein, chim: chimera. In brackets, 
microexon length. Asterisk marks a heteroduplex in CERS6 RT-PCR. Species abbreviations: Hsa, 
H. sapiens; Dre, D. rerio; Bla, B. lanceolatum; Dme, D. melanogaster. 
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Supplementary Figure 4 | Absence of eMIC domain correlates with absence of neural 

microexon programs 

a, Phylogenetic tree of major bilaterian clades, indicating branches where eMIC domain loss or 
duplication occurred (red and blue, respectively). b, Exon-intron structure and protein domain 
composition of the Srrm2/3/4 ortholog in C. elegans (rsr-2) shows a secondary loss of the eMIC 
domain. c, Absence of UGC motif enrichment in the upstream intronic regions of C. elegans neural 
microexons, comparable to longer alternatively spliced exons. In brackets, number of exons 
analyzed per group. ‘Data’ subpanel refers to proportion of total sequences used for the RNA map 
at each position as implemented in Matt 1. d, Experimental workflow of fluorescence-activated 
cell sorting (FACS) of Nematostella Elav1::mOrange  positive and negative cell populations. 
Representative confocal image of the neuron-specific transgenic NvElav1::mOrange used (left): 
red, immunostaining against mOrange; blue, DAPI; green, phalloidin; scale bar 100 μm. 
Representative bright-field and fluorescence images obtained after tissue dissociation (middle) and 
FACS-sorting (right): red, live mOrange-fluorescence; cyan, Hoechst3342-labeled nuclei; scale 
bar: 10 μm. e, FACS gating strategy applied to sort Elav1::mOrange positive and negative cell 
populations after excluding most of the debris from the cell suspension (cells gate), 
doublet/multiplets (singlets gate) and non-viable cells (live gate). Representative FACS plots 
showing the percentage of events gated in each step. 
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Supplementary Figure 5 | The eMIC domain is necessary and sufficient for neural microexon 

inclusion 

a, Single point mutations in eMIC domain largely disrupt the microexon regulatory activity of C4 
and C3 (SRRM4 and SRRM3 C-terminal peptides, respectively). Amino acid positions relative to 
SRRM4 protein sequence. The relative effect of each mutation is comparable between C4 and C3, 
as indicated by the inclusion levels of endogenous microexons in HEK293 cells. b, Minimal 
peptides derived from SRRM4 (containing the eMIC domain) that have detectable microexon 
regulatory activity. Left: inclusion levels of two endogenous microexons, right: start and end 
positions of the peptide in the full-length protein. Min4: minimal peptide used for affinity-
purification mass-spectrometry experiments depicted in Fig. 4d-e and Extended Data Fig. 5f-h. c, 
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Genome-wide effect of heterologously expressing full length SRRM4 (FL), SRRM4 lacking the 
eMIC domain (FL_M) and SRRM4 C-terminal peptide (C4) on the inclusion levels of endogenous 
neural microexons in HEK293 cells. Colors represent the magnitude of ΔPSI. d, Expression levels 
of FL, FL_M and C4 in doxycycline-inducible HEK293 cell lines after 24h induction, as quantified 
from RNA-seq reads in RPKMs (reads per kilobase per million mapped reads). e, Western-blot 
with anti-Flag M2 antibody shows similar expression levels of Flag-tagged FL_M and C4 proteins 
in doxycycline-inducible HEK293 stable cell lines used for RNA-seq. f, Venn-diagram showing 
number of protein partners (BFDR<=0.01) identified by affinity-purification mass-spectrometry 
(AP-MS) for the C-terminal peptides of SRRM3 and SRRM4 (C3 and C4), the minimal functional 
SRRM4 peptide (Min4) and the loss-of-function mutant of SRRM4 (C4_M). Only SF1 and U2AF2 
interact with all and only functional eMIC-containing constructs, which we validated by co-
immunoprecipitation (Fig. 4e). g, Co-immunoprecipitation assay showing interaction of Flag-
tagged eMIC-containing constructs with HA-tagged U2AF1. BirA tag alone is used as negative 
control. h, Full list of protein partners (BFDR<=0.01) identified by AP-MS interacting with full-
length SRRM4 (FL), complementary to Fig. 4d. RelSpec, relative spectral counts across each bait; 
AvgSpec, average number of spectral counts across replicates. 
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Supplementary Figure 6 | The eMIC domain promotes sequence-specific spliceosomal A-

