
 
 

Value of rail inspection reschedules
Bin Osman, Mohd Haniff; Kaewunruen, Sakdirat

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Bin Osman, MH & Kaewunruen, S 2018, 'Value of rail inspection reschedules', Proceedings of the Institution of
Mechanical Engineers, Part F: Journal of Rail and Rapid Transit.

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility 04/12/2018

This is a peer-reviewed version of an article forthcoming in Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail
and Rapid Transit.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Feb. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/185513541?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.birmingham.ac.uk/portal/en/publications/value-of-rail-inspection-reschedules(91a07bda-1878-447f-b07e-4c84f6ac700e).html


 

Value of rail inspection reschedules 
Journal Title  
XX(X):1–9  
c The Author(s) 2015 Reprints and 

permission: 

sagepub.co.uk/journalsPermissions.nav 

DOI: 10.1177/ToBeAssigned 

www.sagepub.com/  

 

Mohd Haniff Osman
1,2

 and Sakdirat Kaewunruen
1 

 
 

 

Abstract  
A regular rail inspection schedule has been proposed to minimise any detrimental financial cost incurred due to operations 

under harsh environments. Missed opportunities to detect a defective rail could lead ultimately to it breaking, which would 

magnify the repair (as well as maintenance) cost, by approximately 30-35% per rail-mile. However, the performance of a 

pre-planned inspection schedule may be affected by disruptions in one or more element(s) of inspection such as 

machine/vehicle breakdown or track unavailability, which are usually unpredictable events. As part of the justification for the 

need to manage a disrupted inspection schedule, this paper proposes a methodology that highlights the value of 

rescheduling. An extensive literature search was undertaken on the rescheduling framework in order to determine 

appropriate policies, strategies and methods for rail inspection. As a result, the value of rescheduling is formulated as the 

ratio of rescheduling cost to a change in value of risk from a missed opportunity to repair a defective rail i.e., late defect 

detection. This numerical formula demonstrates how the proposed methodology is useful for filtering out a rescheduling 

strategy that has (negative) value when dealing with a disrupted rail inspection schedule. The discussion portrays several 

potential aspects to feasibly extend the proposed methodology on large scale of rail network. 
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Introduction 
 
Rail inspection is an important investment for every railway 

infrastructure manager (RIM). For example, Network Rail, a 

railway administrator in the UK, spent almost 9 million on 

inspections (excluding maintenance works) in 2011 of 

around 20,000km track lines
1
. According to the previous 

study
2
, the cost exponentially grows in line with the size of 

the railway network and inspection requirements. Limited 

resources, for example, inspection vehicles and manpower, 

and time restrictions to assess tracks, have underpinned the 

need of (the predetermined) inspection schedules to 

effectively prioritise inspection tasks. In this regard, rail 

inspection is a proactive action to assure safety and 

operability of the tracks, However, from track capacity 

management viewpoint, track possession for inspections 

seems to be an obstacle for RIMs to offer an additional track 

access, especially to freight companies. It is also noted that 

RIMs and train companies in the European region are not 

eligible for inclusion under one organisation, following an 

endorsement of reform model in 1990
3
.  

A rail inspection schedule (RIS) is normally prepared 

several months before an operational year with respect to a 

RIMs objectives (e.g. safety, comfort, costs) and is subject 

to many technical, safety and business constraints
4;5

. In fact, 

a planner must wait for the disclosure of freight and 

passenger timetable and major possession plans as those 

are constraints in generating the RIS
6
. Usually, the total 

value of inspection decisions is known in advance due to its 

nature so that company resources such as equipment, 

inspection vehicles and manpower, are ready, and track 

possessions can be arranged effectively. However, due to 

the 

 
 

 

fact that the complexity of the RIS model increases along 

the amount of uncertainty associated with rail inspection 

and maintenance; thus, not all uncertainties are able to be 

taken into consideration at the design phase
7
. In line with 

this, performing trading model complexity with uncertainties, 

especially those with very low information, is necessary and 

it indirectly creates an opportunity for RIMSs to effectively 

manage disruptions.  
In the meantime, disruptions are often unexpected, have 

a low likelihood of occurrence and their consequence is 

ambiguous in nature. Disruptions occur abruptly and most 

times, they occur beyond the control of the system owner. 

Landslides
8
, train accidents

9
 and poor contingency plans

10
 

are real disruptions that have occurred in the European 

region recently. Realising that most disruptions are 

unforeseeable, many studies have focused on reducing the 

consequences of disruptions
11

 and some have employed 

disruption management as an underlying theory. In our 

previous works
12–14

 the importance of adopting the theory in 

managing disrupted inspection schedule is discussed. 

Meanwhile, from a financial aspect and protecting 

organization’s reputation rescheduling is performed in order  
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to minimise impacts from disruptions and assure the survival 

of the dedicated schedule until the end of targeted period 

i.e. a preventive maintenance cycle. For example, the 

effectiveness of rail maintenance decision, specifically the 

optimal downtime per unit time will start to decrease if there 

is a disruption during the day of operations
15

. 
 

As the initial inspection decisions might be altered, the 

value of rescheduling should be established in order to 

guide decision makers. The value in rescheduling is said to 

be created if benefits exceed total incurred costs. In such 

cases where value does not exist, the object of interest i.e. 

the rescheduling process, could demonstrate value added to 

rail inspection scheduling, through an introduction of 

innovative procedure to manage disrupted schedules. In this 

paper, risk and economic elements are studied in parallel to 

establish quantitative measures for the formulation of 

rescheduling disrupted rail inspection. 

 

Mapping RIS in rescheduling framework 
 
In complex (i.e. interrelationships between several 

resources exist) situations, applying changes to an initial 

schedule is not interesting but, in the event of disruption, 

changes by means of rescheduling are necessary. Fox et al. 

2006
16

 points out that rescheduling is a challenging 

operation as the minimisation of changes in the original 

schedule and the impact of disruptions are two principle 

objectives that need to be satisfied. Recently, a new study 

of rescheduling is highly recommended to refer to a 

framework designed by Vieira et al. (2004)
17

 to obtain an 

insight about the necessary requirements to mitigate 

disrupted risks upon a predetermined schedule in a realistic 

way. Figure 1 shows four dimensions/compositions 

underlying the framework. Issues and development of each 

dimension is discussed in the following sub-sections 

accordingly. The scope of discussion is limited to relevant 

research materials associated with railways, transportation 

and maintenance. The focus of this study is placed on the 

inspection of rail component. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Interdependent components of rescheduling 

framework. 

 
 

Dimension 1: Environment 
 
The rescheduling environment explains which part of a 

disrupted schedule needs a modification. It begins by 

classifying the schedule into static or dynamic. In contrast to 

a dynamic schedule, a static schedule has a finite number 

of tasks. In the context of railway operation, and probably in 

all public transportation business, resources schedules 

including timetables have a finite size of tasks where their 

information is certain, such as the number of trips in a week, 

routes and fares. In fact, most railway-related schedules are 

decided and planned several months before the operation 

year starts. However, for some static schedules, even 

though the number of tasks is known, uncertainty in the 

schedule parameters might occur. For example, RIM 

usually know the number of tracks that need to be 

inspected, but, an exact inspection frequency of each track 

is not certain due to random failure occasions
18

. 

 

Dimension 2: Strategy 
 
Rescheduling is a synonym to recovery action and would be 

performed upon disruption occurrence. In this light, 

disruption itself is unexpected as we do not know an exact 

time when it will occur even if we can study potential 

sources and consequences of disruption. However, those 

characteristics are not an obstacle to users who aim to 

prepare a rescheduling strategy ahead of time. Having the 

knowledge on what strategy needs to be implemented 

would ease the process of deciding whether an existing 

schedule requires rescheduling or not. Moreover, to what 

extent changes could take place in a schedule is possible in 

regards to the process of visualisation and estimation.  
Furthermore, the preferences of schedulers/planners 

during the schedule design stage influences his/her 

approach towards disruptions. In predictive-reactive 

scheduling, the predetermined schedule is rescheduled in 

response to disruptions and other changes within the 

environment. In such cases, the provisional schedule could 

be fundamentally deviated from the original one, which may 

cause poor performance owing to affecting other planning 

activities based on the original schedule. For these reasons, 

some authors tend to generate a schedule that aims to act 

robustly in response to a specific disruption
19

. Meanwhile, 

Fang et al. (2015)
20

 stated that establishment of a schedule 

that behaves in a robust way toward different disruptions is 

hard and becomes harder as time for rescheduling is often 

limited in railway systems. As stated in Cacchiani et al. 

(2014)
21

, contingency plans are real when handling 

disruptions to railway timetables and are being practised in 

the Netherlands. There are one thousand pre-planned 

periodic timetables for various types of disruption. 

Preparation of those plans is definitely a loss in a year 

where no disruption occurs. Moreover, only an experienced 

scheduler is capable of performing a plan selection. 

Nevertheless, an application of predictive strategy in an 

uncertain environment demands extra careful observations 

when dealing with problem formulation, as resources, e.g. 

time slots, vehicles, etc., are already over-utilised.  
Regardless of the chosen rescheduling strategy, the 

consequence level of the reschedule factor needs to be 

measured first. In this light, rescheduling is exempted if
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the consequence level is small (relative to users definition) 

or otherwise, the schedulers will move to the second and 

third steps which is finding a rescheduling solution(s) and 

revise the solution selection. The existence of many 

rescheduling methods opens an opportunity to offer several 

alternatives that can improve the performance of an existing 

schedule to the decision-makers
17

. Hence, in case the 

solution generates unsatisfactory results (user-defined 

value), the decision makers could apply the second-best 

alternative or they can repeat the solution step with or 

without the parameter changing. Consequently, there are 

several classification schemes introduced to reschedule 

methods and this study will discuss some relevant 

classifications the following section. As such, a rescheduling 

policy would help users to attain a good justification for 

selecting particular methods and to revise the solution. 