complex formation 

a, A complex formation on the apbb1 microexon and flanking intronic sequences (including 3' 70 
nucleotides of the upstream intron and 5' 25 nucleotides of the downstream intron) is ATP- and 
U2 snRNA-dependent. HeLa cells nuclear extracts were RNAse-H inactivated with a control (Ctr) 
oligonucleotide or with oligonucleotides complementary to the 5' end of U1 snRNA (U1) or to the 
branch point recognition sequence of U2 snRNA (U2), as indicated. The position of H and A 
complexes are indicated. b, Nuclear extracts from doxycycline-inducible HeLa cells 
overexpressing SRRM4 (FL) and C4 peptide promote pre-spliceosomal -complex A- formation on 
the apbb1 microexon RNA substrate. c, His-tagged C3 peptide promotes pre-spliceosome -
complex A- assembly on apbb1 RNA in a UGC sequence-dependent manner. d, His-tagged C3 
peptide promotes A complex formation on the apbb1 substrate in the absence of a 5' splice site. 
Assays were as in panel 5SA using an RNA substrate lacking sequences of the downstream intron 
in the presence or absence of 50 ng/ul of His-tagged C3 peptide. e, A complex formation on the 
apbb1 substrate is enhanced by His-tagged SRRM3/SRRM4-derived peptides from both human 
(Hsa C3/C4) and zebrafish (Dre C3/C4) proteins. Assays were carried out as in Extended Data 
Fig. 5a using 16,7; 50 and 150 ng/ul of the indicated peptides. f, A complex formation on the apbb1 
substrate is sensitive to mutations of the His-tagged C3 peptide that inactivate SRRM function 
(Extended Data Fig. 4b). Assays were carried out as in Extended Data Fig. 5a using 5,5; 16,7; 50 
and 150 ng/ul of the wild type or mutant peptides described in Extended Data Fig. 4a,b. g, Activity 
of His-tagged C3 peptide on A complex formation is substrate dependent. Pre-spliceosomal -- 
complex A -- was assembled on RNAs comprising apbb1 and asap1 SRRM4-dependent neural 
microexons and flanking intronic sequences (70 nucleotides upstream and 25 nucleotides 
downstream), or the 3’ 70 nucleotides exon 2 of IgM. h, Spliceosome assembly reactions using 
either mock- or SF1-immunodepleted HeLa cells nuclear extracts2 and increasing amounts of His-
tagged C3 peptide. All experiments were done on apbb1 microexon derived substrates, including 
or not the first 25nt of the downstream intron, as indicated in each panel. Position of H and A 
complexes are indicated. 
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Supplementary Figure 7 | Characterization of ribonucleoprotein complexes (RNPs) 

assembled on a microexon 

a, Purification of complexes assembled on the MS2-tagged apbb1 RNA. Two successive 
purification steps involved gradient fractionation and affinity purification of MS2-MBP-bound 
transcripts. MS2-tagged RNAs (bearing either WT or UGC mutated sequences) (as well as a 
condition without RNA used as a negative control) were incubated with MS2-MBP tagged protein 
(step 1) and further incubated under splicing condition in HeLa cells nuclear extracts (step 2). 
Complexes were fractionated on a glycerol gradient (step 3) and further purified on an amylose 
resin (step 4). The protein composition of the different fractions was visualized by silver staining 
of a SDS-PAGE after steps 3 and 4. The fractions used for the LC-MSMS of the pilot experiment 
are labeled with triangles. b, Effect of adding His-tagged C3 peptide on the protein composition 
of complexes assembled onto the UGC-mutated apbb1 microexon RNA, as quantified by MS. c, 
Effect of the UGC mutation on the RNP composition in presence of His-tagged C3 peptide. d, 
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Effect of the UGC mutation on RNP composition in the absence of His-tagged C3 peptide. Panels 
b-d: AvgSpec, average number of spectral counts per protein; FC, fold-change in the number of 
spectral counts between conditions. Only proteins (dots) with a fold enrichment or depletion over 
the reference sample higher than two (marked by dotted red lines), and with at least 5 average 
spectral counts have a text descriptor.  
 

 