 

Dimension 3: Policy 
 
An implementation of a predictive-reactive rescheduling 

strategy is driven by a rescheduling policy, which refers to a 

type of event that orders rescheduling of an existing 

schedule. In a periodic situation, use of a single schedule for 

numbers repeatedly keeps schedulers from spending 

resources again on schedule generation. To own this 

opportunity, a scheduler should gather comprehensive 

information from different aspects related to the system 

which the schedule is operating in. For example, track 

inspection schedules always come after an international 

freight train, passenger train and major possessions 

schedule are announced. However, as internal and/or 

external environments of the system probably change due 

to various reasons, rescheduling the existing schedule 

before the next period begins could yield stability and 

reduce schedules performance deterioration. In this 

situation, a scheduler applies a periodic policy where a fresh 

system status focusing on irregularities is taken into account 

when seeking a better schedule.  
As discussed earlier, a disruption might attack a schedule 

during its execution period. Depending on the level of 

consequence associated with the disruption, a range of 

rescheduling methods can be used to create or update a 

schedule. At this point, rescheduling is driven by events. In 

most situations, those events are not part of the schedulers 

consideration when creating an initial schedule due to 

uncertain information about them. In the case of dynamic 

schedules, the event is not necessarily a disruption. It could 

be a regular task with incomplete information. A periodic 

schedule also can be rescheduled due to unscheduled 

events. Vieira et al. (2004)
17

 uses a hybrid policy term when 

referring to this situation. 

 

Dimension 4: Method 
 
Understanding which type of rescheduling strategy a user 

can implement when selecting a rescheduling method can 

be a straightforward action. For a predictive strategy, many 

methods ranging from evolutionary algorithms to numerical 

simulations have been adopted to generate a robust 

schedule in response to a specific disruption. Yang et al. 

(2014)
22

 proposes a method to create predictive schedules 

that include inserted buffer time (idle time) as a means to 

absorb some 

 

level of uncertainty without rescheduling. Typically, this 

method employs a bottleneck algorithm to handle parameter 

uncertainties and then places idle time to improve schedule 

robustness. In Higgins et al. (1998)
23

, an integer programing 

has been used to create a robust schedule that minimises 

train delays due to maintenance activities. Louwerse and 

Huisman (2014)
24

 review works of decomposing railway 

schedules and solve sub-schedules partially. For 

incomplete sub-schedules, real-time information is used to 

resolve the incompleteness issue at an appropriate time. 
 

As the level of uncertainty is too high, there is a tendency 

to perform rescheduling upon arrival of the disruption. 

Schedulers become reactive and deliver necessary efforts 

to minimise the size of changes and/or impacts due to a 

disruption. Occasionally, a scheduler may find an 

unexpected event triggers small deviations and probably 

chooses to continue operating the schedule without making 

any changes. If that is the case, schedulers simply assume 

that the impacts of minor disruption will be automatically 

accommodated in a short time and will not affect the 

remaining operations schedule. Another typical way to 

repair a schedule from that situation without changing a 

sequence of remaining operations is by shifting all of the 

operations altogether to the right on the time axis. For 

railway applications, shifting the method is almost 

impossible to be implemented particularly in a timetable 

because a delay of minutes in all train services would cause 

chaos in railway stations. 
 

A preferable method of handling disruptions in respect to 

railway operations is probably a recovery method, also 

known as a partial reschedule. This method aims to keep a 

degree of deviation from the existing schedule as low as 

possible when parts in the schedule that are directly or 

indirectly affected by disruption are given treatment 

(rescheduled). In Walker et al. (2005) 
25

, a cost increment is 

allowed when doing schedule recovery but it is aimed to 

keep it small. A vast collection of recovery algorithms can 

be found in Cacchiani et al. (2014)
21

. Branch-and-bound, 

mixed integer programming, alternative graph model, 

genetic algorithm, column generation and heuristic 

algorithms have been applied in various type of 

rescheduling problem related to railway. Interestingly, the 

authors highlight a great challenge of performing recovery 

on an integration phase (i.e. timetable, rolling and crew 

schedule). Integrated rescheduling of two resources has 

succeeded in various studies, such as
26

, which uses integer 

programming. 

 

Periodic schedules can have full-scale rescheduling 

before the beginning of a next schedules period. This 

situation normally appears when the existing schedule is no 

longer feasible for the next application due to the system 

within the schedule changing vastly. At this point, the 

literature on scheduling methods, for example in
27

, can be 

revisited to foster new schedule development. Conceptually, 

repair and recovery methods take less computational effort 

compared to total rescheduling
16

. In different versions, the 

use of contingency planning can be seen as an example of 

total rescheduling. A substantial number of publications 

regarding contingency plans have been published in the 

area of resource allocation
28

. 
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Value of rescheduling 
 
A rail inspection schedule comprises of a finite number of 

(work) trips which consist of a set of all of the movements an 

inspection team (man and machine) may make in the 

network. There may be more than one sequence of 

movements (corresponding to alternative routes) that can 

define a path through the network. The dedicated schedule I 

is stable if no disruptions occur at any time during an 

observation period. In other words, no change, amendment 

or delay will be applied to the schedule. Regardless of the 

disruption events that lead to rescheduling I, the aim is to 

maximise the value of inspection reschedule V. This can be 

calculated as follows: 
 

𝑉(𝐼, 𝐼) = −
𝐶𝑟

𝑤𝑏Δ𝑅𝑖𝑠𝑘(𝐼, 𝐼)
 

(1) 

where 𝐶𝑟 is the total cost incurred for rescheduling. A 

weighting factor 0 < 𝑤𝑏 < 1 is applied to Δ𝑅𝑖𝑠𝑘(𝐼, 𝐼) which 

represents the size of change in the risk score corresponds 

to 𝐼 due to an introduction of updated RIS 𝐼. The factor is 

introduced to avoid overwhelming the risk of missed 

oppurtunity. 

 
Costs of rescheduling 
 

In this paper, 𝐶𝑟 is formulated as the sum of Δ𝐶𝑖𝑛𝑠(𝐼, 𝐼) and 

𝐶𝑝. The first component is a difference in the cost of single 

type of rail inspection between two RISs; 𝐼 and 𝐼. For a rail 
section of length 𝐿 (in miles) which is expected to receive 𝑚 

inspections, the corresponding inspection cost can be 
calculated from following function: 
 

𝐶𝐼(𝑚, 𝐶𝐼
𝑑) = 𝑚𝐶𝐼

𝑑 + 𝐶𝐼
𝑎 = (1 + 𝑘)𝑚𝐶𝐼

𝑑 (2) 

 

where 𝐶𝐼
𝑑 is a direct cost per inspection. For a vehicle-

based inspection such as ultrasonic inspection train, 𝐶𝐼
𝑑 can 

be estimated from the cost for operating inspection vehicle 

in which 𝐶𝐼
𝑑 =

𝐿

�̂�𝑠
𝑐ℎ where 𝑣𝑠 is an average speed of the 

inspection vehicle and 𝑐ℎ is an operational cost per hour per 

vehicle. As administration elements have important features 
in scheduling (and maybe rescheduling) rail inspection, the 
corresponding administrative cost is attached to 𝐶𝐼. For 

simplicity, 𝐶𝐼
𝑎 is set to be proportional to the total direct cost 

of inspection; 𝑘𝑚𝐶𝐼
𝑑.  

 
There are three types of (administration) activity that could 

be involved to reschedule 𝐼; 
𝑊 = {1: 𝑎𝑑𝑗𝑢𝑠𝑡, 2: 𝑐𝑎𝑛𝑐𝑒𝑙, 3: 𝑎𝑑𝑑𝑛𝑒𝑤}. For each activity 𝑖, 
𝑖 ∈ 𝑊, a fraction of administration cost, 𝑐𝑖𝑘𝐶𝐼

𝑑 will be 

charged as a penalty cost on 𝐼. Let 𝑛𝑖 be the count of 

activity 𝑖, 𝑖 ∈ 𝑊 required to construct 𝐼, thus, the 

corresponding total penalty cost can be calculated from 

𝐶𝑝 = ∑ ∀𝑖∈𝑊 𝑛𝑖𝑐𝑖𝑘𝐶𝐼
𝑑. 

 

Risk of opportunity loss 
 
The risk of missing an opportunity to repair a defective rail 

before it breaks due to presence of an undetected defect 
during that period can be calculated as follows: 

 
 
 
 
 
 
 
 
 

 
 

𝑅𝑖𝑠𝑘(ℎ1, ℎ2) = 𝐶𝑢∑

𝑅

𝑟=1

𝑆𝑟𝑁𝑟(ℎ1, ℎ2) (3) 

 
The equation is a summation of 𝑅 risk factors where each 

factor is a product of the severity of failure, 𝑆 and the total 

expected number of broken rails in the periods (ℎ1, ℎ2) 𝑁 

multiplied by the potential financial loss 𝐶𝑢. Values of the 
pair (S, N) are associated with a type of defect that can lead 
to a specific rail failure mode. According to the survey in

30
, 

there are eleven risk factors (i.e., causes of failure) 
associated with rail breaks where transverse/compound 
fissures and field weld have been found as the major types 
of rail defects leading to train derailments. Therefore, the 
parameter R has two as its value. 

 

Financial loss 
 
Overlooked or inefficient inspections con-tributes to the 
increase in numbers in the percentage of undetected rail 
defects. Some undetected defects may expand or increase 
to cause the rail to break but the chance of this causing an 
actual train derailment is less likely. Let 𝑋 = {𝑋𝑑 , 𝑋𝑏} in 
which 𝑋𝑑 and 𝑋𝑏, respectively, denote an event of repairing 

a detected rail defect and broken rail. When 𝑋𝑏 is performed 

as a result of missed opportunities of 𝑋𝑑, a difference in 

total cost between these two events, denoted by 
Δ𝐶𝑟𝑒𝑝𝑎𝑖𝑟(𝑋𝑑 , 𝑋𝑏) could represent a potential financial loss to 

profit attributed to undetected rail defects. Based on 
information of repair cost models in Liu et al. (2014)

30
, 𝐶𝑢 

can be formulated as follows: 
 

𝐶𝑢 = Δ𝐶𝑟𝑒𝑝𝑎𝑖𝑟(𝑋𝑑 , 𝑋𝑏) 

  = (𝐶𝑟
𝑋𝑏 − 𝐶𝑟

𝑋𝑑) + Δ𝐶𝑑𝑒𝑙𝑎𝑦(𝑋𝑑 , 𝑋𝑏) 

  = (𝐶𝑟
𝑋𝑏 − 𝐶𝑟

𝑋𝑑) + (𝐶𝑦
𝑋𝑏 − 𝐶𝑦

𝑋𝑑) (4) 
 

where 𝐶𝑟
𝑗
 denotes a total direct cost of rail repair per rail-

mile and is a summation of labour, administrative, logistic, 
machine, tools, machinery and materials cost. The 

superscript in 𝐶𝑟
𝑗
, 𝑗 ∈ 𝑋 indicates the type of rail repair. 

Similarly, the rule is applied to determine a difference in a 
delay cost between 𝑋𝑑 and 𝑋𝑏, denoted by Δ𝐶𝑑𝑒𝑙𝑎𝑦(𝑋𝑑 , 𝑋𝑏). 

The base formula for calculating corresponding cost of train 
delay for any event in 𝑋 is given as follows

30
: 

 

𝐶𝑦
𝑗
(𝑦,𝑚1, 𝑚2) = 𝑐𝑜𝑚1𝑒

𝑚2𝑦 (5) 

 
where 𝑦 is the number of trains per day on the selected rail 

line. Values adopted for the delay model parameters; 𝑚1 

and 𝑚2 are associated with an event 𝑗 ∈ 𝑋. In terms of train 

delay, a unit cost (per hour), 𝑐𝑜 is invariant with respect to 
type of rail repair. 
 

Severity 
 
There are a few recommendations regarding the severity 
value as summarised by Konur et al. (2014)

 29
. For example, 

Zhao et al. (2007)
 31  

suggested the use of percentage of rail 
breakage that lead to train derailment. Statistics of broken-
rail train derailments provided by Liu et al. (2011)

32 
would be 

a good resource of input for severity estimation. In the event 
of no changes in the track structure or track operation 
speed, one can use a constant value (i.e., less than 1) for 
severity but it might differ as suggested in the previous 
works

33;34
.



 

Expected number of broken rail 
 
As previously mentioned, we consider that a rail section 
receives m inspections periodically where the corresponding 
sequence of inspection times are 〈𝑡1, 𝑡2, … , 𝑡𝑚−1, 𝑡𝑚〉. In an 

arbitrary interval (𝑡𝑗−1, 𝑡𝑗]; 𝑗 ≤ 𝑚 the expected number of rail 

break due to defect type 𝑟 may be induced by defects 

occuring in any interval (𝑡𝑘−1, 𝑡𝑘] where 1 ≤ 𝑘 ≤ 𝑗. Since the 

defects have undergone 𝑗 − 𝑘 inspections before they 

become rail breaks in the interval (𝑡𝑗−1, 𝑡𝑗], the 𝑁𝑟(𝑡𝑗−1, 𝑡𝑗) 

can be estimated using equation 6
31

: 
 

𝑁𝑟(𝑡𝑗−1, 𝑡𝑗) = ∑ 

𝑗

𝑘=1

(∏ 

𝑗−1

𝑖=𝑘

(1 − 𝛽(𝑡𝑖)) × 

 ∫ 
𝑡𝑘
𝑡𝑘−1

𝛾𝑟(𝜏)[𝐺𝑟(𝑡𝑗 − 𝜏) − 𝐺𝑟(𝑡𝑗−1 − 𝜏)]𝑑𝜏 (6) 
 
where 𝛾𝑟(𝜏) and 𝛽(𝜏) are the rate of occurrence of defect 

type 𝑟 and detection rate at time 𝜏, respectively. Meanwhile, 

𝐺𝑟(𝜏) denotes the cumulative distribution function (CDF) of 

delay time corresponding to defect type 𝑟. Thus, the 

expected number of rail breaks occuring to the rail section 
corresponding to defect type 𝑟 during the observation period 

(ℎ1, ℎ2) is: 

 

𝑁𝑟(ℎ1, ℎ2) = ∑

𝑚

𝑗=1

∑

𝑗

𝑘=1

(∏

𝑗−1

𝑖=𝑘

(1 − 𝛽(𝑡𝑖)) × 

 ∫ 
𝑡𝑘
𝑡𝑘−1

𝛾𝑟(𝜏)[𝐺𝑟(𝑡𝑗 − 𝜏) − 𝐺𝑟(𝑡𝑗−1 − 𝜏)]𝑑𝜏 (7) 
 
Applying equation 7 in equation 3 gives us the following 
equation: 
 

𝑅𝑖𝑠𝑘(ℎ1, ℎ2) = 𝐶𝑢∑

2

𝑟=1

𝑆𝑟 ∑

𝑚

𝑗=1

∑

𝑗

𝑘=1

(∏

𝑗−1

𝑖=𝑘

(1 − 𝛽(𝑡𝑖)) × 

 ∫ 
𝑡𝑘
𝑡𝑘−1

𝛾𝑟(𝜏)[𝐺𝑟(𝑡𝑗 − 𝜏) − 𝐺𝑟(𝑡𝑗−1 − 𝜏)]𝑑𝜏 (8) 
 
One requires the value of parameter 𝛽 to operate equation 

8. As part of non-destructive testing, an ultrasonic inspection 
is attached to probability of detection (POD) function. 
Basically, POD is expressed as a function of defect (flaw) 
size. While the defect size in terms of the percentage of 
railhead area %𝐻𝐴 grows exponentially with the 

accumulated tonnage on track 𝑡, thus, the POD(𝑡) function 

can be written as; 
 

𝑃𝑂𝐷(𝑡) = 𝑎1𝑒
𝑏1𝑡 + 𝑎2𝑒

𝑏2𝑡 (9) 
 
where values of model parameter 𝑎1, 𝑎2, 𝑏1 and 𝑏2 may vary 

by the type of rail defect. Since tonnage of traffic 
accumulated since the last repair (or renewal) is easily 
estimated, thus, we have decided to use equation 9 to 
generate value for 𝛽 for given 𝑡. 
 

Numerical example 
 
The rail network was illustrated on directed graph 𝐺 = (𝑄, 𝐴) 
where the set of vertices 𝑄 = 𝑆⋃ 𝑂 corresponds to the set 

of rail stations 𝑆 = {𝑠1, … , 𝑠𝑛} and the depot 𝑂. An arc from 

vertex 𝑖 to vertex 𝑗 is denoted as 𝑎𝑖𝑗, ∀𝑖, 𝑗 ∈ 𝑄. The arc set 

𝐴 = {𝑎12, … , 𝑎𝑖𝑗} where 𝑖 ≠ 𝑗 includes all available 

connections between vertices in 𝑄 with |𝐴| represents the 

total number of arcs. Figure 2 depicts a graph 
representation of (mini) network which has 𝑛 = 7 nodes and 

|𝐴| = 12 arcs considered in this section. Arcs of the sub-

network (excluding from/to a depot) were divided into two 
sets; 𝑆𝑒𝑡𝐴 and 𝑆𝑒𝑡𝐵, based on the inspection requirement 

for rail flaw detection. In our example, the effects of track 
length and track layout were not considered when 
calculating the value of rescheduling. 
 

 

Figure  2: Graph transformation of small instance of typical 

double rail track line. Effects of track geometry and 
elevation as well as condition of relevant track components 
are left out from this example. 
 

Ultrasonic inspection vehicle (UIC) traverses along a rail 
section to detect internal rail defects. For an individual UIC 
trip (it will be called trip in the remainder of the text), a set of 
arcs will be inspected during a track possession interval 
despite some rail sections not yet requiring inspection i.e. 
the aggregation approach. Every trip begins and ends at a 
depot. For the network in Figure 2, there are two default 

trips; 𝑂 − 𝑆𝑒𝑡𝐴 − 𝑂, and 𝑂 − {𝑎23, 𝑎32} − 𝑆𝑒𝑡𝐵 − 𝑂. A 
collection of the 𝑁 = 13 trips was designed to be performed 

in the observation period 𝑇 = 2 years and is treated as 𝐼, as 

shown in Table 2. 
 
In the event of no disruptions occur within 𝑇, risk score 

of lossing an opportunity to repair defective rail due to 
undetected defect for every arc in 𝐺 under 𝐼, is displayed in 

Figure 3. Table 3 offers values which are extracted from Liu 
et al. (2014)

30 
for calculation of the costs in equation 2,4 and 

5. All values to money were converted into present value (in 
£) based on the time value of fund. Also, the risk calculation 

was performed based on following considerations: 
 
1. Condition of each rail section is assumed to be 

nearly new (resulting from a perfect maintenance) at 
the beginning of 𝑇 

2. No maintenance or repair works are taking place 
during an observation period. 

3. A sequence of arcs in any trip has no effect in the 
risk calculation. This is based on the fact that a trip is 
completed in less than 24 hours due to working-hour 
regulations. 

4. Plot in Figure 3 and 14 in
35  

were used for estimation 
of parameters for POD. 

5. Values of parameters for the probability distribution 
that represent the occurrence of defect and rail 



failure were extracted from Patra et al. (2009)
36

, and 
are shown in Table 4. 

 
Table 2 Presumed rail inspection schedule applied on the 

network 𝐺 
Trip Arc 

No. Date, 𝑑i {𝑎12, 𝑎21} {𝑎34, 𝑎43} {𝑎23, 𝑎32} Depot Set B 

𝑖 = 1  18/10/18
1
  1 1 1 1 0 

2  27/12/18  0 0 1 1 1 
3  06/01/19  1 1 1 1 0 
4  27/03/19  1 1 1 1 0 
5  26/05/19  0 0 1 1 1 
6  15/06/19  1 1 1 1 0 
7  03/09/19  1 1

2 
1 1 0 

8  23/10/19  0 0 1 1 1 
9  22/11/19  1 1 1 1 0 
10  10/02/20  1 1 1 1 0 
11  21/03/20  0 0 1 1 1 
12  30/04/20  1 1 1 1 0 
13  19/07/20  1 1 1 1 1

3 

1
 An observation period starting from 31/07/18 until 19/07/20 

2 
Effected arcs due to a disruption

 

3 
Final inspection is undertaken on all arcs 

 

Table 3 Summary of cost functions’ parameters values 
 Cost type  Parameter Value 

𝐶𝐼 𝑘 0.07 
 𝑀 1 
 𝑣𝑠 15 mph 
 𝑐ℎ  235 

𝐶𝑝 𝑐1 2.0 

 𝑐2 -0.8 
 𝑐3 5.0 

𝐶𝑟 − £1240(𝑋𝑑), £1680(𝑋𝑏) 
 𝑐𝑜 £168 

𝐶𝑑 𝑚1 1.4714(𝑋𝑑),3.8643(𝑋𝑏) 
 𝑚2 0.0352(𝑋𝑑),0.0349(𝑋𝑏) 

 
Table 4 Parameterization of function and probability 

distributions 
Function/pdf Parameter Transverse 

fissure 
Weld (field) 

𝛽(𝑡)  𝑎1  0.9977 
  𝑏1  0.000128 

  𝑎2  -1.325 
  𝑏2  -0.0752 

𝛾(𝑡|𝛼ℎ , 𝐿) =
𝛼ℎ
𝐿
(
𝑡

𝐿
)
𝛼ℎ−1

 
 𝛼ℎ   

2.17 
 

1.01 

  𝐿  182.3 315.8 

𝐺(𝑡|𝜆) = 1 − 𝑒𝑥𝑝(−𝑡 𝜆⁄ )  𝜆 8 10 

 
 

 
Figure 3: Risk score over 𝐺 under 𝐼. A more frequent 

inspection resulted lower score in both 𝑎23 and 𝑎32 
compared to other arcs in Set B. 

Disruption 
 
Consider that the 5𝑡ℎ inspection of 𝑆𝑒𝑡𝐴 scheduled on 
(03/09/2019) cannot be performed on both 𝑎34 and 

𝑎43. This situation implies an adjustment on the 

corresponding trip which lead to the removal of 𝑎34 
and 𝑎43 from the the trip no.7. To cope with 
disruptions, there will be at least possible three 
rescheduling strategies that may be implemented on 
the affected arcs. 

1. 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦1: No action will be performed and 
wait for the next inspection scheduled for 
𝑆𝑒𝑡𝐴 on (22/11/2019). 

2. 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦2: Insert the affected arcs into the 
nearest trip which is trip no.8. This strategy 
allows the affected rail sections to be 
inspected together with a different set of rail 
section. As a result, an adjustment is required 
for trip no.8. 

3. 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦3: Shift trip no.9 (the 6𝑡ℎ inspection 
times of 𝑆𝑒𝑡𝐴) to the left on time axis; i.e., 
closer to trip no.6. This strategy will change 
the inspection policy from periodic to non-

periodic but is only applied to the 6𝑡ℎ and 7𝑡ℎ 
inspection of 𝑆𝑒𝑡𝐴. A new interval between 1) 

the 4𝑡ℎ and 6𝑡ℎ inspection 𝜐46, and 2) the 6𝑡ℎ 

and 7𝑡ℎ inspection 𝜐67 of 𝑆𝑒𝑡𝐴 can be 
determined using the ratio rule given as 
𝜐46

𝜐67
=

�̂�6−𝑑4

𝑑7−�̂�6
 where �̂�6 is a new inspection date 

of the 6𝑡ℎ inspection. For simplicity, �̂�6 was 
rescheduled in the middle between 𝑑4 and 𝑑7. 

This assignment not only allocates 𝑎34 and 

𝑎43 with a new inspection interval, but also 
every arc in 𝑆𝑒𝑡𝐴; 𝜐46 = 120 days instead of 
80 days. Importantly, this decision satisfies 
the condition of inspection interval in Table 1. 
However, other trips,(particularly trip no.8) are 
not affected by this strategy. 

 
Results 
 
Figure 3 depicts the effects of possible rescheduling 
strategies in order to cope with disruptions in the RIS in 
Table 4. As expected, the risk from a missed opportunity to 
repair defective rails increases in all proposed strategies. 
𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦2, among all possible strategies, possesses a little 

increment in the risk about 2.0 units but it incurs cost, 
around £ 1.30. Despite penalty administrative fees were 

also imposed on both 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦1 and 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦3, the 

strategies generate a refund (shown by a negative 
reschedule cost). This can be explained by the fact that no 
reduction in the number of inspection was offered in 
𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦2 which could be applied to reduce the penalty 

cost. Comparing 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦3 and 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦1, it appears that 

the size of refund from trip cancellation has an important 
role in reducing the penalty administrative fees. 
 

The one with the lowest value of rescheduling is 
𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦2 in which a decision maker has to spend £ 0.4406 

for a unit increment in the risk of missed opportunity. Either 
𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦1 or 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦3 creates positive decision value. 

Comparison results show that value of rescheduling is 
influenced by the number of inspection reduction in 𝐼 and 



the selection of new (temporary) inspection interval for 𝜐46 

and 𝜐67. Keeping the first factor unchanged, sensitivity of the 
𝜐46

𝜐67
 ratio to value of rescheduling was investigated. In Figure 

5, an evolution of value of rescheduling of 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦3 over a 

range of 
𝜐46

𝜐67
 ratio values is explained by a Gaussian function. 

Clearly, optimal decisions in regard to 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦3 is to shift 

trip no.9 to the left by 20-30 days i.e. 50-60 days after a 
disruption. 
 

 
Figure 4: Value of rescheduling from three strategies 

 
 

 
Figure 5: Effects of an interval decision on the value of 

rescheduling associated with 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦3 

 

Conclusion 
 
Rescheduling would result in allocating such amount of time 
and resources to ensure that the predetermined schedule 
can adapt to the impacts of disruption with minimal actions. 
The situation becomes more challenging for decision 
makers when several potential rescheduling strategies are 
presented for a comparison. To support decision makers to 
effectively conduct corresponding process effectively, this 
paper proposes a methodology for evaluating (monetary) 
value of rescheduling for a periodic (on-board) rail 
inspection. In order to place value on rail inspection 
reschedule, both costs incurred and benefits that might be 
gained from the proposed reschedule strategy must be 
presented. Depending on the type of rail inspection 
employed, related formulations should be carefully defined. 
Regarding the rescheduling cost, its value can become 
negative (a refund) if the provisional schedule changes an 
inspection policy and cancels scheduled trips. This finding 
suggests that the demand for external sources of 
information to convince decision makers to proceed with this 
type of strategy i.e. not to keep periodicity of predetermined 
inspection. 
 

The researcher aims to demonstrate the methodology to 
larger size of railway network. This should help explain how 

cascade effect could be potentially originated from localised 
reschedule decisions. As the size of a problem increases, 
the time taken to execute the proposed methodology is also 
expected to increase. To accelerate a process of valuation 
of rescheduling strategies, it is necessary to formulate rail 
inspection reschedule as an optimisation problem. As 
different rail sections are attributed with specific operational 
and safety constraints, the related multi-criteria optimisation 
model can be expanded to a constrained optimisation 
model. In addition, the process of determining an optimal 
interval ratio in 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦3 can be systematically performed 

by applying the utility function attached to Figure 5. Finally, 
future work will address the interconnected risk of other rail 
defects. 
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